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Inflationary tilings with a similarity structure

RICHARD KENYON*

1. Introduction

An inflationary tiling is, roughly speaking, a tiling of the plane with a finite
number of shapes of tiles, which has an associated expanding linear map which
maps tiles over themselves. One reason for studying such tilings is that they arise
naturally in Markov partitions for smooth hyperbolic dynamical systems. Finding
“good” constructions of Markov partitions is in general not so easy, but explicit
constructions of inflationary tilings have led to explicit constructions of Markov
partitions [2, 8, 9, 14].

There are many varieties of tilings of R”, depending on the “‘structure group”,
or underlying geometry, one requires of the tilings: from a finite set of tile types one
can consider tilings made by translates of the tiles, tilings using isometries, tilings
using similarities, or more complicated mappings. For inflationary tilings the most
natural structure groups (and the ones giving rise to the most interesting problems)
known so far are subgroups of the affine group A(2, R) (linear maps and transla-
tions).

The classical tiling problems deal of course with the group of translations or
isometries of R?, and indeed the first inflationary tilings to be studied were
translation-tilings, i.e. tilings with a finite number of tiles up to translation.

The simplest of these are known as self-replicating tilings, and arise from integer
radix representations (representation of numbers in integer bases in R, or integer-
matrix bases in R” [6, 9]) in which again the structure group is a group of
translations. These are tilings with only one shape of tile.

Thurston [15] generalized self-replicating tilings to self-similar tilings of C,
which arise from representation of complex numbers in (certain) non-integer
complex bases; these have a finite number of tiles up to translation. He proved that
the expansion constant (the base of the representation) had to be a certain kind of

* This work was partially completed while the author was at the Institut des Hautes Etudes
Scientifiques, Bures-sur-Yvette, France, and Institut Fourier, Grenoble, France.
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algebraic integer, a ‘“‘complex Perron number”. In addition he indicated a construc-
tion for a tiling with any such expansion. Thurston’s techniques were extended to
arbitrary linear expansions and higher dimensions in [8], still with structure group
a group of translations.

The techniques of [15, 8] do not readily extend to inflationary tilings with more
general structure group (for example tilings with a finite number of tiles up to
isometry or similarity). In particular, little is known about inflationary isometry-
tilings. We deal here with the case of expansions of similarity-tilings of the plane,
giving the following characterization:

THEOREM 1. 4 complex number v, |y|>1 is the expansion factor for an
inflationary similarity-tiling if and only if vy is algebraic.

Our proof of algebraicity resembles the proof (originally of A. Weil) of local
rigidity for hyperbolic n-manifolds, n > 2, in that a small quasiconformal deforma-
tion of the tiling is shown to be trivial. Likewise we can also see that the proof
breaks down in dimension one; in section 3 we construct an inflationary similarity
tiling of the line for any real expansion constant.

One advantage in using a larger structure group is that there is more freedom in
the construction of tilings: whereas for translation-tilings the tiles were often
necessarily non-polygonal with non-rectifiable boundaries [15], here we find:

THEOREM 2. For any algebraic number y,|y|> 1, there is an inflationary
similarity-tiling of the plane by polygons with expansion factor y.

Section 2 defines similarity structures, the space of tilings, quasiperiodicity, and
some definitions useful in the proofs that follow. These objects seem to be the
natural extension of the original definitions in [15] (see also [8, 14]). Since many of
the concepts here are unfamiliar we illustrate them with an example in section 3.
Section 4 gives a proof of the algebraicity of the expansion of a quasiperiodic
similarity-tiling of the plane, and section 5 gives the construction for any algebraic
number y of an inflationary similarity-tiling by polygons.

I would like to thank Dennis Sullivan and Curt McMullen for contributing
important ideas in section 4, and Fréderic Paulin for a careful proofreading of this

paper.
2. Tilings with similarities

By a similarity we will mean a complex linear map of C of the form z + az + b,
where a, b € C, a #0. Let G be a fixed group of similarities, with identity e(z) = z.
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By a tile type we will mean a compact subset of C which is the closure of its
interior.

Let T be a finite set of tile types, T ={T,, T,, ..., T }. By a marked tile we
mean a pair (g, 7;) with g € G and T, e T. The image of a marked tile (g, T;) is
g(T;). We usually identify a marked tile (g, T;) with its image g(7T;) in C, in which
case we refer to g(T;) as a tile. It is important to make the distinction when the tile
type T; has symmetries under G, or several tile types are similar, so that (g, 7;) may
not be the same marked tile as (g’, T;) even if g(T;) = g'(T;).

To build a tiling, we need to specify the ways in which tiles fit together locally.
For a tile type T, a surrounding of 7 is a collection of marked tiles whose images
have pairwise disjoint interiors, intersect the image of the marked tile (e, T;) and
cover a neighborhood of the image of (e, T;).

More generally a surrounding of a collection of (marked) tiles A4 is a collection
of marked tiles whose images have pairwise disjoint interiors, intersect the union of
the tiles in A and cover a neighborhood of the tiles of A.

Let S be a set of surroundings using tiles 7. By definition, a (G, S)-tiling is a set
of marked tiles whose images form a locally finite covering of C with pairwise disjoint
interiors, and such that for each tile 1 = g(T;) the set of tiles intersecting ¢ is the image
under g of a surrounding of T in S. We often abuse this notation and identify a tiling
with the set of images of its tiles. By a G-tiling we mean a (G, S)-tiling for some finite
set S. In the rest of the paper we will only consider tilings with S finite. We refer
the reader to [10] for remarks about the case S infinite.

Notationally, if 4 ={(g, 7;)} is a tiling and « is a similarity then by a4 we
mean the tiling {(ag, 7;)}. In particular x + 4 is the tiling obtained from A4 by
translating all the tiles by x.

The usual periodic tilings of the plane with fundamental domain consisting of
one tile are rranslation-tilings, (that is, G-tilings where G is the group of transla-
tions). Also in these cases S consists of a single surrounding. The familiar Penrose
tilings [13] are examples of isometry-tilings, in this case G being a group of
isometries of the plane; there are two tile types, the kite and the dart, and a finite
number of surroundings determined by the allowed adjacencies of tiles.

The above definitions can be extended to other structure groups, most notably
G = A(2, R), the group of affine transformations of R?. However, throughout the
rest of the paper (except section 3, where we deal with tilings of R), we assume G
is a group of similarities of C.

2.1. A topology on the set of tilings

Fix G to be the group of all similarities. Fix a finite set of tile types T and set
of surroundings S. (Recall that S is finite.)
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Let 7 be the set of all (G, S)-tilings modulo the equivalence of homothety: two
tilings 4 and B are equivalent, 4 ~ B, if there is a homothety  (a similarity
z+>az, a € C — {0}) such that y4 = B. Let [4] denote the equivalence class of a
tiling 4. Each equivalence class has a representative in which the set of tiles
touching the origin has total measure 1. Call such a tiling a standard tiling. If A4 is
a tiling, let (4 ) be a standard tiling equivalent to A.

We topologize the set J of equivalence classes in the following way. A
neighborhood of [4] € 7 is the set of tilings which are equivalent to a small
translation of {(4) on a large neighborhood of the origin. That is, the basic
neighborhood U, r([4]), where r >0, R >0, is the set of [B] (with standard form
{B)) such that there exists r,, r, € C, |r,| < r such that r,(r, + (4)) and (B) agree
on the ball of radius R around the origin. (Two tilings are said to agree on a region
U if their subsets of marked tiles with images intersecting U are the same.)

One must keep in mind in this definition that 4 consists of homothety classes
of tilings, not tilings themselves, so that a small translation of a tiling A is close to
A even if the origin crosses the boundary of a tile (the standard tilings change but
not the equivalence classes).

Let f: R, = R, be a continuous non-decreasing function. Let 7, = J be the set
of [A] for which for all R >0 and x € C the number of tiles in the tiling {x + 4)
intersecting Bg(0) is less than f(R).

LEMMA 3. The sets U, g form a base for a Hausdorff topology on 7 . In its
subspace topology, I, is a compact Hausdorff space.

Proof. We need to show that if two basic neighborhoods intersect, then there is
a basic neighborhood in their intersection. Suppose [C] € U, x([4]) " U, ([4°].
That is, {C) agrees with r,(r, + <{A4)) on Bgx(0) and with r5(r; + {(A’)>) on By.(0).
Assume the origin is in the interior of a tile in the tiling C. Then for ¢ small,
{C) + € agrees with r,(e/r,+r, + {(4)) on Bg_.(0) and with ri(e/r5+ri+ {A4"))
on Bg _ (0). So U ,([C]) < U, ([4A]) n U, z([4']) as long as

—6,—+r’, <r’ and Q =max{R, R'}.

€
_+r1
r;

ry

<r,

A similar argument works in case the origin is on the boundary of a tile in C. Thus
the U, p do form a base for a topology.

To prove that J is Hausdorff, if two tilings 4 and B have different tiles
containing the origin, or the same tiles containing the origin but the origin is in a
different place in the tiles, then U, zx([4]) and U, x([B]) are disjoint if r is sufficiently
small. If they have the same tiles at the origin and the origin is at the same place
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in those tiles, then by taking R sufficiently large, the U, z([4]) and U, (([B]) are
disjoint unless of course 4 ~ B.

To prove compactness of 7, let T; be a tile type in T. For x € T, let R;(x) = F;
be the set of tilings which have a tile g(7;) containing the origin for some g for
which g(x) =0. The R;(x) are homeomorphic as x ranges over 7,. Furthermore
R,(x) in its subspace topology is an inverse limit of finite sets:

Ri(x)=lim S, ={S) S| Sy}

where S{={T,} is the set consisting of the single tile type 7,, S is the set of
surroundings of 7; which can be extended to a tiling in J, for each n > 1 the set
S} is the set of possible surroundings of elements of S’ _, which can be extended
to a tiling in 7, and the map S; — §;, _, is the restriction (ignoring the outer tiles).
The existence of the function f insures that each point in the inverse limit
corresponds to a sequence of surroundings filling out the whole plane as n — oo,
hence a (G, S)-tiling with a tile of type T; at the origin. In addition, two tilings in
the inverse limit are close if they agree on a large neighborhood of the origin, so
R;(x) has the topology of the inverse limit.

Since S, the allowed surroundings of a single tile, is finite, each of the S are
finite, so R;(x) is compact and totally disconnected. Let R; = 7, be the set

R={J R(x.

XGT[

Then R, is almost the set R;(x) x T;, except there may be some identifications along
the boundary of T;. In any case R, is a (Hausdorff) quotient of the compact set
Ri(x) x T;, and so is compact. Finally, J, is the union of the finite number of
compact sets R, for each tile type T; € T, and so is compact itself. U

The space  itself is not necessarily compact; a limit of tilings may cease to be
locally finite and so not be a tiling in our sense: consider for example the tiling 4
of Figure 1, with two tile types, a square and a square annulus. In the tiling shown
the square is a unit square centered at the origin and is surrounded by an infinite
sequence of square annuli, each similar to the first which has outer boundary a
square of side 2. Let A4, for n = 0 be the sequence of tilings 4, = {4 + (32", 0)),
that is, 4, is just the standard version of the translate of 4 by (3 - 2%, 0). The “limit”
of this sequence is not locally finite at a point near the origin. (Precisely, at the
point (,/3/4, 0).)

In the future we shall deal only with the spaces ;. From now on we consider
f fixed.
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Figure 1. Tiling for which 9 is noncompact.

For each tiling A4, [4] € 7, there is a natural map n, of C into 7, defined by
n4(z) =[z + A]. The map n, is continuous, and since no tiling is equivalent to a
small translation of itself, it is locally injective. Since for a similarity o« we have
n(oz) = [az + A] the map = induces a similarity structure on n,(C).

From this and the structure of the sets R; from above proof we see that the
space 7, is foliated by surfaces with similarity structures, so that locally 7, is a
product D x K where D is a disk in C and K is a compact and totally disconnected
set. Thus J;is a (similarity-) surface lamination, in the sense of e.g. Candel [4].

Let 7, = closure(n,(C)) = ;. Then J; with the subspace topology is again
compact, and we call it the orbit closure of the tiling A.

If y e J; has a tile with the origin in its interior, then for small r the basic
neighborhood U, z(y) has itself a product structure. In particular r must be small
enough so that each x € U, x(y) has the origin in the interior of a tile of the same
type.

Referring to this product structure, we define for x € J, the stable fiber of x to
be the set of tilings which have standard versions which agree with {(x) in some
neighborhood of the origin. We also refer to this set as

def
Uo,o(x)": U UO,R(x)‘
R\0

The sets U, z(x) are the local stable fibers of x.
Similarly we define the unstable fiber of x to be the leaf through x, alternatively
the set of tilings obtained from x by translation. We also refer to this set as

Us, 0 (%)-
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2.2. Quasiperiodicity

The tilings we are concerned with all have a certain regularity property, called
quasiperiodicity, which we shall see is a very natural property to impose on a tiling,
and in particular on an inflationary tiling (Lemma 6). They are in a sense minimal
tilings, in the sense that all tilings in J, accumulate on quasiperiodic tilings (Lemma
4).

The tiling A, [A] € Jis said to be quasiperiodic if for all R >0 there is an r >0
such that for every x € C, n,(C) < U, z(Ix + A4]). Here one should think of R as
large, and r even larger, so that U, z([x + A]) is contained in a product neighbor-
hood about [x 4+ A] which is thin in the stable direction and fat in the unstable
direction.

In other words, any local arrangement of tiles (of standard size R) occurring
somewhere in the tiling 4 can be found in a “standard r-neighborhood” of any
point x in the tiling A.

A simple characterization of quasiperiodicity is given by:

LEMMA 4. A tiling A is quasiperiodic if and only if every leaf of I, = n 4(C) is
dense in I (i.e. the foliation of I, is minimal).

Proof. Suppose A is quasiperiodic. Then for all R > 0 there exists an r > 0 such
that n,(C) < U, g(x) for any x € n,(C), hence 7 < closure(U, z(x)) < U,, g2(x).

For any y € Z, take a sequence {x; } in ,(C) converging to y. If y has the origin
in the interior of a tile, then for i sufficiently large we have U,, g, (x;) < Us, gj3( ).
If the origin in y is on the boundary of a tile, then for i sufficiently large
Uy, (%) © U,y rim(y) for some constant m depending on the relative sizes of
adjacent tiles. Assume m >3 then in either case ; < U, (). Since a similar
containment holds for any R, the leaf containing y is dense in .

Suppose 4 is not quasiperiodic. Then there exists R such that for all r, there are
x,, ¥, € m4(C) for which y, ¢ U, g(x,). Let x, y € Z; be limit points of the x, and y,
respectively, as r tends to infinity. They exist by compactness of Z,. Then
¥y ¢ U, r(x) for any r so the leaf containing x doesn’t get near y, so J; is not
minimal. O

For two easy examples, the periodic tiling of the plane with unit squares and the
tiling shown in figure 2 are both (G, S)-tilings, where G is the set of translations and
S consists of three surroundings of a unit square. The first is quasiperiodic (as are
all periodic tilings; one can in this case take r = \/5/2 independently of R), but the
second is not: a limit of tilings x + 4 with x having horizontal coordinate tending
to infinity is periodic, and hence not dense in 7.
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Figure 2. The tiling is obtained from the periodic tiling by shifting the tiles right of the y-axis up by a
small amount é < 1.

2.3. Markov expansions and inflationary tilings

For each tile type T; in T let R; = J, be the set of tilings for which the origin is
contained in a tile of type T;. The boundary of R; is the set of tilings for which the
origin is in the boundary of a tile of type 7,. The R, form a finite partition of 7,
that is, a covering by closed sets with non-overlapping interiors. In addition, as we
saw in the proof of Lemma 3, R; is a quotient of T; x K;, where T, = C is a copy
of the tile 7, and K, is compact and totally disconnected. The quotient map is
injective on int(7;) x K;, so by abuse of notation we refer to the image int(7;) x K;
as int(R;). We will refer to points of R; by giving the two coordinates of a preimage
in T; x K; (some points in R;\int(R;,) may have several such descriptions). For
(x, k) € R;, we refer to the subset T; x {k} = R; as the unstable fiber in R; through
(x, k). The set {x} x K; = R, is just the stable fiber of (x, k), but in this context we
also refer to it as the stable fiber in R; through (x, k). The R, are called rectangles.

A Markov expansion, or simply expansion, is a continuous map ¢ : I, -7,
preserving the similarity structure on leaves, for which the partition |JR acts as a
Markov partition in the following sense:

(1) for each (x,k)eR,;, if ¢@(x, k) eint(R;) then the entire stable fiber
¢({x} x K;) is in int(R;), and
(2) if (y,k") € R,no(R,), then int(T)) x {k’} < @(int(R,)).

See figure 3. This is close to the usual definition of a Markov partition, from for
example [3]: the unstable fibers of R; map across the unstable fibers of R;, and the
stable fibers of R, map into the stable fibers of R;. Unlike [3] the R; may have
boundary identifications, and also ¢(R;) may intersect R; in more than one
‘subrectangle’.

It is worth explaining what a Markov expansion means on the level of tilings.
Since ¢ preserves the similarity structure on leaves of 7, the map n )y o om,:
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stable ‘F(R4)

—.’.
unstable R

Ra

1

Figure 3. How an expansion maps rectangles.

C - C is a similarity, i.e. a map of the form z — az + b. The image of a tile g(T)
of A under this composition is a set ag(7;) + b = C which must be a union of tiles
of the tiling ¢(A4) (by property 2 of a Markov expansion). Thus the tiling ¢@(A4) is
obtained by applying a similarity ¥z = az + b to A and subdividing the tiles yg(T;),
that is, for each tile g(7;) of A4 replacing yg(T;) with a set of tiles whose union is
Yg(T;). Property 1 of the expansion implies that two tiles g(7;), g’(T;) in A of the
same tile type have the same subdivision, that is, they are replaced with the same set
of tiles, up to an element g~ 'g’ € G.

An inflationary G-tiling is simply a quasiperiodic (G, S)-tiling 4 which is a fixed
point of some Markov expansion ¢ of J and for which ¢ is expanding on A4, that
is, the similarity n;'on, : C—>C is a homothety z — Az with |A| > 1. The complex
number A is called the expansion constant.

There are three important properties of an inflationary tiling which we under-
line:

LEMMA 5. Let A be an inflationary tiling.

(1) The image of a tile of A under ¢ exactly covers other tiles in A.

(2) Two tiles of the same type subdivide in the same way.

(3) Each tile eventually subdivides. For all N =1 there is an n such that
@"(Up r(x)) < Uy nr(@"(x)) (i.e. @ eventually contracts stable fibers).

Proof. The first and second of these three properties have already been shown.
For the third, recall that we have |A| > 1. Suppose T; is a tile type which does not
subdivide. Let aT; + b be an occurrence of T; in the tiling 4; then A*(aT; + b) is also
an occurrence of T;. Let x € int(aT; + b). If R = |x|(1 + 1/|A| + 1/|A]* + - - ) then for
each k there are at least k tiles A*~“(aT; + b) for [ =0, .. ., k intersecting B(0) in
the tiling (—A*x + A). So A ¢ J,. Thus each tile eventually subdivides. Further-
more, it does so after a finite number of applications of ¢ since there are a finite
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number of tile types. Each subdivision decreases the area of the tiles by a constant
factor, so the second statement of part 3 follows. O

As an easy example of an inflationary tiling, if the set S consists of a single
surrounding, the surrounding of a square by 8 squares in the usual way, then there
is a single (G, S)-tiling: the periodic tiling. The space 7 in this case is the torus
R? mod 1, the rectangle R, is all of 7, and int(R,) is homeomorphic to (0, 1)? x K,
where K consists of a single point. The map (x, y) — (2x, 2y) mod 1 is a Markov
expansion for J, and the periodic tiling by squares having the origin at a vertex is
an inflationary tiling with expansion factor 2. For maps (x, y) — (nx, ny) mod 1,
with n > 2, there are several inflationary tilings corresponding to different place-
ments of the origin in the original square.

The Penrose tilings have the remarkable property that J itself is compact and
minimal, yet has no closed leaves. They have a well-known subdivision rule, and
there are countably many inflationary tilings (powers of ¢ have many fixed points).

Figure 4a shows a way to subdivide a square to yield an inflationary similarity-
tiling with one tile type (Figure 4b; the picture is centered at the origin.) The
expansion factor is 2. Each surrounding of a square consists of squares of the same
size, twice the size, or one-half the size of the center square, located at the corners
or midpoints of the center square. Hence the number of surroundings is finite. A
square of side length 2" subdivides upon expansion by 2 into a square of size 2"
surrounded by squares of size 27"~ !, so in the tiling of the whole plane there are
squares of size 2% for all k = 0, and so the tiling in particular is not an isometry
tiling. (Note that there is only one tile of side 1, but an infinite number of side 27"
for each n > 1.) Lemma 6 below shows that the tiling is quasiperiodic.

i
1 HH I 1 T 1T HH
iglile: : : —Ei‘je
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Figure 4. The subdivision of a tile, and part of the tiling near 0.
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This example can be generalized to other surroundings of a square by squares,
to give inflationary tilings with a single tile type and with any rational expansion
constant r > 1.

2.4. Mixing implies quasiperiodic

Determining whether a given tiling is quasiperiodic is not always easy. In the
case of a tiling which is a fixed point for a Markov expansion, however, there is a
simple criterion. A Markov expansion ¢ of 7, with fixed point [4] and expansion
4, |A| > 1 is called mixing for [A4] if every tile type occurring in [4] occurs in the
eventual subdivision of any other tile type in [4]. That is, for any two rectangles
R;, R; = 7, which intersect n,(C), there is an n >0 such that ¢"(R;) intersects
int(R;). Since there are a finite number of tile types this condition is easily checked.
We have

LEMMA 6. If ¢ is mixing for [A], and the origin is contained in the interior of
a tile of A, then A is quasiperiodic, hence inflationary.

This lemma can also be found in [14, 9] in the context of translation-tilings.

Proof. We will use Lemma 4.

Fix r>0 and R 20. By compactness of Z;, there exists a finite number
k = k(r, R) of tilings x,, x,, . .., x, € n,(C), each having a tile containing the origin
in its interior, such that

k
i< U Ur(x).

i=1

Let x € ;. We must show that the leaf through x intersects each U, (x;). Since
this will be true for each r and R, the leaf will be dense in Z,, so by Lemma 4 the
tiling 4 will be quasiperiodic.

Let R, be the rectangle in J, containing the point [4]. Since the origin is in the
interior of a tile in 4 and |A| > 1, we have for all N 20

m(© = U 0 Ro)

so there is an integer n =n(R) so large that firstly for each 1 <i <k, ¢"(Ry)
intersects each U, x(x;), and secondly there are y; € R, such that the entire stable
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fiber of y; maps into the “local” stable fiber U, o(¢"(y;)) N U, g(x;) (this last by part
3 of Lemma 5).

Since ¢ is mixing for A4, there is an integer n’ so that for each i such that a tile
of type T; occurs in 4, ¢™(R;) intersects int(R,).

Let x € J;. Since ¢”*" is continuous on J, and a homeomorphism (in fact a
similarity) on n,(C), it extends to a continuous map from 7, onto itself. So there
exists y € 7, such that ¢"*"(y) = x. Now y € R, for some R, occurring in A4, so
from the definition of n’, ¢”(y) € 0™ (R,) intersects int(R,). Then x = @"*"(y) e
@”*"(R,) intersects ¢"R, which intersects each U, x(x;), and the stable fibers of R;
map into the local stable fibers of points in U, x(x;). This implies that the leaf
through x intersects each U, g(x;). O

For a tiling satisfying the hypothesis of Lemma 6, except that the origin is not
in the interior of a tile, consider the set of tiles containing the origin. If this
arrangement of tiles reoccurs in some repeated subdivision of any single tile (i.e. it
is not an exceptional arrangement), then the tiling is quasiperiodic as before, by a
similar argument.

In the example in figure 2, if the vertical displacement of tiles to the right of the
origin is 1/3, then the expansion x —4x leaves the tiling invariant and is mixing,
since there is only one tile type, but the tiling is not quasiperiodic as we saw. This
shows why the hypothesis about the arrangement at the origin (or the origin being
in the interior of a tile) is important.

2.5. Control points

Given an inflationary G-tiling 4 with expansion ¢, for each tile ¢ of type T, the
image @(¢) subdivides into new tiles in the same way. Pick one of the tiles in the
subdivision of ¢(f), and call it the successor of #, succ(?). Pick a single successor for
each tile type in T. Define the control point of a tile 7 of type T to be a point c(f) € ¢
such that for all n > 1, ¢"(c) lies in the tile which is the successor of the tile
containing ¢”~'(c). Since there is an n such that for each tile type, ¢”(z) does
subdivide (Lemma 5) and each subdivision decreases the ratio of areas of new tiles
to old tiles by a definite amount, there is a unique control point in every tile.

As an example, in the tiling of figure 4, we pick the successor of a square to be
the central square in its subdivision. Then the control point of any tile is its
barycenter: the preimages of the successors nest down to the barycenter of the
square. If we had picked, say, the lower left square in the subdivision to be the
successor, then the control point would instead be the lower left corner of a tile.
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The set C of control points of all tiles in an inflationary G-tiling with expansion
constant 4 is invariant under A : 4 - ¢(f) = c(succ(t)), so that AC = C. The notion of
control point is due to Thurston.

LEMMA 7. Let A be an inflationary tiling with expansion ¢ and expansion
constant A. Let C be a set of control points for (A). For any € > 0 there isan n >0
such that A~"(C) is e-dense in the ball of radius 1 around the origin. (That is, there
is a point of ¢ ~"C within € of any point in B,(0).)

Proof. By part 3 of Lemma 5, there is an N such that for each tile ¢ intersecting
B,(0) in {(A4), the tiles in @™(¢r) have diameter at most ¢ diam(¢ ™(?)).

Each tile contains a control point so 4 ~~C is e-dense in ¢. Since there are a finite
number of tiles intersecting B,(0), letting N” be the max of the N defined as above
for each such tile t, A=V C is e-dense in B, (0). O

One more definition: if 4 is a triangle in the complex plane with vertices a, b, c,
in counterclockwise order, the similarity class of A is defined to be s(4) = (¢ —a)/
(b — a). It is a well-defined point in the upper half-plane, up to cyclic permutations
of the vertices, which gives the equivalences

1 1
W= sy

Two triangles are similar iff they have the same similarity class up to this
equivalence.

3. Tilings of R

In this section only, we will consider (G, S)-tilings of R, where G is a group of
orientation-preserving similarities of R, that is, maps of the form x — ax + b, with
a>0.

THEOREM 8. For any real r, |r| > 1, there is an inflationary similarity-tiling of
R with expansion r.

Proof. Let r €R, |r| > 1, and let B = (|r| — 1)/2. We construct a (G, S)-tiling in
which S has only one type of tile, the interval, and 4 surroundings, consisting of
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intervals in length ratios respectively g:1:8, B:1:87!, p~':1:8"!, and
B~':1:B. Thus adjacent tiles have length in ratio g or .

Let ¢, be the interval of length 2 centered at the origin. We subdivide the image
rto=[—|r|, |r|] into three intervals:

[=|r, [Pl =1=|r|, —110[—-1,1]U[1,|r]]

so that rt, consists of three tiles in ratios f:1: 8. We then build the tiling by
expansion and subdivision, subdividing an interval of length / into intervals of
length /B, / and /B in that order. Since the expansion-subdivision leaves larger and
larger neighborhoods of 0 fixed, there is a unique limiting tiling of R.

The surrounding of a tile in the image of one of the four surroundings is again
one of the four surroundings, so the resulting tiling is a (G, S)-tiling. The expansion
is mixing, and so is quasiperiodic by Lemma 6. O

What is the closure Z; in 4 of this tiling 4?7 We suppose f # 1. A tiling in J
can be described by a point in [0, 1) (telling where the origin is located in the tile(s)
containing the origin), and a biinfinite sequence of reals describing the ratio of tile
lengths relative to the tile at the origin. In such a sequence the ratio of adjacent
elements is g or .

It is easy to see that not all such sequences occur for tilings in 7, (C). In fact a
sequence of ratios for a tiling f in n,(C) can be grouped into groups of 3
consecutive ratios of the form g”, "~ !, B", coming from the tiles in the preimage
@ ~'B. There is a unique way to do this grouping.

For a tiling [x + A] the origin sits in the left, middle or right side of a group.
Describe these possibilities with L, M, or R respectively. Then in the tiling
¢ ~'([x + A]) the origin again sits in the left, middle, or right of a group, and so on.
Thus to a tiling [x + A] we can associate an infinite sequence {x,, x,, . . .} of letters
{L, M, R}, where x; describes where the origin sits in the tiling ¢ ~‘([x + A]). Since
the tiling A4 is inflationary, for n large the origin of ¢ ~"[x + A] is in the tile
containing 0, so that the sequence {x;} terminates in M, M, . . ..

Thus a tiling [x 4+ A] is described by a point in [0, 1) x X*, where Z* is the set
of sequences of {L, M, R} terminating in M, M, .. .. To obtain the right topology
on n(C) we need to identify some tilings having the origin at 0 € [0, 1) with some
limits of tilings as the origin goes to 1 in [0, 1). So 7n,(C) is actually a quotient of
[0,1] x Z*.

Let £ ={L, M, R}", the set of all infinite sequences of letters {L, M, R}. The
space F; =n,C is obtained from the space [0, 1] x Z by performing the following
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identifications:
B
(0, {M, x2, X3, “ ® .})_—+ (1, {L, x2, x3, i @ .})
1/8
(0, {R, x2, JC3, . .})‘—) (l, {M, X2, x3, & @ .})

B
(0, {L,L,. . .,L,M,xk+2,xk+3,. . })“-‘—*(l, {R, R,.. . ,R, L,xk+2,xk+3,. s .})

k k
1/8
(O, {L,L, . .,L, R, Xk 425 Xic 435+ - .})_—'*(l, {R, R,. ..,R, M, Xk +29 Xk +3s ..})
k k

0, {L, L,... ) == (L,{R,R,...))

0, {L, L, .. )~ (L{R, R, .. })

The labels on the arrows show the gluing similarity (the ratio of the size of the
left tile to the right tile). The last two show the two possible limits of the third and
fourth kind of identifications as k — oc.

The space n,C is the (dense) subset of 7, whose second coordinate ends in
M, M, .... The space Z, is almost the same as the 3-adic solenoid

x3 x3 x3

. QI . QI . Ql
") > S > S,

except that the sequences {L*, M, ...} and {L*, R, ...} converge to different points
of 7.

4. The expansion constant is algebraic

We begin with a brief sketch of some field theory involving transcendental
numbers; our reference was [12].

Let K be a finitely generated field over Q. An embedding of K into C is a field
homomorphism from K into C, which is necessarily an isomorphism onto its image.
If K is transcendental let 4,,..., 4, be a transcendence basis for K, that is,
Ayy...,A, are algebraically independent and K is a finite extension of
Q(4,, ..., 4,). Any set of algebraically independent elements of K can be completed
to a transcendence basis, which will have the same cardinality ». Since all transcen-
dental numbers are the same from the point of view of the rationals we can embed
K into C in many ways. In particular let £ be a real number algebraically
independent of 4, .. ., 4,. Then for any real ¢ > 0 there is an embedding ¢, : K - C
sending 4, to 4, + ¢ + it and A, to A; for i > 1. (Note that for each real ¢ # 0 either



184 RICHARD KENYON

t or t¢ is algebraically independent of A,,...4,.) This gives an example of a
continuous one-parameter family of embeddings K — C starting at the identity. (We
use this fact later.)

THEOREM 9. If 1 €C, || > 1 is the expansion for an inflationary similarity-
tiling of C then A is algebraic. After an R-linear change of coordinates commuting
with the homothety A, the similarities G generating the tiling are also algebraic, i.e. of
the form x — ax + b, with a and b algebraic numbers.

Proof. We begin with a sketch of the proof. If the field K generated by
the control points is transcendental over @, a sufficiently small perturbation
of the embedding of K doesn’t mix up the tiles locally, and the inflationary
property implies that it is not mixed up globally; thus one can define a new
inflationary tiling with the same combinatorics as the original tiling. From Lemma
7, the union of all the preimages of the control points is dense, and the perturbation
extends to this dense set to give a homeomorphism of the plane conjugating the
dynamics of the old tiling to that of the new, which we show is quasiconformal. The
expanding dynamics implies that this homeomorphism is linear, and complex linear
unless 4 is real. Thus the perturbation of K doesn’t change A, and so 4 must be
algebraic.

To begin, let A with surroundings S be an inflationary similarity-tiling of C,
with expansion ¢@(z) = Az. We suppose A is a standard tiling, i.e. the union of tiles
containing 0 has measure 1. Let C be a set of control points for the tiling.

Let K be the field generated by the points C = C. Note that 4 € K, being the
ratio of some two control points. Let 7, be the given embedding of K as an abstract
field into C. Notationally, we will identify the abstract field K with 7K.

Let 4 be the Delauney triangulation of the plane with the set C as vertices:
4 is the triangulation which has the property that the disk bounded by the
circumcircle of each triangle in 4 contains no point of C in its interior. This
triangulation is uniquely defined unless a circle passes through more than 3
points of C. If this happens choose some triangulation in the circle which
depends only on the arrangement of tiles near those points. By Lemma 7, this
triangulation near a point x depends only on the surrounding of a certain standard
radius near x (a triangle cannot have diameter larger than a constant times the
diameter of tiles near x). The set D of similarity classes of triangles in 4 is thus a
finite subset of K.

Let © be another embedding of K into C. We construct a sequence of piece-
wise linear maps f : C—-C, n 21 as follows. For ¢ € C we define fP(c) = n(c),
and then extend f{ linearly over each triangle D; e 4. The f{ so defined is
continuous.
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We now define

FP) =n(A~")f P(A") (1)

so that the f% are PL, and linear on smaller and smaller triangles as n — oo.

Now suppose that K is transcendental. Let {r,}, t €[0, 1] be a continuous
family of embeddings of K into C, with =, being the original embedding; let /(™ be
the PL maps constructed above associated to =,. Since there are only a finite
number of similarity classes of triangles, for ¢ small no triangle changes its similarity
class very much. Thus for a triangle D, e 4 and ¢ small, the image f{)(D,) is
another triangle of the same orientation, with similarity class close to that of D,.

Near a given vertex of the triangulation, for ¢ sufficiently small, £V is not only
continuous but also injective, since none of the triangles reverse orientation.

So £V is locally injective. We show that for ¢ sufficiently small £V is proper,
hence a homeomorphism of R2,

LEMMA 10. The map fV is proper for t sufficiently small.

Proof. Let € >0 be so small that |1|(1 —2¢) > 1+ 2¢. Let Bg be the ball of
radius R around the origin, where R is large enough so that the edges of triangles
in the triangulation intersecting By have length at most Re/2. Such an R exists by
Lemma 7, since we can choose R so that the control points in Bgx(0) are Rj-dense
for any 6 > 0.

Let P, be a polygon contained in Bg(0), surrounding the origin with edges
contained in the edges of the triangulation 4 and vertices within Re of 0Bg.

Again by Lemma 7, there exists n > 1 such that the edges of triangles in Bz
have length at most |[A|"Re/4. So each edge in the polygon A"P, can be replaced with
a polygonal path having edges in 4, running between the same endpoints and lying
within |[4|"Re/2 of the edge, giving a new polygon P, lying within |A|"Re/2 of A"P,.
The polygon P, is contained in an annulus about 0 of outer radius |A|"R(1+¢ +¢/2)
and inner radius |[A|"R(1 — ¢ — ¢/2) which lies strictly outside P, by the choice of e.

We repeat this construction starting with P,, getting another polygon P, lying
close to A™2P,, contained in an annulus of outer radius |[A|"*"2R(1 +¢ + ¢/2 + ¢/4)
and inner radius |A|"*™2R(1 — € —¢€/2 —€/4) and so on; so that in general dP; lies
far outside P,;_,, i.e. P; are nested with boundaries going to infinity.

Now for ¢ sufficiently small, the map (" is very near the identity on the region
bounded by P,. Also n,(4) is close to A, so they have nearly the same modulus. In
particular |r,(1)|(1 —2€) > 1+ 2¢. If x is a control point, f{P(A"x) = 7, (1)"f (P(x),
and f{Y(0P,) lies within |n,A|"Re’ of =, (A)"f {P(8P,), for some ¢’ slightly larger than
€, but close enough so that |r,(4)|(1 —2¢") > 1+ 2¢’.
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Hence by applying f (" to the sequence P; of polygons, we have that f{V(0P,) lies
within |r,A|"Re’ of =,(A)"f{P(0P;_,), and so is outside of f{P(P;_,) by a wide
margin. So the f{P(P;) form a nested sequence of polygons, with boundary going to
infinity. Hence (" is proper. O

Aside. The remainder of the proof deals with properties of quasiconformal
mappings. We refer the reader to [1] for the definition and relevant properties.
Roughly a quasiconformal homeomorphism is a homeomorphism for which the
image of a small disk is not too distorted: its image is contained in a disk S, and
contains a disk S,, with the ratio radius(S,)/radius(S,) bounded a.e. by a constant
L as the size of the original disk shrinks to zero. The number L is called the
dilatation of the mapping. Quasiconformal maps enjoy many of the properties of
conformal maps. The two properties of quasiconformal mappings which we shall
use are a compactness property (existence of normal families) and the existence of
a derivative almost everywhere.

Continuation of proof of Theorem. So fV is a proper local homeomorphism,
hence a covering map. Since the plane is simply connected, /" is a homeomor-
phism. From its definition, each f{” is also a homeomorphism.

Let L be the maximum of the quasiconformal dilatations of the linear maps on
triangles D; — fVD,. L is finite, since there are only a finite number of triangles up
to (conformal) similarity. Each £ is L-quasiconformal, since it is L-quasiconfor-
mal on each triangle.

If a set of L-quasiconformal homeomorphisms of the plane is appropriately
normalized, it forms a normal family. One possible normalization condition is that
the maps coincide on three points x; # x, # x5. Since the maps /'’ all agree on the
set C, which has more than three points, and are each L-quasiconformal, they do
form a normal family; hence, up to taking a subsequence, there is a limit
homeomorphism f, which is also L-quasiconformal. In fact there is only one limit
since the £ for n > n, all agree on the increasingly dense sets A ~"9(C).

Furthermore, the limit £, is invariant: Vx € C

Ji(Ax) =, (A)f,(x), (2)

since this is true for each x € |J, >4 ~"C, which is a dense set by Lemma 7.

A quasiconformal map has a non-singular derivative a.e.; let x be a point at
which the derivative of f, exists and is non-singular.

Now by (2), f, is differentiable at A*x for all k. Since |A| > 1, f; is very close to
linear near A”x for n large. We now show that the expanding dynamics and
quasiperiodicity force f, to be linear on the whole plane.
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The map f, is defined on any tiling x + 4 by translation, and since at a point x
the map f, only depends on the local arrangement of tiles around x, f, extends
continuously to a map f, : 7; - C.

Fix R. Since ¢ is expanding on leaves of 7, f, restricted to Br(0) in the tiling
{—Ai¥x + A) converges to a linear map as k — oo0. Let x, € 7; be a limit of the
tilings [ — A*x + A]. Then £, is linear on B(0) in the tiling {x_, ). Letting R tend to
o0, there is a tiling x € Z, such that f, is linear on the whole unstable fiber through
x. By quasiperiodicity, the leaf through x is dense in Z,, so by continuity f, must be
linear on each leaf of Z;. In particular £, is linear on n ,(C).

But if f, is (real)-linear, then (2) implies that n,(A) = A or 4. Since ¢ was small
n,(A) = A. Thus we see that any embedding of K which is sufficiently close to the
identity fixes 4.This implies that 4 is algebraic, by the comments at the beginning of
this section.

Since the number |S| of surroundings of tiles in 4 is finite, the positions of the
tiles are generated by a finite set of similarities, that is, there is a finite set {a} of
similarities such that if (g, 7;) is a tile in 4 then g € &, the group generated by {a}.
If two complex similarities x +— ax + b and x — a’x 4+ b’ are conjugate by a real
linear map close to the identity then a = a’. Thus a is algebraic as was the case for
A earlier. So the derivatives of the similarities in o/ must be algebraic. The b’s may
of course not be algebraic, since a homothetic change of coordinates z + yz
conjugates az + b to az + yb.

Let Y;(z2) =a;z+b; for i =1,2,3 be three similarities in /. Then we have
n,(b;) =fb;, where f e GL,(R) and on the righthand side b; is thought of as an
element of R?. Suppose b, and b, are independent over R. If b, is not algebraic over
the field generated by b, and b,, then by choosing =, to be an embedding moving
b, but not b, or b,, we see that f cannot be linear. So the group & is algebraic over
the (possibly transcendental) field generated by b, and b,.

Now if 4 is not real, b, and Ab, are independent over R, and so in fact &/ is
algebraic over the field generated by b,. But now we can find a homothety
commuting with A and sending b, to 1. This change of coordinates renders ./
algebraic.

If A is in fact real, then there is a map m € GL,R (which commutes with the
scalar A) sending b, to (1,0) and b, to (0, 1), so that again o/ is algebraic. O

5. The construction

5.1. Number fields and Pisot numbers

Before we start the construction, we need to review a few facts and establish
some notations regarding number fields. Our reference was [5].
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Let a be an algebraic number. A Galois conjugate of « is a root of the minimal
polynomial of a. Let K be the field generated by a over Q, K = Q(a) = Q[a]. For
each Galois conjugate o’ of a, there is an embedding of K into C sending « € K to
a’eC. If a’ is real, the embedding has image in R, and if a’ is non-real, the
embeddings corresponding to a’ and a’ are complex conjugates of each other. Let
r be the number of real embeddings and 2¢ the number of non-real embeddings.
The product of the real embeddings with half the non-real embeddings (one
embedding for each complex conjugate pair) is an embedding of K into
R’ x C¢ =~ RY, where d is the degree of a, d =r + 2c.

Let O denote the lattice of algebraic integers in K < C. Then ¢ < C embeds as
a subring of K into R?. Let @ be the image; @ is a d-dimensional lattice in R?. For
x € 0, let % denote the image of x in @. For x € 0 let 7,(x) denote the ith Galois
conjugate of x, that is the ith coordinate of X. We assume 7,(x) = x.

Multiplication by « in K extends to a linear map on R% whose eigenvalues are the
Galois conjugates of a. If o is an algebraic integer, this linear map preserves the
lattice @.

For x € 0, define ||x|| to be the (Euclidean) distance from % to the x,-axis;
alternatively ||x|| is the square root of the sum of the squares of |r,(x)| for i # 1.

A Pisot number is a real positive algebraic integer whose Galois conjugates
except itself are all strictly inside the unit circle. Thus if 4 is a Pisot number
generating K, and x € K, x #0, we have ||Ax|| <||x]||.

Two other facts about Pisot numbers which we shall use are Lemmas 11 and 12:

LEMMA 11. Any number field K contained in R contains a Pisot number A such
that K = Q[A]. Moreover, for any integer n there is a Pisot number A’ generating K
such that A’[n is an algebraic integer.

Proof. By Kronecker’s theorem, if d numbers a,,a,,...,a, are rationally
independent, the ray in R? from the origin through the point (a,, a,, . . . , a;) passes
arbitrarily close to a non-zero point of Z4.

Let K = Q[«] be a number field contained in R, with o of degree d. Let @ be as
above.

With respect to a basis for the lattice @, the x,-axis has rationally independent
slopes: otherwise, ¥_, n;v;(2) = 0 with n, € Z — {0} and v;(e) integer polynomials in
o of degree <d — 1 would give a polynomial equation for a of degree <d —1, a
contradiction.

Thus there is a nonzero point £ of @ at distance <1 of the positive x,-axis. Let
1 > 1 be the projection of 4 to the x,-axis; 4 is an algebraic integer whose Galois
conjugates are all less than 1 in modulus.
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This number A generates Q[a]: if not, [Q[a] : @Q[A]] =2 and there would be a
Galois automorphism of Q[a] moving « but fixing 4. But a Galois automorphism
permutes the coordinates of points in @. Thus 1 would have two coordinates with
value 4 > 1, a contradiction.

Given an integer n, choose an integer k so large that ||4*[| < 1/n; then PRASIT
is a Pisot number, generating Q[«] for the same reason that 4 generates Q[«], and
A’/n is an algebraic integer. O

The next lemma is only used in the proof of Lemma 13.

LEMMA 12. Let A be any Pisot number and E be a finite subset of O = O[A), the
algebraic integers in Q[A]. For any R>0 and k >0 the cardinality of the set
{x e E+ AE+ A*E + - -+ A*E; |x| < R} is bounded independently of k.

Proof. Let E; =max{|n;(e)|; ee E}, the maximum absolute value of the ith
Galois conjugate of an element of E, and A, =m;(A). If x € © is of the form
x=ey+Ae,+ -+ Ake, for some k with the e, ...,e, €E, then define
X' =(x—ey)fh=e + -+ A" le.

If for any coordinate i # 1 we have

E,
lni(x)l > 1— I)“il

then

|1t,~(x)|(1 - Mil) > E,
|7ti (x)l —E; > I’lini(x)l

and so

_|m® —el w9 -
A A l

. ( > [ (%)

So the ith coordmate of x’ is larger in absolute value than that of x. But then the
same is true for x®@ = (x ), xDE (x‘z’) and so on until the ith coordinate of x®
is larger than =;(x). But x® = 0. This is a contradiction.

So we must have for each is#1 that |r(x)| < E,;/(1 —|4/[). But since by
hypothesis we have in addition that the first coordinate of x is bounded in absolute
value by R, the point X € R? is confined to a bounded region of space. Since
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% € @, a discrete lattice in R there are a finite number of possible values for X;
hence for x. O

5.2. Example

Since the construction has many details, we will start by giving a simplified
example illustrating some of the ideas involved.

We will construct an inflationary similarity-tiling with expansion y = \/5/2. Let
K = Q[y]. Let A be the Pisot number 4 =2 + \/5 Note that K = Q[A]. Let O be the
algebraic integers in K.

Let T, be the square of side 4 centered at the origin. Then yT; has vertices in 0.
Tile the region between yT, and T, with rectangles as shown in Figure 5: the two
types of rectangles used (up to rotation) have sides (ﬁ —2) x (\/5 —2) and
1 x(/5-2).

Let R,, R,, R;, R, denote respectively the rectangles (\[5—2) X (\/5—2),
Ix1,1x (\/5 —2), and (2+ \/5) x(2+ \/5). When we multiply the rectangle R,
by A (not y!) the result is an R,. When we multiply the R; by 4 we can tile the
resulting (2 + \/5) x 1 rectangle as in Figure 6, into four R,’s and one R,. The
image of an R, gives an R,, which we multiply again by A to give a
9+ 4\/5) x (9 + 4\/5) rectangle, which we subdivide into a 2\/3 X 2\/5 rectangle

5B) B15)
1 T I
0.0
= Py =
o= gt
I I I
Figure 5

1 2+15,1)

0,0

Figure 6. Subdivision of an R, rectangle.
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and a bunch of rectangles of types R,, R,, R;. In the 2\/5 x 2,/ rectangle we put
a copy of Figure 5.

Now for each rectangle R,, R,, R,, R, we have a way to subdivide AR; into
rectangles R,, R,, R;, R, and T,. The rectangle T, subdivides in the pattern as
described above in yT,.

To make the tiling, put T, centered at the origin. Now define the tiling of the
whole plane using expansion by y and the above-defined subdivisions; repeatedly
multiply everything by y, and subdivide all the tiles as above. Note that since
lv] # |A| the image of any tile of type R, is only similar to AR;, so the subdivision
must be scaled appropriately.

Why does this give an inflationary similarity tiling? First, it does give a unique
limiting tiling of the whole plane since larger and larger regions around the origin
are fixed. Second, there are a finite number of tile types up to similarity. Also, the
tiling is by construction invariant under multiplication by y, and the subdivision is
mixing.

It remains to check that there is a finite number of surroundings. This involves
only a finite (but tedious) amount of checking. The real reason there are a finite
number of surroundings is a bit subtle, and depends on the fact that A was a Pisot
number. We refer to the general construction for the proof (Lemma 13).

5.3. General construction

Let y be an algebraic number, |y| > 1, and y,, 7, the real and imaginary parts of
7. We construct a tiling with expansion .

If y is neither real nor pure imaginary define / =y, /y,, and choose an integer 7,
so that ny/ and n,/l are both algebraic integers. If y is real or pure imaginary take
ny=1. Let A be a Pisot number in Q[y,,7,], generating it, such that i/n, is an
algebraic integer. The existence of such a 4 is given by Lemma 11. Let d be the
degree of A.

Let K = Q[A] =R and @ = O[A] be the algebraic integers in Q[4].

Let 0 = R? be as before. Let Bg(%) denote the ball of radius R around % € R%

A polygon in the plane is said to be rectilinear if each of its sides is parallel to
the x- or y-axis. Such a polygon is said to be hv-convex if its intersection with each
horizontal or vertical line is convex. A triangle with two sides parallel to the axes
is called an hv-triangle.

Let T be a hv-convex rectilinear polygon with vertices in K2 = K x K, contain-
ing the origin and sufficiently “round” so that T contains %T in its interior.

Note that the vertices of % T are in K2 Tile the region T \%T with rectangles
having vertices in K2 and hv-triangles having vertices in K2 and their hypotenuses
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on the boundary of % T. The “picture proof™ of the existence of such a tiling is given
in figure 7. (Note that the intersection of two line segments with vertices in
K? =K x K is again in K?. If y is real or pure imaginary no triangles are needed.)
Let n > 0 be an integer so that nc € @ for any coordinate ¢ of any vertex in this
tiling. Multiply everything by n so that all vertices are in 02. Now let T, =nT,
T, =T and forget about 7. We have a tiling of T\ 7, with tiles with vertices in
02.

We now have a subdivision rule for a tile T,. Each tile in the subdivision is
either T,, a rectangle, or an hv-triangle with hypotenuse of one of two possible
slopes —/ or 1/I. To define a subdivision rule for each rectangle and hv-triangle, the
idea is to multiply one of these tiles by A" for some large N, and subdivide it into
copies of T, other small rectangles, and hv-triangles with hypotenuses of the same
slope.

Let S be the rectangle with sides parallel to the axes (a “rectilinear rectangle™)
circumscribed about T;. Tile S\ T, using rectangles with vertices in ¢2. This is
easily done since the edges of T, are rectilinear lines with coordinates in (2.

Let H, = max||c, — ¢, ||, where ¢, and ¢, range over the set of x-coordinates of
vertices in the tiling of S. Let H, be the same for the y-coordinates, and let
H =max{H,, H,}.

Let V ={x € O | X € B,z(0)}, where R is chosen so large that

(1) R 22H.

(2) V contains all horizontal and vertical edges between adjacent vertices in the
tiling of S defined previously.

(3) For any p € R? the region By, (p) contains a point of .

Figure 7. The tiling of T, with vertices in 02.
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Let # be the union of the set of rectangles with edge lengths in ¥ and the set
of hv-triangles with horizontal and vertical edges having lengths in V' and hy-
potenuses of slope / or —1/I. This is a finite set of tiles up to translation.

Let N be so large that [|A"~'|| <37 (here is the first place we use that 4 is a
Pisot number generating K) and for each tile t € #, AV~ 't has all edges long
compared to R and the diameter of S, say longer than 5 max{R, diam S}.

For each rectangle ¢ in #, define the subdivision of A"t as in figure 8, as follows:
first put a copy of S in the lower left corner of A"t (it fits because the edges of AVt
are long compared to the diameter of S). Let v be the upper right corner of S, and
x and y the lengths of the horizontal and vertical segments extending from v to the
right and upper sides of ¢, respectively. Let w and z be the endpoints of those
segments on the right and upper boundaries of ¢, respectively.

Suppose the rectangle has edge lengths e, and e,. For each edge e, of the
rectangle we have ||e, || < R/3 (since 2~ "(e;) € V and ||A¥|| < ||AY || <3fz), and
le;| > 5R by choice of N. By the definition of H we have ||x[| < |le, ||+ H <
R/3+ H and ||y|| < |le.|| + H<R/3+ H.

Subdivide the edge vw (which has length x) using elements of V" as follows. Take
the set of points {ii} of @ = R within R/4 of the line segment from 0 to % and
project them to the x,-axis. Keep only those u that lie between 0 and x (see figure
9). The differences u — u” between adjacent points of this set are elements of V, for
lu —u’|<2-R/4=R/2 (by condition (3) on R) and ||u —u’|| is at most a little
greater than R/2: it is in fact less than R/2 times

M H+ R/3 9
1+|x|<1+—~———5R <-—.

-
#
:
H
v-n-i--
---'--
:

-----P--
-----b--

-}~
- e
1

\

Figure 8. Sample subdivision of a rectangle.
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[l xii<H+R/3 t

& a

Figure 9. Defining the subdivision of Ox.

This subdivides the segment from 0 to x into edges in V (in fact, the edges have
length <R, not just <|A|R as in the definition of V). The subdivision of vw is
defined to be a translate of this subdivision. In a similar manner we define the
subdivision of segment vz. Now subdivide the rectangle in a grid fashion using
horizontal and vertical lines through the subdivision points of the segments vw, vz
as shown in figure 8. This subdivides the rectangle A"t into rectangles in # and a
copy of the tiling in S.

To subdivide a triangle ¢ € &, first consider A"~ ~'¢. Suppose that the horizontal
edge is longer than the vertical edge. Subdivide the horizontal edge of A" ~ !t using
the projection of points in @ as we did for the edge vw above. Draw vertical lines
from these points to the hypotenuse and then from there draw horizontal lines to
the other edge. This subdivides the triangle into rectangles and triangles (the
triangles have hypotenuse lying along the hypotenuse of A¥ ~'¢). We now multiply
everything by 4, and claim that this defines a subdivision of A"t with tiles in #. To
see this, note that each horizontal edge of a tile in the original subdivision is in V.
Furthermore the length of one of these edges is at most R (in fact R/2). A vertical
edge is of length lu or u/l, for u some horizontal edge (recall that —/ or 1// is the
slope of the hypotenuse). When we multiply once more by 4, each subtile will have
both horizontal and vertical edges in V (recall that A/ and A// are algebraic integers,
so each edge is now an algebraic integer of length <|A|R and small || - ||-value.
Thus this defines the subdivision of A"t into tiles in 4.
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If in the original triangle ¢ the vertical edge was longer than the horizontal, the
same argument starting with the vertical edge defines the subdivision.

To define the inflationary tiling of the whole plane, start with a tile 7, at the
origin. Repeatedly multiply by y and subdivide using the subdivision rules we
defined above: T, subdivides into the tiling of T\ T, and the tile T,. Each tile in &
subdivides after N multiplications by y as we defined above (using expansion A!).
Since y and A are different in general the subdivisions have to be scaled (and
rotated) to fit. (A good example to recall is that of Figure 4, where y =2 and
A=4)

Our set of tile types is a subset of

{To}ugo U%]U' : 'U'@N—lﬁ

where the indices on the # correspond to the time left before subdivision. Thus for
i <N — 1 the image under y of a tile in 4, is a tile in &, ,, and the image of a tile
in #, _, is a union of tiles in {T,} U%,. Note that in the whole tiling of the plane,
for 1 <i<N —1 atile in %, is adjacent to tiles only in #,_ VR, V&, ,.

This defines a tiling of the whole plane as we saw in the example. There are a
finite number of tiles up to similarity. Tiles of the same (indexed) type subdivide in
the same way. Each tile eventually has a copy of T, in its subdivision, so that the
subdivision is mixing. The tiling is invariant under multiplication by y. We need
only check that there is a finite number of surroundings.

LEMMA 13. The tiling defined above has only a finite number of surroundings.

Proof. Every tile occurring in the tiling is similar to one in {7} U #. Call these
the unindexed types. For each unindexed tile type t € £ fix a standard tile t* which
is a translate of t with a vertex at the origin (and hence edges in V).

Let ¢ be a tile in the tiling and define ¢, :x+> ax + b to be the similarity
mapping ¢ to the standard tile of the same unindexed tile type as ¢.

We need to show that for adjacent tiles 7, ¢” in the tiling, with similarities ¢, and
¢, respectively, there are only a finite number of possibilities for the similarity
oo

Let s be the tile which is the unique “parent” of ¢, i.e. t = ys. Similarly let s’ be
the parent of ¢’. Note that s and s’, if different, must be adjacent tiles. We will
compute ¢, o ¢, ! from ¢, 0 ¢

There are six cases.

Firstly, if the tiles s and s’ are the same tile, so that ¢+ and ¢ occur in the
subdivision of a single tile, then the set of possible ¢, o ¢, ! is finite since there are
a finite number of tile types (hence a finite number of subdivisions).
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Secondly, if one of s or s’ is a tile of type T,, then there are a finite number of
possibilities for ¢, o @, ! since T, has only one type of surrounding in the tiling.

Thirdly if neither s nor s’ subdivide under one multiplication of y (that is,
neither s nor s’ is in &, _,), then ¢t =ys and ¢’ = ys’, so that ¢, = ¢, - 1/y and
Pr=0y0lfy,and 50 @ o0 =@ o lfyoyop =@,

Fourthly if both s, s"€ #y_, then ¢, o ¢! is a translation by our choice of
standard tiles. Since the tiles ¢, ¢” in the subdivision are scaled by the same factor
AN with respect to ys or ys’, we have @, =p o ¢, 0 1/y and @, = q ° ¢, o 1/y, where
p(z) = AVz + v and q(z) = AVz + v’ for some v, v’. Thus if @, ° @ '(x) =x + ¢ we
have @, o0 '=qo(x+c)op '=x+A" +v,, where v,=v'—ve0? is the
difference of two vectors taken from the finite set of translations defined by the
positions of tiles in the subdivisions of all the tiles in £. Thus v, is chosen from a
finite set E.

Fifthly if only one of s,s” is in &y _,, say s € #,_,, then s’ is either in #, or
Rn_,. Suppose s' € R,. Let re By_, and r' e #y_, be the parents of s, s’
respectively. Then ¢, o ¢, ! =7 'x + ¢ for some c. We see that ¢, = ¢, o 1/y and
@, =q o @, o 1]y for some g, g(z) = A"z +v’. So we have

1
(Przpofpro;'j

for some p, p(z) = A"z +v, and

1
(pt’=q°(pr’°;—i'

Hence
Oro@; ' '=qo(y 'x+)ep =y x+ A%+,

where v, = v’ — 7y~ 'v and v, v’ are elements of a finite set of translations defined by
the positions of tiles in the subdivisions of all the tiles as before.
Sixthly and lastly, in case s € #, _, and s’ € #, _, we see that

-1

Pro@; ' =@eo0  op

where p(z) = Az +v for v in a finite set as before. As we see below, the set of
@, o @; ! is finite and so this set is finite also. (The argument in case five allows us
to skip over this case in the proof of finiteness for the other cases).
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In all of the above cases if we look at the parents of s, s” and their parents, and
so on, we eventually find that two ancestors came from a subdivision of the same
tile. This implies that (in all but the sixth case) we can write ¢, o @, ! = ax + b where
ae{l,y,y "'}, |b| is bounded since ¢ and ¢’ are adjacent, and b can be written:

b=v,+ANe =0, 4+ AW, + AVe) = =0, + ANo, + - - + ANy,

where the v; are all taken from a finite subset E of ¢?. By Lemma 12, the set of
possible b arising this way is finite.

Thus for any adjacent tiles ¢, ¢* the similarity between them ax + b is chosen
from a finite set of possible similarities. This implies that there are a finite number
of surroundings. O

6. Open questions

There are many interesting unanswered and unstudied questions in this area.
Here are a few.

(1) What are the most general inflationary similarity-tilings with expansion y?
The above construction only provides some very special examples. Aside
from some easy generalizations of the above construction, the reader
familiar with the work of Thurston [15] may see how to generalize this
construction to the case when A is not necessarily a Pisot number but a
Perron number (a real algebraic integer strictly larger in modulus than its
Galois conjugates) generating Q[y,,y,]. More generally, according to
Thurston, one can do a similar construction when 4 is a complex Perron
number, that is, a complex algebraic integer strictly larger in modulus than
its Galois conjugates except for 4. In this last case A should generate Q[y]
(not Q[y,, y,]) and the tiles will not necessarily be polygons.

Even this is not the most general possibility; it is possible to have several
intermediate expansions A, lying in a finite extension field of Q[y]. In general
the ratio of areas of tiles (of the same type) will be in a higher-rank
multiplicative subgroup of R, (in our example the area ratios are in a
rank-2 subgroup generated by |y|* and |1]?).

These more general constructions are of course more complicated. They
are nevertheless relevant if one wishes to consider inflationary isometry-
tilings, for example, since there our Pisot-number construction may not
suffice.

(2) What are the expansions of inflationary isometry-tilings, where the structure
group G is the group of isometries? What if G is the group of area-preserv-



198 RICHARD KENYON

ing linear maps? In both cases, the square modulus of the expansion must
be a Perron number (leading eigenvalue of a nonnegative integer matrix, the
subdivision matrix of the tiling [8, 14]). For the case of isometries, not every
algebraic number with this condition works. For the area preserving linear
maps, must the expansion be algebraic?

(3) Can one describe in some sense the inflationary G-tilings with only one
equivalence class of tile? This has been done for G the group of translations,
see [9]. A related question is, what tiles in the plane can be tiled by two
similar copies of themselves? There are 17 such sets known to the author.

(4) More generally, can we describe all tilings having a certain subdivision rule?
Again, for translation tilings and the simplest rule T, — {n copies of T},
quite a bit is known; see [9, 11, 7]. For rules with two tiles and non-integer
expansion, say To— Ty, T, = {T,, T} there are almost no known examples.

(5) What are the higher dimensional versions of these results?
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