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Inflationary tilings with a similarity structure

Richard Kenyon*

1. Introduction

An inflationary tiling is, roughly speaking, a tiling of the plane with a finite
number of shapes of tiles, which has an associated expanding linear map which

maps tiles over themselves. One reason for studying such tilings is that they arise

naturally in Markov partitions for smooth hyperbolic dynamical Systems. Finding
&quot;good&quot; constructions of Markov partitions is in gênerai not so easy, but explicit
constructions of inflationary tilings hâve led to explicit constructions of Markov
partitions [2, 8, 9, 14].

There are many varieties of tilings of Rw, depending on the &quot;structure group&quot;,

or underlying geometry, one requires of the tilings: from a finite set of tile types one

can consider tilings made by translates of the tiles, tilings using isometries, tilings
using similarities, or more complicated mappings. For inflationary tilings the most
natural structure groups (and the ones giving rise to the most interesting problems)
known so far are subgroups of the affine group A(2, M) (linear maps and translations).

The classical tiling problems deal of course with the group of translations or
isometries of IR2, and indeed the first inflationary tilings to be studied were

translation-tilings, i.e. tilings with a finite number of tiles up to translation.
The simplest of thèse are known as self-replicating tilings, and arise from integer

radix représentations (représentation of numbers in integer bases in R, or integer-
matrix bases in IR&quot; [6, 9]) in which again the structure group is a group of
translations. Thèse are tilings with only one shape of tile.

Thurston [15] generalized self-replicating tilings to self-similar tilings of C,

which arise from représentation of complex numbers in (certain) non-integer
complex bases; thèse hâve a finite number of tiles up to translation. He proved that
the expansion constant (the base of the représentation) had to be a certain kind of

*This work was partially complétée while the author was at the Institut des Hautes Etudes

Scientifiques, Bures-sur-Yvette, France, and Institut Fourier, Grenoble, France.
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algebraic integer, a &quot;complex Perron number&quot;. In addition he indicated a construction

for a tiling with any such expansion. Thurston&apos;s techniques were extended to
arbitrary linear expansions and higher dimensions in [8], still with structure group
a group of translations.

The techniques of [15, 8] do not readily extend to inflationary tilings with more
gênerai structure group (for example tilings with a fini te number of tiles up to
isometry or similarity). In particular, little is known about inflationary isometry-
tilings. We deal hère with the case of expansions of similarity-tilings of the plane,
giving the following characterization:

THEOREM 1. A complex number y, \y\ &gt; 1 is the expansion factor for an

inflationary similarity-tiling if and only if y is algebraic.

Our proof of algebraicity resembles the proof (originally of A. Weil) of local

rigidity for hyperbolic «-manifolds, n &gt; 2, in that a small quasiconformal déformation

of the tiling is shown to be trivial. Likewise we can also see that the proof
breaks down in dimension one; in section 3 we construct an inflationary similarity
tiling of the Une for any real expansion constant.

One advantage in using a larger structure group is that there is more freedom in
the construction of tilings: whereas for translation-tilings the tiles were often
necessarily non-polygonal with non-rectifiable boundaries [15], hère we find:

THEOREM 2. For any algebraic number y, |y|&gt;l, there is an inflationary
similarity-tiling of the plane by polygons with expansion factor y.

Section 2 defines similarity structures, the space of tilings, quasiperiodicity, and

some définitions useful in the proofs that follow. Thèse objects seem to be the
natural extension of the original définitions in [15] (see also [8, 14]). Since many of
the concepts hère are unfamiliar we illustrate them with an example in section 3.

Section 4 gives a proof of the algebraicity of the expansion of a quasiperiodic
similarity-tiling of the plane, and section 5 gives the construction for any algebraic
number y of an inflationary similarity-tiling by polygons.

I would like to thank Dennis Sullivan and Curt McMullen for contributing
important ideas in section 4, and Frédéric Paulin for a careful proofreading of this

paper.

2. Tilings with similarities

By a similarity we will mean a complex linear map of C of the form z t-» az + b,

where a, b e C, a ^ 0. Let G be a fixed group of similarities, with identity e(z) z.
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By a tile type we will mean a compact subset of C which is the closure of its
interior.

Let T be a finite set of tile types, T {r,, T2,..., Tk}. By a marked tile we
mean a pair (g, Tt) with g e G and Tt e T. The image of a marked tile (g, Tt) is

giTJ. We usually identify a marked tile (g, Tt) with its image g(Tt) in C, in which
case we refer to g(Tt) as a tile. It is important to make the distinction when the tile
type T, has symmetries under G, or several tile types are similar, so that (g, Tt may
not be the same marked tile as (g&apos;, Tj) even if g(Tt) g&apos;(7)).

To build a tiling, we need to specify the ways in which tiles fît together locally.
For a tile type Tn a surrounding of Tt is a collection of marked tiles whose images
hâve pairwise disjoint interiors, intersect the image of the marked tile {e, Tt) and

cover a neighborhood of the image of (e, Tt
More generally a surrounding of a collection of (marked) tiles A is a collection

of marked tiles whose images hâve pairwise disjoint interiors, intersect the union of
the tiles in A and cover a neighborhood of the tiles of A.

Let S be a set of surroundings using tiles T. By définition, a (G, S) -tiling is a set

ofmarked tiles whose images form a locally finite covering of C with pairwise disjoint
interiors, and such that for each tile t g(Tl) the set of tiles intersecting t is the image
under g of a surrounding of Tt in S. We often abuse this notation and identify a tiling
with the set of images of its tiles. By a G-tiling we mean a (G, S) -tiling for somefinite
set S. In the rest of the paper we will only consider tilings with S finite. We refer
the reader to [10] for remarks about the case S infinité.

Notationally, if A {(g, Tt)} is a tiling and a is a similarity then by olA we

mean the tiling {(ag, T,)}. In particular jc + A is the tiling obtained from A by
translating ail the tiles by x.

The usual periodic tilings of the plane with fundamental domain consisting of
one tile are translation -tilings, (that is, G-tilings where G is the group of translations).

Also in thèse cases S consists of a single surrounding. The familiar Penrose

tilings [13] are examples of isometry-tilings, in this case G being a group of
isometries of the plane; there are two tile types, the kite and the dart, and a finite
number of surroundings determined by the allowed adjacencies of tiles.

The above définitions can be extended to other structure groups, most notably
G A(2, R), the group of affine transformations of IR2. However, throughout the

rest of the paper (except section 3, where we deal with tilings of IR), we assume G

is a group of similarities of C.

2.1. A topology on the set of tilings

Fix G to be the group of ail similarities. Fix a finite set of tile types T and set

of surroundings S. (Recall that S is finite.)
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Let y be the set of ail (G, S)-tilings modulo the équivalence of homothety: two
tilings A and B are équivalent, A ~ B, if there is a homothety i// (a similarity
z h-? az, a g C — {0}) such that i//A 5. Let [A] dénote the équivalence class of a

tiling A. Each équivalence class has a représentative in which the set of tiles

touching the origin has total measure 1. Call such a tiling a standard tiling. If A is

a tiling, let (A) be a standard tiling équivalent to A.
We topologize the set 2T of équivalence classes in the following way. A

neighborhood of [A] g y is the set of tilings which are équivalent to a small
translation of {A} on a large neighborhood of the origin. That is, the basic

neighborhood UrR([A]), where r &gt; 0, R &gt; 0, is the set of [B] (with standard form
&lt;2?» such that there exists ru r2e C, |rt | &lt; r such that r2(r! + {A}) and &lt;2?&gt; agrée
on the bail of radius R around the origin. (Two tilings are said to agrée on a région
U if their subsets of marked tiles with images intersecting U are the same.)

One must keep in mind in this définition that y consists of homothety classes

of tilings, not tilings themselves, so that a small translation of a tiling A is close to
A even if the origin crosses the boundary of a tile (the standard tilings change but
not the équivalence classes).

Let/ : M+ -* U+ be a continuous non-decreasing function. Let 2Tf c 2T be the set

of [A] for which for ail R &gt; 0 and x e C the number of tiles in the tiling &lt;x + A &gt;

intersecting BR(0) is less than f(R).

LEMMA 3. The sets UrR form a base for a Hausdorjf topology on 3~. In Us

subspace topology, 3Tf is a compact Hausdorff space.

Proof We need to show that if two basic neighborhoods intersect, then there is

a basic neighborhood in their intersection. Suppose [C] g UrR([A])nUr,R([A&apos;]).

That is, &lt;C&gt; agrées with r2(rl + {A}) on BR(0) and with r&apos;2(r\ + &lt;A&apos;}) on ^(0).
Assume the origin is in the interior of a tile in the tiling C. Then for e small,
&lt;C&gt; + e agrées with r2(e/r2 + r, + &lt;^&gt;) on BR_£(0) and with r2(e/r2 + r\ + &lt;G4&apos;»

on ^_£(0). So tf£,e([CD c tfr,*(M])nt/rVr(M&apos;]) as long as

&lt; r&apos; and g max{i*, R&apos;}.

A similar argument works in case the origin is on the boundary of a tile in C. Thus

the UrR do form a base for a topology.
To prove that y is Hausdorff, if two tilings A and B hâve différent tiles

containing the origin, or the same tiles containing the origin but the origin is in a

différent place in the tiles, then UrR([A]) and UrR([B]) are disjoint if r is sufficiently
small. If they hâve the same tiles at the origin and the origin is at the same place
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in those tiles, then by taking R sufficiently large, the UrR([A]) and UrR([B]) are
disjoint unless of course A ~ B.

To prove compactness of 3Tfi let Tt be a tile type in T. For x e Tt let R, (x) c 2Tf

be the set of tilings which hâve a tile g(Tt) containing the origin for some g for
which g(x) 0. The Rt(x) are homeomorphic as x ranges over Tt. Furthermore
/^(x) in its subspace topology is an inverse limit of finite sets:

Rt (x) s lim Sln {S&apos;o ^S\&lt;-Sl2^--}

where S^lT,} is the set consisting of the single tile type Tn S\ is the set of
surroundings of Tt which can be extended to a tiling in 3Tf, for each n &gt; 1 the set

Sln is the set of possible surroundings of éléments of Sln _ x which can be extended

to a tiling in &amp;}, and the map Sln -* Sln _ x is the restriction (ignoring the outer tiles).
The existence of the function / insures that each point in the inverse limit
corresponds to a séquence of surroundings filling out the whole plane as n-*oo,
hence a (G, S) -tiling with a tile of type Tt at the origin. In addition, two tilings in
the inverse limit are close if they agrée on a large neighborhood of the origin, so

Rt (x) has the topology of the inverse limit.
Since S, the allowed surroundings of a single tile, is finite, each of the Sln are

finite, so R, (x) is compact and totally disconnected. Let Rt a &amp;~f be the set

*,= U *.(*)•

Then Rt is almost the set Rt(x) x Tn except there may be some identifications along
the boundary of Tr In any case Rt is a (Hausdorff) quotient of the compact set

Rt(x) x Tn and so is compact. Finally, Ff is the union of the finite number of
compact sets Rt for each tile type Tt e T, and so is compact itself.

The space F itself is not necessarily compact; a limit of tilings may cease to be

locally finite and so not be a tiling in our sensé: consider for example the tiling A
of Figure 1, with two tile types, a square and a square annulus. In the tiling shown
the square is a unit square centered at the origin and is surrounded by an infinité
séquence of square annuli, each similar to the first which has outer boundary a

square of side 2. Let An for n &gt; 0 be the séquence of tilings An {A + (3 • 2n, 0)&gt;,

that is, An is just the standard version of the translate of A by (3 • 2&quot;, 0). The &quot;limit&quot;

of this séquence is not locally finite at a point near the origin. (Precisely, at the

point (^4, 0).)
In the future we shall deal only with the spaces «^}. From now on we consider

/fixed.
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Figure 1 Tihng for which &amp;&quot; îs noncompact.

For each tiling A9 [A] e 2Tf, there is a natural map nA of C into &amp;}, defined by
nA(z) [z + A]. The map nA is continuous, and since no tiling is équivalent to a

small translation of itself, it is locally injective. Since for a similarity a we hâve

n((xz) [olz -f A] the map n induces a similarity structure on nA(C).
From this and the structure of the sets Rt from above proof we see that the

space &amp;} is foliated by surfaces with similarity structures, so that locally &amp;} is a

product D x K where D is a disk in C and K is a compact and totally disconnected
set. Thus Ff is a (similarity-) surface laminatîon, in the sensé of e.g. Candel [4].

Let !fA closure(nA(C)) c^. Then «^ with the subspace topology is again

compact, and we call it the orbit closure of the tiling A.
If y e&amp;} has a tile with the origin in its interior, then for small r the basic

neighborhood UrR(y) has itself a product structure. In particular r must be small

enough so that each x e UrR{y) has the origin in the interior of a tile of the same

type.
Referring to this product structure, we define for x e 3~f the stable fiber of x to

be the set of tilings which hâve standard versions which agrée with &lt;x&gt; in some

neighborhood of the origin. We also refer to this set as

def

The sets U0R(x) are the local stable fibers of x,
Similarly we define the unstable fiber of x to be the leaf through x, alternatively

the set of tilings obtained from x by translation. We also refer to this set as
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2.2. Quasiperiodicity

The tilings we are concernée with ail hâve a certain regularity property, called

quasiperiodicity, which we shall see is a very natural property to impose on a tiling,
and in particular on an inflationary tiling (Lemma 6). They are in a sensé minimal
tilings, in the sensé that ail tilings in 2Tf accumulate on quasiperiodic tilings (Lemma
4).

The tiling A, [A] e 3Tf is said to be quasiperiodic if for ail R &gt; 0 there is an r &gt; 0

such that for every x e C, nA(C) c UrR([x + A]). Hère one should think of R as

large, and r even larger, so that UrR([x + A]) is contained in a product neighbor-
hood about [x -f A] which is thin in the stable direction and fat in the unstable
direction.

In other words, any local arrangement of tiles (of standard size R) occurring
somewhere in the tiling A can be found in a &quot;standard r-neighborhood&quot; of any
point jc in the tiling A.

A simple characterization of quasiperiodicity is given by:

LEMMA 4. A tiling A is quasiperiodic if and only if every leaf of ^A nA(C) is
dense in &amp;~A (Le. the foliation of 3TA is minimal).

Proof Suppose A is quasiperiodic. Then for ail R &gt; 0 there exists an r &gt; 0 such

that nA(C) c: UrR(x) for any jc g nA(C), hence 2TA c closure(£/r,/?(*)) &lt;= C/2r^/2(x).
For any y e ^ take a séquence {xt} in nA(C) converging to y. If y has the origin

in the interior of a tile, then for i sufficiently large we hâve £/2r,/?/2(-*i) c U^^^y).
If the origin in y is on the boundary of a tile, then for / sufficiently large

^2k,r/2(xi) c Umr,Rim(y) f°r some constant m depending on the relative sizes of
adjacent tiles. Assume m &gt; 3 then in either case «^ c Umr&gt;R/m(y). Since a similar
containment holds for any R, the leaf containing &gt;&gt; is dense in 2TA.

Suppose A is not quasiperiodic. Then there exists R such that for ail r, there are

xr, yr e nA(C) for which yr 4 UrR(xr). Let x, y g «^ be limit points of the xr and yr
respectively, as r tends to infînity. They exist by compactness of ^A. Then

y $ ^,/{W for any r so the leaf containing x doesn&apos;t get near y, so 3~A is not
minimal.

For two easy examples, the periodic tiling of the plane with unit squares and the

tiling shown in figure 2 are both (G, S) -tilings, where G is the set of translations and
S consists of three surroundings of a unit square. The first is quasiperiodic (as are
ail periodic tilings; one can in this case take r yfïjl independently of R), but the
second is not: a limit of tilings x + A with x having horizontal coordinate tending
to infinity is periodic, and hence not dense in $~A.
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Figure 2 The tilmg îs obtained from the penodic tiling by shifting the tiles nght of the j-axis up by a

small amount à &lt; 1

2.3. Markov expansions and inflationary tilings

For each tile type T, in T let Rt c &lt;Tf be the set of tilings for which the origin is

contained in a tile of type Tr The boundary of Rt is the set of tilings for which the

origin is in the boundary of a tile of type Tt. The Rt form a finite partition of &amp;},

that is, a covering by closed sets with non-overlapping interiors. In addition, as we

saw in the proof of Lemma 3, Rt is a quotient of Tt x Kl9 where Tt c C is a copy
of the tile Tt and Kt is compact and totally disconnected. The quotient map is

injective on int(rj x Kn so by abuse of notation we refer to the image int(r,) x Kt

as intCR,)- We will refer to points of R, by giving the two coordinates of a preimage
in Tt x Kt (some points in i^\int(iO may hâve several such descriptions). For
(x, h) s Rn we refer to the subset Tt x {k} c Rt as the unstable fiber in Rt through
(x, k). The set {x} x KlaRl is just the stable fiber of (x, k), but in this context we

also refer to it as the stable fiber in Rt through (x, k). The Rt are called rectangles.
A Markov expansion, or simply expansion, is a continuous map cp : 2Tf -&gt; 3~f

preserving the similarity structure on leaves, for which the partition \]Rl acts as a

Markov partition in the following sensé:

(1) for each (x,k)eRt, if cp(x, k) e int(Rj then the entire stable fiber

cp({x} x Kt) is in int^R,), and

(2) if (y, k&apos;) e RjnviR,), then int(7}) x {k&apos;} c (p(mt(Rt)).

See figure 3. This is close to the usual définition of a Markov partition, from for
example [3]: the unstable fibers of Rt map across the unstable fibers of i*,, and the

stable fibers of Rt map into the stable fibers of RJt Unlike [3] the Rt may hâve

boundary identifications, and also (p(Rt) may intersect Rj in more than one
&apos;subrectangle&apos;.

It is worth explaining what a Markov expansion means on the level of tilings.
Since q&gt; préserves the similarity structure on leaves of «^}, the map n ~(lA) o cp o nA :
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stable

table R
1

R2

R3

Figure 3. How an expansion maps rectangles.

C -? C is a similarity, i.e. a map of the forai zv-*az + b. The image of a tile g(Tt)
of A under this composition is a set ag(Tt)+b aC which must be a union of tiles

of the tiling cp(A) (by property 2 of a Markov expansion). Thus the tiling cp{A) is

obtained by applying a similarity \\iz az + b to A and subdividing the tiles \l/g{Tt),
that is, for each tile g(Tt) of A replacing $g(Tt) with a set of tiles whose union is

ij/giT,). Property 1 of the expansion implies that two tiles g(r,), g\Tt) in A of the

same tile type hâve the same subdivision, that is, they are replaced with the same set

of tiles, up to an élément g~xg&apos; e G.

An inflationary G-tiling is simply a quasiperiodic (G, S) -tiling A which is a fixed

point of some Markov expansion cp of 9&quot; and for which q&gt; is expanding on A, that
is, the similarity njl(pnA : C -&gt;C is a homothety z h-&gt; kz with \k\ &gt; 1. The complex
number k is called the expansion constant.

There are three important properties of an inflationary tiling which we under-
line:

LEMMA 5. Let A be an inflationary tiling.
(1) The image of a tile of A under ç exactly covers other tiles in A.

(2) Two tiles of the same type subdivide in the same way.
(3) Each tile eventually subdivides. For ail N &gt; 1 there is an n such that

(pn(UOfR(x)) c UOfNR((p&quot;(x)) (i.e. q&gt; eventually contracts stable fibers).

Proof. The first and second of thèse three properties hâve already been shown.

For the third, recall that we hâve \k\&gt;\. Suppose Tt is a tile type which does not
subdivide. Let aTl + b be an occurrence of Tt in the tiling A; then X\aTx + b) is also

an occurrence of Tt. Let x e int(aTt + b). If R * \x\( 1 + 1/|A| -I- 1/|A|2 + • • •) then for
each k there are at least k tiles Xk~ l(aTt -h b) for / 0,..., k intersecting ^(0) in
the tiling — kkx + Ay.SoA$&amp;}. Thus each tile eventually subdivides. Further-

more, it does so after a finite number of applications of q&gt; since there are a finite
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number of tile types. Each subdivision decreases the area of the tiles by a constant
factor, so the second statement of part 3 follows.

As an easy example of an inflationary tiling, if the set S consists of a single
surrounding, the surrounding of a square by 8 squares in the usual way, then there
is a single (G, S) -tiling: the periodic tiling. The space &amp; in this case is the torus
IR2 mod 1, the rectangle Rq is ail of &amp;&quot;9 and int(i£0) is homeomorphic to (0, l)2 x K,
where K consists of a single point. The map (x,y) h-* (2x, 2y) mod 1 is a Markov
expansion for &amp;&quot;, and the periodic tiling by squares having the origin at a vertex is

an inflationary tiling with expansion factor 2. For maps (x, y) \-&gt;(nx9ny) mod 1,

with n &gt; 2, there are several inflationary tilings corresponding to différent
placements of the origin in the original square.

The Penrose tilings hâve the remarkable property that $~ îtself is compact and
minimal, yet has no closed leaves. They hâve a well-known subdivision rule, and
there are countably many inflationary tilings (powers of (p hâve many fixed points).

Figure 4a shows a way to subdivide a square to yield an inflationary similarity-
tiling with one tile type (Figure 4b; the picture is centered at the origin.) The
expansion factor is 2. Each surrounding of a square consists of squares of the same
size, twice the size, or one-half the size of the center square, located at the corners
or midpoints of the center square. Hence the number of surroundings is finite. A
square of side length 2~n subdivides upon expansion by 2 into a square of size 2~n

surrounded by squares of size 2~&quot;~\ so in the tiling of the whole plane there are

squares of size 2~k for ail k ^ 0, and so the tiling in particular is not an isometry
tiling. (Note that there is only one tile of side 1, but an infinité number of side 2~n

for each n ^ 1.) Lemma 6 below shows that the tiling is quasiperiodic.

-
1

1

-

Figure 4. The subdivision of a tile, and part of the tiling near 0.
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This example can be generahzed to other surroundings of a square by squares,
to give inflationary tihngs with a single tile type and with any rational expansion
constant r &gt; 1

2 4 Mixing implies quasipenodic

Determining whether a given tihng îs quasipenodic îs not always easy In the

case of a tihng which îs a fixed point for a Markov expansion, however, there îs a
simple cntenon A Markov expansion q&gt; of 2Tf with fixed point [A] and expansion
A, \à\ &gt; 1 is called mixing for [A] if every tile type occurnng m [A] occurs in the

eventual subdivision of any other tile type m [A] That is, for any two rectangles

Rl9RjŒ^} which intersect nA(C), there is an n&gt;0 such that (pn(Rt) intersects

înt(i^) Since there are a finite number of tile types this condition is easily checked

We hâve

LEMMA 6 If (p is mixing for [A], and the ongin is contained in the intenor of
a tile of A, then A is quasipenodic, hence inflationary

This lemma can also be found in [14, 9] in the context of translation-tihngs

Proof We will use Lemma 4

Fix r &gt; 0 and R ^ 0 By compactness of «^, there exists a fimte number
k k(r, R) of tihngs xx, jc2, xk e nA(C)9 each having a tile contaming the ongm
in îts intenor, such that

^c Û UrR{xt)
i= î

Let x e %4 We must show that the leaf through x intersects each Ur R(Xj) Since

this will be true for each r and R, the leaf will be dense in 3%, so by Lemma 4 the

tihng A will be quasipenodic
Let Rq be the rectangle m «^ contaming the point [^4] Since the ongm is m the

mtenor of a tile in A and |A| &gt; 1, we hâve for ail N ^ 0

so there is an mteger n n(R) so large that firstly for each 1 £ i £ fc, &lt;prt(i*o)

intersects each UrR(xt)9 and secondly there are yt 6 R$ such that the entire stable
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fiber of yt maps into the &quot;local&quot; stable fiber UOo((pn(yt)) n UrR(xt) (this last by part
3 of Lemma 5).

Since (p is mixing for A, there is an integer nr so that for each / such that a tile
of type Tt occurs in A, (pn(Rl) intersects int(i£0)-

Let x e &amp;~A. Since cpn + n is continuous on &amp;} and a homeomorphism (in fact a

similarity) on nA(C), it extends to a continuous map from &amp;~A onto itself. So there
exists y e «^ such that (pn + n\y) x. Now je/J, for some Rt occurring in A, so

from the définition of n\ q&gt;n\y) e ^&apos;(R,) intersects int(R0). Then x cpn + n(y)e
cpn + n(Ri) intersects q&gt;nR0 which intersects each UrR{Xj), and the stable fibers of Rt

map into the local stable fibers of points in UrR(Xj). This implies that the leaf
through x intersects each UrR(Xj).

For a tiling satisfying the hypothesis of Lemma 6, except that the origin is not
in the interior of a tile, consider the set of tiles containing the origin. If this

arrangement of tiles reoccurs in some repeated subdivision of any single tile (i.e. it
is not an exceptional arrangement), then the tiling is quasiperiodic as before, by a

similar argument.
In the example in figure 2, if the vertical displacement of tiles to the right of the

origin is 1/3, then the expansion x-+4x leaves the tiling invariant and is mixing,
since there is only one tile type, but the tiling is not quasiperiodic as we saw. This
shows why the hypothesis about the arrangement at the origin (or the origin being
in the interior of a tile) is important.

2.5. Control points

Given an inflationary G-tiling A with expansion cp9 for each tile t of type Tn the

image q&gt;(t) subdivides into new tiles in the same way. Pick one of the tiles in the
subdivision of &lt;p(t), and call it the successor of t, succ(/). Pick a single successor for
each tile type in T, Define the control point of a tile t of type Tt to be a point c{t) e t
such that for ail n ^ 1, &lt;pn{c) lies in the tile which is the successor of the tile
containing q&gt;n~x(c). Since there is an n such that for each tile type, cpn(t) does

subdivide (Lemma 5) and each subdivision decreases the ratio of areas of new tiles

to old tiles by a definite amount, there is a unique control point in every tile.
As an example, in the tiling of figure 4, we pick the successor of a square to be

the central square in its subdivision. Then the control point of any tile is its

barycenter: the preimages of the successors nest down to the barycenter of the

square. If we had picked, say, the lower left square in the subdivision to be the

successor, then the control point would instead be the lower left corner of a tile.
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The set C of control points of ail tiles in an inflationary G-tiling with expansion
constant X is invariant under X : X • c(t) c(succ(t)), so that XC c C. The notion of
control point is due to Thurston.

LEMMA 7. Let A be an inflationary tiling with expansion q&gt; and expansion
constant X. Let C be a set of control points for {A}. For any e &gt; 0 there is an n&gt;0

such that X~n(C) is e-dense in the bail of radius 1 around the origin. (That is, there
is a point of (p ~nC within e of any point in Bx (0).)

Proof By part 3 of Lemma 5, there is an TV such that for each tile t intersecting
B}(0) in &lt;^&gt;, the tiles in (pN(t) hâve diameter at most e diam(ç&gt;&quot;(/)).

Each tile contains a control point so X~NC is £-dense in t. Since there are a finite
number of tiles intersecting i?i(0), letting N&apos; be the max of the N defined as above
for each such tile t, X~N C is £-dense in 2?i(0).

One more définition: if A is a triangle in the complex plane with vertices a, b9 c,
in counterclockwise order, the similarity dass of A is defined to be ^(^4) (c — a)/
(b — a). It is a well-defined point in the upper half-plane, up to cychc permutations
of the vertices, which gives the équivalences

s(A)&apos;

Two triangles are similar iff they hâve the same similarity class up to this
équivalence.

3. Tilings of R

In this section only, we will consider (G, 5)-tilings of R, where G is a group of
orientation-preserving similarities of R, that is, maps of the form x h-+ ax + A, with
a&gt;0.

THEOREM 8. For any real r, \r\ &gt; 1, there is an inflationary similarity-tiling of
U with expansion r.

Proof Let r eR, \r\ &gt; 1, and let p (|r| - l)/2. We construct a (G, S)-tiling in
which S has only one type of tile, the interval, and 4 surroundings, consisting of
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intervais in length ratios respeetively P : 1 : /?, p :l:p~\ P~x: 1 : P~\ and

P~l : 1 : p. Thus adjacent tiles hâve length in ratio P or p~l.
Let t0 be the interval of length 2 centered at the origin. We subdivide the image

rt0 [ — \r\, \r\] into three intervais:

so that rt0 consists of three tiles in ratios P A. p. We then build the tiling by
expansion and subdivision, subdividing an interval of length / into intervais of
length ip, l and //? in that order. Since the expansion-subdivision leaves larger and

larger neighborhoods of 0 fixed, there is a unique limiting tiling of M.

The surrounding of a tile in the image of one of the four surroundings is again
one of the four surroundings, so the resulting tiling is a (G, S) -tiling. The expansion
is mixing, and so is quasiperiodic by Lemma 6.

What is the closure ^ in &lt;F of this tiling Al We suppose P # 1. A tiling in F
can be described by a point in [0,1) (telling where the origin is located in the tile(s)
containing the origin), and a biinfinite séquence of reals describing the ratio of tile
lengths relative to the tile at the origin. In such a séquence the ratio of adjacent
éléments is p or /?&quot;*.

It is easy to see that not ail such séquences occur for tilings in nA(C). In fact a

séquence of ratios for a tiling P in nA(C) can be grouped into groups of 3

consécutive ratios of the form P&quot;, Pn~l, P&quot;, coming from the tiles in the preimage
&lt;p~lB. There is a unique way to do this grouping.

For a tiling [x + A] the origin sits in the left, middle or right side of a group.
Describe thèse possibilities with L, M, or R respeetively. Then in the tiling
&lt;P ~l(lx + ^]) the origin again sits in the left, middle, or right of a group, and so on.
Thus to a tiling [x + A] we can associate an infinité séquence {x0, xx,. ..} of letters

{L, M, R}, where xt describes where the origin sits in the tiling q&gt; ~l([x + A]). Since

the tiling A is inflationary, for n large the origin of (p ~n[x + A] is in the tile
containing 0, so that the séquence {xt} terminâtes in M, M,

Thus a tiling [jc + A] is described by a point in [0, 1) x I1*, where I* is the set

of séquences of {L, M,R) terminating m M, M, To obtain the right topology
on ^(C) we need to identify some tilings having the origin at 0 e [0,1) with some
limits of tilings as the origin goes to 1 in [0,1). So ^(C) is actually a quotient of
[0,1] x Z*.

Let I {£, M, R}N, the set of ail infinité séquences of letters {L, M, R}. The

space 3% nAC is obtained from the space [0,1] x I by performing the following
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identifications:

p
(0, {M,x2,x2,. ..}) &gt;(1, {L, x2,x3,...})

i/p
(0, {R, x2, x3,...}) (1, {M, x2, x3,...})

k k
1/0

(0, [L,L,.L, R, xk + 2, xk + 3,...}) &gt; (1, {R, R,...,R, M, xk + 2,

k k

1//?

(0, {L, L,...}) &gt;(1, {*,*,...})

The labels on the arrows show the gluing similarity (the ratio of the size of the
left tile to the right tile). The last two show the two possible limits of the third and

fourth kind of identifications as k-+çc.
The space nA C is the (dense) subset of «^ whose second coordinate ends in

M, M,.... The space «^ is almost the same as the 3-adic solenoid

x 3 x 3 x 3

•••—&gt;sl—&gt;sl—&gt;s\

except that the séquences {Lk, M,...} and {Lk, R,. ..} converge to différent points

4. The expansion constant is algebraic

We begin with a brief sketch of some field theory involving transcendental

numbers; our référence was [12].
Let K be a finitely generated field over Q. An embedding of K into C is a field

homomorphism from K into C, which is necessarily an isomorphism onto its image.

If K is transcendental let X l9..., Xn be a transcendence basis for K, that is,

Àl,..., Xn are algebraically independent and K is a finite extension of
Q(A,,..., Xn). Any set of algebraically independent éléments of ATcan be completed
to a transcendence basis, which will hâve the same cardinality n. Since ail transcendental

numbers are the same from the point of view of the rationals we can embed

K into C in many ways. In particular let { be a real number algebraically
independent of Xx,..., Xn. Then for any real / &gt; 0 there is an embedding çt : K -+ C

sending Xx to Xx + / -h itÇ and Xt to Xt for i &gt; 1. (Note that for each real t ^ 0 either
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t or t^ is algebraically independent of Xu...Xn.) This gives an example of a

continuous one-parameter family of embeddings K-*C starting at the identity. (We
use this fact later.)

THEOREM 9. If X eC, \X\&gt; 1 is the expansion for an inflationary similarity -

tiling of C then X is algebraic. After an U-linear change of coordinaîes commuting
with the homothety X, the similarities G generating the tiling are also algebraic, i.e. of
the form x \-&gt; ax + b, with a and b algebraic numbers.

Proof We begin with a sketch of the proof. If the field K generated by
the control points is transcendental over Q, a sufficiently small perturbation
of the embedding of K doesn&apos;t mix up the tiles locally, and the inflationary
property implies that it is not mixed up globally; thus one can define a new

inflationary tiling with the same combinatorics as the original tiling. From Lemma
7, the union of ail the preimages of the control points is dense, and the perturbation
extends to this dense set to give a homeomorphism of the plane conjugating the

dynamics of the old tiling to that of the new, which we show is quasiconformal. The

expanding dynamics implies that this homeomorphism is linear, and complex linear
unless X is real. Thus the perturbation of K doesn&apos;t change A, and so X must be

algebraic.
To begin, let A with surroundings S be an inflationary similarity-tiling of C,

with expansion cp(z) kz. We suppose A is a standard tiling, i.e. the union of tiles

containing 0 has measure 1. Let C be a set of control points for the tiling.
Let K be the field generated by the points C c C. Note that X e K, being the

ratio of some two control points. Let n0 be the given embedding of K as an abstract
field into C. Notationally, we will identify the abstract field K with n0K.

Let A be the Delauney triangulation of the plane with the set C as vertices:
A is the triangulation which has the property that the disk bounded by the
circumcircle of each triangle in A contains no point of C in its interior. This

triangulation is uniquely defined unless a circle passes through more than 3

points of C. If this happens choose some triangulation in the circle which
dépends only on the arrangement of tiles near those points. By Lemma 7, this

triangulation near a point x dépends only on the surrounding of a certain standard
radius near x (a triangle cannot hâve diameter larger than a constant times the
diameter of tiles near x). The set D of similarity classes of triangles in A is thus a

finite subset of K.
Let n be another embedding of K into C. We construct a séquence of piece-

wise linear maps/£° : C-? C, n ^ 1 as follows. For eeCwe define/^(c) 7r(c),

and then extend /^ linearly over each triangle D3eA, The /^ so defined is

continuous.
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We now define

f:\x)=n{X-n)f&lt;l\X»x) (1)

so that the/^ are PL, and linear on smaller and smaller triangles as n-+oo.
Now suppose that K is transcendental. Let {nt}9 t e [0, 1] be a continuous

family of embeddings of K into C, with n0 being the original embedding; let/(/° be

the PL maps constructed above associated to nt. Since there are only a finite
number of similarity classes of triangles, for / small no triangle changes its similarity
class very much. Thus for a triangle DteA and t small, the image /(,1}(Z&gt;,) is
another triangle of the same orientation, with similarity class close to that of /),.

Near a given vertex of the triangulation, for t sufficiently small, /(/} is not only
continuous but also injective, since none of the triangles reverse orientation.

So f{P is locally injective. We show that for / sufficiently small f\X) is proper,
hence a homeomorphism of U2.

LEMMA 10. The map f(tl) is proper for t sufficiently small.

Proof. Let e &gt;0 be so small that \Â\(l -2e) &gt; 1 + 2e. Let BR be the bail of
radius R around the origin, where R is large enough so that the edges of triangles
in the triangulation intersecting BR hâve length at most Re/2. Such an R exists by
Lemma 7, since we can choose R so that the control points in BR(0) are Rô-dense

for any ô &gt; 0.

Let Px be a polygon contained in BR(0)9 surrounding the origin with edges

contained in the edges of the triangulation A and vertices within Re of ôBR.

Again by Lemma 7, there exists n ^ 1 such that the edges of triangles in B^nR
hâve length at most |/i|wite/4. So each edge in the polygon ÀnPx can be replaced with
a polygonal path having edges in A, running between the same endpoints and lying
within \À\nRe/2 of the edge, giving a new polygon P2 lying within \À\nRe/2 of XnPx.

The polygon P2 is contained in an annulus about 0 of outer radius |A|n.R( 1 -j-e +e/2)
and inner radius |A|mjR(1 —e—e/2) which lies strictly outside Px by the choice of e.

We repeat this construction starting with P2, getting another polygon P3 lying
close to Xn2P2, contained in an annulus of outer radius |/l|&apos;I + &apos;l2i£(l +e +£/2 + e/4)
and inner radius |A|n + /î2ZÊ(l -e —e/2-e/4) and so on; so that in gênerai dPt lies

far outside Pt_l9 i.e. Pt are nested with boundaries going to infinity.
Now for t sufficiently small, the map/(/} is very near the identity on the région

bounded by Px. Also nt(X) is close to A, so they hâve nearly the same modulus. In
particular |w,(&gt;l)|(l - 2e) &gt; 1 + 2e. If x is a control point, f\l\Ânx) nt(X)nf^\x\
and/(/&gt;(aP2) lies within \ntk\nRe&apos; of nt(X)nf?\dPx)9 for some e&apos; slightly larger than
£, but close enough so that jrc,(A)|(l -2e&apos;)&gt;\+2e&apos;.
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Hence by applying/(,1} to the séquence Pt of polygons, we hâve that/^dP,) lies

within \ntk\niRe&apos; of nt(X)n&gt;f(}&apos;\dPl_x)9 and so is outside oî f^\Pt_x) by a wide

margin. So the f^\Pt) form a nested séquence of polygons, with boundary going to
infinity. Hence f(tl) is proper. D

Aside. The remainder of the proof deals with properties of quasiconformal
mappings. We refer the reader to [1] for the définition and relevant properties.
Roughly a quasiconformal homeomorphism is a homeomorphism for which the

image of a small disk is not too distorted: its image is contained in a disk Si and
contains a disk S2, with the ratio radius(5r1)/radius(52) bounded a.e. by a constant
L as the size of the original disk shrinks to zéro. The number L is called the

dilatation of the mapping. Quasiconformal maps enjoy many of the properties of
conformai maps. The two properties of quasiconformal mappings which we shall

use are a compactness property (existence of normal families) and the existence of
a derivative almost everywhere.

Continuation of proof of Theorem. So/^ is a proper local homeomorphism,
hence a covering map. Since the plane is simply connected, f\l) is a homeomorphism.

From its définition, each /^ is also a homeomorphism.
Let L be the maximum of the quasiconformal dilatations of the linear maps on

triangles Dt -+f(tl)Dt. L is finite, since there are only a finite number of triangles up
to (conformai) similarity. Each/(/° is L-quasiconformal, since it is L-quasiconfor-
mal on each triangle.

If a set of L-quasiconformal homeomorphisms of the plane is appropriately
normalized, it forms a normal family. One possible normalization condition is that
the maps coincide on three points xl^x2¥:x3. Since the maps/*0 ail agrée on the

set C, which has more than three points, and are each L-quasiconformal, they do
form a normal family; hence, up to taking a subsequence, there is a limit
homeomorphism/, which is also L-quasiconformal. In fact there is only one limit
since the/^° for n &gt;n0 ail agrée on the increasingly dense sets k ~n°(C).

Furthermore, the limit /, is invariant: Vx e C

/,(Ax)=7rf(A)/,(x), (2)

since this is true for each x e U«^o k~nC, which is a dense set by Lemma 7.

A quasiconformal map has a non-singular derivative a.e.; let x be a point at
which the derivative of ft exists and is non-singular.

Now by (2),/ is differentiable at kkx for ail k. Since \k\ &gt; 1,/, is very close to
linear near knx for n large. We now show that the expanding dynamics and

quasiperiodicity force /, to be linear on the whole plane.
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The map ft is defined on any tiling x + A by translation, and since at a point x
the map ft only dépends on the local arrangement of tiles around x, ft extends

continuously to a map ft : ^ -? C.

Fix R. Since &lt;p is expanding on leaves of ^,ft restricted to BR(0) in the tiling
&lt; — A*jc H- v4&gt; converges to a linear map as k -&gt; oo. Let xœ 6 FA be a limit of the

tilings [-kkx + A]. Then/, is linear on BR(0) in the tiling &lt;^oo&gt;. Letting R tend to
oo, there is a tiling ;c e «^ such that/, is linear on the whole unstable fiber through
jc. By quasiperiodicity, the leaf through jc is dense in ^, so by continuity ft must be

linear on each leaf of ^. In particular ft is linear on ^(C).
But if ft is (real)-linear, then (2) implies that nt (k) k or X. Since t was small

nt(k) k. Thus we see that any embedding of K which is sufficiently close to the

identity fixes A.This implies that k is algebraic, by the comments at the beginning of
this section.

Since the number |S| of surroundings of tiles in A is finite, the positions of the

tiles are gênerated by a finite set of similarities, that is, there is a finite set {a} of
similarities such that if (g, Tt) is a tile in A then g e sé^ the group generated by {a}.
If two complex similarities x *—? ax + b and x \—? a&apos;x -\-b&apos; are çonjugate by a real
linear map close to the identity then a a&apos;. Thus a is algebraic as was the case for
k earlier. So the derivatives of the similarities in se must be algebraic. The fe&apos;s may
of course not be algebraic, since a homothetic change of coordinates z »-? yz
conjugates az -h b to az + yb.

Let ^f(z) =a,z + 6, for i&quot; l, 2, 3 be three similarities in $4. Then we hâve

rc*(*i) =/&amp;i» where /eGL2((R) and on the righthand side é, is thought of as an
élément of IR2. Suppose bx and b2 are independent over R. If b3 is not algebraic over
the field generated by bx and b2, then by choosing nt to be an embedding moving
b3 but not b} or 62, we see that/cannot be linear. So the group se is algebraic over
the (possibly transcendental) field generated by bx and b2.

Now if k is not real, bY and kbx are independent over R, and so in fact se is

algebraic over the field generated by bx. But now we can find a homothety
commuting with k and sending bx to 1. This change of coordinates renders se

algebraic.
If k is in fact real, then there is a map m e GL2U (which commutes with the

scalar k) sending bx to (1,0) and b2 to (0, 1), so that again se is algebraic. D

5. The construction

5.1. Number fieIds and Pisot numbers

Before we start the construction, we need to review a few facts and establish

some notations regarding number fields. Our référence was [5].
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Let a be an algebraic number. A Galois conjugate of a is a root of the minimal
polynomial of ce. Let K be the field generated by a over Q, K Q(a) Q[a]. For
each Galois conjugate a&apos; of a, there is an embedding of K into C sending ae^to
a&apos; e C. If a&apos; is real, the embedding has image in IR, and if a&apos; is non-real, the

embeddings corresponding to a&apos; and a&apos; are complex conjugates of each other. Let

r be the number of real embeddings and 2c the number of non-real embeddings
The product of the real embeddings with half the non-real embeddings (one
embedding for each complex conjugate pair) is an embedding of K into
IRr x Cc s Ud, where d is the degree of a, d r + 2c.

Let 0 dénote the lattice of algebraic integers in A&apos; c C. Then 0 aC embeds as

a subring of K into Ud. Let (9 be the image; S is a d-dimensional lattice in Ud. For
x g 09 let Je dénote the image of x in S. For x e (9 let nl (x) dénote the ith Galois

conjugate of x, that is the /th coordinate of x. We assume n^x) x.
Multiplication by a in K extends to a linear map on Ud, whose eigenvalues are the

Galois conjugates of a. If a is an algebraic integer, this linear map préserves the

lattice S.

For x e (9, defîne |||jc||| to be the (Euclidean) distance from Je to the xraxis;
alternatively |||jc||| is the square root of the sum of the squares of \nt(x)\ for / ^ 1.

A Pisot number is a real positive algebraic integer whose Galois conjugates

except itself are ail strictly inside the unit circle. Thus if A is a Pisot number

generating K, and x e K, x #0, we hâve |||Ax||| &lt; |||x|||.

Two other facts about Pisot numbers which we shall use are Lemmas 11 and 12:

LEMMA 11. Any number field K contained in M contains a Pisot number X such

that K Q[A]. Moreover, for any integer n there is a Pisot number X&apos; generating K
such that k&apos;In is an algebraic integer.

Proof. By Kronecker&apos;s theorem, if d numbers aua2,... ,ad are rationally
independent, the ray in Ud from the origin through the point (a{, a2,..., ad) passes

arbitrarily close to a non-zero point of Hd.

Let K — Q[a] be a number field contained in IR, with a of degree d. Let S be as

above.

With respect to a basis for the lattice 0, the xx -axis has rationally independent

slopes: otherwise, Zf^ x ntvt(cf) — 0 with nteZ — {0} and !;,(«) integer polynomials in

a of degree &lt;&gt;d- 1 would give a polynomial équation for a of degree &lt;&gt;d- 1, a

contradiction.
Thus there is a nonzero point X of S at distance &lt; 1 of the positive xx -axis. Let

k &gt; 1 be the projection of X to the xx -axis; k is an algebraic integer whose Galois

conjugates are ail less than 1 in modulus.
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This number X générâtes Q[a]: if not, [Q[a] :Q[X]] ^ 2 and there would be a

Galois automorphism of Q[a] moving a but fixing X. But a Galois automorphism
permutes the coordinates of points in (9. Thus X would hâve two coordinates with
value X &gt; 1, a contradiction.

dcf
Given an integer «, choose an integer fc so large that |||A*||| &lt; \\n\ then X&apos; «A*

is a Pisot number, generating Q[a] for the same reason that X générâtes Q[a], and
X&apos;jn is an algebraic integer.

The next lemma is only used in the proof of Lemma 13.

LEMMA 12. Let X be any Pisot number and E be afiniîe subseî of(9 &amp;[X], the

algebraic integers in Q[X]. For any R&gt;0 and k&gt;0 the cardinality of the set

{x g E ¦+¦ XE + X2E + h XkE; \x\&lt;R} is bounded independently of k.

Proof Let Et msix{\nl(e)\;e€ E}, the maximum absolute value of the ith
Galois conjugate of an élément of E, and Xl=nl(X). If x e (9 is of the form

x e0 -f Xex H- • • • + Xkek for some k with the e0,..., ek g E, then define
x&apos; (x - eo)/X =ex + -&apos; + Xk-xek.

If for any coordinate / # 1 we hâve

then

and so

k (*&apos;)!

So the /th coordinate of x&apos; is larger in absolute value than that of x. But then the

same is true for x{2) (x&apos;)\ xO) (x(2))\ and so on until the ith coordinate of x(k)

is larger than nt (x). But xik) 0. This is a contradiction.
So we must hâve for each i # 1 that |rc,(x)| ^ 2^/(1 — |A,|). But since by

hypothesis we hâve in addition that the first coordinate of x is bounded in absolute
value by R, the point x e Ud is confined to a bounded région of space. Since
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Je e &amp;, a discrète lattice in Ud, there are a finite number of possible values for x\
hence for x. D

5.2. Example

Since the construction has many détails, we will start by giving a simplified
example illustrating some of the ideas involved.

We will construct an inflationary simiîarity-tiling with expansion y — y/5/2. Let
K Q[y]. Let A be the Pisot number l 2 + ^5. Note that K Q[A]. Let (9 be the

algebraic integers in K.
Let To be the square of side 4 centered at the origin. Then yT0 has vertices in (9.

Tile the région between yT0 and To with rectangles as shown in Figure 5: the two
types of rectangles used (up to rotation) hâve sides (y/5 — 2) x(x/5 —2) and

Let Rl9 R2, R39 R4 dénote respectively the rectangles (yfS — 2) x(v//5 — 2),
1 x 1, 1 x (y/s - 2), and (2 + ^5) x (2 -h y/5). When we multiply the rectangle R{

by À (not y!) the resuit is an ^2- When we multiply the R3 by k we can tile the

resulting (2 + y/S) x 1 rectangle as in Figure 6, into four R2&apos;s and one Rx. The

image of an R2 gives an R^, which we multiply again by À to give a

(9 -h 4y/$) x (9 + 4^/5) rectangle, which we subdivide into a 2^5 x 2^/5 rectangle

-

1 1 1

(0,0)
•

I 1 1

—

Figure 5

1 I 1 I il
(2+f5,l)

(0,0)
Figure 6. Subdivision of an R3 rectangle.



Inflationary tilings with a similarity structure 191

and a bunch of rectangles of types RUR2,R3. In the 2^/5 x 2^/5 rectangle we put
a copy of Figure 5.

Now for each rectangle Rl9 R2, i*3, R* we hâve a way to subdivide ÀR; into
rectangles Ru R2, R3, R4 and To. The rectangle To subdivides in the pattern as

described above in yT0.
To make the tiling, put To centered at the origin. Now define the tiling of the

whole plane using expansion by y and the above-defined subdivisions; repeatedly
multiply everything by y, and subdivide ail the tiles as above. Note that since

\y\ # |A| the image of any tile of type Rf is only similar to XRi9 so the subdivision
must be scaled appropriately.

Why does this give an inflationary similarity tiling? First, it does give a unique
limiting tiling of the whole plane since larger and larger régions around the origin
are fixed. Second, there are a finite number of tile types up to similarity. Also, the

tiling is by construction invariant under multiplication by y, and the subdivision is

mixing.
It remains to check that there is a finite number of surroundings. This involves

only a finite (but tedious) amount of checking. The real reason there are a finite
number of surroundings is a bit subtle, and dépends on the fact that A was a Pisot
number. We refer to the gênerai construction for the proof (Lemma 13).

5.3. General construction

Let y be an algebraic number, |y| &gt; 1, and yx, yy the real and imaginary parts of
y. We construct a tiling with expansion y.

If y is neither real nor pure imaginary define / yy/yx, and choose an integer nQ

so that nol and no/l are both algebraic integers. If y is real or pure imaginary take

no= 1. Let X be a Pisot number in Q[yx9yy], generating it, such that À/n0 is an

algebraic integer. The existence of such a X is given by Lemma 11. Let d be the

degree of À.

Let K Q[Â] c R and 0 0[À] be the algebraic integers in Q[X\.

Let S c Ud be as before. Let BR(x) dénote the bail of radius R around x e W.

A polygon in the plane is said to be rectilinear if each of its sides is parallel to
the x- or &gt;&gt;-axis. Such a polygon is said to be hv-convex if its intersection with each

horizontal or vertical line is convex. A triangle with two sides parallel to the axes
is called an hv-triangle.

Let 7 be a hv-convex rectilinear polygon with vertices in K2 K x K, contain-

ing the origin and sufficiently &quot;round&quot; so that T contains ^ T in its interior.
Note that the vertices of ^ T are in K2. Tile the région T\^T with rectangles

having vertices in K2 and hv-triangles having vertices in K2 and their hypoténuses
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on the boundary of \ T. The &quot;picture proof&quot; of the existence of such a tiling is given
in figure 7. (Note that the intersection of two Une segments with vertices in
K2 K x K is again in K2. If y is real or pure imaginary no triangles are needed.)
Let n &gt; 0 be an integer so that ne e G for any coordinate c of any vertex in this

tiling. Multiply everything by n so that ail vertices are in G2. Now let Tx =nT,
To *T and forget about T. We hâve a tiling of TX\TO with tiles with vertices in
02.

We now hâve a subdivision rule for a tile To. Each tile in the subdivision is

either To, a rectangle, or an hv-triangle with hypoténuse of one of two possible
slopes —/or 1//. To define a subdivision rule for each rectangle and hv-triangle, the

idea is to multiply one of thèse tiles by kN for some large N, and subdivide it into
copies of r0, other small rectangles, and hv-triangles with hypoténuses of the same

slope.
Let S be the rectangle with sides parallel to the axes (a &quot;rectilinear rectangle&quot;)

circumscribed about Tx. Tile S\TX using rectangles with vertices in G2. This is

easily done since the edges of Tx are rectilinear lines with coordinates in G2.

Let Hx — maxlc! — c21||, where cx and c2 range over the set of x-coordinates of
vertices in the tiling of S. Let Hy be the same for the j&gt;-coordinates, and let

H max{Hx,Hy}.
Let V {x e G | x e i?|A|*(0)}, where R is chosen so large that

(1) R^2H.
(2) Fcontains ail horizontal and vertical edges between adjacent vertices in the

tiling of S defined previously.
(3) For any p e Ud the région BR/4(p) contains a point of G.

Figure 7. The tiling of Tx with vertices in G2.
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Let M be the union of the set of rectangles with edge lengths in V and the set

of hv-tnangles with horizontal and vertical edges having lengths in V and

hypoténuses of slope /or -1// This îs a fini te set of tiles up to translation
Let N be so large that \\\XN x\\\&lt;^ (hère îs the first place we use that À îs a

Pisot number gênerating K) and for each tile te 01, ÀN xt has ail edges long
compared to R and the diameter of S, say longer than 5 max{R, diam S}

For each rectangle t in 0t, define the subdivision of ÀNt as in figure 8, as follows
first put a copy of S in the lower left corner of kNt (ît fits because the edges of kNt

are long compared to the diameter of S) Let v be the upper nght corner of S, and

x and y the lengths of the horizontal and vertical segments extendmg from v to the

nght and upper sides of t, respectively Let w and z be the endpoints of those

segments on the nght and upper boundanes of /, respectively
Suppose the rectangle has edge lengths ex and e2 For each edge et of the

rectangle we hâve |||ef ||| &lt; R/3 (since A N(et) e V and \\XN\\ &lt; \\\àn l\\\ &lt;^)9 and
\e,\&gt;5R by choice of N By the définition of H we hâve |||jc||| &lt; |||^ ||| +H &lt;

R/3 + H and \\\y ||| &lt; \\\e21|| -h H &lt; R/3 + H
Subdivide the edge vw (which has length x) using éléments of V as follows Take

the set of points {û} of S a Ud within R/4 of the line segment from 0 to x and

project them to the Xj-axis Keep only those u that lie between 0 and x (see figure
9) The différences u — u&apos; between adjacent points of this set are éléments of F, for
\u -u&apos;\&lt;2 R/4 R/2 (by condition (3) on R) and

greater than R/2 ît îs m fact less than R/2 times
\\u-W is at most a httle

tt
e.2

H
V

B......1

Figure 8 Sample subdivision of a rectangle
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|fjX|f&lt;H+R/3

Figure 9. Defining the subdivision of Ox.

This subdivides the segment from 0 to x into edges in V (in fact, the edges hâve

length &lt;R, not just &lt;\k\R as in the définition of V). The subdivision of vw is

defined to be a translate of this subdivision. In a similar manner we define the
subdivision of segment vz. Now subdivide the rectangle in a grid fashion using
horizontal and vertical Unes through the subdivision points of the segments vw, vz

as shown in figure 8. This subdivides the rectangle kNt into rectangles in M and a

copy of the tiling in S.

To subdivide a triangle / e âê, first consider kN~lt. Suppose that the horizontal
edge is longer than the vertical edge. Subdivide the horizontal edge of kN~ xt using
the projection of points in ff as we did for the edge vw above. Draw vertical Unes

from thèse points to the hypoténuse and then from there draw horizontal lines to
the other edge. This subdivides the triangle into rectangles and triangles (the
triangles hâve hypoténuse lying along the hypoténuse of kN~ lt). We now multiply
everything by A, and claim that this defines a subdivision of kNt with tiles in M. To
see this, note that each horizontal edge of a tile in the original subdivision is in V.

Furthermore the length of one of thèse edges is at most R (in fact Rjl). A vertical
edge is of length lu or u/l, for u some horizontal edge (recall that -/or 1// is the

slope of the hypoténuse). When we multiply once more by À, each subtile will hâve
both horizontal and vertical edges in F (recall that kl and k/l are algebraic integers,
so each edge is now an algebraic integer of length &lt;\k\R and small ||| • |||-value.
Thus this defines the subdivision of kNt into tiles in 0t.
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If in the original triangle t the vertical edge was longer than the horizontal, the

same argument starting with the vertical edge defines the subdivision.
To define the inflationary tiling of the whole plane, start with a tile To at the

origin. Repeatedly multiply by y and subdivide using the subdivision rules we
defined above: To subdivides into the tiling of TX\TO and the tile To. Each tile in M
subdivides after N multiplications by y as we defined above (using expansion À\).
Since y and À are différent in gênerai the subdivisions hâve to be scaled (and
rotated) to fit. (A good example to recall is that of Figure 4, where y 2 and
A =4.)

Our set of tile types is a subset of

where the indices on the M correspond to the time left before subdivision. Thus for
i &lt; N — 1 the image under y of a tile in âtt is a tile in âti+ l5 and the image of a tile
in @tN_ j is a union of tiles in {To} u^0. Note that in the whole tiling of the plane,
for 1 &lt;&gt; i &lt;N — 1 a tile in 0tt is adjacent to tiles only in Mt_,u^u^+1.

This defines a tiling of the whole plane as we saw in the example. There are a
finite number of tiles up to similarity. Tiles of the same (indexed) type subdivide in
the same way. Each tile eventually has a copy of To in its subdivision, so that the

subdivision is mixing. The tiling is invariant under multiplication by y. We need

only check that there is a finite number of surroundings.

LEMMA 13. The tiling defined above has only a finite number of surroundings.

Proof. Every tile occurring in the tiling is similar to one in {T0}\j$. Call thèse

the unindexed types. For each unindexed tile type telfixa standard tile %&apos; which
is a translate of t with a vertex at the origin (and hence edges in V).

Let t be a tile in the tiling and define q&gt;t : x h+ ax + b to be the similarity
mapping / to the standard tile of the same unindexed tile type as /.

We need to show that for adjacent tiles /, t
&apos; in the tiling, with similarities q&gt;t and

y,&apos; respectively, there are only a finite number of possibilities for the similarity
&lt;Pt°&lt;P7X&apos;

Let s be the tile which is the unique &quot;parent&quot; of f, i.e. t a ys. Similarly let s&apos; be

the parent of t&apos;. Note that s and s\ if différent, must be adjacent tiles. We will
compute cpt&gt; o cp~l from cps&gt; © q&gt;~x.

There are six cases.

Firstly, if the tiles s and s&apos; are the same tile, so that t and t&apos; occur in the
subdivision of a single tile, then the set of possible cpt- ° &lt;p^1 is finite since there are

a finite number of tile types (hence a finite number of subdivisions).
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Secondly, if one of s or s&apos;is a tile of type To, then there are a finite number of
possibilities for q&gt;t&gt; ° &lt;p^1 since To has only one type of surrounding in the tiling.

Thirdly if neither s nor s&apos; subdivide under one multiplication of y (that is,

neither s nor s&apos; is in 0tN_,), then / ys and t&apos; ys&apos;, so that cpt (pso \/y and

(pt, q&gt;s, o \/y9 and so &lt;pt&apos; ° q&gt;ï~l &lt;ps&gt; ° 1/y ° y ° ç&gt;5~l &lt;ps&gt; ° q&gt;7l.

Fourthly if both j, s&apos; g ^n_ x then ^ ° q&gt;7x is a translation by our choice of
standard tiles. Since the tiles t, t&apos; in the subdivision are scaled by the same factor
XN with respect to ys or ys&apos;, we hâve &lt;p, =/? o çs o \/y and (pt=q ° (jtv ° 1/y, where

/?(z) A^z -f t; and #(z) A^z + v&apos; for some t;, v&apos;. Thus if ^- ° cp~ï(x) =x + cwe
hâve cpt&gt;° cp^rx =q o (x + c) o p~x =x + kNc +vx, where vx=v&apos; — v e (92 is the
différence of two vectors taken from the finite set of translations defined by the

positions of tiles in the subdivisions of ail the tiles in &amp;. Thus vx is chosen from a

finite set E.

Fifthly if only one of s, s&apos; is in 0tN_x, say s e 0tN_x, then s&apos; is either in 01*0 or
&amp;N-2- Suppose s&apos;e$0. Let re0tN_2 and r&apos; e^N_x be the parents of s, s&apos;

respectively. Then cpr, o &lt;p
-1 y -jjc -f c for some c. We see that cps cpr o \/y and

(ps, qo q&gt;r, o 1/y for some q, q(z) ÀNz -j-v&apos;. So we hâve

1

y2

for some p, p(z) XNz -f v, and

&lt;Pt&apos;-q°
r&apos;°y2&apos;

Hence

&lt;Pf ° &lt;PTl =q ° (y~lx + c) op~l =y~lx + XNc + vx,

where t^ t/ — y ~ lv and v, v&apos; are éléments of a finite set of translations defined by
the positions of tiles in the subdivisions of ail the tiles as before.

Sixthly and lastly, in case s e âîN_ x and s&apos; e ^v_2 we see

where p(z) kNz + v for v in a finite set as before. As we see below, the set of
&lt;Ps&apos; ° &lt;P7l ^ finite and so this set is finite also. (The argument in case five allows us

to skip over this case in the proof of finiteness for the other cases).
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In ail of the above cases if we look at the parents of s, s&apos; and their parents, and

so on, we eventually find that two ancestors came from a subdivision of the same
tile. This implies that (in ail but the sixth case) we can write &lt;pt o q&gt;~l ax + b where

a e {1, y, y&quot;1}, \b\ is bounded since / and /&apos; are adjacent, and b can be written:

* i&gt;, + kNc vx + kN(v2 + kNc&apos;) - • • vx + kNv2 + • • • + kkNvk

where the vt are ail taken from a finite subset E of (92. By Lemma 12, the set of
possible b arising this way is finite.

Thus for any adjacent tiles t, tr the similarity between them ax + b is chosen
from a finite set of possible similarities. This implies that there are a finite number
of surroundings.

6. Open questions

There are many interesting unanswered and unstudied questions in this area.
Hère are a few.

(1) What are the most gênerai inflationary similarity-tilings with expansion y?

The above construction only provides some very spécial examples. Aside
from some easy generalizations of the above construction, the reader
familiar with the work of Thurston [15] may see how to generalize this
construction to the case when À is not necessarily a Pisot number but a

Perron number (a real algebraic integer strictly larger in modulus than its
Galois conjugates) generating Q[yx,yy]. More generally, according to
Thurston, one can do a similar construction when A is a complex Perron
number, that is, a complex algebraic integer strictly larger in modulus than
its Galois conjugates except for X. In this last case À should generate Q[y]
(not Q[yx, yy]) and the tiles will not necessarily be polygons.

Even this is not the most gênerai possibility; it is possible to hâve several
intermediate expansions k, lying in a finite extension field of Q[y]. In gênerai
the ratio of areas of tiles (of the same type) will be in a higher-rank
multiplicative subgroup of R+ (in our example the area ratios are in a
rank-2 subgroup generated by \y\2 and |Ap).

Thèse more gênerai constructions are of course more complicated. They
are nevertheless relevant if one wishes to consider inflationary isometry-
tilings, for example, since there our Pisot-number construction may not
suffice.

(2) What are the expansions of inflationary isometry-tilings, where the structure
group G is the group of isometries? What if G is the group of area-preserv-
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ing linear maps? In both cases, the square modulus of the expansion must
be a Perron number (leading eigenvalue of a nonnegative integer matrix, the
subdivision matrix of the tiling [8, 14]). For the case of isometries, not every
algebraic number with this condition works. For the area preserving linear

maps, must the expansion be algebraic?
(3) Can one describe in some sensé the inflationary G-tilings with only one

équivalence class of tile? This has been done for G the group of translations,
see [9]. A related question is, what tiles in the plane can be tiled by two
similar copies of themselves? There are 17 such sets known to the author.

(4) More generally, can we describe ail tilings having a certain subdivision rule?

Again, for translation tilings and the simplest rule T0-+{n copies of To},
quite a bit is known; see [9, 11, 7]. For rules with two tiles and non-integer
expansion, say TO-^TU Tx -&gt;{To, Tx} there are almost no known examples.

(5) What are the higher dimensional versions of thèse results?
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