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Foliations transverse to fibers of Seifert manifolds*}

RAMIN NAIMI

Abstract. In this paper we prove the conjecture of Jankins and Neumann [JN2] about rotation numbers
of products of circle homeomorphisms, which together with other results of [EHN] and [IN2]
(mentioned below) implies that a Seifert manifold admits foliations transverse to its fibers only if it
admits such foliations with a projective transverse structure.

1. History

The question of existence of foliations transverse to fibers (to foliate with
dimension 2 a 3-manifold means to write it as a disjoint union of surfaces, called
leaves of the foliation, which locally look like disk x interval) was originally
answered for (locally trivial) circle bundles by Milnor [M], Wood [W], Thurston
[T], and Levitt [L]. Then Eisenbud, Hirsch, and Neumann [EHN] asked this
question for the more general case of non-locally trivial circle bundles, i.e. Seifert
manifolds. For the case when the base space is not S? they fully answered the
question in terms of arithmetic criteria involving the Seifert invariants of the
manifold. For the case when the base space is S°, however, they obtained only a
partial solution. This solution was later improved in two papers by Jankins and
Neumann, [JN1], [JN2]. However, the solution was still incomplete; they found
conditions sufficient to prove existence of foliations, and also conditions sufficient
to prove their nonexistence, and for manifolds satisfying neither conditions, conjec-
tured nonexistence of foliations.

As a corollary of proving the conjecture, together with results of Brittenham [B]
and Claus [C] we get that these manifolds (in the conjecture) do not admit essential
laminations. More precisely,
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COROLLARY. Let p, q > 1 be relatively prime integers, and let p’ and q’ be the
unique integers satisfying:

pp’ = 1mod ¢, 0<p’ <y,
qq’ = 1 mod p, 0<gq’ <p.

If M is a Seifert manifold with Seifert invariants (0; (1, —1), («,, B,), (%2, B5),
(a3, B3)) (i.e. three exceptional fibers over S?), such that, up to permuting indices,
Bi/ow 2 (p —q')p, Bo/az 2 (¢ — p")/q, Bs/os 2 1/(p + q), then M admits no essential
laminations. In particular, it does not admit any foliations without compact leaves (or
without Reeb components).

Theorem 1 (below) implies similar results for Seifert manifolds with more than
three exceptional fibers over S? (see [JN2]).

2. Definitions, and statement of the conjecture

Let homeo(R) denote the group of self-homeomorphisms of R under composi-
tion, and sh(y) € homeo(R) the shift function sh(y)(x) = x + 7, x, y € R. By abuse of
notation, we also let sh(y) e homeo(S') denote the circle homeomorphism which
rotates every point of S' by y; so y can be reduced mod Z. We say that
fehomeo(S') is a shift conjugate if it is conjugate in the group homeo(S') to sh(y)
for some y.

In [EHN] it is proven that:

THEOREM 3.5 [EHN]. A Seifert manifold M admits a transverse foliation if
and only if there exists a homomorphism ¢ : n,(M) - homeo(R) with ¢(z) = sh(1),
where z € n, (M) is the class of a regular fiber of M.

Let R cover S! = R/Z by the map x +— x mod Z. Then given f € homeo(S"'), and
a lift f'e homeo(R) of f, we define the rotation number of f as:

rot(f) = lim '-11( () = f(x)

n-— oG

where x € R is arbitrary. It is easy to check that this is well-defined, i.e. the limit
exists, and is independent of x. We also define rot( /) = rot(f) mod Z. Note that
rotation number of a circle homeomorphism does not change under conjugation.
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If M is a Seifert manifold over S? with » singular fibers, then we can write its
Seifert invariants as (g =0; (1, —b), (2, B,), - . ., (o,, B,)), where g =0 is the genus
of the base space S?, a;, ;€ Z*, 0 < B, /a; < 1, and b € Z (the pair (1, —b) does not
represent a singular fiber, but is rather used to normalize f;/a;, mod Z; it plays the
role of the Euler Class; see [JN3] or [S]). Then Theorem 3.5 of [EHN] (above)
implies that M admits a transverse foliation if and only if (b; B,/ay, ..., B./%,) is
realizable (defined below).

DEFINITION. Let neZ*, Jc{l,...,n},beZ,and fori=1,...,n, 7, €R.
Then we say (J; b; 7,,...,7,) is realizable if 3f; e homeo(S') with some lift f; such
that rot(f;) =y,, f; is a shift conjugate for i €J, and £, o - - - o f; = sh(b).

Note: When we omit J and simply write (b; y;, ..., 7,), it is to be understood
that J={1,...,n}.

Deciding when (J;b;y,,...,7,) is realizable is trivial for n =2 (when
v: + 7, = b). The case of n > 4 is inductively reduced to the case of n = 3. When
n=3,;b;y,,...,7,) 1s not realizable unless b =1 or 2. The b =2 case is easily
reduced to the b =1 case by replacing y, by 1 —y; (for proofs of these facts see
[IJN2]). Now it is easy to check that realizing (J; 1; ,, y,, ¥3) is equivalent to finding
f;ehomeo(S") such that rot(f;) =y, f; is a shift conjugate for ieJ, and
fi0/,0f; =1d, where “id” denotes identity on S'.

In [EHN] it was shown that if Z}_, 9, < 1, then (1;y,, 7,5, y;) is realizable. Then
in [JN1] it was shown that in fact (1; y,, 7,, 7;) is realizable by Mobius maps if and
only if X}_,y, <1. A beautiful and simple proof of this fact using hyperbolic
geometry on the unit disk ( which was shown to me by Eric Klassen) is as follows.
Given three elliptic Mobius maps f;, i = 1, 2, 3, let «; be the angles of the hyperbolic
triangle formed by the fixed points of f;. Then it is easy to show that the product
of f; is equal to identity if and only if a, = ny;, where y, = rot (f;). And there exists
a (possibly singular) triangle with angles =y, if and only if £}_, y, < 1.

Then in [JN2] more solutions were found using the following great idea.
Given f;0 f,0 f, =1id, let g; be a lift of f; to the m-th cyclic cover of S!, for some
fixed meZ*. Then for any k,,k,,k;€Z whose sum is a multiple of m,
sh(k;/m) o g0 - - osh(k,/m) o g, =id. Let y;, = rot(sh(k;/m) - g;,). Then it turns out
that by picking k; appropriately we can get the sum of y; to be larger than 1 (by as
much as 1/m). Using this idea they showed:

THEOREM 3 [IN2]. (J; 1;79,, 792, 73) is realizable if there exist integers
0 < a <m such that for some permutation of u, we have: y; < y; for i € J, y; < p; for

i ¢J, where (u, 1, p3) = (a/m, (m — a)/m, 1/m).
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In [JN2] they also showed that most of the (J; 1; y,, 7,, 73)’s (most in the sense
of Euclidean volume in [0, 1]°) which do not satisfy the hypothesis of the above
theorem are not realizable, and conjectured that in fact all such (J; 1; y,, 72, ¥3)’s
are not realizable.

CONJECTURE [IN2]. If (J; 157,72, 73) does not satisfy the hypothesis of
Theorem 3 above, then it is not realizable.

3. Proof of the conjecture

In [JN2], though not stated explicitly, it is shown (in Section 6) that the
following non-realizability statement is equivalent to the conjecture.

THEOREM 1. Let p, q > 1 be relatively prime integers, and let p’ and q’ be the
unique integers satisfying:

pp’ =1mod gq, O<p'<aq,

qq’ = 1 mod p, 0<qg <p.

Let yy=(p—q)/p, y2=(q —p)/q, and y3 2 1/(p + q). Then given J < {1, 2, 3}
and (W, po, u3) such that p; 2y, for ieJ, u; >y, for i¢J, (J; 15wy, s, p3) is not
realizable.

The proof follows immediately from the following two lemmas.

MAIN LEMMA. Let p,q,p’,q’ be as in Theorem 1 above, and let y, =
(p—4))[p, v2=(q —p")/q. Then for all y; 2 1/(p + q), (1; y1, y2, ¥3) is not realizable.

Proof. Let f, g e homeo(S') be shift conjugates whose rotation numbers are 7,
and 7, respectively, and suppose 4 is also a shift conjugate, satisfying h o g o f = id.
Then we want to show rot(h) < 1/(p + q). We can assume p < ¢. Fix x,€ S', and let
{Xo0» X1, ..., x,_,} be its orbit under g, such that on S' x;, _, <x; <x,,,, where of
course the index of x is always mod q. (To be rigorous, we could lift everything to
the universal cover, but for the sake of simplicity, we do not. To make sense of
a < b < ¢ however, it is enough to fix an orientation on S'; then “b is between a
and ¢” means it is on the arc from a to ¢).

CLAIM. x, _; <f(x,) <x,, and x5 < h(x,) < x,.
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Proof of Claim. By definition g(x,) = x, . (, _ ,» = Xo = hg f(x,), and rot(h) > 0,
so clearly x, <f(xy) < x,. So Vx €S, in going from x to f(x) we “jump over” at
most p’ x,’s, i.e. the cardinality of the set {x, | x < x; <f(x)} is <p’. So from x to
/7~ (x) we jump over at most (p — 1)p’ x,’s. But from x to f?(x) = x we go around
S' p — g’ times, so we jump over exactly (p — g”)q x;’s. Therefore from f7~!(x) to
fP(x) we must jump over at least (p ~¢')g —(p—1)p"=pq—qq’ —pp’'+p’ =
(p’—1) xs (since pp’+qq’ =pq+1). This shows that for exactly one
J€{0,...,p — 1} there are (p’ — 1) x;’s between f/(x) and f'* '(x), and for all other
J there are p’ x;’s.

Now by a symmetrical argument we see that x, _, </ ~'(x,) < X, i.c. between
f? 7 (x,) and fP(x,) there are only (p’ — 1) x,’s (since we defined “‘between” to be
left inclusive, right exclusive), so by above, Vj # p’ — 1 mod p, there must be p’ x;’s
between f/(x,) and f’*!(x,). Therefore x, _, <f(x,) < x,,.

Now h(x) =f"'g '(x,) =f '(x,), and by above we can check that
f(xo) <x, <f(x)), 80 X < h(xp) < X,. O(Claim)

So between each x; and x,,, we can “fit an A”. To prove the lemma we will
show that for at least p — 1 distinct i’s we can “fit an extra nonoverlapping h”
between x; and x;, , (ie. x; <h?(x;) < x;,,). And then we will “fit one more h”
somewhere else, as explained later, so that in the end p + g nonoverlapping A’s will
fit on S', showing that rot(h) < 1/(p + q).

Let yo = h(x,), and as with x,, let {y,, y;,...,y,_,} be the orbit of y, under g,
so that xo < yo<x, <y, <. f(yo) =Sfh(x,) =g '(xy) = x,.. So between y, and
f(y,) there are only (p’—1) x;’s, which implies that for i=2,...,p —1,
Xy 1 <fUyo) < x,,. Similarly, y,_, <f"'(y,) <o, so between f~'(y,) and y,
there are only (p'—1) y’s. It follows that for i=1,...,p—1,

Yir =1 <f(¥o) <y So we get:
yip’-—l<fi(y0)<xip’s l=2,,p'—1, f(y0)=x:p

Now for i=1,...,p—1, we have: g7 (¥, 1) =Vus1p -1 S (3) (with
equality iff i =p — 1), s0 f ' (¥u4 1y 1) S (Vo) < xp (f(30) =%, iff i=1), s0
h(yip’—l) =f_lg—l(yip’—l) = xip’a SO:

yip’—l<h(yip’~l)sxip’a izla-"sp—"l (1)

We can assume that x, < A(y,) < x,, since otherwise Vi, x; < h*(x;) < x;, , O
rot(h) < 1/2g < 1/(p + q), and we are done.

Let z=h(y,). & '(¥o) =Vy, 80 f(2) =y,, O Xx,<f(z) <xy,,. And
YVo<Xx, <z<y <Xx,, S0 by a “counting” argument as above, for i=1,...,p,
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X <fU(2) <Xy p1,and fori=2,...,p, y, _ <f2) <y, . So:
xip’<fi(z)<yip’a i=29'-',p; xp’<f(z)=yp’<xp’+l

Fori=1,...,p—1, g7 '(x,) = X441y <f1'(2), s0 g7 (x;,) <f(2) <y
(equality iff i = 1), so:

Xiy < h(X;y) <Vips i=1,...,p—1 (2)

Equations (1) and (2) imply:

yip’—l<h2(yip'—-l)<yip” l=1,,p—1 (3)

Let joe{l,...,p—1} be such that for ie{l,...,p—1}, o<y 1 < Yipp—1
implies i =i, mod g. Since y, <h(y;) <yi11, Yo <h™ ~Y(o) <y, 1. Further-
more, h(x,) = yo, and by (1) y; , 1 <h(y;y 1) < X;,r, therefore xo < ho” +1(x)
<Xx;,,- But x, was arbitrary (to prove equations (2) and (3) x, was not arbitrary,
but for (1), and hence in this paragraph, it is), so:

J’—1<hi°p’+l(.1’—1)<yz'0p'—1 4)

Now p’ and q are also relatively prime, so y,, # y, for any i # 0 mod g, and by
assumption p < ¢, SO:

fori,je{l,...,p—1}, i #j implies y,, # y;, (5)
and similarly

yip’~l=’éy—ls i=19°'-9p*1 (6)

Equation (3) gives p — 1 “extra A’s”, and (5) says we are not counting any of
them more than once. (4) gives “one more A”, and it was not already counted in
(3) because of (6) and the way i, was chosen. So we get the desired p + ¢
nonoverlapping #’s on S'. J(Main Lemma)

LEMMA (Weak Monotonicity). Fix y,,7,,7:€(0, 1), and suppose ¥y = y,,
(1; 1,72, 7) is not realizable. Then given J < {1,2,3} and (u,, >, ps3) such that
w2y foried, uy>y, fori¢Jd, (J;1; u,, up, u3) is not realizable.
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Remark. A stronger lemma (which follows after having proved The Conjecture,
but which we could not prove “directly’’) would be obtained by weakening the
hypothesis to only “(1; y,, 7., y;) not realizable’’. Hence Weak Monotonicity.

Proof. In the following, we repeatedly use the fact that rotation number is
continuous ([H], Chapter II, Proposition 2.7).
Suppose  towards contradiction, that 3¢, € homeo(S') such that rot(¢,) = u; and

30 ¢,0¢,=id. Write 0 = p3 ' =¢,0 ¢,.

CASE 1. There is no i with y; =y,. So in particular, rot(6) <1 — y,.

Step 1. For i =1,2 perturb ¢, slightly, if necessary, so that: (1) ¢, is now
smooth, (2) rot(¢,) is still >y;, and (3) rot(d) =rot(¢, o ¢,) is still <1 —y;.

Step 2. For i =1, 2 replace ¢, by sh(—¢;) o ¢;,¢; 20, so that rot(¢;) is now
irrational, but still >y,. Clearly rot(f) is still <1 — v, (even if ¢, is not small, which
it may not be).

Now by Denjoy’s Theorem ([CFS], section 3.4), since ¢, is smooth (C? is
enough in fact) with irrational rotation number, it must be a shift conjugate, i.e.
¢; =f; sh(p;)f ;! for some f; € homeo(S"'), where p; = rot(¢,). Now, Denjoy’s Theo-
rem does not guarantee that f; will be smooth, so we perturb it slightly if necessary,
so that it is smooth, and rot(f) < 1 — y; still holds.

Step 3. y; < p;, s0 fi sh(y)f 7' <fish(p;)fi' (f<g means Vx e §', x < f(x) <
g(x)), so now we replace ¢; by f; sh(y,)f;"!, and we still have rot(8) <1 —y,.

Now we perturb f; slightly if necessary, by replacing it by € -id + (1 —€) - f;, so
that rot(f) becomes irrational, but still <1 —y;. So now 8 too is a shift conjugate,
with rot(8 ~') > y,, a contradiction.

CASE 2. There is exactly one i with y; =7;.

Say i =3 (so u, >7,, 4 >7,). Then by hypothesis, 3e€ J, i.e., ¢;=fsh(y;)f .
Write ¢, ! = ¢, o ¢,, and replace ¢; by f sh(y; +€)f !, € > 0 small enough so that
rot(¢,) is still >y,. Then we are in Case 1 again.

CASE 3. There are exactly 2 i’s with u; =7v,.

Say i =2,3 (so p, >7%;). Then by hypothesis, {2,3}€J. So ¢;=fsh(y;)f "
Write ¢ ;' = ¢, o ¢,, and replace ¢; by fsh(y; +¢€)f !, € > 0 small enough so that
rot(¢,) is still >7v,. Then we are in Case 2 again.

And of course when g, =y, for all i, we have nonrealizability by hypo-
thesis. O(Weak Monotonicity Lemma)

The author wishes to thank Dave Gabai, Walter Neumann, and the referee for
helpful conversations and suggestions.
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