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Nodal lines of eigenfunctions of the fixed membrane problem in
general convex domains

GIOVANNI ALESSANDRINI

Abstract. We describe the boundary behavior of the nodal lines of eigenfunctions of the fixed membrane
problem in convex, possibly nonsmooth, domains. This result is applied to the proof of Payne’s
conjecture on the nodal line of second eigenfunctions [P1], by removing the C* smoothness assumption
which is present in the original proof of Melas [M].

Introduction

In 1967 Payne [P1] conjectured that, in any simply connected bounded domain
Q in the plane, any second eigenfunction of the Laplacian with Dirichlet boundary
condition cannot have a closed nodal line. See also Yau [Y].

Quite recently, Melas [M] has proved that this conjecture is true for convex
domains with C* boundary. Previous significant results were obtained by Payne
[P2], Lin [L], Piitter [Pii] and Jerison [J].

In the proof of Melas, the smoothness of the boundary is required in order to
deduce information on the boundary behavior of the nodal line of eigenfunctions
[M, Lemma 2.1]. Loosely speaking, the crucial step where the smoothness is needed
is as follows. One performs a local flattening of the boundary and an odd reflection
of the eigenfunction across the boundary. In this way, the study of the boundary
behavior of the nodal line is reduced to the study of the behavior in the interior of
the nodal line of the solution of an elliptic equation, which, as a consequence of the
Hartman and Wintner formulas (see [H-W] and also Lemma 1.2 below) is,
asymptotically, the same as the one of an harmonic function. For different
purposes, this technique has been proven successful in domains with C'* boundary,
by Alessandrini and Magnanini [A-M, Theorem 3.5]. However, it does not seem to
be applicable when the regularity of the boundary is less than C'.

Our present purpose is to describe the boundary behavior of the nodal lines of
eigenfunctions in general convex domains, and to deduce from this study the validity
of Payne’s conjecture in any convex domain, with no smoothness assumption.

The main results are stated in the two theorems below. But first we need some
notation.
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We denote by 2 a bounded convex domain in the plane. For any P € 0Q, we
denote by I'(P) the smallest open infinite sector with vertex at P which contains Q.
We denote by u an eigenfunction of the Laplacian in Q with Dirichlet conditions,
that is a nonzero W{*(2) function satisfying, for some positive constant A,

Au+Au=0 in Q. (1)

The nodal line N of the eigenfunction u is given by

N ={xeQ|u(z) =0}.
Here, and in the sequel, z = x + iy will denote the complex coordinate in the plane.

THEOREM 1. If the nodal line N intersects the boundary 0L2 at a point P, then
there exists ry >0, such that N N B, (P) is composed by a finite number M, M 2 1,
of C! simple arcs which all end in P and whose tangent lines at P divide the sector
I'(P) into M + 1 sectors of equal amplitude.

THEOREM 2. Let u be any eigenfunction corresponding to the second eigenvalue
A =A,. The nodal line N of u intersects the boundary at exactly two points.

The main body of this paper is contained in Section 1, where a proof of
Theorem 1 is given. The basic idea is to use a local change of coordinates near
P € 0Q which, rather than flattening the boundary to a line, transforms the
boundary into the broken line which bounds I'(P). The appropriate way of doing
such a transformation is by a conformal mapping, in fact we shall take advantage
of the conformal invariance of elliptic equations in divergence form. On the other
hand, we need somewhat delicate asymptotic estimates on such a mapping near the
point P, see Lemma 1.1. Finally, we make use of the Hartman and Wintner
formulas, in the improved form of Schulz [S], see Lemmas 1.2—1.3.

Section 2 contains the proof of Theorem 2. We will follow essentially the same
track of the proof of Melas, and we will refer to it at various steps. However, some
technical care, and a different viewpoint are necessary. This is mainly due to two
facts: the first order derivatives of u may not be continuously defined up to the
boundary, and the Hopf lemma may not be applicable on 0.

1. The behavior at the boundary of nodal lines

With no loss of generality, we may set P =0, I'(0) = {re®?eC|r>0,0<6 <o}
where o is some number 0 < o < n. For any R > 0, let us define D, , = I'(0) " Bz(0)
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and also 4,x=Q2nNnD,z. Let R be small enough, in such a way that
0D, g " Q # &. Thus 04, r can be decomposed into three arcs y,, y, and g, which,
in polar coordinates, are parametrized as follows

Yo : 0 =6,(r), 0<r <R,
Vo - 0 =0,(), 0<r <R,
or:r=R, 0y(R) <0 <06,(R);

here the functions 6,, 6, are such that
0<60,(r)<0,0r) <a, for every r, 0 < r < R,
0, is nondecreasing, 0, is nonincreasing and also we have

lin}) 0,(r) = lin}) [ —0,(r)] =0.
Let us recall that there exists a unique conformal mapping z —{(z) from 4, z onto
D, r which maps the corners 0, Re®®  Re®® into the corners 0, R, Re™
respectively. Since 4,  and D,  are convex domains, they have Lipschitz boundary,
and hence the mapping {(z) and its inverse are both uniformly Hélder continuous.
It is convenient to introduce logarithmic coordinates

z=e'*®  in 4,4,

(=gt in D, z.

We shall represent the mapping { ={(z) by the transformation of coordinates
=1(t, 0), ¢ = ¢(¢, 6). An analogous representation will be used for the inverse
mapping. We denote by d(t, ¢)/d(t, 8), d(¢, 0)/(z, @) the Jacobian matrices of such
transformations and by 7 the 2 x 2 identity matrix. Notice that r and ¢ are
conjugate harmonic functions of the variables ¢, § and viceversa.
The following Lemma says that, in an appropriate sense, the mapping { = {(z)
is nearly the identity as z — 0 nontangentially in Q.

LEMMA 1.1. Let K be any compact subset of the interval (0, a). We have

lim [¢(z,6) —0] =0 uniformly when 0 € K, (1.1)
lim [¢p —6(t, )] =0 uniformly when ¢ € K, (1.2)

T~ — X
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. [0 ¢) ] .

1 —I|= .
Jim EX) I_ 0 uniformly when 0 € K, (1.3)

. [o@ 6 ] ,

lim —I1]|=0 uniformly when ¢ € K. 1.4
T—> —® _6(‘5, d)) | f Y d) ( )

Proof. The function ¢ = ¢(¢, 6) satisfies the following conditions

A¢p =0 where t <log R and 0,(e’) <6 <8,(e,
¢=0 where t <log R and 0 =0,(e"),

¢ =u where t <log R and 6 =0,(e),

moreover, we have 0 < ¢ < a everywhere, and ¢(log R, 6) is continuously increas-
ing from 0 to a as 6 ranges the interval [6,(R), 6,(R)]. For any T <log R, let us
define ¢ ~, ¢ * as the bounded solutions of the following Dirichlet problems

A4¢ =0 where t < T and 0,(T) <6 <a,
¢~ =0  wherer<T and 6 =0,(T),
¢~ =0 where t =T and 6,(T) <60 <uq,

¢ =a where t < T and 0 =a,

AT =0 where t <T and 0<6<0,(T),
¢t =0 where t <T and 6 =0,
ot =a where t =T and 0<6 <6,(7),

d+ =ua where t <T and 0 =0,(T).

By the maximum principle, we have that, in the common domain of definition,
¢~ <¢ <¢*. We may choose T in such a way that K = (0,(T), 0,(T)), and by
explicit estimation of the functions ¢ —, ¢ *, we may find a positive constant 4 such
that the following inequalities hold

0 —6,(T) nt af nt
0,1 P [a = %(T)] SO0 =g tA [ea(r)]

forevery t<T and 6eKk,
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and (1.1) follows easily. By standard interior estimates for harmonic functions,
(1.1) implies also

lim V[¢((t,0) —0]=0 uniformly when 6 € X, (1.5)

here the gradient V is taken with respect to the (¢, 6) coordinates. By conjugation,
we also have

t lim V[, 0) - =0 uniformly when 6 € K, (1.6)
and hence (1.3) is proven.

By comparing ¢(t, 6) with ¢(z, 8 + h), h > 0, in the common domain of defini-
tion, we obtain, again by the maximum principle, that ¢ is an increasing function
of 8 for any fixed ¢. Hence 0¢ /060 >0 in the interior and every level line
{9(t,0) = ¢y}, 0 < ¢ < a, is the graph of a function 6 =6, (D). Let a, b be numbers
such that 0 <a < b <« and also K <[a, b]. By (1.1) and by the monotonicity of ¢
with respect to 6, for any ¢, 0 < ¢ < min {a, « — b}, there exists T < log R, such that
for every t < T we have

¢, <a whenever 6 < a —,

¢, =b whenever 0 = b +¢.

Therefore, for every ¢, € K, and for every ¢t < T, if ¢(0, t) = ¢, then it must be
a—¢ <0 < b +c. Consequently, applying once more (1.1), we obtain

lim 6, () = ¢, uniformly when ¢, € K. (1.7)

Notice also that 8, (¢(t, ¢)) = 6(t, @) for every 1. Next, let us observe that the
Holder continuity of { and {~! at 0 implies that

lim t(t,¢) = — 0 uniformly in ¢. (1.8a)
lim 7(¢,0) = —© uniformly in 6. (1.8b)
And now (1.2) follows easily from (1.7), (1.8a). Finally, (1.4) can be deduced from
(1.2) by the same procedure used above to prove (1.3) from (1.1). O

The following lemma is an application of the Hartman and Wintner formulas.
Quite similar statements are already well known, see for instance Cheng [C] and
Alessandrini [A]. A proof is sketched, just for the sake of completeness.
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LEMMA 1.2. Let a € C*(Bg(0)), 0 < J < 1, be a positive function, and let v be a
nontrivial W'? solution of

div [alv] =0 in Bg(0) (1.9

and let us set v(0) =0. There exists numbers ry, B, 0<ro<R, 0< B <mn, and a
nonnegative integer M, such that the nodal line

{zeB, (0) | u(z) =0}

is given by the union of 2(M + 1) C' arcs y,, . . ., Yas + 1y, Which can be parametrized
in polar coordinates as foilows

7,160 =10,(r), 0<r=<ry, j=1,...,2(M+1). (1.10)
The functions 0,, .. ., Oy 1) Satisfy

n

50 =F+5rn

+ o(1), asr—0, forevery j=1,...,2(M +1), (1.11)
d :
rEHj(r)=o(l), asr—0, foreveryj=1,...,2(M +1). (1.12)

Proof. The Hartman and Wintner theorem, in the version of Schulz, [S,
Theorem 7.4.1, Corollary 7.4.2], gives us that there exist numbers f and M as in the
statement, and a positive number A4, such that

v(re®®) = M1 rM+lgin[(M + 100 — B)] + o™+, asr-0, (1.13)
rg-r-v(re“’) = ArM+1sin [(M + 1)@ — B)] + o(r™* 1), as r -0, (1.14)
é%v(re"") =ArM*+1cos[(M + 1)@ — B)] + o(rM™+ 1), as r -0, (1.15)

the remainders being uniform with respect to 8. Notice that, for sufficiently small 7,
if v(re®®) = 0 then (0/00)v(re®®) # 0. Thus there exist r, > 0, such that, equating v to
0 in (1.13) we obtain (1.10)—(1.12). a

The next lemma is a variant of the previous one, suitable for solutions of (1.9),
but which are defined in a finite sector and vanish on the flat parts of the boundary.
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LEMMA 1.3. Let a be as in Lemma 1.2, and let v e W'(D, ) satisfy, in the
weak sense,

div [aVv] =0 in D, g,

v(re®®) =0 whenever 0<r <R and 0=0,a.

There exist a nonnegative integer M and a number ry, 0 < r, < R such that the nodal
line

(zeD,,,|v(z) =0)

is empty when M =0, and, when M >0, it is the union of M C' arcs v,,...,7uy
which can be parametrized

'yj;():@j(r), OSrSro, j=1,...,M,

and the functions 0,, . .., 0,, satisfy
0,(r) = Y + o(1) as r—0, for every j =1 M (1.11)
=y T ’ PIT e |
d .
r-(;()j(r)=o(l), asr—0, foreveryj=1,..., M. (1.12)

Proof. Let us perform the conformal change of variable z —»w, defined by
w = z™* Let us set d(w) = a(z), o(w) = v(z), these new functions are defined in a half
disk centered at the origin and contained in the upper half plane. Let us continue
such functions to Im w <0 by reflecting 4 evenly and ¢ oddly, across the line
Imw =0. It follows that Lemma 1.2 is applicable to the equation div [aVi] =0
which holds in a full neighborhood of the origin and the proof is readily completed
by pulling back to D, p the parametric representation of the nodal line given in
Lemma 1.2. O

Proof of Theorem 1. Let J,(x) be the Bessel function of the first kind and of
zero order, let j, be its first positive zero. For any fixed R, 0 < ﬂR <j,, we have
that ¥(z) =Jo(\/1|z]) is positive in Br(0) and it satisfies 4y + Ay = 0. Conse-
quently, we may factor u = yw in 4, x where w e W'?(4, ) turns out to satisfy in
the weak sense the equation

div [y2rw] =0,
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and the boundary condition
w=0 on yvy, =02 nNaod, .

Using now the previously constructed conformal mapping z —{(z), we define
a(Q) =y *(z), v() = w(2), { € D, p. By the conformality, we have

div [aVv] =0 in D, g,
and Lemma 1.3 is applicable. Consequently, choosing R sufficiently small, the nodal
line of u in 4, g, which is the same as the one of w, is given by the union of M arcs
Vis.-.,Ys (here M >0 since the origin is a limit point of the nodal line by

hypothesis). Such arcs can be parametrized, in the {-logarithmic coordinates 7, ¢ as
follows

v:p=¢;(r), t=<IlogR, j=1,..., M,

¢j(r)=M—%~1—+o(l), ast—> —oo, foreveryj=1,..., M,
d .
C—Ed)j(r)—-—:o(l), ast——o, foreveryj=1,..., M.

By (1.4), (1.1) the angle 6 in the z coordinate is such that

0(¢j(r),r)=9( Y ,‘c>+0(1)=Ma_{_l+o(l) as T — —oo,

M+1

Finally, recalling (1.8), we have that the curves y;, j=1,..., M, can be
parametrized

V-0 =0,(r), 0<r <R,

where

0,(r) =%1—+0(1), as r -0,

d
r-(;f)j(r)zo(l), as r —0.
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These formulas show that the curves y; are C' up to the endpoint P =0, and that
their tangent lines at Q are equally spaced in the sector I'(P). This concludes the
proof of Theorem 1. O

2. The nodal line of second eigenfunctions

In this section we restrict our attention to the second eigenvalue A, and we
consider u to be any corresponding eigenfunction.

As is well known, the Courant nodal domain theorem, [C-H], implies that Q\N
is composed by exactly two connected open sets, 2, and 2,. By Theorem 1, we
obtain that N must have one of the following three configurations

(I) N is a simple curve,
(IT) N is a Jordan curve and is compactly contained in Q,
(III) N is a Jordan curve and intersects 0L at exactly one point P. N is piecewise
C!, and its one sided tangents at P divide the sector I'(P) in three sectors of
equal amplitude.

In order to prove Payne’s conjecture, that is Theorem 2, one has to show that
cases (II) and (IIT) cannot occur.

Without loss of generality we shall assume that ¥ > 0 in Q, ¥ <0 in @, and, in
case (II) or (III) holds, that €, is the domain whose boundary is N. We shall denote
by v the exterior unit normal to Q2. Being Q2 convex, v is defined almost everywhere
on 09Q.

Let us observe that, as a consequence of the convexity of Q, since u € W}(Q)
and 4u € L*(Q) then in fact u € W>%(Q), see [G, Theorem 3.2.1.2.]. In particular,
the gradient of » has an L? trace on 01.

LEMMA 2.1. If (II) or (III) occurs, then for any unit vector £, and for any arc
o < 0R2 such that v - £ 2 0 almost everywhere on o, the following inequality holds in
the weak sense

ou
— & . .
Y 0 on ¢ (2.2)

Proof. Without loss of generality we may suppose that £ is parallel to the x-axis
and, if (III) occurs, P is not an interior point of ¢. The arc ¢ can be represented as
a concave graph x = x,(y). We have u(x,(y), y) =0, u(x, y) >0 for x < x,(y) and
therefore du/0x(x,(y), y) < O for almost every y. Recalling that u € W%*(2) we have
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that du/0x is an absolutely continuous function on almost every line, hence [0u/dx] *
can be continued to 0 outside Q as an absolute continuous function on almost
every line a which is transversal to 6. The first partials of [0u/0x]* exist almost
everywhere and they belong to L*(Q), hence [0u/0x]* has zero trace on o. |

The next two lemmas are due, in the smooth case, to Lin [L, Lemma 2.4, Proof
of Theorem 2.2], see also [M, Theorem 2.1]. We omit the proofs, since, in view of
the previous considerations, it is a straightforward matter to modify those in [L]
and [M] to the present setting.

LEMMA 2.2. If (II) or (III) holds, then the second eigenvalue A, has multiplicity
one.

LEMMA 2.3. If (II) holds for some convex domain (2, then there exists a convex
domain Q, for which (111) holds.

Proof of Theorem 2. We argue by contradiction. In view of Lemma 2.3, let us
assume, that case (III) occurs.

Let us choose the coordinates in such a way that P =0, Q lies in the upper half
plane y > 0, and the y-axis bisects the sector I'(P). The boundary of Q can be split
into four arcs 4, B, C and D. A and B are line segments parallel to the x-axis and
might consist of single points, 0 € A. The arc C stands to the left hand side of D.
If e, is the unit vector in the x direction, then we have v - ¢, <0Oon Candv-e, 20
on D.

For any real number ¢, let us define the following function

o
©T ox

+ tu in Q,

v, belongs to W'*(Q) and it satisfies in the weak sense
Av, + vt =0 in Q.

By Lemma 2.1 we have
v,20o0n C, v,<0on D, in the weak sense,

while, in the interior of 4 U B, we have v, =0.

LEMMA 2.4. There cannot exist two disjoint connected open subsets of §2 such
that, on their boundaries, v, = 0 in the weak sense.
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Proof. If there were two of such sets, by the variational characterization of /,,
and by the analiticity of v, in the interior of Q, it follows that v, is a second
eigenfunction in Q. By Lemma 2.2, we obtain that v, is a constant multiple of u
in Q. Therefore o0u/0x = (Const.)u in £, which contradicts the zero Dirichlet
condition. O

LEMMA 2.5. There exists exactly one connected open subset Q, of Q such that
v, =0 on 0Q, in the weak sense. Q, is simply connected.

Proof. By Theorem 1 we know that there exists R > 0, such that N N B,(0) is
composed by two C! arcs y*, y ~, whose intersection consists only of their endpoint
at 0. Moreover, we may choose R sufficiently small, in such a way that their
tangents lines are never parallel to the x-axis and y*, y ~ lie, respectively, in the half
planes x > 0, x < 0. From now on we shall remove the endpoint 0 from y* and 7y ~.

By our previous settings, we have that v, >0 on y* and v, <0 on y ~. We define
Q; as the connected component of the level set {z € Q | v,(z) > 0} which contains
y*, and, analogously, we define Q,;. Now let us suppose that v, lg'_ e Wi (Q,),
since v, 20 on C and v, =0 on 4 U B, then 0Q, must have a nonempty intersection
with D. Therefore, Q; separates 2, from C u B, consequently dQ;" may intersect
092 on points of D U A only, where we have v, < 0. Since v, > 0 inside 2, we obtain
that v, =0 weakly on 0Q;. Hence we have obtained that either Q, =Q; or
Q, = Q. satisfies our thesis. Uniqueness and simple connectedness are conse-
quences of Lemma 2.4. O

Now we apply the above arguments to the special case ¢ = 0, that is v, = ou/0x.

LEMMA 2.6. There exists a nontrivial arc 6 in C and a connected component G
of the level set {z € Q | (0u/dx)(z) > 0} such that 0G ~C contains é.

Proof. First we observe that C < 9{z € Q | (u/0x)(z) # 0}, otherwise du/dx =0
on an open subset of Q, which is not possible by analytic continuation. Next, we see
that the set C nd{z € Q | (u/dx)(z) <0} has empty interior in dQ2. Were it not so,
we would have du/0x = 0 weakly on an open arc y of C. Continuing u to 0 to the
left of y, we would obtain a W'? function satisfying, in the weak sense,
Au + A,u = 0 on a full neighborhood of y, by unique continuation we would have
that u should vanish identically.

Therefore any connected component 8 of C\d{z € Q | (u/dx)(z) <0} is open in
C and it is contained in the boundary of one connected component G of the level
set {z € Q| du/ox > 0}. O

Let us denote by 4,(Q) the first eigenvalue of the Laplacian with Dirichlet data
in the domain Q.



Nodal lines of eigenfunctions 153

LEMMA 2.7. There exists T >0, such that v, >0 in Q, for every t < —T and
v, <0 in Q, for every t > T.

Proof. Let us consider the case when ¢ > 0. Let §, G be as in Lemma 2.6 and let
K be a sufficiently small connected neighborhood of é in G such that ¥ >0 in K.
Therefore, v, > 0 in K, and KN Q, = ¢, otherwise, we would have K = Q, and then
Ou/dx =0 on §, which is not possible by the unique continuation property, as we
already observed in the proof of Lemma 2.6.

By the strict monotonicity of the eigenvalues we have 4,(Q\(2,uUK)) =
2 (Q\K) > 1,(2,) = A, and by continuity, we may find a connected open set
E < < Q, such that

LQ\(EVUK)) > 4,. (2.3)

We may find T > 0, such that v, <0 in E for every ¢t > T. For ¢t > T, we have that
either £ < Q, or EnQ, = . But the second case cannot occur, because it would
imply Q, « Q\(E u K) and, therefore 1, = 4,(2,) > 4,(2\(E u K)) contrary to (2.3).
Therefore v, <0 in Q, for every ¢t > T. The case t < — T can be treated analogously.

O

The proof of Theorem 2 will be completed by the use of the following Lemma,
which obviously leads to a contradiction with Lemma 2.7. O

LEMMA 2.8. The sign of v, in Q, is a continuous function of t € R.

Proof. Let us suppose that, for a given ¢, we have, for instance, Q, =2, . We
can find a smooth path n in Q;, which joins C with y* (the arc constructed in the
proof of Lemma 2.5) and such that

infv, > 0.

n
Were it not so, we would have v, = 0 weakly on 0Q;", which is not possible. Hence,
there exists € > 0, such that, for every A, |h| <e¢, we have v, , =v, + hu >0 on n,
that is nuy* < Q}, ,. Therefore, for every h, |h| <e, nUy™* separates Q7 , from
D, and, by the arguments on Lemma 2.5, this implies Q,,, = Q. ,. O
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