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On the cohomology of biquadratic extensions

BrRuUNO KAHN

Introduction

Let F be a field of characteristic #2 and M/F a biquadratic extension, that is
a Galois extension with Galois group isomorphic to Z/2 x Z/2. The three papers
[T], [K1] and [MT] study relationships between the Galois cohomology of F, M
and the three intermediate subfields L,, L, and L, of M. The aim of the present
paper is to further this study and in particular to extend results of [MT].

More specifically, in [MT] Merkurjev and Tignol introduce two series of
seven-term complexes S, and S” (n = 0):

3
Xp ﬁn n res
H'M @ (H'F)* —— @ H'L, — X®@H'F — H"*'F —
i=1
3

On &,
H'*'M — @ H"+1Li———>H"+‘M@X®H"+1F@H"+2F (S,)

i=1

or 3 pn n
H”+'M@(H"+1F)3<—- @ H"+IL,- +--——G®H”+1F<—v——

i=1

cor on 3 en
H"F —HM «— @ H'L, — HHM®GQH'F®H""'F, (S")
i=1
and prove their exactness in some cases. Here and everywhere in this paper, we
denote for any field K by H’K the Galois cohomology group H"(K, Z/2). Our main
result is the following:

THEOREM 1. Sequences S, and S are exact in the following cases:

(1) The Milnor conjecture holds for F and all its finite extensions in degree <n
and

(a) F=F?+F?

or

(b) M is pythagorean;

(2) n=2.
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[Part 2 of th. 1 is not new: see below. Also, the exactness of S, and S” for n <1
is proven in [T] and [MT]/]

Note that condition (a) of th. 1 holds in particular if —1 is a square in F. Recall
that a field K is pythagorean if the set of squares of K is closed under addition, and
that the Milnor conjecture in degree n for K predicts that the natural homomor-
phism KM(K)/2—-H"K is an isomorphism, where KM(K) is the n-th Milnor
K-group of K (see [M]).

The Milnor conjecture has been proven for all fields and for n = 2 by Merkur-
jev, for n =3 independently-by Rost and Merkurjev—Suslin; a proof for » =4 has
been announced by Rost. It is also known in all degrees for special classes of fields,
eg Kato’s higher local fields. Part (1) of theorem 1 applies in all these cases.

Part (2) of theorem 1 is proven in [K1, §4] by using results of Suslin on torsion
in K, of fields to reduce to the number field case, and in [MT] by using quadratic
form theory and function fields of quadrics. It was also proven by Markus Rost by
using function fields of quadrics [R]. We give here a new, more elementary proof,
using results of [K2]. In [R] and [MT], the exactness of S; and S* at certain spots
is proven unconditionally.

This paper is organised as follows. In section 1 we recall from [MT] the
definition of the maps in S, and S”, as well as a general result relating their
homology groups, for the convenience of the reader. In section 2 we introduce some
functors which ‘lift’ Galois cohomology modulo 2: this is the main tool we use here.
In section 3 we extend S, on the left and S” on the right; truncating the parts
involving ¢, and «”, we get new 7-term complexes S, and S” and exhibit quasi-
isomorphisms S, — S’". this can be viewed as a ‘“duality” statement, extending a
remark at the end of [MT, §1]. In section 4 we construct a partial homomorphism
of complexes S, —S,,_, [3], which induces homomorphisms between their homol-
ogy groups, and prove an ‘excision’ property for the latter, using section 2. In
section 5 we prove some technical results in Galois cohomology, which are
consequences of the Milnor conjecture. In section 6, we prove theorem 1. Finally in
section 7 we make a few further observations.

I thank Jean-Pierre Tignol for suggesting part (1b) of theorem 1. It is likely that
one can in fact derive the exactness of sequences S, and S” from the Milnor
conjecture, or at least Hilbert theorem 90 for higher Milnor K-theory in quadratic
extensions, without extra hypotheses like (a) and (b). Actually (a) and (b) are those
extreme cases when cup-product by (—1) in cohomology modulo 2 is respectively
0 or injective (see prop. 4); it is quite conceivable that one does not need such
hypotheses to deduce proposition 5 from the Milnor conjecture. Unfortunately I
haven’t been able to do this, except in degree 2.

I also thank the referee for pointing out some stupid mistakes in the first version
of this paper, which prompted a rewriting that will hopefully clarify its strategy.
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In particular, it is thanks to his remarks that I realised that my construction of
isomorphisms #,(0) - #"(4) and #,(4) > #"(0) was connected with an ap-
proach in [MT].

Notations. Throughout this paper, with one exception in §3, notation of [MT] is
used. If A is an abelian group and m a nonzero integer, we denote by ,, A (resp. by
A/m) the kernel (resp. the cokernel) of multiplication by m in A.

1. Review of notation of [MT]

We recall here the definition of the maps appearing in (S,) and (S”), as defined
in [MT]:

o, (u, )1 <is3) = (NM/L,-u + (Ui)L,-)l <i<3

3
Bn((fi)l <i<3) = Z (a;) ®NL,-/Ffi

i=1

7n(z (a;) ®f,) Z (a;) * f:

i=1 i=1

0,(u) = (NM/Liu)l <i<3

(i <ics) = ( Z (/i)Ma B((£ih<i<3)s Z (a;) ®NL,-/F((\/(;1‘) ) fi));

i=1

3
a™((£)1<i<3) (Z (fi)M,(NL,/Ffi)1Siss>

ﬁn( Z ) u,~> = (Zl (<(a;), “j>“j)1-i>] <3

i=1

3

P (u) = Z 0,®(a;) u

i=1

5"((4)15;’53) = Z (/i)M

i=1

8”(% i g; ®v;, t)=(NM/L,~(u) +(\/‘7i) “hisi<s +ﬁn_l(i 6i®ui>'

i=1 i=1
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In these definitions, denotes conjugation by Galois involutions, the \/a—i are
chosen such that X (\/a‘,-)M =0 and {,) is the natural pairing X x G- Z/2.
Merkurjev and Tignol set

H#,(1) =Ker f,/Im a, H"(1) = Ker a”/Im g"

#,(2) =Kery,/Imp, H"(2) = Ker f"/Im y”

#,(3) = Ker res/Im v, A "(3) = Ker y"/Im cor

H#,(4) =Ker 6, /Im res H"(4) = Ker cor/Im 6"

#,(5) =Kerg,/Imé, H'"(5) =Ker 6"/Im ¢”
and prove:

THEOREM 0 ([MT], th. A; end of section 1). For all n =2 0, there are natural
isomorphisms #,(2) = H"(2) = H,(4) =H#"(4) and H#,(1)=H"(1)=H#,3) =
H"(3). Moreover, if H,(1)=H"(1)=H#,3)=H"3)=0, then H,5) =
H"(5) =0.

Remark. We shall not be concerned here by the maps ¢, and «”, nor by the
homology groups #,(5) and #"(5). In fact, we get rid of this part of complexes S,
and S” in section 3.

2. An auxiliary functor

Fix an integer n > 1. We give ourselves, for any i < n, a functor A’: fields —
abelian groups such that:

(1) His a Mackey functor, ie is provided with a transfer for finite extensions
having the usual properties (double coset formula);

(2) There is a natural transformation of Mackey functors p : A — H’ inducing
an isomorphism H{(K)/2S HK for any field K.

A trivial choice is A’ = H'. Assuming Milnor’s conjecture in degrees <n for all
fields considered, one may take for H’ one of the following functors:
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(i) K"
(i) H'(—, ud); L
(iii) M;(—) = H%(—, G®") [K2] (denoted by M;(—) in [K2]).

In fact, we shall use here (ii) and (iii) rather than (i).

3. Extending S, to the left (and S” to the right)
(1) Define 1, : @}_, H'L,® (H"~'F)?* > H"M & (H"F)? by:
M€ s 1535 (Fh si<3) = (X €ms (@) - fi + Nypla + Npy et
(@y) “f2+ Ny gl1+ Ny, 53, (a3) - f3+ Ny gy + Ny et).

Then a,n, = 0. Set ##,(0) = Ker a,, /Im 5,. Adding this map to S, and truncating
it on the right, we get a new complex:

3
@ H'L, @ (H'~'F)’ — H'M @ (H"F)’ —
i=1
3

Bn n res o 3
@ H'L,— X®H'F — H"*'F— H"*'M — @ H"*'L, (S}

i=1 i=1

with homology groups J,(0), #,(1), #,(2), #,(3), #,(4).
(2) “Dually”, define " : H**'M@® (H"*'F)* > @?_, H** 'L, ® (H"*?F)* by:

n"(u, (v;)) = (Nyyp, u + (©2), + 03)r, > Nmy, e + (00, + (03),5
Ny, u + 1), + (©2),, (@) " v:)1<i<3)-

Then a"n” = 0. Set »#"(0) = Ker n”/Im a”. Adding this map to S” and truncat-
ing it on the left, we get a new complex:

3 5 on
@ Hn+lLi®(Hn+2F)3 E" H"+1M@(H"+'F)3 ‘
i=1
cor on 3

H'M — @ H'L, (8™

i=1

3 ﬁn n
@ H”+1L,~<—~—G®H"+1F<y H"F <
i=1

with homology groups X#*(4), #"(3), #"(2), K "(1), #"(0).
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We now define a homomorphism of complexes S, — S’ as follows:

3 3 3
@ H'L ®H""'F)>H'MOH'F)’> @ H'L -X®HF -~ H'*'F - H"+'M - @ H"+'L,

1=1 im]
prll p’]l “nl Anl vnl lll ill
3 3 3
@ H"L, - H"™M — H"F -*G@H"'HF—* @ H"+'L,->H"+'M®(H"+‘F)3—' @ H"‘HL,@(H""'ZF)B
=1 =1

1=1

r=1

where pr, denotes the projection on the first factor, i, the inclusion of the first factor
and pu,, 4, and v, are defined as follows:

P <i<3) =Zfi
A((a)®f) =0, (ay)  f+0:®(a3) - f, etc.

v(f) = (fLi)l <i<3

Note that we just extended the morphism of complexes appearing at the end of
[MT, §1]. It is a tedious but easy exercise to check that these maps indeed define a
morphism of complexes (ie, that the above diagram commutes).

PROPOSITION 1. The homomorphism S, — S’* defined above is a quasi-isomor-
phism, defining natural isomorphisms #,(i) S #"(4—10),0<i < 4.

Proof. Again this is a tedious but straightforward exercise, involving the exact
sequences attached to the various quadratic extensions involved in M/F. We only
give the most difficult (since it does not appear in [MT])):

Proof at A,: Let x=06,®f,+06,8,, e GR®H"*'F map to 0 by B”. Then
(i, = (), = (/i + /o, =0, hence £, = (@) - g1, /i = (@) &2, fi +fo=(@3) - &s.
Check that x =y"(ZX g;) + 4,(X (a;) ® g;) and conclude that the map »#,(2)—
H#"(2) induced by 4, is surjective. Similarly, let x = (a,) ® f; + (a,) ®f, e X@ H'F
be such that y,(x) =(a,) - fi+ (a;) - fo=0 and 4,(x) =y"(u) for some u € H'F.
Then 4,(x) =0, ®(a,) ' fi + 0, ®(a;) - f3, hence (a)) - (u +13) = (@) - (u +£1) =0,
hence fi=u+ N/, and f,=u+ N/, for £, e H'L, (i=1,2) and x =(a,) ® N/, +
(a,) ® N/, + (a;) ®u. But then (a;) *u =0, u =N¢; and x = §,(N¢,, NZ,, NZ»),
showing the injectivity of 5 ,(2) = #"(2).

4. Two maps ¢ : #,(0) > H,_,(3) and 0 : 57,(1) - A4, _,(4)

There is a commutative diagram:
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3 3
(H-'F)® @ H'L,—— H'M® (H'F)* —> @ H'L,— X @ H"F

i=1 i=1
cnl ml 0.,1 lnl

_1 Yn —1 res [ 3
X®H"'F ~— HF — HM 5 @ H7,

i=1

where

(fh<icr@ihcics) = Z (@) ®f, ¢.((u, (v;)) = NM/Fu . i Z v

3
On((/i)lsisli) = Z (/i)M and

i=1

A <Z (a,) ®ﬁ> =((a+ L), (St + o), (i + 000
It induces homomorphisms:
¢, : #,(0) — H#,_,(3);
6,:#,(1)— H,_,(4).
For simplicity, we write ¢ and 0 instead of ¢, and 0,.

Remark. There is presumably a similar commutative diagram involving S” and
S”~ !, but we don’t care to write it down.

Denote by Z,(0) the kernel of &, : A"M @ (A"F)*> - @?}_, A"L,, where &, is
defined analogously to «, (see [MT]), and similarly by Z, (1) the group
{(£)i<i<3€ @ AY(L) Ny s, =N xf, =Ny, x5} (apparently there is no slick
way to describe the latter group as the kernel of a map like f,). The map p of
section 2 induces homomorphisms p : Z,(0) = #,(0) and p : Z,(1) — #,(1).

)
PROPOSITION 2. (a) In the sequence 22,,(0):9?,,(0)—» . —1(3), one has

Ker (¢) < Im (p). ) 0
(b) In the sequence ,Z,(1) = #,(1) = ¥, _,(4), one has Ker () < Im (p).

Proof of (a). Let (u, (v;)) € Ker . Lift u and the v, into & € H"M, 5, ¢ H"F. By
assumption:

Y 5, =20 (1

Nwpii =), +2%  (1<i<3) | )
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for suitable 7, X,. Here, contrary to [MT], we denote by x > ‘x the conjugation by
the generator of Gal (L;/F) acting on T(L;) for any functor T defined over fields
(same notation for i =1, 2, 3). This is just a trick to get better formulas at the
end.

Up to modifying 9, into &, — 20, we may even assume, and we do assume, that
# =0 in (1). Further, up to replacing A" by Z[}]®, A", we may, and do, assume
that multiplication by 3 is invertible in H”. Then, taking norms of (2), we get:

Nmpth = 2(0, + N 5 X)) = 2(0, + N, 5 X,) = 2(03 + N 5 X3)

= %(NL,/Ffl + Np,/rX; + N, 5 X3), (3)
hence
U, = %(NLz/F)Ez + Np,p¥;) — %NLI/Ffl + 71,
U, = %(NLI/Fx~1 + Ny, pX;) — %NLZ/Ffz + 05,
Uy = %(NLl/F-fI + N, 5 Xz) — %NL3/Fx~3 + 73,

with 277 = 205 =205 = 0.
Next, extend scalars on (2). We get:

(1+0)i=0)m+ 2(%)m (1—i<3).
Adding up gives:

2 + (Nyrihy =2 ), ("%i)m.-

Using (3) again (to substitute Ny, i), we get:

20 =2, ("% — H(E + F)m + (Fy + K + (B + %3)m

= —%Z (X )m +%Z ("X >
hence

U= “% Z (X )m +%Z (‘X)m + 4", 24" =0.
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Note that

@)L, = Nwy, @ = @), — %(NLz/Ffz + Np,pXa), + FE 4+ %)
— {NM/Llﬁ + %NM/LII:Z (fi)M] —_ %NM/LI[Z CAV ]}

=0, — J(NL, e, + Ny, p¥3), + 3E 4+ %)
— {Nmy, @ + (2%, + (Ny,/gX; + N, X3),]
— 2%, + (N, /p %, + Ny g X3),1}

= (@), — Nmp, % +2'%,=0 by (4),

and similarly (33)r, = Nu,#’, (73)L, = Nwm,#’, hence (@, (07)) €,Z,(0). This
proves (a).

Proof of (b). Let (£,), <<€ Ker 6. Choose 7, € H*(L,) lifting ¢,. By assump-
tion:

3
S Cow=2d (4)

i=1
Npeli=0+2% (1<i<3) (5

for some i, 7, ;.
Take Ny, of (4) and get (using (5)):

27, + (27 + 2%, + 2%;), = 2Ny, 1,

ie
0y + (€ + %+ %), =Ny, d+7;,  with 271 =0.
Similarly,
ly+ (0 + % + %), =Ny, # +75,  with 275 =0;
I3+ (0 + % + %), =Nyt +75,  with 275=0.

Note that NL)/FZII = NLZ/FZ’2 = Nszpi; - 4Z+ 2()?1 + iz + i3) - NM/FﬁS SO that
4,75, 73) € ,Z,(1). This completes the proof of prop. 2.
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5. Cohomological properties and permanence properties

For any field K, denote by ¢ the class of —1 in H'K via Kummer theory.

PROPOSITION 3. Let the Milnor conjecture hold for K in degrees <n. Then,
for all i < n, there is an exact sequence:

'y P Hi‘lK—a>Hi_l(K, ﬂ?i) __p_> Hi—lK

D HK — H(K, p®) —— HK — 0.

Moreover, op is multiplication by 2 on H = (K, u®") and H(K, u$").

Proof. Consider the long cohomology exact sequence associated to the short
exact sequence of coefficients 0 > Z/2 - ud' - Z/2 - 0:

o1—2 pl—1

o/~ 1 " .
— H 'K — H YK, ) — H/ - 'K

0/—1 172

» H'K i » H(K, uP") —ij-» HK — -

Note that for i even u$ =~ Z/4, and for i odd puP' = u, as Galois modules.
Therefore, the Milnor conjecture implies that ¢/ (resp. p/, ¢/) is injective (resp.
surjective, 0) when i and j have different (resp. the same) parity. For j = i, this gives
an exact sequence as in the statement of prop. 3; the identification of '~ ! to
cup-product by ¢ follows for example from [K3, lemma 1]. Finally, the claim about
op is trivial.

COROLLARY. With the notations and hypotheses of prop. 3, one has
pGH(K, u®)) =¢ -H-'KcHK. O

PROPOSITION 4. (a) In case (la) of theorem 1, cup-product by ¢: HF —
H'*'F is identically 0 for i <n. Moreover, the same holds for any 2-extension of F
(in particular M and the L,).

(b) In case (1b) of theorem 1, cup-product by ¢ : HM — H'*'M is injective for
i <n. Moreover, the same holds for F and the L,.

Recall that an extension K’/K is called a 2-extension if it is contained in a Galois
extension of K whose Galois group is a (pro-) 2-group.
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Proof. In case (a), the claim is obvious if ¢ itself is 0. Otherwise, let
F= F(\/—:—l). Then the hypothesis on F means that the norm Ngjg: F'* - F* is
surjective. This in turn is equivalent to ¢ - a =0 for all a € H'F, eg by the exact
sequence associated to the quadratic extension F’/F [MT, (1)]. The Milnor conjec-
ture implies that H*F is multiplicatively generated by H'F up to degree n, hence
cup-product by ¢ : HF - H' * 'F is identically 0 for all i < n.

To see that the same holds for any 2-extension of F, it is enough to deal with
a quadratic extension E of F, and to see that E satisfies condition (a) of theorem
1. But this is a consequence of the vanishing of (1) for the biquadratic extension
E(\/—-—_f) /F (see lemma 2 below).

In case (b), let M’ = M(\/—:f). By the long exact sequence associated to the
quadratic extension M’/M, injectivity of the cup-product by ¢ on H'M is equivalent
to the vanishing of Ny :HM' —>HM. For i=1, this is hypothesis (b) of
theorem 1. For i 2 2, H'M’ is by assumption additively generated by cup-products
of elements of H'M’, and even by cup-products of the form uy. - x, where
ue H~'M and x e H'M’ [BT, cor. 5.3]. For such an element,

Nym (g x) =u - Ny x = 0.

Finally, if M is pythagorean so is any subfield E of M such that [M : E] < + o
[L, th. 5.14]; in particular, F and the L, are pythagorean, hence the last claim of
prop. 4.

6. Proof of theorem 1

To prove theorem 1, the key step is:

PROPOSITION 5. Under the hypotheses of theorem 1, there are inclusions:

Ker(@)ce - #,_,(1)

Ker (¢p) c¢-5#,_,(0)

where, as above, & denotes the class of —1 via Kummer theory and the maps 0 and ¢
are defined in section 4.

In view of th. 0 and prop. 1, Proposition 5 obviously implies th. 1 by induction
on n. (In case 2 of theorem 1, we use Tignol’s theorem that S, and S! are exact [T],

[MT}.)
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Proof of proposition 5 in case 1. We choose A = H{(—, u®’). By prop. 4 and
the corollary to prop. 3, in case (1a), Im (,Fi” > H") =0, hence p(,Z,(1)) =0 and
p(oZ,(0) =0 in prop. 2. Therefore prop. 5 holds trivially. In case (1b), for
x e @;_, A"~ 'L,, we have with obvious notations:

& By 1(x) = B.(e - x).

Therefore, prop. 4 implies that (Ker ) n(e- @3_, A~ 'L,) =¢ -Ker B,_,,

and prop. 2 and the corollary to prop. 3 yield the first exact sequence of prop. 5.
Similarly, the injectivity of cup-product by & yields the equality:

(Kera,)nle - (H"-""M@®(H""'F)3)] =¢ - Kera,_,,

which in turn yields the second exact sequence of prop. 5 via prop. 2 and the
corollary to prop. 3. This concludes the proof of prop. 5 in case 1.

Remark. In particular, the groups 3#;(r) and # 3(r) vanish under condition (a)
or (b) of th. 1, thanks to the theorem of Rost and Merkurjev—Suslin mentioned in
the introduction. In [MT], the vanishing of these groups for r odd is proven
unconditionally; the same was proven by Rost [R]. The latter proofs use deep
results of quadratic form theory and K-cohomology of function fields of quadrics.
The proof given here is more elementary; in some sense it is ‘algebraic’ rather than
‘transcendental’.

Proof of proposition 5 in case 2. Here we choose H'=M,(—) [K2]. The
following lemma does not appear in [K2]:

LEMMA 1. Assume that the Milnor conjecture holds for K in degrees n — 1 and
n. Then there is an exact sequence:

-1y 2
0~ H'~ (K, Q/Z(n)/2 > H" 'K —— M, (K) — M,,(K) —— H'K 0.

Proof. As in [K2], denote by Z(n) the Galois complex G;I%”[ —n] (defined as an
object of the derived category of Galois modules). The triangle Z(n) > Z(n) —
Z/2 - Z(n)[1] yields a long exact sequence in hypercohomology, of which a part is
the following:

- 0 2 n
0 — H"~ (K, Z(n))/2 — H"~ 'K — M, (K) —> M, (K) — H"K
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The tautological products Z(i)(IQ)Z( 7) = Z(i +j) provide the theory M, (K)
with a graded product which commutes with the cup-product in mod 2 cohomology
via the morphism p* above; therefore, since the Milnor conjecture holds for K in
degrees n — 1 and n, p”"~ ! and p” are surjective (observe that p' is the Kummer
theory map). On the other hand, by [K2, prop. 2.2], there is a canonical isomor-
phism H” ~ (K, Q/Z(n))iH"“‘(K, Z(n)). This proves lemma 1, except for the
identification of 4. Note that, by assumption, H” ~ 'K identifies to M, _,(K)/2 and
product by {—1}eK*=M,(K) from M, _,(K) to M,(K) factors through
M, _(K)/2=H""'K; this gives sense to the claim “d = product by {—1}". To
prove this claim, we argue in 3 steps:

(1) The claim is true for n = 1. This is trivial.

(2) Let x e M,(K) and y e H’K. Then d(y - p"(x)) = (0y) - x (compare [CE,

prop. XI1.2.5)).

(3) Apply (2) with y =1, taking account of (1) and using the surjectivity of p”.

COROLLARY. One has
pGHYK)) =¢ - H*~ 'K < H'K
also for this choice of H”.

Assume now that n = 2. Then H(K, Q/Z(2))/2 = Ker (H'K L—IB »M,(K)) has
order <2. (In fact, if it is nontrivial it is generated by the class of a 2-primary root
of unity { or { + ¢!, but we won’t need this.)

We first prove that Ker (8) = ¢ - 5#,(1). We need a general lemma.

LEMMA 2. Let 5#,(1) be the homology of the complex
H'M @ (H"F)? —=» H"L, @ H'L, —"> H'F

where a, and B, are respectively defined by
(1, vy, 02) = (N, u + @), Nmy,# + (02)1,)s
Bn(£1,¢2) =Ny rf1 + N, st

Then there is a natural isomorphism #,(1) S #.(1).
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Proof. 1t is trivial to check that the following diagram commutes:

3
Oy B
H'M® (H'F))— @ HL, — X®H'F

i==1
d 1
H"M @ (H"F)? — H"L, ® H"L, —~» H"F

where w(u, v,,0,,03) =W, v,0,), wW(,,t,,¢(3)=(,,¢,) and w'((a,)®f, +
(a,) ®f;) =f, + /.. Hence w’ induces a map 5,(1) — 5 ,(1). By the exact sequence
associated to the quadratic extension L,;/F, (Ker w’) n(Ker 8,) < Im a,. Since w is
surjective, it follows that #,(1) -5 ,(1) is injective. Finally, we prove that
Ker 8, = w’(Ker B,), hence that #,(1) - 5 ,(1) is surjective. Let (¢,, £,) € Ker .
We have Ny g/, =Ny, rf,=x (say). Then (a;) - x=(a,) x=0. Therefore,
(@,a;) - x=0. But then there exists /;e€H"L; such that N y/;=x, and
(¢,,¢5,¢5) € Ker B, is such that w'(¢,,74,,¢5) =(¢,,£,). O

Let x € Ker (#5(1) 3 #,(4)). By prop.
x. By lemma 1 and its corollary, write
definition of Z,(1), we have:

, pick (Z,, 75, 73) € ,Z,(1) mapping to

2
/;={—1,¢,}, for some ¢; e H'L,. By

{—I,NL, F/’} = {—I,NLZ/F/é} = {“], NL3/F{3} in M,(F).

Since Ker (H'F ——»} >M,(F)) has order <2, two among the three elements
Np,gf1, Np,gf5, N, /5 must be equal. Without loss of generality, we may
assume that those are Ny 7] and Ny Z5. Then (£1, £3) € Ker 5. Using lemma
2, this proves that after adding to x an element of ¢ - 5#,(1), we may assume
/,=7,=0. But then x =0, by the exact sequence associated to the quadratic
extension L,/F.

Finally, we prove that Ker (¢) < ¢ - #,(0). Let x € Ker (sz(O)—»,}i"z(3)) By
prop. 2, pick (i, #,, 9, #;) € ,Z,(0) mapping to x. By lemma 1 and its corollary,
write & ={—1,u’},0,={—1,v}} for some u" € H'M,v; e H'F. By definition of
Z,(0), we have:

{—=1,Ngpu'}={-1(})} i=1,2,3.
We distinguish two cases:

(-1
Case 1: HYF, Q/Z(2)) is infinite. Then Ker (H'F — ,M,(F)) =0 and the
same is true for the L, and M. Therefore, y = (v’, v{, v3, v3) € #,(0) is such that
X =gy
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Case 2: H(F, Q/Z(2)) is finite. Since the absolute Galois group of F acts on
Q/Z(2) through (Z%*)?>=1+8Z, which is procyclic, there must be an ie
{1,2,3} such that HO(F, Q/Z(2)) = H%L,, Q/Z(2)). Then the natural map
Ker (H'F-=%,M,(F)) — Ker (H'L,~=3,M,(L,)) is bijective, Writing N, u'=
z+ (7)), with zeKer (H'L, —{—%MZ(L )) = Ker (H! F——>2M (F)), we get
Ngeu’ =0 in H'F. Therefore u’ defines an element of #'(4). Hence we get a
canonical map:

1 Ker (#,(0) — #,(3)) — #(4),

such that the composite #, (0) — Ker (#,(0) - #,(3)) - # '(4) is the isomorphism
of prop. 1 (immediate verification).

Assume x € Ker A. Then with the above notations, u’ =48'(¢,,¢,,¢,) for
suitable 7, e H'L,. Then y —n,(0,0,0, {1,/2,/3) = (0, L1,02,03) for suitable
v{,v5, v3. In particular, x is the image of (0, {—1,v7}, {—1,v5}, {—1,v3}). But
then x =0, by the exact sequences attached to the three quadratlc extensmns
L,/F, L,/F, L,F. This shows that A is injective, hence that Ker (%2(0)-—+ #,(3))
ce-H(0). O

Remark. In [K1], part 2 of th. 1 was proved along the same lines, but using
Milnor’s K, instead of M,. Instead of lemma 1 above, the main results of [Su] had
to be used, namely the fact that ,K,(K) ={—1,K*} for all fields K and the
description of Ker (- {—1} : K*/K*?*—K,(K)). This led to an argument reducing
one to the case of finite fields and number fields. The present approach is both
simpler, because there is no such reduction, and more elementary because it does
not use the results of [Su]. This shows that one can use to an advantage the theory
M,, which can be thought of in some sense as the largest possible choice for a
functor ' as in section 1, and the choice for which Ker (- {—1} : H = 'K — H/(K))
is the smallest possible. Needless to say, this advantage has its limits, as I haven’t
been able to use M, to prove the vanishing of #;(r) and s 3(r) unconditionally.

7. Miscellaneous remarks

1. Instead of looking at two series of 7-term complexes as in [MT] (or extended
8-term complexes as here), one can consider two infinite complexes:

Op — > Bn Vn res
S HMZS @ HL, — XQH'F 5 H'*'F— H'* M — - - -

i=1

on+1
—H"*'M «—— (_B Hn+1L (__ G®H"+]F+— HnF(_____ HM «— - - -

i=1
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This is the viewpoint of [K1]. An advantage is that these complexes are a little
more reminiscent of the long exact sequence associated to a quadratic extension. A
disadvantage, however, is that they are not acyclic at @?2_, H"L, in general. Clearly,
it is to deal with this problem that the complexes S, and S" somehow ‘repeat’

themselves. Here is a description of the homology at the bad spots:
PROPOSITION 6. There are exact sequences:
Ker o, — (H"F)> — Ker 8,/Im 6, _, — #,(1) — 0;
0— #"(1) — Ker 6"+ !/Im p"— (H*"*'F)? — Cokera”. 0O

COROLLARY. Assume that #,(r) = #"(r) =0 for all n. Then the two infinite
complexes above are acyclic, except at @?}_, H'L,, where their homology can be
described by exact sequences:

3 ,
(Hn— IF)3 ® C_B H"Li _’Zf__) (H"F)3 —— Ker ﬂ,,/Im 5,,__  — 0;

i=1

. 3
0 — Ker 6"+ !/Im " — (Hn+lF)3_"____) (H"+2F)3® @ H”+ 1Li-

i=1
Here n,, and n'" are defined similarly to n, and n" in section 3. [

2. Much of the theory developed in [MT] and here applies to more general
situations than biquadratic extensions of fields. For example, instead of absolute
Galois groups of fields, one may consider the case of two groups H < G (profinite
or discrete) with H normal in G and G/H isomorphic to Z/2 x Z/2. One may also
consider a biquadratic covering of topological spaces, or an étale biquadratic
covering of schemes.

In all these cases, part 1 of [MT] and prop. 1, lemma 2, prop. 6 of the present
paper hold verbatim. This is because they rely essentially on the long exact sequence
for a quadratic extension (or a subgroup of index 2, or a quadratic covering), which
exists quite generally. Similarly, the homomorphism of complexes defined in section
4 of this paper exists in all generality.

On the contrary, the vanishing of homology groups #,(r) and ¢ "(r) is specific
to fields and closely related to the Milnor conjecture. It is easy to check that the
methods of this paper, hence theorem 1, extend to the case of semi-local rings for
which the Milnor conjecture is known, under conditions similar to (a) and (b) in
case 1 of theorem 1. Therefore, for an arbitrary scheme X, the complexes of Zariski
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sheaves associated to the complexes of étale cohomology groups analogous to S,
and S” are acyclic when its local rings satisfy conditions of theorem 1 (eg n <2, X
smooth over a field).

On the other hand, the complexes S, and S” themselves need not be acyclic for
a biquadratic covering f: Y — X of non-local schemes. The corresponding groups
K,(f, odd), #,(f, even), #"( f, odd), H#"(f, even) are invariants of this covering; it
would be interesting to investigate them and compute them at least in special cases,
for example in the case of a biquadratic covering of a smooth curve.
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