Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 69 (1994)

Artikel: Link invariants via the eta invariant.
Autor: Levine, J.P.

DOl: https://doi.org/10.5169/seals-52249

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 26.08.2025

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-52249
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Comment. Math. Helvetici 69 (1994) 82119 0010-2571/94/010082—-38%1.50 + 0.20/0
© 1994 Birkhiduser Verlag, Basel

Link invariants via the eta invariant

J. P. LEVINE

Introduction

In their fundamental work on the Index Theorem for bounded manifolds,
ATIYAH-PATODI-SINGER introduce a real-valued invariant 7(M, ), associated
with a closed oriented odd-dimensional Riemannian manifold M (say connected)
and a unitary representation 6 of its fundamental group; a basic observation is that
i gives a diffeomorphism invariant of (M, ) — see [APS II]. It is a consequence
of the Index Theorem that if (M, 0) is the boundary of (V, §), then #(M, 6) =
signature (V, 0) — k signature ¥, where k is the dimension of the representation. In
the present work we consider pairs (M, o), where M is a (connected) closed oriented
odd-dimensional manifold equipped with a G-structure «, i.e. a homomorphism
from =, (M) to a group G. We interpret #(M, 0a) as a function p(M, a) : R (G) - R,
where R,(G) is the (real) variety (or inverse limit of such, if G is countably
generated) of representations of G into the unitary group U(k), k£ = 1. In (I1.2) we
show that p(M, a) is piecewise-continuous-more precisely, R, (G) admits a stratifica-
tion by subvarieties so that p(M, a) is continuous on each open stratum. With an
eye to the use of this invariant to study link concordance, we examine the
invariance of p(M, «) under homology cobordism — in (I1.3) we show that p(M, o)
depends only on the homology cobordism class of (M, a) except on the points of
some proper subvariety of a particular type that we call special. For example, if
0 € R,(G) factors through some group of prime power order then 6 cannot lie on
any special subvariety. Thus for such 6 p(M,«) -6 is a homology cobordism
invariant of (M, a) — these are essentially the signature invariants of SMOLINSKY
[S]. But the global nature of p, and its continuity property, gives this invariant more
power than the individual evaluations, as is illustrated by the examples in (II1.4,5).

In order to apply p to links we first point out that the complements of certain
classes of links admit “‘canonical”” G-structures, where G is either a free abelian
group Z™, a free group F, or an “algebraic closure” F of F, depending on which
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class of links. The representation varieties of Z” and F are well-understood, but we
need to study R,(F). Our approach, motivated by the use of the dihedral group in
[CO], considers certain quotients of F whose algebraic closures are more easily
understood. In particular we can construct some rather explicit analytic curves in
R, (F). This is all done in Chapter I.

To illustrate the scope of these invariants we give two realization theorems
(II1.3) which, for certain groups G and Hermitian matrices 4 with entries in ZG,
construct links with G-structures on their complements such that p(M, «) - 6 can be
computed from the signature of 6(4). We then make two particular applications. In
the first we construct two one-dimensional links which are seen to be non-concor-
dant only by looking at p on a proper lower stratum of R,(Z™), the m-torus — the
more traditional signature invariants, as well as the ALEXANDER polynomial, fail
to detect this. By contrast we prove (in (I1.4)) that such examples cannot exist for
higher-dimensional links or for one-dimensional links with a mild triviality prop-
erty — i.e. for such links, p contains concordance information only on the open
principal stratum of continuity. In the second example we exhibit the phenomenon,
first detected by COCHRAN-ORR [CO], of links of any odd-dimension (with
vanishing j-invariants in dimension one) which are not concordant to boundary
links. For these examples we compute p on the analytic curves in R, (F) constructed
in Chapter [.

Many of the results of this paper were announced in [L4]. In a future work (see
also [L4]) we will use signature functions on representation varieties to study the
CAPPELL-SHANESON homology surgery I-groups of infinite groups. The
WALL surgery groups of finite groups are understood largely through the use of
this technique but, for infinite groups, the locally constant nature of the signature
function makes it less useful — on the other hand this property allows one to
globalize and obtain K-theory invariants (see e.g. [Mi]). By contrast, for homology
surgery groups the signature function has discontinuities and so is more likely to
yield useful information — for the same reason it is unlikely that globalization is
possible.

Chapter I: Unitary representation varieties

1. If G is a (discrete) group, then we let R,(G) denote the set of all k-dimen-
sional unitary representations of G. It is a standard fact that, when G is finitely-gen-
erated, R, (G) is a real algebraic variety. If x,, ..., x, is a set of generators of G,
then p — (p(x,), ..., p(x,)) imbeds R,(G) into U(k) x - - - x U(k). Each relation in
{x\,...,x,} defines a real polynomial equation (using 4 ' = A7) and so, if G is
finitely-presented, we see R, (G) displayed as the zeroes of a finite set of real
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polynomials. In the infinitely presented case we appeal to the Noetherian property
of the real polynomial ring. R,(G) is the zero set of an infinite set of polynomials,
but since the ideal these polynomials generate is finitely generated, we can equally
well regard R, (G) as the zero set of a finite set of polynomials. It is easy to check
that the variety obtained is independent (up to isomorphism) of the presentation
of G.

Since we will often have to do with infinitely-generated groups, we wish to give
R, (G) the “algebraic” structure induced by the finitely-generated subgroups of G.
In other words a function f: R, (G) > R is regular if f=g o i* where i : H—> G is a
homomorphism from some finitely-generated group H, i*: R.(G) — R, (H) the
induced function and g : R,(H) — R is regular. Functions into R,(G) — from some
real algebraic variety, or R,(H), for another group H — are regular if their compo-
sition with every regular function R, (G) — R is regular. We adopt similar defini-
tions for (real) analytic functions into or out of R,(G). It is easy to see that any
homomorphism ¢ : G - H induces a regular map ¢*: R, (H) = R,(G) and the
“suspension” R, (G) — R, (G), defined by the inclusion U(k) < U(k + 1), is
regular.

The topology on R,(G) will always be the ‘“classical” (rather than the Zariski)
topology, i.e. that inherited as a subspace of U(k) x - - - x U(k) if G is finitely-gen-
erated, or the direct limit topology if G is infinitely-generated.

Examples

(a) R,(G) is the usual character group of G. If G = Z™ (free abelian group of
rank m), then R,(G) is the m-torus.

(b) If G = F™, the free group of rank m, then R, (G) = U(k) x - - - x U(k) the
m-fold product.

(¢) If G is finite, then R,(G) is the disjoint union of a finite number of conju-
gacy classes of sums of irreducible representations.

(d) Suppose G =D, the infinite dihedral group with presentation {x,¢:
t?=1,txt ' = x~'}. Then R,(D) has nine components. Eight of them are
single conjugacy classes — pull-backs of eight of the ten conjugacy classes of
U(2)-representations of Z/2 x Z/2 via the abelianization D — Z/2 x Z/2.
The ninth component is the union of the conjugacy classes of the alge-
braically imbedded circle i:S!'<c R,(D) defined by i(w) -t = ((1) (1)),

0 :
i(w) x= (Cg a‘)) This component contains the pull-back of the remain-

ing two conjugacy classes of representations of Z/2 x Z/2.



Link invariants via the eta invariant 85

(e) For any subring A of the real numbers R, we consider an enlargement of
the dihedral group D,, defined to be the semi-direct product A x Z/2.
More specifically D, is the split extension of A by Z/2, where conjugation
of A by the generator ¢ of Z/2 is given by: tAt~! = — 4 for any A € A. Then

. . 0 1
there is an analytic map 7: R— R,(D,), defined by i(s) - ¢ =( ] O) and
2misA 0
i(s) - A= (f) e-zma) for A € A. If A contains Z properly, then i is an
imbedding. Note that, under the restriction map R,(D,) — R,(D), we obtain
an infinite cyclic cover i(R) —i(S").

(f) The preceding examples in (d) and (e) can be further generalized. Let IT be
a finite group; and A a subring of R. Consider the wreath product A§IT
which is, by definition, the semi-direct product AIT x II, where AIl is the
group algebra and conjugation of an element A of AIT by an element g € I1
is defined to be g - 4 € AIl.

For A = Z, we define an algebraic imbedding i : T* ¢ R,(AS§IT), where k = |I1|,
and T* is the k-dimensional torus. For the definition we identify the coordinates of
C* (or R¥) with the elements of IT. This induces an identification C*= CIT and
T* = RII/ZI1. Thus there is an induced multiplication T* x ZIT — T*. We also use
the obvious identification of T* with the diagonal unitary matrices (maximal torus
of U(k)).

We now define i by the formulae:

() (i(r) g -y=gyforteTk gell cZ§Il, y e CII
(ii) (i() - A) -y =(td) - y for T e T*, A € ZIT < Z§I1, y € CII.

If A =R we can define an analytic imbedding i : R* = RIT ¢ R,(R§IT) by the
formulae:

(iil) (f(a) - g) -y =gy for a e RII, g e I1 < R§II, y € CII
(iv) ((a) - 4) -y =e(ad) -y for a e RII, A € RII = R§I1, y e CI1

where e : RII - T* = RIT/ZI1 is the (exponential) quotient map.
As in (e), the restriction R, (R§IT) » R, (Z§II) induces an infinite cyclic cover
I(R%) — i(T%).

(g) Finally we mention the flurry of recent activity in the study of SU(2) (and
SU(n)) representations of knot groups, much of it aimed at the calculation
of the Casson invariant and instanton homology of 3-manifolds (see e.g.
[B]. [F], [K], [KF], [KK]).
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2. In this section we recall the notion of algebraic closure of a group and after
some preparation in sections 3 and 4, give some examples of unitary representations
of some of these groups using 1(e), (f). A group G is said to be algebraically closed
if any contractible system of equations over G has a unique solution in G. A system
of equations over G :x; =w;(x;,...,Xx,), 1 <i<n, where w;, =w;(x;,...,x,)
€ Fx G, F the free group generated by the indeterminates {x;}, is said to be
contractible if p(w;) =1, where p : F x G - F is projection. In other words, w;is a
product of conjugates of elements of G. A solution of such a system is a collection
of elements g,, . . ., g, in some overgroup of G, such that g, =w;(g,, ..., g,) for all
i. The term algebraically closed appears often in group theory literature (see e.g.
[Ne]) with rather different meaning than ours. (If we replace the contractible
condition with a weaker one — acyclic — which means p(w;) € [F, F], one obtains a
similar theory. It is not known if these two notions of algebraically closed actually
differ.)

In [L1] it is shown that every group G admits an essentially unique homomor-
phism i:G — G, where G is algebraically closed and i is “initial” among such
homomorphisms. G is called the algebraic closure of G. If f: X > Y is a map
between finite polyhedra and its cofiber is contractible, i.e. f is a homology
emakince/a\nd f+«m (X) normally generates m,(Y), then f i1~1duces an isomorphism
n,(X) > 7, (Y). For any group G, its nilpotent completion G is algebraically closed
(see [L]). We denote by G = G the subgroup of all elements which are part of a
solution to some contractible system of equations over G, i.e. G is the image of the
canonical map G — G extending G — G. We call G the residually nilpotent algebraic
closure of G.

Despite the size of G it does seem to have a reasonable collection of unitary
representations. In [V1] it is proved, for example, that any unitary representation of
a free group F extends to a unitary representation of F (in fact, of F). It will be
proved, in a future paper, that for any finitely-generated group G, any unitary
representation of G which lies in the “component” of R,(G) containing the trivial
representation, extends over G. We will be interested in some examples where
representations of G extend to many different representations of G. The topological
implications of this phenomenon will arise later in Section (III.5).

Our construction of representations of algebraic closure will rely on the relation-
ship of the algebraic closure of certain groups to the groups D, and A§IT discussed
in example (e) and (f) in Section 1. In fact it is shown in [L] and [CO] that, for the
dihedral group D, D = D, where A = Z[3]. We will show that, more generally, for
any p-group I1, Z§I1 < Z§I1 < Z[1/p]8Il.

3. We will consider a general semi-direct product G = 4 x I1, where II is any
group, A is a left ZII-module and the conjugation action of IT on 4 in G coincides
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with the left multiplication of IT < ZIT on A. Our aim is to give a description of G
in terms of IT and the I-adic completion of A, where I = II1 is the augmentation
ideal of ZII.

Let 4 =1im A/I’A. We show that 4 is a module over Z[#]. First note that
I(11,) = (IIT)?, where I(11,) is the augmentation ideal of I1,, the g-th term of the
lower central series of IT (defined recursively by IT, =II, II, = [II, IT, _,]). To see
this, by induction on ¢, consider a generator [g, 4] of I1,, where g e I, h eIl _,.
Then we have

[, —1=((g-Dh—1) —(h—1)Xg—1)g~'h~' e TMII, _,).

But I(I1, ) =(III)?~", by induction.

Now A/IA is a module over Z[IT]/(IIT)? so it is also a module over Z[IT]/
I(11,) - Z[II]. But this is the same as Z[I1/Il1 ] — for any group G and normal
subgroup N, Z[G/N] =ZG/I(N) - ZG. Since IT is the inverse unit of {mjm,}, we
conclude that 4 is a module over Z[].

PROPOSITION 3.1. 4 x IT is the nilpotent completion of A x II.

Proof. First note that (4 x IT), =I19"'4 x II,. This is a straightforward recur-
sive calculation, using the fact that I(I1,) < (/IT)¢. Therefore the lower central series
quotients G/G, = A x T /I~ 'A x I, ~ (A/1¢~'4) x (I1/I1,) and the result follows
by letting g — co.

Suppose (4;) is an (n x n)-matrix over ZIT with the property €(A;) = 0;; (e is the
usual augmentation ZIT - Z). Then the linear system of equations:

(i Y 4X;=«, 1<i<n,

j=1
has a unique solution in 4 for any «; € 4. In fact, the recursive formulae:

Xi,q+l=‘xi_ Z ()“ij‘“éij)Xj,qa X, =0

Jj=1

define {X,,} < A satisfying X, ,, = X;, mod I“4 and X}_, 1,X,, =a, mod [‘4. If
R = ZIT is any subring and B an R-submodule of 4, we denote by B the
R-submodule of A4 consisting of all elements which appear as part of the solutions
of a system (1) with 4; € R and «; € B. This can be alternatively described using the
Cohn localization [Co]. If S denotes the set of matrices over R which become
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non-singular over Z after augmentation, then R, is the “localization” of R in which
the matrices of S become non-singular. The observation above means that the
inclusion B < 4 extends to a unique homomorphism R, ® z B = B, - 4 and B is its
image.

PROPOSITION 3.2. 4 x I1 =(ZINA x II.

Note. In this formula, 4 x IT and IT mean the residually nilpotent algebraic
closures, while (ZIT)A is the module localization defined just above.

Proof. Suppose (a,8) e A xIT <A xII =4 x . To understand o and g we
examine a system of equation over 4 x II, denoting the indeterminates (X, x;). The
system breaks up into two systems — corresponding to the variables {X;}, {x;}. The
system over II, obtained by projecting the original system, is contractible if the
original system is and, in this case, will have unique solutions x; = g; € I1. Making
this substitution in the original system results in a system of linear equations (i),
where o, € (ZIT)4, A, € ZII. The contractibility of the original system implies
€(4;) = d; and so the solutions lie in (ZIT)A.

To complete the proof we will show that, for any « € (ZI1)A, the element
(o, 1) € (ZIT)A x IT is part of a solution of some contractible system of equations
over A x II. Suppose we have a linear system (i) with A, € ZII, a; € (ZIT)A and
€(4;) = 6, whose solution set contains a. Since (ZIT)A4 is a ZIT-module it suffices to
consider the case where every a; € A. Write out 4; =4, + Z, c;,(g; — 1), where

ijr
c;» € Z and g, € I1. Then consider the following system of equations:

(ll) (Xn 1) n ((09 gyr)(A,J’ 1)(()’ gy_rl)( _—‘Xj’ 1))Cur = (aia 1)

where the ordering of the terms in the product can be chosen at will. This is a
contractible system over (ZIT)4 x II with indeterminates {(X;, 1)} which corre-
sponds precisely to the linear system (i). Now there is some contractible system of
equations over II:

(i) x; =w;(x;,...,x,), 1<i<n

such that each g;, is a member of the solution set of (iii). (The single system (iii)
is obtained by putting together the individual systems which give rise to each g,,.)
We may now substitute for each g;, appearing in (ii) the variable x, from (iii) such
that x; = g;; is part of the solution. Now (ii) contains two sets of indeterminates:
{(X;, D, (0, x;)}. If we identify the variable (0, x;) in (ii) with x, in (iii), then the
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combined system (ii), (iii) is a contractible system over 4 x II whose solution set
contains (a, 1), as desired.

4. We now specialize to the case of II a p-group. As a consequence of
Propositions 3.1 and 3.2 we prove:

THEOREM 4.1. If I1 is a p-group and A a left ZII1-module, then there is a
natural inclusion A x I1 < A, x II, extending the identity on A x Il, under which
AxII <A, xII.

Notation. AP=ZP ®ZA =ZPH ®ZHA and A(p) —_—Z(p)@A =Z(p)H ®A,
where Z, is the ring of p-adic integers and Z,, is the ring of rational p-adic integers
ie. Z,nQ.

LEMMA 4.2. If I is a p-group, then (II1)" < plll, for some positive integer n,
and p*(IIT) < (IIT)?, for some positive integer k.

Proof. Let R =Z/p;, we must prove that the augmentation ideal /IT < RII is
nilpotent, i.e. (/IT)" =0 for some n. Suppose IT is cyclic of order p with generator
t. Then IIT =(t — 1) and so (/I1)? =((t — 1)?) = (t” — 1) = 0. We now proceed by
induction on the order of I1. Let N be a cyclic central subgroup of order p and set

=1II/N. By induction (/IT)" <Ker {RIl - RII’'} =ZI1 - IN, for some n. So
(IIn™ < (ZI1 - IN)? = ZII - (IN)? =0, since N is central and of order p.

To prove the second inclusion we first note the simple formula: for any g € I1,
g —1= r(g — 1) mod (ZIT)2. This follows by inductionon r: g"— I=g(g" "' —1) +
g—l=g""'—14+g—1(mod (IMH) =(r—-1)g—-1)+g—1(mod (/I1)?). Now
suppose g”" =1 for every g € I. Then p*(g — 1) € ({IT)? for any g € I1.

As a consequence of this lemma the p- -adic topology and the (/IT)-adic top-
ology on ZII coincide on IH Thus 111 = lim, IIT/(IIT)? coincides w1th Jm), =
lim,, IT1 /p*(IIT). Since ZH/ IH = Z and (ZH)p /(IH),, =Z,, we have 71 < (21),.
Now, by Proposition 3.1, 4 XM=Ax11= ,Z x I, since II is a p-group. Recall
I1 = 1T = IT for any nilpotent group. So 4 = ZIl ®,; A < (ZI), ®z; A = A, and
the first assertion of Theorem 4.1 follows.

To prove the second assertion we need:

LEMMA 43. Let I1 be a p-group and A a left ZII-module such that
Z®z1A=0.Then Z ,, ®z A =0. In particular, if (A;) = A is a square matrix over
ZI1 such that €(4) is non-singular over Z, then A is non-singular over Z , II.
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This lemma implies immediately that, under the inclusion ZIT — Z,II established
above, we have ZI1 = Z ,I1. Thus the second assertion of Theorem 4.1 follows
from Proposition 3.2.

Proof of Lemma 4.3. We first note that the second assertion follows from the
first by considering A to be the ZI1-module with presentation matrix A.

Let R=Z/p again and let A’=R ®; A =RIl @z A. SO R @z A"’ =0. We
will prove that, for any RIT-module B, that R ® z; B =0 implies B=0. If 4’ =0,
then A4 consists entirely of elements of finite order prime to p. But then
2y @A =0.

Suppose IT is cyclic of order p with generator ¢, then R ® p; B = 0 implies that
t — 1 is an epimorphism of B. But (t —1)?=¢?—1=0 and so B =0. We proceed
by induction on |II|. Again let N be a central cyclic subgroup of order p and
II'’=1II/N. Let B'=RIlI’ @z B; then R @ g B'=R ®z; B =0 and so, by in-
duction, we have B’ =0. If we now consider B as an RN-module and note that
R ®xy B=RIlI' ® gz B =B’ =0. But we know the lemma is true for N and so we
conclude B = 0.

We can now combine Theorem 4.1 with the representations of 1(f), to define the
analytic map i : R* - R,(Z§IT), where k = |I1|, using i defined in 1(f) followed by

the restriction of representations R§IT to Z§II via ¢ from Theorem 4.1.

Chapter II: The signature invariant

1. In [APS I, II] an invariant, which we denote #,(A), is defined for a closed
smooth oriented connected odd-dimensional manifold M and a unitary representa-
tion o : (M) —» U(k). We give a brief outline. If M is Riemannian, an invariant
n,(M) € R is defined from the spectrum of a certain self-adjoint elliptic linear
differential operator. The following theorem is of paramount importance:

INDEX THEOREM [APS II}. If M =0N where N is a connected compact
Riemannian oriented manifold, and o extends over I1,(N) then:

sign,(N) =k f L(p) —n.(M)

N

where sign (N) is the (twisted) a-signature of N (a is also used to denote its exten-
sion over I1,(N)) and L(p) is the Hirzebruch L-polynomial in the Pontriagin forms
of N.
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We will recall the definition of sign, (N) below. As an immediate consequence of
the Index Theorem, one concludes that 7,(M) = n,(M) — kn (M), where o denotes
the trivial representation, is a diffeomorphism invariant of (M, «). Then the Index
Theorem implies the formula:

(1) 7,(M) =k sign (N) — sign,(N).

Thus #,(M) 1s an integer if M bounds but, by contrast, [APS II] supplies the
following example:

(2) If M=S"and a:I,(S") — U(1) is defined by a(t) = (e>™), for a suitable
generator ¢ of I1,(S') and a real number 4, then:

N l1—-2a O<axl
(M ){0 g1

Let’s recall the definition of sign, (N) — see [APS II] or [N] also.

We adopt the following convention. If o : [T — U(k) is a representation and 4 is
a left ZIT or CIT-module, then C* ®, 4 denotes C* ® ., A4 where Ck is C* with the
right CIT-module structure defined by the formula v - g =va(g); v is interpreted as
a row-vector.

Now we can define H, (N;a) to be the homology of the chain complex
C*®, C,(N), where N is the universal covering space of N, if IT =II,(N).
H _(N; o) supports an intersection pairing via the following pairing on the chain
level:

3) 1 ®c,v1,Q¢,) =v,0(Lcy, )03

where {c,, ¢, is the equivariant intersection pairing on N with values in ZII, v* is
the transpose of v and = denotes complex conjugation. If dim N =2q, then (3)
induces a (—1)“-Hermitian pairing on the complex vector space H, (N; «). More
generally, one obtains a non-singular pairing of H;(N;«) with H,, (N, 0N;«a) —
using Poincar¢ duality.

If G is a group, then a G-manifold will be a pair (M, «), where M is a compact
oriented manifold and « a collection of homomorphisms «; : n,(M;) —» G, where
{M,} are the components of M, each a, defined up to an inner automorphism of G.

Now suppose (M, ) is a G-manifold, where M is also closed and odd-dimen-
sional. For any 0 € R,(G), the composition fa gives a unitary representation of
n, (M) (or n,;(M;), for each component of M) and so #,,(M) € R is defined. We
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can thus define:

p(M, a) : R.(G) >R
by p(M, a) - 6 = 7jp,(M).

2. Our first result is that p(M, ) is “piecewise continuous.” The discontinuities
will be subvarieties of R,(G). When G is finitely-generated, and so R, (G) is an
ordinary (real) algebraic variety, then a subvariety is the zero set of a regular
function (or, equivalently, a finite set of functions). To cover the case of G
infinitely-generated we define a subvariety to be, in general, the zero set of a regular
function.

THEOREM 2.1. If (M, a) is a G-manifold, M closed odd-dimensional, then there
exists a stratification: R (G) =2,22, 22,22, ,2" - of finite length (ie. X,
is empty for some i), where each X, is a subvariety of R,(G), such that
p(M, ) | Z;, — Z,,, is continuous for every i > 0. The discontinuities of p(M, o) are
all given by integer jumps, i.e. when reduced mod Z, p(M, a) is continuous.

We will call {X,} a continuity stratification for (M, «). X, will be called a singular
locus and X, — ¥, a domain of continuity, if X, is a proper subvariety. Of course
there are many possible continuity stratifications, although it is possible to define a
minimal one when G is finitely generated.

Proof. The particular continuity stratification we propose is obtained as follows.
Consider, for any 0 € R,(G), the number:

() r@) = io dimg H,;(M; 6a).

We will prove that, for any r, the subset of R, (G) defined by
(2) Z,={0eR(G):r) =r}

is a subvariety of R,(G). Note that X, = R, (G) and X, = ¢ if r > kN, where N is the
total number of simplices in a triangulation of M.

To see that X, is a subvariety, consider the free ZG-chain complex {C;(#), 9,},
where M is the regular G-covering of M defined by a. Each 4, : C,(M) - C, _ (M)
is represented by a matrix (4};) over ZG, and so H,(M; 0a) is the homology of the
chain complex C* ®, C, (M) whose boundary operators are represented by the
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complex matrices (6(4})). Each 0(4}) is, itself, a matrix and these form blocks in the
larger matrix. Since

dim H,(M; 6o) = dim (C* ®, C,(M)) — rank (6(13)) — rank (8(A5* "))
we have r(0) = kN — 2 X rank (8(4})). If T(0) is the block sum of the matrices
(6(43)), over all s, then

(3) %, ={0:rank T(0) <i(kN —r)}.

Since the entries of T(6), and therefore its minors, are regular functions of 8, and
2, is defined, according to (3), by the vanishing of minors, we conclude that X, is
a subvariety.

We must now prove that p(M,a) is continuous on the sets V,={0:
dim H,(M; 6x) =r}. We may as well assume that M is connected (since p(M, a) is
additive under disjoint union) and G = =n,(M), « = identity, since, if we use the
notation p(M) for p(M, a) in this special case, we have p(M, a) = p(M) - a*, where
a*: R, (G) > R, (m,(M)) — the function induced by a — is regular.

R, (n,(M)) is well-known to be closely related to the class of k-dimensional flat
bundles over M. For each principal U(k)-bundle ¢ over M, let A(£) denote the
space of flat connexions on ¢ and B(¢) = A(¢) modulo the action of the gauge
group of bundle automorphisms of £ Then the disjoint union of {B(§)} is
homeomorphic to the quotient R, (m,(M))/conjugation. Suppose we choose a
Riemannian metric for M. Then the g-invariant 5.(M) can be defined, for any
c € A(&), by considering the linear elliptic self-adjoint differential operator
E .= +(xD,. — D x) on Q.,.,(&), where D, is the covariant derivative defined by c,
* the duality involution defined by the metric.

Let 6, V, and ¢, e A(£) a corresponding connexion. To show continuity of
p(M) |V, at 6,, we can instead consider n.(M) as a function of ¢ € V', near c,,
where V', is the set of ¢ such that E, has nullity ». Note that n.(M) — p(M) - 0 is
constant, for corresponding ¢, 6, and the nullspace of E_ corresponds to H (M, 0)
by Hodge Theory (see [APSII]). Now choose ¢ >0 so that E. has no non-zero
eigenvalues 4 with |4| < ¢ and let W be a neighborhood of ¢, so that +¢ is not an
eigenvalue of E. for any c € W. We can follow [APS III, p. 74ff] and write
n.(M) =n. +n’ for c € W, corresponding to eigen-values 1 with |4] <¢ and |1| > ¢,
respectively. Now 7/ is, up to a constant, the n-function of an invertible operator
if ¢ € W and, as shown in [APS III}, is therefore a differentiable function of ¢. On
the other hand, #_ is just a finite sum of the signs of those eigenvalues A of E. with
|A| < €. If d(c) denotes the total dimension of the eigenspaces of E, for eigen-values
A with |A| <, then d is locally constant on W. Since d(c,) =r, we have d(c) =r in



94 J. P. LEVINE

some neighborhood W’ < W of ¢,. But then, if c e W NV, E. has no eigenvalues
A with 0<|i|<e and so n,=0. So we conclude that 5. (M) is continuous in
wav,.

The continuous function g(M, «) : R, (G) —» R/Z, defined by reducing p(M, «)
mod Z, is well-understood. It is locally constant when dim M = 3 mod 4 and differs
from a locally constant function by an explicit formula depending only on the
determinant R,(G) — R,(G). (See, e.g. a forthcoming paper of M. Farber and the
author.) Furthermore p(M, o) depends only on the G-bordism class of (M, «), by
the Index theorem.

3. We propose to investigate the extent to which p(M, «) is an invariant of
homology G-bordism. We say (M, «) and (M’, a”) are homology G-bordant if there
is G-manifold (N, ) such that ON =M’ — M and B |n,(M) =a, f | 7,(M’) =a’, up
to inner automorphism, and H (N, M) = H (N, M’) = 0. It will turn out that, in
this case, p(M, o) = p(M’, a") except on a subvariety of R, (G) of a certain type.

Let A be a finitely-presented CG-module. We define a subvariety 2 , of R,(G) by

ZAz{H:Ck ®9A #0}.

To see that this is a subvariety, consider a presentation matrix (4;) for 4. Then, if
(4;) is an (m x n)-matrix — i.e. 4 has n generators and m relations — C* ®, 4 is the
quotient of C"* by the row-space of the complex (mk) x (nk)-matrix (6(4,)). Thus
X, is the zero set of all the nk x nk minors of (6(4;)), and each minor is clearly a
regular function on R, (G).

We define a special subvariety of R,(G) to be a subvariety of the form X ,, where
A =C ®; A’ for some finitely-presented ZG-module A4’ satisfying:

(1) Z®ycA =0.

In particular, if (4;) is any square matrix over ZG such that (e(4;)) is unimodu-
lar, where ¢ :ZG —Z is the usual augmentation, then {6 :det (6(4;)) =0} is a
special subvariety. If f(0) = det (0(4;)), we refer to f as a special function. Since
Zio=2,UXp, the union of two special subvarieties is special. Note that a
special subvariety of R,(G) is invariant under conjugation by any element of U(k).
If k =1, then for any special subvariety X, there is an element A € ZG such that
€(4) =1 and 0(4) =0 for any 6 € X ,. If (4;) is an m x n presentation matrix of 4
then some integral linear combination of the (n x n)-minors of (¢(4;)) equals 1. This
is just a polynomial in the entries of (e(4;)) and we choose A4 to be the same
polynomial, replacing each occurrence of €(4;) of 4. Because k = 1, 6(4) is a linear
combination of the (n x n)-minors of (6(4,)), for any 6 € R,(G).
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We point out the following important property:

PROPOSITION 3.1. A special subvariety contains no point of R, (G) which
factors through a representation of a group of prime power order.

Proof. This is an immediate consequence of lemma (1.4.3). Suppose we have a
homomorphism G — P, where P is a p-group, and @ is induced by 6" € R, (P). If 4’
is a ZG-module satisfying (1), let B"=ZP ®z; A’. Then it follows from lemma
(1.4.3) that B=C ®, B’ =0. Therefore C* ®y 4 = C* ®, B =0.

Denote by P,(G) = R,(G) the set of all § which factor through some group of
prime power order. P,(G) is often a dense subset of R, (G) —e.g. If G = Z™, then
P,(G) = R,(G) = T, the m-torus, is the set of all m-tuples (z,, ..., z,,) where each
z; is a p-th power root of unity (some prime p). In U(k) the elements of
prime-power order are dense — they are the elements whose eigen-values are all
powers of some single prime. Thus P,(F) is dense in R, (F) for a free group F. Also
P,(D) is dense in R,(D) but, by contrast, P,(D,) consists only of those representa-
tions induced from R,(Z/2) by the canonical homomorphism D, —»Z/2, if € A -
see (I.1(e)). For finite groups G which are not a product of groups of prime power
order, it is easy to see that P,(G) is smaller than (and, therefore, not dense in)
R.(G).

Our interest in special subvarieties stems from:

PROPOSITION 3.2. Suppose C is a free chain complex over ZG, finitely
generated in each dimension, and suppose C = Z ® z¢ C satisfies:

(2 H(C)=0, form=2q>n, and H,C) is torsion-free.

Then there is a special subvariety £ < R, (G) such that H,(C;0) =0, for m = q > n,
ifo¢x.

Proof. We begin with the standard construction of a chain contraction:
5,:C,—»C,,, for m 2 g 2 n, satisfying

(3) 05,+5,,,0=1 form>g>n and 05,|0C,, ,=1.

Define 5, :0C,,,—C,,, so that 85, =1; since H,(C) is torsion-free, dC,,, is
a direct summand of C, and so we can extend 3, over C,. Now assume 5, is
defined for n < g <l <m, so that (3) holds for />¢g >n. As a consequence
do(s,_,0—1)=0. Since H(C) =0, Im(5,_,0 —1) =9C,,, and so, since C, is
free, we can construct §, as desired.
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Now choose homomorphisms s, : C, > C, ., for m 2 g 2 n, so that 1 ®s, =3,
(C, is free). For any 6 € R,(G) define s : C* ®, C, > C* ®, C, to be 1 ®s,. The
endomorphism ds) +s5,,0 is an isomorphism —in fact, the identity — for
m = q >n when 0 is the trivial representation, since it is then just k copies of
05, +5,,,0. If we define f,(0) = det (0s8 + s, ,0), then f, is a special function for
mzgqg>n If wedefine 2 =2,, 0 ---0Z,, where Z_ is the zero set of f,, then X
is a special subvariety and ds? + 59, ,0 is an isomorphism for m > g >n if 0 ¢ Z.
We see that this implies H,(C;0) =0 (for m 2 g >n). Let ¢9 =058+ 55,0,
an isomorphism if 6 ¢ Z. It is clear that ¢3(Ker d) =Im d and so dimg Ker d <
dim¢e Im 0. On the other hand Im ¢ < Ker 0, and so Im d must equal Ker 0.

COROLLARY 3.3. Suppose (M, a) and (N, ) are homology cobordant G-mani-
folds. Then, for some large subset (i.e. complement of a special subvariety) L of
R(G), p(M,a) | L = p(N, B) | L.

Combining this Corollary with Proposition 3.1, we have the following. Suppose
i: V- R,/(G) is an analytic map from a connected analytic manifold ¥ such that
i(V') contains at least one point of P,(G) — for example, the maps i and 7 of (I.1.(d),
(e), (f)) and (1.4) have this property. Then p(M, a) o i = p(N, P) o i off some proper
analytic subvariety of V' — in particular p(M, a) o i = p(N, ) o i on an open, dense
subset of V.

Proof of Corollary. Let (W, y) be a homology cobordism between (M, a) and
(N, B). Then H (W, M) =H_(W,N) =0 and so, by Prop. 3.2, H (W, M:0y) =0
in a large subset of R,(G). In particular sign,, (W) =0, for all such 0, since this is
the signature of a Hermitian form actually defined on Image {H (W;0y) —
H, (W, M;0y)} — similarly sign (W) =0. It then follows immediately from the
Index Theorem (II.1(1)) that p(M,a) - 8 = p(N, B) - 0.

4. In this section we will show that in many cases, including all our applications
to higher-dimensional links and some classical links (see Proposition (111.2.2))),
p(M, a) has a singular locus X which is a special subvariety. When this is the case,
p(M, o) | Z gives no information about the homology bordism class of (M, «). In
other words, as long as p(M, a) = p(N, f) on the complement of X, there is no way
to use the results of the previous section to show that (M, «) and (N, ) are not
homology bordant. (We will, however, give some examples, in (II1.4), in the context
of classical links, where p(M, a) and p(N, B) coincide on any domain of continuity
but differ in any large subset of R,(G) — and so, by Corollary 3.3, are not
homology bordant.)
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We need a preliminary definition. Denote by R2(G) the set of all 8 € R, (G) such
that there exists a common non-zero fixed vector v € C* for every 6(g),g € G. In
other words RY(G) is the conjugacy class of the subvariety R, _,(G) € R,(G). This
inclusion is defined by 6 — @ where 0(g) - (zy,...,2z) =(0(2) - (zy, - - ., Zk _1)s Zk)-
Let R,(G) denote the complement of R(G).

THEOREM (4.1). Let (M, &) be an odd-dimensional connected oriented G-mani-
fold which satisfies:

(1) HM) =0 for 1 <i<n—1 (n =dim M)

(i) H,(M)5 H,(G) is an isomorphism, and H,(G) is torsion-free ’

(iii) If n =3, then o factors through a finitely-presented group n :m,(M) 5

n -G, with H(n) ~ H,(G) and H,(n) = 0.

Then, for some large subset L of R.(G), L n R, (G) is contained in some domain

of continuity for (M, a).

Remark. (a) If n > 3, (ii1) is automatically satisfied for n = n,(M).
(b) I do not know whether p(M, a) is continuous on some large subset.

Before proving Theorem (4.1) we point out a corollary.

COROLLARY (4.2). Suppose (M, a) and (N, B) are G-manifolds of the same
dimension satisfying (i)—(iii) in Theorem (4.1). Suppose that, for every domain of
continuity D in any R, (G), there exists a large subset L such that p(M, «) and p(N, B)
agree on D N L. Then for every k there exists a large subset L, of R.(G) such that

p(M, o) l L, = p(N, B) ILk-

In other words, if p can detect that (M, a) and (N, f) are not homology
cobordant, then it can, in fact, detect it in some domain of continuity.

Proof of Corollary. Set A, ={0 € R.(G) : p(M, o) - 6 # p(N, B) - 0}. We show,
by induction on k, that A, is contained in a special subvariety of R, (G). By the
theorem A4, < X U R)(G), for some special subvariety X. By induction 4, _, = A, N
R, _,(G) is contained in a special subvariety X’ of R, _,(G). It is an immediate
consequence of the definition of special subvariety that X' =R, _,(G)nZ", for
some special subvariety X” of R,(G). Since RY(G) is the conjugacy class of R, _;(G)
and X” is invariant under conjugation, we have A4, NR)(G)<Z”, and so
A, X ul" Since X UZX” is special, the proof is complete.

Proof of Theorem (4.1). By (i), (ii) we can choose X < M, X a one-point union
of circles, so that H,(M, X) =0 for i <n — 1. Thus, by Proposition (3.2), there is
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a special subvariety X of R, (G) so that H;(M, X;0x) =0 for 6 ¢ X, i<n—1. So
H;(M;00) ~ H;(X;0u;) for i <n—2,0€Z, where j:m, X ->n M is induced by
inclusion. If n>35, then H,_,(M;0x) =0 for 6 e€X, since H, ,(M;0x) =
H,(M; 6a), by duality, and 2 <n — 2.

Consider the continuity stratification {Z,} constructed in the proof of Theorem
(2.1): 2, ={0 : dimc H,(M, 6x) > d}. By the above considerations and duality, we
have, for n > 5:

(1) dime H (M; 0x) = 2(dime Hy(X; 60) 4+ dime H, (X; 0o)) for 6 ¢ 2.
Furthermore

dim¢e H,(X; 6a) = dimg Hy(X; Oa) — kx(X) = dime Hy(X; 0a) + k(m — 1);
m =rank H,(X).

So (1) becomes dim¢ H,(M; o) =4 dim Hy(X; 0x) + 2k(m — 1), if 6 € X. But a
simple computation shows that H,(X; 6x) =0 exactly when 6 € RY(G). Thus we
have shown that, for d =2k(m — 1), R,(G) =Z,uZ% and X, , S RY(G) U Z. The
theorem now follows, for n = 5, using the continuity stratification:

RG22, 022X, ,0XE2- - 2X2XnX2XnX,2

We now look at » = 3. By duality:

(2) dime H, (M; 00) = 2(dim H,(M; Oa) + dim H,(M; Oa))
We will also use the following exact homology sequences:

(3) 0- H,(M; 60) > H (M, *; o) > Hy(*; 0o) > Ho (M ; Oa) -0

17

(4 H,(M, X; 00) > H\(X, *; 6o;) > H,(M, ; 00) > H, (M, X; 6o) — 0.
Note that Hy(*; 0x) = C* for all 0, H, (X, *; 6a;) = C™ for all 8, Hy(M; ) =0 if
6 € RY(G), and H,(M, X;0a) =0if 0 ¢ 2.

From (iii) we can construct maps:

M — BII - BG, whose composition induces «.

This enables us to factor 0, in (4), as a composition:

H,(M, X; 0a) - H,(Br, X; 60) - H,(X, *; 0u;).



Link invariants via the eta invariant 99

But H,(n) =0 implies H,(Bn, X) =0 and so, by Prop. 3.2, we can choose a
special subvariety X’ of R,(G) so that H,(Bm, X;00) =0 if 0 ¢ 2’. Note that
H;(Brn,X)=0 if i <1 and, since = is finitely-presented, the chain complex
{C,(Br, X; ZG)} is of finite type for i < 2.

Let d = 2k(m — 1) again. Then we have R, (G) =2,uX U’ sinceif 0 ¢ T U’
we have, by (4), that dime H,(M, *; 0a) = mk, using ¢ =0, and thus, by (3), that
dime H,(M; 6x) = k(m — 1). By (2), 6 € X,. We also see that XZ,,, < RYG) v
XUl since if 0 ¢ RY(G) uX UZ’ we have from the preceding argument and (3)
that dime H,(M; 6x) = k(m — 1). Thus, by (2), dime H,(M; 6a) = 2k(m — 1) since
0 ¢ RY(G).

Now the conclusion of Theorem (4.1) follows using the continuity stratification:

R(G)22,, ,vIul' 22, ,0iVl2 22Ul 2(2Zuvul)nZ,2--- 0O

An examination of the proof of Theorem (4.1) shows that condition (iii) is
required only to assure that, for some special subvariety X in R, (G),
dimge H,(M, ; 6a) = mk if 0 ¢ 2. Thus we can look for substitutes — for example:

ADDENDUM TO THEOREM (4.1). The Theorem holds if (iii) is replaced by:
(iii)’ G is free abelian and the 7G-module H,(M, %) has rank m.

Proof. Since H,(M,X) ® 6 Z~H,(M,X)=0 we can apply Nakayama’s
lemma to construct 4 € ZG, with €(4) =1, so that AH,(M,X)=0. Thus, if
A =7ZG[1/4], then H,(X, x; A) - H,(M, *; A) is onto. Since H,(X, *; A) is free
(over A) of rank m and H,(M, *; A) ~ H,(M, %) ®,c A still has rank m, we
conclude that H (M, *; A) is free of rank m. Now let £ = {0 :det 6(4) =0} a
special subvariety. If 6 ¢ X, then we can extend 6 to a representation of A4,
6’ : A - M(k, C), by defining 0'(1/4) = 6(4) ~*. For such 6 we have H,(M, *; 6a) ~
H\(M, %) ®, C*~ H,(M, x; A) ®, C* which is clearly of complex dimension mk.

Chapter III: Application to links

1. We now apply the invariants p(M, a), defined in Chapter II, to obtain several
invariants of links. We first fix terminology and notation. By an n-link we will mean
a smooth imbedding f: ST+ - - - + S%, —» S"* 2, where {S7}) are m copies of S”; m is
the multiplicity of f. L,(f) =f(S?) is the i-th component of f. L(f) = U, L;(f)
admits a unique (up to homotopy) trivialization of its normal bundle (0-framing of
f) agreeing with the orientation induced by the natural orientations of S”*2 and
{S7} and satisfying the extra condition, if n = 1, that the translate L;(f) of L;(f)
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along either normal field in the O-framing has zero linking number with L;( /). We
will also only consider links f with the property that the linking number of any two
components of f is zero.

We recall the notions of meridian and, for n = 1, longitude. Given an n-link f,
let

F:S'llxDz_i_..._l_S:lnxDz_)Sn-f-z

be an imbedding such that F | S7 x 0 =f| S7, for all i, and such that the associated
trivialization of the normal bundle of L(f) agrees with the O-framing. Choose
x;€S?and x € S' and let m;=F | x, x S' and, if n =1, [, = F | S} x x. Choose ¥,
from the base-point of $"*2 — L(f) to F(x;, x). Then y, - m; -y; ' and y, - ;- y;!
define elements y;, 4, € m,(S"*2 — L(f)) which depend only on f and the choice of
7;. If we make another choice of {y,} then we obtain &u,; ', EA,E7" for some
& emn(S"t?— L(f)) and, conversely, for any £ we can choose a corresponding
{y:}. The set {u;, 4} is a meridian-longitude pair — p; is a meridian, 4; a longitude
(for n=1).
The surgery manifold M(f) is defined to be:

M(f)=S"*?—Image (F) us LI D! x S,

i=1

Clearly

_[mm = L) ifn>1
Tn(M(f))_{TCI(S”—FZ"“L(f))/(Al,...,lm> ifn=1

There are four ways in which we can consider M(f) as a G-manifold, for
different choices of G and with varying restrictions on f. Three will depend on a
choice of meridans.

(a) G =Z" (free abelian group of rank m), o : 7w, (M(f))—Z™ defined by
a(&) = (I(&, L;(f)), where [ denotes linking number, or, alternatively, by the
Hurewicz homomorphism followed by the identification of H,(M(f)) =~ Z™
defined by X7 | n;[u;] « (n,, ..., n,,). This does not depend on a particular
choice of meridians.

(b) Suppose that fis a boundary link (see e.g. [Gu], [CS]). This means that the
L;(f) bound disjoint submanifolds (SEIFERT ‘‘surfaces™) of S"*? or,
more algebraically, that for some choice of meridians, the homomorphism
p:F"-n (S"t%2—L(f)), where F™ is the free group with basis

4 .

{x),...,x,}, defined by pu(x;)=p;, admits a left inverse o’:
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T, (S"t2— L(f)) » F™ — i.e. a’ o u = identity. Note o’ induces « : 7,(M(f))
— F™ since it is easy to see that a’(4;) = 1. An F™-structure on f is a choice
of such a’. The F™-structure is determined by the choice of meridians
since p induces an isomorphism F™ ~ n,(S"+? — L(f))/(n,(S"+ % — L( 1)),
where, for any group G, G, is the intersection of all terms in the lower
central series of G (see [Gu]). Not every choice of meridians for a boundary
link will determine an F™-structure, though, since not every set of conju-
gates of a basis of F” is again a basis. Two different F™-structures on a
boundary link differ by a special automorphism of F™ i.e. one which sends
each x; to a conjugate of itself. The structure of the group of special
automorphisms of F™ is known - see [Ko].

(¢) Suppose that n > 1, or n =1 and the j-invariants of f vanish. This means
that {4;} = =n,(S®>— L(f)),, or, alternatively by [M], that any meridian
choice u : F” - 7,(S* — L(f)) induces an isomorphism F” ~ 7, (S® — L(f)),
where G denotes the nilpotent completion of G. It is then also true that p
induces isomorphism F” =~ n,(S* — L(f)) ~ n,(M(f)), where G denotes the
residually nilpotent algebraic closure of G (see (1.2)). An F™-structure on f
will mean any homomorphism « : 7;(M(f)) = F™ such that a(y;) is a
conjugate of x;, for each meridian of f. Such « induces an isomorphism
n,(M(f)) ~ F™ but it is not necessarily true that a(y;) = x; for some choice
of meridians. It is true, however, that any link with an F™-structure has
vanishing ji-invariants. Any two F™-structures on f differ by a special
automorphism of F™ i.e. an automorphism which sends x; to a conjugate of
x;, for every i. Also note that, for any sequence of elements g,, ..., g,, € F™,
there is a unique automorphism of F™ defined by x; — g;x,g; ! (see [L1]).
Since the centralizer of x; in F™ is the cyclic group generated by x;, it is easy
to describe the group of special automorphisms of F™.

(d) A refinement of (c) is possible if n > 1 or, for n = 1, when f has vanishing
fi-invariants. This means that the longitudes {4, } lie in the kernel of the map

n,(S® — L(f)) —»M) to the algebraic closure (see (I1.2)). This is
equivalent to requiring that the map u : F" - n,(S* — L(f)) dwy any

choice of meridians induces an isomorphism F”=n,(S?— L(f)) =

nm). An F™-structure of fis a homomorphism a’: m,(S”*2 — L( f))
— F™ (and, therefore, inducing a : 7, (M(f)) = F™) such that, for any choice
of meridians, o’(y;) is conjugate to x;, for all i. As in (c), there may not
exist a meridian choice so that a’(y;) = x;. If n > 1, or if fis a sublink of a
homology boundary link (see [C], [L1]), f admits an F™-structure. This may,
in fact, be true for every link with vanishing j-invariants — it may even be
true that F = F. Again any two F™-structures differ by a special automor-
phism of F™ (each x; is sent to a conjugate of itself). As in (c) for any
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{g:} < F™, x,— g;x;g;! defines a unique special automorphism of F™, but
it is not known whether the centralizer of x; consists only of powers of x;.
Thus the group of special automorphisms is not completely known.

Two links f, f” are concordant if there exists a proper smooth imbedding:
F:Ix(S7T+ - -+8)>IxS"+?

with F(r x §7) <t x 8"*? for t=0, 1 and F|0x S7=f|S? and F|1 x 7 =
1| St If £, f are links with a G-structure (G = F™, F™ or ), then Fis a G-con-
cordance if it is equipped with a homomorphism & : n,((I x $”*?) — Image F) -G
which restricts to the given G-structures of f, f up to an inner automorphism of G.
(We will generally identify G-structures which differ by an inner automorphism.)
When G = Z" it is clear that any concordance admits a unique d.

PROPOSITION (1.1). If f, f* are G-concordant G-links, then M(f) and M(f")
are homology G-bordant. Moreover, there exists a homology G-bordism (V, &) such
that the inclusions induce homomorphisms n,(M(f)) > n,(V), n,(M(f)) ==, (V)
which are normally surjective.

Proof. If F is a G-concordance, then we can extend F to an imbedding
F:Ix(S"<xD?+--+8"xD*)—>IxS8"*t? and then we define V=
(IxS8"*?)—Image FF Up (I x (D} ! x S'+--- 4+ D"+ 1 x §Y). If & is induced
from the G-structure on F, then the assertions of the Proposition follow easily.

PROPOSITION (1.2). Suppose f is a G-link and f is a concordant to another link
f = if G = F™, suppose [ is a boundary link and f is boundary concordant to f’. Then
S admits a G-structure so that f and f* are G-concordant.

A boundary concordance between two boundary links is a concordance
F:Ix(ST+---+87)—>8""2 such that some choice of meridians u: F™—
n;(S"*? — Image F) admits a left inverse & : 7,(S"+2 — Image F) - F™ i.e. au = 1.

Proof. Consider the homomorphism
t=n(S""?—L(f)»m(IxS"*2~ImF) =0
induced by inclusion. It follows from [L1] that the induced map 7 — 8 and # — 0 are

isomorphisms. When G = F™, fis a boundary link and F a boundary concordance,
then n/n, — 0/0,, is an isomorphism. In fact 4 induces isomorphisms F™ ~ /%, and
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Fm™ =~ 0/8, by Stallings Theorem. Since the G-structure on f gives an identification
of n/n,, @ or & with G, we obtain, via the inclusion, an identification of /6, 6 or
0 with G. By the same argument we obtain from the G-structure on F an
identification of n’/n/, or #’ or #’ with G, where n’ = =, (S"*2 — L(f")). To see that
this identification defines a G-structure on f”, which then is clearly G-concordant to
/f, we only need note that any meridian choices for f” are conjugate, in 0, to
meridians of f. When G = F™, we note that any meridian choice for F corresponds,

under /6, ~ nn’/n,, to a meridian choice for f".

2. Suppose f is an n-link with a G-structure, where G = Z™", F™", F™ or F™
(a Z™-structure means no extra structure). We will use the G-structure «’, or rather
the induced « : 7m,(M(f)) -G, to define an invariant for f from p(M(f),a):
R.(G) » R. We will denote this invariant o(f), o,(f), 6(f) or 6(f), respectively,
when G = 7™, F™, F™ and F™.

Although these invariants take values in R, the non-integral part is determined
in most — and probably all — cases by a classical signature invariant of the compo-
nent knots. For any link f'let s;,( /) denote the signature of L;(f), i.e. the signature
of any Seifert surface bounded by L;(f) — thus s5,(f) =0 if n #3 mod 4. For a
complex number z, with |z| = 1, we define arg z € R/Z by z = e*™ 2"~

THEOREM (2.1). Let f be any (2q — 1)-link. Then:

(@) o(f) 0=(~D7"12 ¥ s5,(f)arg(x,) modZ

i=1

for any 0 € #,(Z™).
(b) Iffis also a sublink of a homology boundary link with an F™-structure, then:

G(f) - 0=(=19+"12 ﬁ 5;(f)argdet 8(x;) mod Z

i=1

for any 0 € R, (F,).
In (a), (b), {x;} are the standard generators of Z" or F™ < F™.

Proof. (a) If we define V(f)=D"*3 U (D!*' x D?>+---+ D" + D? then
M(f) =adV(f). By pushing the interior of a Seifert surface for L;(f) into D"+3
and attaching to its boundary D”*! x 0, we obtain a closed oriented (n + 1)-man-
ifold V, <int V(f). We can arrange that the {¥;} are mutually disjoint by choosing
the pushoffs carefully. Now remove the tubular neighborhoods of {V;} from V(f)
to obtain a cobordism V between M(f) and S!' x V;+ -+ S! x V,,. Note that
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H,(M(f)) ~ H,(V) with a basis represented by {S' x x,}, x; € V;. By the index
theorem we have:

0'(f)=§:p(S1 x V,,a;) modZ

where «, : 7, (S! x V;) »Z™ is induced by the inclusion S' x V; = V' and the iden-
tification H,(V) ~ H,(M(f)) ~ Z™ defined by the ordering and orientation of the
components of f. Note that «;, on #,(S' x V;) & n,(S") x n,(V;), is of the form
e; X B;, where e; : m,(S') = Z™ is an isomorphism onto the i-th summand in Z™ and
B, :m,(V;) > Z™ is induced by the inclusion ¥V, < V. According to [APS II] — see
also [N, Th. 1.2], we have the formula:

(=D9sign (V,;,0B;) - (1 —2arg0(x;)) if O(x,) #1
' Ve.a) 0= . £ .
The desired formula will follow if we show that sign (V;, 88;) = sign V..
First note that sign (V;, 0B;), considered as a function #,(Z™)— Z, depends
only on the bordism class of (V,, ;) in Q"*'(Z™) and so defines an additive
function on Q"+ !(Z™). Now consider the familiar isomorphism:

Qq(Zm) ~ Qq(Zm-— 1) @Qq-— I(Zm- 1)

where [MY, B] € Q9(Z™~") corresponds to [MY, B x 0] € Q9Z™) and [M?~ ', Bl e
Q7= Y(Z™~ ") corresponds to [S! x M7~ ', 1 x B] € Q4Z™). But sign (S, x M7~ p)
= 0, for any p, since intersection numbers are all zero in S' x M = R x M, and, as
a result, we see that sign (MY, f) =sign (M, pp), if Ben, (M7 —>2Z" and
p:Z™ 7™~ is projection on the first (m — 1) factors. The result now follows by
induction on m.

(b) Suppose f is a homology boundary link, i.e. we have an epimorphism
¢, (M(f)) — F™" so that ¢(u;) = x; mod [F™, F"], for any i-th meridian ;.
Applying the Pontriagin construction to ¢ yields disjoint ‘“‘singular’ Seifert sur-
faces, i.e. closed oriented disjoint submanifolds M; = M(f). We can make the {M,}
connected by a simple surgery argument using the fact that ¢ is an epimorphism.
Two different components of M, can be joined by a path whose image under ¢, a
closed path in K(F™, 1), is null-homotopic — such a path can be used to form a
connected sum of the two components. By pushing the {M,} slightly into int V(f)
we obtain {¥;} and define V to be the complement in V(f) of the union of disjoint
tubular neighborhoods of the {V,}. Now n,(V) ~ F™ with a basis {x;} consisting of
meridians of the {V;} — in fact, there is a standard construction of the universal
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cover of V with fundamental domain V(f), attached together along copies of
{I x V;}, similar to the construction of Viro [Vi] for finite branched covers. Imbed
[—1, 1] x M;into M(f) disjointly, so that 0 x M, is identified with M; = M(f). For
each w € F™ define D(w) to be a copy of V(f). Attach D(w) to D(x¢w), ¢ = +1 by
the attaching diffeomorphism (¢, x) & (—1,x), x e M;,3<¢et < 1. Then V(f) =
Uw e #m D(w) is simply-connected and a free cover of V(f).

The inclusion M(f) < V induces the homomorphism ¢ under this identification
(V) ~ F™. Since dV=M(f)—(S'xV,+---+S'xV,), the Index Theorem
tells us that:

pM(f), ¢) = .Zl p(S' x Vi, &)
where ¢;, induced by the inclusion S' x V; < V, is easily seen to be projection onto
7, (S') followed by the inclusion e, : n;(S') — Z™ defined by e;(f) = x;, where ¢ is the
appropriate generator. The product formula of [N, Th. 1.2) gives p(S' x V,, ¢,) =
(—1)7sign (V;)p(S',e;). If {e*™4%} are the -eigenvalues of 6(x;) for
0 € R, (F™) —0<a; <1 — then, by [APS, II]:

p(S',e) 0= ) (1—2a)=—2argdetf(x;) modZ.
aq#0

Since x; = ¢(y;) mod [F™, F™] and the determinant of a commutator is 1, we have:

(1) p(M(f), $) -0 =(—1)7"'2) sign (V;) arg det 6p(y;) mod Z.

Now suppose f is a sublink of a homology boundary link g. Suppose, in
addition, that f is equipped with an F™-structure ¥ and g has an F"-structure ¢ as
above (n =2 m). Let x,,..., x,, be a basis of F” and y,,...,y, a basis of F". We
construct a commutative diagram:

1y (M(f)) —— F

%

2 mk) e

"

¢
m,(M(g)) — F”

W is the manifold obtained from I x M(f) by adding handles along the compo-
nents of g not in f; thus 0W = M(f) — M(g). Note that i, and i}, induced by
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inclusions, are both onto — we can, in effect, identify base points of these three
spaces by choosing them on an arc I x x, for some x,€ M(f) away from the
components of g. Choose meridians py,,...,u, € t,(M(f)) and uj,...,u,€
n,(M(g)) so that i (u;) =1i,(u;) for i <m. We show that there is a unique
homomorphism e : F" — F™ satisfying:

y(u,) i<m
1 i>m

(3) e(d(u;)) = {

Write Yi= wl(¢(#:)’ wwey ¢(,u;,),y1, v .. syn)a Where W,-(Zl, ey Znyy Yis e o ’yn) iS a
product of conjugates of the {z;} as a word in the free group on {z,, y;}. Thus the

system of equations:

(4) U, = Wi(#’(”l% v EED l/’(Nm)’ la s % é 9 l;ula te vy un)

is contractible over F” and so has a unique solution {&;} in F™. We define e
by e(y;) =u; for 1 <i <n. We now show that e satisfies (3). By (4), e extends
to a homomorphism: e’:G — F™, where G is the group with presentation

Dise e s VnsZiseves Za: Yi=wi(Zys ooy Zys Vis - - - » Vu)}, Dy defining
e'(z,) = :
(z:) {1 i>m

Let y : G — F”" be the epimorphism defined by y(y;) = y;, y(z;) = ¢(u;). We need to
show that e’ = e o 7. But this will follow from two observations:

(1) e’(y;) =e~y(y;), and

(2) Kernely = G, (the intersection of the lower central series), by STAL-
LINGS theorem [St], and F™ is residually nilpotent.

Since Kernel i, = {41, ..., 1y, then, by (3), ¥’ is defined by the require-
ment that the bottom square of (2) commute. It remains to show that "o i, =.
But ' oi () =y i, (u;) =edp(u;) =y¥(u,;), if i <m. Moreover n/n, is generated
by {u;} for every ¢, where = = n,(M(f)), since f has vanishing j-invariants if n = 1
(see [M]) or by [St] if n > 1. Thus y and ¥’ i, induce the same homomorphism
on every nilpotent quotient. Since F™ is residually nilpotent Y =y’ o i,.

We now apply the Index Theorem and (2) to conclude that:

6(f) =pM(f),¥) =p(M(g),e - p) =e*p(M(g), $) modZ.
Thus, by (1) and (3) we have:

5(f) 0= p(M(g), $) - be = (~1)7*'2 . sign (V,) arg det 0Y(s;) mod Z.

i=1
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Since Y(u,) is conjugate to x;, it only remains to check that sign (V;) = s;(f).
Now s,;(f) is defined to be the signature of any Seifert surface for L,(f) = L,;(g).
We may add a disk to its boundary to obtain a closed submanifold V; of M(f)
and, furthermore, since the linking numbers of the components of g are all zero, we
may assume V', misses the other components of g and so V; = M(g). It now suffices
to observe that ¥, and V; are homologous in M(g), since this means that they
determine homotopic mappings M(g) — S' via the Pontriagin construction, and so
are (oriented) cobordant.

This completes the proof of Theorem (2.1).

There is a completely analogous result for F™-links but, in fact, this is already
contained in (b) as a consequence of the result of Vogel [V1] that every unitary
representation of F™ extends to one of F™.

Some unsolved questions are:

(i) Does (b) hold for £ in place of F? The proof uses residual nilpotence of
F™. Tt is open whether £ = F and, of course, whether every unitary representa-
tion of £ induces one of F™.

(ii) Is (b) true for every F™-link? It is open whether every F™-link is a sublink
of a homology boundary link. There are precise homotopy and group-theoretic
obstructions to an F™-link being concordant to a sublink of a homology boundary
link (see [L1], [Le], [LMO]). For example if H;(F™) =0 (for n = 1) or if the “Vogel
localization” of the m-fold wedge of circles is aspherical (for n» > 4) then every
F™-link is concordant to a sublink of a homology boundary link.

We conclude this section by observing that for many links f the invariants a( f),
a,(f), 6(f) or 6(f) satisfy the conclusion of Theorem (II.4.1), i.e. they are
continuous on L N R, (G), for some large subset L of R, (G).

PROPOSITION (2.2). (a) If f is any link of (odd) dimension n > 1, or an
Fr-link with n =1 (or a boundary link), then 6(f), 6(f) and o(f) (or o,(f)) have
a domain of continuity in R,(G) which contains L N R,(G) for some large subset L of
R.(G).

(b) If f is a one-dimensional link with Alexander invariant of rank m — 1, then
o(f) has a large domain of continuity.

The Alexander invariant is H,(X), where X is the universal abelian covering of
S? — L(f), regarded as a module over Z[Z™). If m =2, for example, the condition
in (b) means the Alexander polynomial is zero.

Proof. (a) is an immediate consequence of Theorem (I1.4.1) for n>1
(H,(G) ~Z™). For n =1, recall from [Le] that, for an Fm-link, the F™-structure
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7,(S? — L(f)) = F factors through a finitely-presented group satisfying (iii). To
prove (b), we apply the Addendum to Theorem (4.1).

Putting Proposition (2.2) together with Corollary (I1.4.2) we conclude that, for
the class of links described in the Proposition, no additional concordance informa-
tion can be obtained from 6, &, o, g, on any singular locus that cannot be already
obtained on a domain of continuity. On the other hand we will show by examples
that, for some one-dimensional links f, ( f) can detect concordance on a singular
locus when it is useless on the domains of continuity.

3. We will now concern ourselves with some general methods of constructing
links to display the possible values of these signature invariants. We present two
such realization theorems.

THEOREM (3.1). Let G be a finitely-generated group with a set of normal
generators {g,,...,g,} and A =(1;) a (—1)**'-Hermitian matrix over ZG — i.e.
Ay =(—=1)4*17,, where A+ 1 is the anti-involution of ZG defined by g > g~ for
every g € G — satisfying:

(1) H,(G) is free abelian of rank m

(i1) €(4) is non-singular and, in addition, €(4;) = +6, for all i, j if q =1, and

€(A;) is even for all i, if g # 1, 3, or 7. (¢ : ZG — Z is the usual augmentation.)

(ii1) The coefficients, in any A, of all elements of order 2 in G are even.

Then there exists a (2q — 1)-dimensional sublink f of a homology boundary link,
and a G-structure o on M(f) such that a(u;) = g;, for some set {u;} of meridians of

f and such that:
() p(M(f),a) -0 =k signe(4) — sign 6(4)
for all 0 € R.(G) if ¢ > 1, or for all 0 in some large subset of R.(G) if q = 1.

Note that (M(f), «) has a large domain of continuity, namely the set of all 6
with det (1) # 0. To obtain examples of links f where o( f) does not have a large
domain of continuity we will use:

THEOREM (3.2). Let A =(4;) be a Hermitian matrix over Z[Z?] satisfying:
(1) e(4;) = £9;; for i,j =22

(i) 4;;, =0.

Then there exists a one-dimensional 2-component link f such that:

(2) a(f) -0 =signe(d) —sign 8(1),  for all 0 € R,(Z?).
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Proof of Theorem (3.1). Let f, be the trivial m-component link in $29*! and so
L(f,) bounds the trivial disk link 4, in D22, Choose a set of generators

h.,...,h, for G. By assumption there exist words w,(X;, ..., X Vis-«-» Vm)s
for 1 <i <n, satisfying w;(x,,...,x,,1,...,1) =1 such that h,=w,(h,,...,h,,
g, ---,8,) Let E be the “finite E-group” (see [C]) with generators:
XiseonosXns Vis---»Vm and relations x; =w;(X;,..., X0 Vis--->Vm) (1 Si<n).

Clearly E is normally generated by y,,...,»,, and H,(E) ~Z™. Let ¢ : E—> G be
the epimorphism defined by ¢(x;) =h;, ¢(y;) = g;.

We start by constructing a slice link f; with an E-structure on M(f;). Attach
n 1-handles to D2?*2 along S**+!— L(f,) to produce X, so that =,(X,— 4,)
is free on generators {x,,...,X,,y,..., V. Where {x;} are the classes of the
cores of the l-handles and {y;} are meridians of f,. Now attach n 2-handles
to X, along normally framed smooth curves in 0X,— L(f,) representing

Wi(X1s ooy Xy Vis ey Ym)Xi tem (X, — 4,) to obtain X. If n =1 we may choose
these curves to be isotopic in 0X|, to the curves which go once around the 1-handles,
since w;(x;,...,X,, 1,...,1)=1(if n > 1, this is automatic) — see [L2] for exam-

ple. Thus we may choose the normal framings so that these 2-handles cancel the
1-handles on D%?*2? —and so X ~ D?*2 Let f; be the slice link defined by f,
in 0X and 4,, in D**2 the slice disk defined by 4,<X. Note that
D*+2 - A =X — A,~ K the standard 2-complex associated to the presentation:
(X0 e s Xy Vis oo s Ym i X =Wi(X)y ooy Xy Vis -3 Vm)} Of E. Thus D% +2— 4,
~ K and M(f,)<D**+2— A, are G-manifolds via ¢ : E—G. If ¢ >1, then
H,, (K;0)=0 for all §. If ¢ =1, we can apply Proposition (I1.3.2) to conclude
that H,(K; 6) = 0 for all € in some large subset of R, (G).

We also note that f; is a sublink of a homology boundary link. Let f; be the link
obtained by adding to f; the transverse spheres of the 2-handles used to construct
X. M(f)) is the boundary of the manifold Y obtained by removing from X the
transverse disks of the 2-handles and x,(Y) = n,(X, — 4,) is the free group on
{X(,.. 2 Xp Vi»--->Ym}- Under the induced homomorphism =,(M(f})) - n,(Y),
meridians map to {yi, ...,V X; WX, ..., X0, Y15 ... » V) } Which normally
generate 7,(Y). Thus f, is a homology boundary link.

We now produce the desired link f from f; by adding handles of index ¢ + 1 to
D?+2 along S+ ' — L(f;). Suppose {S;} is a collection of k disjoint g-spheres,
with normal framings {t;}, in §%*! — L(f}) satisfying:

(a) S; is null-homotopic in §%* ' — L(f})

(b) the linking numbers /(S;, S;) =€(4;) if i #j

(c) if g =1, {S}} is the trivial link in §%¢*

(d) if ¢ differs from the standard normal framing on §; by «; € n, (SO, , ) —

note that S is unknotted in $**' by (c) or a classical theorem of
WHITNEY if ¢ > 1 — then h(%,;) = €(4;) where h : 1, (SO, ,) —»n,(S,) ~Z
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is the standard evaluation map. Recall that 4 is onto for ¢ =1, 3, 7 and
onto 2Z for all other odd ¢. (Also note that S; is oriented by ¢;.)

Let W’ be the manifold produced by surgery on S** ' along {S;, ¢;}. Then W’
is homeomorphic to ¢+ ! by (b) and (d) if g > 1 since (¢(4;)) is non-singular, and
by (¢) and (d) if ¢ = 1, since €(4;) = +1 (see [L5], [L6]). If f is the link defined by
f; in W’, then M(f") =0X’, where X’ is produced from D**' — A, by adding
handles along {S;,#;}. By (a), X' ~K v S?*'v---v S{*! and so M(f) and X’
are G-manifolds via ¢ and the cores of the handles represent a basis {«; } of a free
summand of the ZG-module H,, (X’), where X’ is the G-covering of X’. Then
H, (X;0)~C"®, Hq+1(X~") ~ C™ for any 0 € R,(G) if ¢ > 1, or for 0 in some
large subset L of R,(G) if ¢ =1. The intersection pairing in H,, (X)) is repre-
sented, via the basis {«; }, by a matrix {1} over ZR — by (b) and (d), (1)) = e(4;).
We conclude, from the Index theorem, that:

p(M(f), 0) = n sign (e(4;)) — sign (6(4}))

ifg>1,orfor@elLif g=1.

One way to construct a family of {S;, ¢/} satisfying (a)—(d) is to choose a ball
B < S§**+!'— L(f;) and construct {S;} < B. In fact such {S;} is completely deter-
mined by (b)—(d) and automatically satisfies (a) — note that 1; = e(4,). Our goal is
then to modify {S;, ¢}, without disturbing (a)—(d), but changing 1} to the desired
A;. This can be done in almost the identical manner as in the argument in
[L3: appendix]. If g > 1, then one can change A; to A;+g if i#j, or to
A+ (g+ (=17 g~ Y if i =, for some g # 1 in G and particular values of i, j, by
changing S; to S} #s, a connected sum of S; with s a small sphere linking S, along
an arc which, when lifted to X”, connects a lift B of B to gB. Such a change does
not affect property (a). A sequence of such changes will realize 4; — at each stage
I(S7, S;) = €(4}) so (b) will hold at the end. To achieve (d) we simply construct
as stipulated. For ¢ = 1, we must be more careful in the construction in order to
preserve property (c). We follow the argument in [L3] more closely. Note that the

change from A} to 4, can be broken up into a sequence of elementary changes of
the form

Ay (g —1) i=aj=ba#b
A;_.) A':]i(g—l_l) i=b,j=a,a:,éb
") Ay tlg g -2 i=j=a=b

Ay (1, 7) # (a, b) or (b, a)

for some geG and 1<a,b<k. To effect this change we replace S, by
S, # So#S,, where S,, S, are two small circles in B linking S;. The arc y,
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connecting S/, to S, is inside B, while the arc y, connecting S, to S, represents a
product of conjugates of meridians in n,(S®— L(f;)) which maps to g e G. To
preserve property (c) it suffices to choose y, and y, so that they are isotopic in
S? — (J; S;. The method for choosing y, is indicatd in Figure 1. We use the well
known fact that n,(S> — L(f,)) is generated by conjugates of the meridians.

Finally note that fis a sublink of a homology boundary link. In fact f}, as a link
in W’, is a homology boundary link.

This completes the proof of Theorem 3.1.

Proof of Theorem (3.2). We use the construction in [L3: Appendix] and point
out the existence of the required 4-manifold W with oW = M(f).

Let M(f,) =S'xS*#S"'xS8? where f, is the trivial 2-component link;
M(f,) = 0W,, where W, is the boundary connected sum S'x D* L1 S'x D>
Then, for the universal abelian covers, M(f,) and W,, we have H,(M(fy)) ~
H,(W,) the free Z[Z?]-module of rank one generated by the element e as described
in [L3]. We now add k 2-handles to W, along framed circles o, = S* — L(f,)
< M(f,), whose lifts 6; = M( f,) represent 4, e € H,(M( f,)). We can choose {0} so

2N

L

Figure 1
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that they form a trivial link in S and so that the framing of ¢, has winding number
€(4;) = £ 1. The resulting 4-manifold W’ has 0W’ = M(f") for a new link f’. For
convenience in analyzing the homology, let us further modify W’ by doing surgery
along an interior curve y representing e¢ — call the resulting manifold W”. Now
H,(W") =0 and H,(W") is a free Z[Z*]-inodule on k + 1 generators s,, ..., S, s
where s is represented by a transverse 2-sphere of the surgery and s; has a
representative cycle in W” 4, — A, 4 + ¢; as follows: 4, is the core of the (lifted) i-th
2-handle added to W,, with boundary 6;; 4 is a disk, bounding a lift of a translate

y” of y, created by the surgery — and c; is a homology in m between &; and
Xi17’. We now check some intersection numbers in W”. Clearly s - 4 = 1 (i.e. we can
so choose s) and s - 4, =5 * ¢; = 0; therefore s - 5, = A;;, and obviously s - s = 0. We
set A;; =s; - s; — this is easily seen to agree with the definition of A} in [L3]. The
modification of 1} to achieve the desired A; is then exactly as in [L3], as well as the
proof of Theorem (3.1). Thus the intersection matrix of W” is (4;). Since
H,(W") =0 it will be true that H,(W";0) ~ C ®, H,(W"), unless 6 is the trivial
representation. This follows from a universal coefficient argument using that the
group ring C[Z?] has homological dimension 2 and H,(Z% 6) =0 unless 0 is the
trivial representation. Formula (2) now follows from the Index Theorem.
This completes the proof of Theorem (3.2).

ADDENDUM TO THEOREM (3.2). The Alexander polynomial of f is
(x = 1)(y — 1)D(x, y), where D = det A. The Alexander polynomials of the component
knots of f are ®(x, 1) and ®(1, y), where @ is the determinant of the matrix obtained
from A by removing the first row and column. Note that ®(1,1) = +1.

This is all proved in [L3].

The continuity stratification of R,(Z?) for o(f) is easy to describe for the link
constructed in Theorem (3.2). Let 2, = R,(Z?) = T2, the 2-torus, be the zero set of
D and X, < T? the zero set of & — thus X, is a special subvariety but X, is not, in
general. Then o(f) is continuous on 72— 2%, and on X, —(Z,nZX,). If X, is not
special, then we have the possibility that concordance might be detected by the
values of o( f) on X,. We will give some examples of this phenomenon in the next
section.

4. We consider some examples of Theorem (3.2).
Consider the (2 x 2)-matrix over Z[Z*] =Z[x,x "', y,y ']

= %)



Link invariants via the eta invariant 113

where

p(x,y)=p(x+x"")—q
©(x, ») =[1-NogQQ—x —x" N2 -y -y N1 -NQR-x—x"N2-y -y N

where p, g, Ny, N, are integers to be specified. Let f be a one-dimensional link of 2
components with:

a(f) - 6 =sign e(1) — sign O(A) for any 0 € R,(Z?)

as promised by Theorem (3.2).

If we project the torus T2 = R,(Z?) onto the square S in R? consisting of all
(u,v) with |u| <1 and |v| < 1 by setting u = Re (x), v = Re (), then the zero sets
2., 2, of p, 7 are pull-backs of the zero sets 2|, X5 of p’, 1’, respectively, where:

p'(u,v) =2pu —gq
(4, v) = (1 — 2Np(1 — u)(1 — v))(1 — 2N, (1 — u)(1 —v)).

So X1, Z% consist of a straight-line and a pair of hyperbolas, respectively. See
Figure 2 — we assume [y| <2|p|, N, # N, and 4N, > 2p/(2p — q) for the curves to
intersect in the manner shown.

Clearly o(f) -0=0,if 0eT?—Z2,. If 6 X, —Z,, then a(f) - 6 =sign ©(0).
Thus 6(f) - 0 = +1 on points § of X, projecting to the upper and lower segments
of 21— 2% and o(f) - 8 = —1 on points 0 of X, projecting to the middle segment
of X1 —2).

Compare this to a link f” satisfying:

a(f) - 6 = sign ¢(A") — sign O(1") for 8 € R,(Z?)

where

0 p
A=
G 7

using the same p, t as for f. Then o(f") - 0 = a(f) - 6, except when 8 projects to the
middle segment of X| — X'} in which case a(f") - 0 = +1.

To show that fand f” are not concordant it suffices (see (II1.3.3) and (III.1.1)) to
show that no special subvariety can contain the entire middle segment J of 2| — ;.
Suppose ¢(x, y) € Z[Z?*] satisfies ¢(1,1) = +1 and ¢(J) =0 (see the discussion
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TN
\],

27 \2 \2

v]-1

Figure 2

preceding (11.3.1)). We may assume ¢ is symmetric i.e. ¢(x,y) =d(x~',y) =
d(x,y ") - e.g. replace ¢ by the product

(x, Y)P(x 1, Md(x, y Ho(x 1, y .

Then we can write ¢(x,y) =¢Y(x +x~',y+y~"). The integral polynomial
Y(2u, 2v) = ¢’(u,v) vanishes on J’, the middle segment of X and satisfies
Y’(1,1) = +1. But, since ¥y '(q/2p, v) =0 for a non-trivial interval of v, we have
V'(q/2p,v) =0 for all v, and so Y'(u, v) = (2pu — q)¥"(u, v), for some rational
polynomial y”. If 2p and q are assumed relatively prime, then ¢” is integral. But
now we have:

1=y, 1) =(2p — 9" (4, v).

This is impossible if |2p — ¢| > 1.
Putting all the conditions on p, q, Ny, N, together we have: g odd; 2p <g +1; p
relatively prime to g; N, # N,; and 4N, > 2p/(2p — q). There are certainly many
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possibilities (an infinite number). It is also easy to see that X, contains no points
whose components are both roots of unity and so the p-signatures of SMOLIN-
SKY [S] will not detect the difference between f and f. If N, > 2p?/(2p — ¢g)?, one
can check that J does not intersect the diagonal of T2 and so the TRISTRAM
signatures [T] cannot detect the difference.

5. We now construct examples of links of every odd dimension which are
sublinks of homology boundary links but not concordant to a boundary link. Such
examples were first constructed by COCHRAN-ORR in [C-O]. We use Theorem
(3.1).

Let G be the group with presentation: {x,, x,,y : y = x;x,¥x;» ~'x5 'x7?}, and
consider the following three matrices over ZG:

2y+y~'=1) 3 )

A=(+y'=1) A=
e ] (A P

M:(y_y_l - )

-1 y—y!
These matrices satisfy conditions (ii) and (iii) — for A when ¢ =1, 3, 7, for A’ when
g is odd but not 1, 3 or 7 and for 4” when ¢ is even. By Theorem (3.1) there exists
a two-component link f of dimension (2g — 1) with G-structure « on M(f) and
p(M(f), a) given by (1), substituting 4, A" or A” for 4 in that formula, correspond-
ing to the values of ¢ given above (using x; = g;).

Note that G contains the free group F generated by x,, x, and, by [L1; Prop. 5],
the inclusion F = G extends to an isomorphism F = G. Thus o« defines an F-struc-
ture & : m, (M(f)) - F with a(y;) = x; for some choice of meridians {u,, u,}.

Let m be a cyclic group of prime-power order with generator z. We can define a
map F—-Z§n =Zn x n by x,+—t e ®r and x,+— 1 € Z=n. Since Z§n < Q§n, by Theo-
rem (1.4.1), this map extends to ¢ : G - Q§n; so ¢(x;) =1t, ¢(x,) =1 and it is not
hard to explicitly solve for ¢(y) —e.g. #(y) =50t — 1) if |n| =2 and ¢(p) =¥z — 1)
if x| = 3. L

Now recall the analytic imbedding 7 : R* —» R, (R§n) - R,(Z§rn) from (I.1.(f))
and (1.4). In fact we can simply use I : R— R, (Z§n) defined by i(¢) = i(s, ¢, ..., ?).
Consider the function 7( f) : R— R defined as the composite:

i _— ¢ _ - D)
R — R (Z§n) — R (G) - R (F) — R.

Suppose that this F-structure on f is induced by an F-structure; then, from the
discussion in (I1.1(f)), we conclude that t( f) is the lift of a function S' > R, i.e. ©(f)
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is periodic: ©(f) - (s + 1) = ©(f) - s, for any s € R. If fis F-concordant to an F-link,
then ©(f) is periodic except perhaps on i~'(Z) for some special subvariety of
R, (Z§r); this follows from Corollary (II.3.3) and Proposition (II1.1.1). Now i ~!(2)
is an analytic subvariety of R and so is either discrete or all of R. But #(0) is the
trivial representation, which belongs to no special subvariety, and so i ~'(Z) must be
a discrete set. This shows that if f is F-concordant to an F-link, then t(f) is
periodic of period one except on some discrete subset of R.

We now compute 7(f) in the cases of ¢ odd, || =2 and ¢ even, |n|= 3. First

note that
-
— i
exp ( 3ms> 0
_ if || =2
2mis
0 €xXp (—'3——)
i(s) - y = 9
exp ( — mis) 0
0 exp (nis) if |z] = 3.
k 0 0 1

This uses the solutions for ¢( y) mentioned above. Set:
—2ns
0
cos( 3 )

sin ( —7s) 0 0
B, = 0 sin(ns) 0
0 0 0

Then it is immediate that:
(i) is) - A=24,—1 for |1t{=2

. o Y 4(As_1) 31 —
(i) is)-A —( 37 2(AS—I)) for |n| =2

. (2B, T _
(iii) #(s) - A _<—I 2iBS) for |n|=3

and so 7(f) - s is given by the signature of these matrices, respectively, in the cases
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(i) g =1,3,7and |r| =2; (i) g odd # 1, 3, or 7 and || = 2; (iii) ¢ even and |z|=3.
Moreover t(f) - s is locally constant with jumps at the values of s for which the
respective matrices are singular. Thus, if ©(f) - 5o # ©(f) - (so + 1) and the matrices
are non-singular when s = s, and s, + 1, we conclude that ©(f) ‘s #t(f) - (s + 1)
for all s sufficiently close to s,. It is therefore impossible for t( f) to be periodic of
period one except on a discrete set and we conclude that f is not F-concordant to
an F-link. But it is a straightforward computation that this is the case for (i) and
(ii) with s, =0, and for (iii) with s, = 1.

To show that fis not concordant to a boundary link, it now suffices by Prop.
(1.2), to show that changing the F-structure on f does not change t(f) — and so
7(f) represents a concordance invariant of f. This will follow immediately from:

PROPOSITION (5.1). Let ¢ : F - Q8§n be a homomorphism with Yy(x) =ten
< Q§n and Y(x) =1 € Zn < Qn < Qf§rn. If n is a p-group and t is in the center of =,
then for any special automorphism a of F, there exists an inner automorphism o’ of
Q87 so that o’ oy =y o a.

Proof. Suppose a(x;) =gx;g87", alx,) =hx,h~' and Y(g) =&u, Y(h) =uon,
where u,v € m and &, n € Qn. Set y = év; then we have:

Wx)y t=yty T =Cow T T = £
Y(gx, g ") =butu1E = ErE !
Wy T=yAy T =l =¢+v- A —¢=v-n1eQn

Ylhxh™ Y =vmn~o "' =v-m+A—n)=v-4
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—— —

Figure 4

Thus the inner automorphism a’ defined by conjugation by y satisfies the equation
a’ oy =y oo on x, and x,. Since Y(F) < Z§n, we have y(F) < Z§rn and y(g) € Z§n.
Thus y = y(g)u ~'v also belongs to Z§n. As a result we see that a” o ¢ and ¥ - « are
homomorphisms F— Z§n which agree on F. But then they induce the same
homomorphisms on the nilpotent completions: F—Z§rn. Since F< F and
Z§n = Z§n, we conclude that o’ oy =y o« on all of F.

When g =1, we can draw a picture of a link corresponding to this example.
First note that the ribbon link f; of Figure 3 admits an epimorphism « from its
group to G. The meridians in Figure 3, which generate the group of f,, map to G
as follows: y, — x,, g, +— x,, u +— yx,. Now a + l-surgery on the complement of f;,
along the curve y in Figure 3 will produce a new link f such that, according to the
proof of Theorem 3.1 and preceding discussion:

(f) s —1t(fy) s =sign (24, —I).

Since f; is slice, 7( fy) is periodic of period one (except on a discrete set) and so ©( f)
cannot be. The link fis given in Figure 4.
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