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Some results on the geometry of convex hulls in manifolds of
pinched negative curvature

B. H. BowbDITCH

0. Introduction

A “Hadamard manifold”, X, is a complete simply-connected riemannian mani-
fold of non-positive curvature. Such a manifold is diffeomorphic to R”, and can be
naturally compactified to a closed ball X = X U X, on adjoining the “ideal sphere”,
X,. We refer to [BaGS] for a general account of such manifolds.

In this paper we shall be assuming that X has pinched negative curvature, i.e.
that all the sectional curvatures lie between two negative constants, which (on
scaling the metric) we can take to be —x? and —1, where k = 1. In this case, X is
a “‘visibility manifold”, which means that any two points x, y € X are joined by a
unique geodesic [x, y], (where [x, x] = {x}). We say that a subset 4 < X is convex
if, for all x, y € A, we have [x, y] < 4. Given any closed subset Q < X, we define
the (closed) convex hull, hull(Q), of Q to be the intersection of all the closed convex
sets containing Q. Clearly, hull{x, y} =[x, y].

A major deficiency in the theory of Hadamard manifolds is the sparsity of good
constructions of convex sets. In the general situation little seems to be known. The
only obvious examples of convex sets are uniform neighbourhoods of points or of
geodesic segments, and their intersections. We see, for example, that any three
(non-ideal) points in a Hadamard manifold must lie in the boundary of their
convex hull. Note that with variable curvature, one would expect generically for the
convex hull of three points to have non-empty interior. It is by no means clear what
the convex hull of three ideal points might look like, even when given an upper
curvature bound away from 0.

In the special case of pinched curvature, there is a much more general construc-
tion due to Anderson [A]. Thus, for example, Anderson shows that if Q < X is
closed, then X, ~nhull(Q) = X;nQ. In this paper, we aim to develop further the
theory of convex sets in this context. Our paper splits into four sections.

The main result of Section 1 is that the map [Q +— hull(Q)] which sends a closed
set to its convex hull is continuous with respect to the Hausdorff topology
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(Theorem 1.1). The techniques employed in this section are rather different -from
the rest of the paper, although the results will be quoted later.

In later sections, we shall focus our attention mainly on convex hulls of finite
sets of points. These play a central role in hyperbolic geometry as they are precisely
the finite-sided finite-volume polyhedra. One would not expect such a nice picture
in pinched variable curvature (for example a natural decomposition into faces),
although many properties do generalise.

In Section 2, we describe how the convex hull of finite set P < X is “tree-like”,
in that it approximates a certain spanning tree for P, in a manner that will be
clarified later (Theorem 2.1). An analogous statement for hyperbolic polyhedra has
been used [Be] to study the degeneration of discrete hyperbolic groups actions. The
importance of generalising this fact is made apparent, for example, in [P].

In Section 3, we give generalisation of Anderson’s construction. Specifically, we
are aiming at Propositions 3.4 and 3.5.

In Section 4, we put together the ideas from the previous sections to give two
new theorems. The first of these, Theorem 4.1, tells us that the volume of the
convex hull of a set of n points of X is always finite, and in fact is bounded by
some constant C(v, k, n), depending only on n, the dimension v, and the pinching
constant k. It turns out that, for fixed v and k, C(v, x, n) is bounded by some
polynomial in »n. I suspect, in fact, that this could be improved to a linear function
of n. In an appendix, I show that this is indeed the case in constant curvature. The
second result of Section 4 (Theorem 4.2) tells us that the volume of the convex hull
of a set of n points varies continuously in these points, provided that no two
converge on the same ideal point.

The present paper combines two articles written at the University of Melbourne,
under an Australian Research Council fellowship. I would like to thank Craig
Hodgson for suggesting some of these questions to me. I am also endebted to the
referee for many helpful comments.

1. Continuity of convex hulls
In this section the main result will be Theorem 1.4. First we quote some basic
results used throughout this paper.

Notation

Recall, we are assuming that all the sectional curvatures of X lie in the interval
[—x2 —1]. We write T, X for the tangent space of X at x. Given &, (e T, X, we
write (£, {) and |¢|= /(& &), respectively, for the riemmannian inner-product
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and norm on 7, X. Given x € X and y € X, \{x}, write Xy € T, X for the initial unit
tangent vector of the geodesic from x to y, parameterised by arc length. If
z € Xc\{x}, write y%z = cos~ (X}, xz) € [0, n] for the angle between xy and xz. We
write d for the induced path-metric on X.. We shall sometimes refer to d as the
“distance function” on X, to avoid any confusion with the riemannian inner-
product.

Basic comparison theorems

Given 4 € (— o0, 0), write H(4) for the v-dimensional space of constant curva-
ture —A2. We need the following variants of the Toponogov comparison theorems
(see for example, [Sp] or [CE]). We write d, for the path-metric on H"(4).

LEMMA 1.1. Suppose x € X and y,z € X\{x}. Choose points x’,y’, z’ e H¥(1)
such that d\(x’,y") =d(x, ), di(x’,z") =d(x,z) and y’'X'z' = yXz. Then d\,(y’, z’)
<d(y, z).

LEMMA 1.2. Suppose x € X and y,z € X\{x}. Choose points x’, y’, z’ € H*(k)
such that d.(x’,y") =d(x,y), d.(x’,z") =d(x,z) and y’'x’'z’ = yXz. Then d (y’, z’)
=d(y, z).

Thus, the Rauch Comparison Theorem gives us the infinitesimal case with y close
to z.

Another basic property of X is the convexity of the distance function, which is
essentially Busemann’s characterisation of non-positive curvature [Bu]:

LEMMA 1.3. If a, B : [0, 1] = X are geodesics parameterised proportionately to
arc-length, then the map [(t, u) — d(a(t), B(w))] is convex on [0, 1]2

Discussion of the main result on continuity

Let €(X ) be the set of all closed subsets of X.. Now, X is a topological ball, and
hence metrisable. Choose a metric p on X.. Given P € ¥(X) and r = 0, we write
N(p)(P,r) = {x € X.| p(x, P) < r} for the uniform r-neighbourhood of P. Given
P,Qe¥(X;), write hd*(p)(P, Q) €[0, ©0) for the smallest r >0 such that
P < N(p)(Q, r). Write

/

hd(p)(P, @) = max(hd*(p)(P, ), hd* (p)(Q, P)).
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We call hd(p)(P, Q) the “Hausdorff distance” between P and Q, with respect to p.
Thus, hd(p) is a metric on (X ). Since X is compact, it is easily verified that the
induced topology on ¥(X) is independent of the choice of metric p. We refer to it
as the Hausdorff topology. Thus €(X.) is a compact hausdorff space in this
topology.

We remark that a more natural approach would be note that since X is
compact hausdorff, it admits a unique uniformity [K]. This naturally induces a
uniformity, and hence a topology, on €(X,).

THEOREM 1.4. The map [Q + hull(Q)] : (X)) —» €(X;) is continuous, where
€(Xc) is given the Hausdorff topology.

In fact, we shall find a path-metric p on X, such that [Q — hull(Q)] is distance
non-increasing on (¢(X¢), hd(p)).

Note that, clearly, the map [(x, y) — {x, y}] : X¢c x X —>%(X() is continuous,
and so as a special case we have that [(x, y) — [x, y]] : Xc x X > %(X) is contin-
uous. This is also a corollary of Proposition 1.5 below. However, this statement is
easily verified directly, and we may leave it as an exercise. (Indeed, it is true without
the lower curvature bound, —«x?2.)

Another consequence of the continuity of geodesics is that the convex hull map
has to be “lower semicontinuous’ in the following sense. Suppose p is a metric on
Xc. Then, given Pe¥(X.) and ¢ >0, there is some 6 >0 such that if
hd*(p)(P, Q) <J, then hd™*(p)(hull(P), hull(Q)) <e. (Note that hd*(p)(P, Q) =
hd(p)}(Q, P U Q), and so lower semicontinuity can be expressed in terms of the
Hausdorff topology, and the partial order on ¥(X.) by set inclusion.) To prove
lower semicontinutiy, suppose that P, is any sequence with hd*(p)(P, P,) —» 0. We
claim hd* (p)(hull(P), hull(P,)) = 0. Let H € €(X ) be the set of all y € X such that
x, — y for some sequence (x,) with x, € hull(P,). From the continuity of geodesics,
we see that H is convex. Clearly P < H, and so hull(P) € H. Now, since X is
compact, we must have hd*(p)(H, hull(P,)) — 0. Otherwise, we could find a se-
quence of points y, € H with p(y,, hull(P,)) bounded away from 0, and passing to
a convergent subsequence would give a contradiction to the definition of H. It
follows, then, that hd*(p)(hull(P), hull(P,)) — 0 as claimed.

We thus see that the lower semicontinuity of convex hulls is fairly trivial.
Achieving continuity in the pinched curvature case will involve us in a bit more
work. The basic idea is as follows.

Given Q € 4(X), write

.}Oln(Q) = U {[xv y] ‘xa Yy EQ}
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Given the continuity of geodesics, we see that join(Q) is closed in X.. We define,
inductively, join"*'(Q) = join(join"(Q)) and join®(Q) = U2, join"(Q). Clearly
join®(Q) is convex, and, again given the continuity of geodesics, we see that, if Q
is closed, then hull(Q) is just the closure of join®(Q). Our aim, then, will be to find
the metric p on X, such that the map [Q + join(Q)] is distance non-increasing on
(4(X), hd(p)). It suffices therefore to show:

PROPOSITION 1.5. There is some path-metric p on X, such that if
Xos Yos X1s V1 GXC, then

hd(p)([xoa yO], [xl’ yl]) < maX(P(XOa xl)’ p(yO’ yl))

Some other observations about continuity

Before we set about proving this, let us note another more trivial sense in which
convex hulls vary continuously. We may define, in a similar fashion, a Hausdorff
distance, hd(d), on the set €(X) of all closed subsets of X. In this case, the analogue
of Proposition 1.5 follows directly from the convexity of the distance function
(Lemma 1.3). We deduce:

PROPOSITION 1.6. The map [Q +— hull(Q)] is distance non-increasing on
(¢(X), hd(d)).

On the subset of ¥(X.) consisting of all compact subsets of X, the topologies
given by hd(d) and hd(p) agree. However, in general, the topologies are quite
different. For example, (4(X), hd(d)) has infinitely many components.

A related observation which will be used in Section 4 is:

LEMMA 1.7. If P, Q < X are convex, then hd(d)(0P, dQ) < hd(d)(P, Q).

Proof. Suppose for contradiction, that hd(d)(P, Q) = h, and hd(@P, 6Q) > h.
Without loss of generality, there is some x e€dP, with d(x,dQ) =k > h. Now
d(x, Q) < hso N(d)(x, k) < Q. Since P is convex, it’s easy to see that there is some
y € IN(d)(x, k) with d(y, P) =k, contradicting hd(d)(P, Q) < k. O

Putting the last two results together, we see that the map [Q + dhull(Q)] is also
distance non-increasing on (¢(X), hd(d)).
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The metric p

We next construct the metric p on X described by Proposition 1.5. In what
follows, we shall write |ds| for a riemannian norm defined pointwise on our space.
This induces a path-metric, d, giving the distance between two points.

The metric p on X, will arise from a construction of Floyd [F] (described
originally in the context of discrete groups). We introduce this construction with
reference to the Poincaré model for hyperbolic v-space H” = H'(1). Recall that H”
may be realised a conformal metric on the euclidean open unit ball, B, obtained by
pointwise scaling the euclidean riemannian norm |ds,,, |- Thus, the hyperbolic norm,
|dsy,, | is given at the point x € B by the formula

2
[ syp | = 757 S|

where h e€[0, 1) is the euclidean distance d,,. (o, x) from the origin o € B. This
induces the hyperbolic path-metric d,,,. We may invert the process. To recover the
euclidean ball, we fix a point p e H” and scale the riemannian norm at the point
x e H” by a factor of 3 sech?(r/2) where r = d,,(x, p).

We can generalise this idea to our manifold X. Suppose that f: [0, c0) — (0, )
is a smooth function with [’ f(r)dr = R <co. Fix any point peX, and set
¢(x) =f(d(x, p)) for x e X. We now scale the riemannian norm |ds| on X according
to the function ¢. Thus, the new norm, |ds,| is given at the point x € X by
|ds;| = ¢(x)|ds|. In this way, we get a riemannian metric (at least on X\{p}), and we
write d, for the induced path-metric. In general, there may be a singularity at the
point p. However, if f has the form f(r) =f,(r?), where f, is smooth on a
neighbourhood of 0, then the map ¢ : X — (0, o) will be smooth at p, and so we
get a riemannian metric everywhere.

Now all d-geodesic rays emanating from p are also d,-geodesic paths, each of
which has d,-length equal to R. (Note that if y is a smooth curve joining p to
some point g with d(p,q) =k >0 and parameterised by arc length dr, then
(d/dtyd(p, (1)) < 1, and so the d,-length of y is at least [§f(r) dr, with equality if
and only if y is a d-geodesic.) Also, if s < R, then N(d, )(p, s) = N(d)(p, r) where r
is given by [ f(¢) dt =s. In particular, each such ball is compact.

The idea, then, is to describe X as the metric completion of (X, d, ). However,
we first need to ensure that f does not decay too fast. (For example, if we had
f(r) = O(e ~*") with 4 > k, then we would just obtain the one-point compactification
of X.) Suppose then that, for some r, > 0, we have f(r) = cosech r for all r 2 r,. In
this case, we have the following property. Suppose that f is a smooth path in
X\N(d)(p, r) joining points y and z. Then ypz is less than or equal to the d,-length
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of B. This fact may be deduced from Lemma 1.1, or directly from its infinitesimal
version (the Rauch Comparison Theorem). Now, we may use the d,-exponential
map based at p to identify X with a euclidean open metric ball B. It is easily
checked that X is naturally identified with its closure N, so that the topologies
agree. We thus need to verify that N is indeed the metric completion of X = B with
respect to the metric d;. To this end, we make the following simple observation:

LEMMA 1.8. Suppose N is a compact, first countable topological space. Suppose
B < N is a dense subset which admits a metric p inducing the subspace topology on B.
Then, N is (naturally homeomorphic to) the completion of B precisely if the following
condition holds. Suppose (x;) and (y;) are sequences in B converging respectively to
x,y €N. Then p(x;,y;) =0 if and only if x =y. O

We apply this to our situation, with p = d,. The “only if”’ part of the above criterion
follows from the relation of d,-length to visual distance at p already referred to. The
“if”” part is an exercise, on noting that euclidean distance along any ray emanating
from p agrees with d,-distance. (We remark that we do not need the lower curvature
bound for this construction, unless we want explicit estimates for d;.)

For definiteness, in the rest of this paper we shall set f(r) = (sech xr)* where
u >0 is sufficiently small. Specifically, we set u = 1/4x2. We choose this particular
form for computational convenience. There is probably nothing very special about
this formula, and I suspect that Proposition 1.5 is true much more generally.

We write p = d,. Now, the completion of a path-metric space is a path-metric
space, and so p is a path-metric on X.. Suppose that 7/ < R is some interval, and
y : I —> X is a smooth path. We may define the p-length of y as

length, 7 = f $ow)| L )| d

where dy/du is shorthand for y,(d/du). Clearly length, y agrees with the rectifiable
length. Now, standard riemannian geometry allows us to approximate rectifiable
paths by smooth paths of nowhere-vanishing derivative, and so:

LEMMA 1.9. Suppose x,yeX and ¢ >0. Then there is a smooth path
y [0, 1] = X such that y(0) = x, p(1) =y and

d
0| 5 @] < plx,y) +e

for all ue(0,1].
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Proof of main theorem

At last, we are ready to start on the proof of Proposition 1.5. To begin with, let
us suppose that x,, y,, x,, y; all lie in X. We shall describe later how to deal with
ideal points. Set / = max(p(x,, x;), P(¥o,y1))- By Lemma 1.9, we can find paths
7: 1 [0, 1] = X with 7,|(0, 1) smooth, with y4(0) = x,, (1) = x;, 7,(0) =y, and
y:(1) =y,, and so that

dy;

B01@)| 7 )| <1 +¢

for all u €[0, 1] and i =0, 1. It will be convenient to assume that y,(x) # v, (1) for
all u €(0, 1). This can always be achieved by a small perturbation. (Alternatively,
it will not be hard to see how to deal with a degenerate situation.)

Our first task is to span the rectangle y,uU[xq, Vo]l Uy, V[x,, y;] by a ruled
surface. More specifically, we are looking for a closed subset S = R x [0, 1] together
with a smooth map f : S — X with the following properties.

(1) There are smooth functions ¢, ¢, : [0, 1] = R such that g,(x) < ¢,(«) for all
ue(0,1), and so that S={(t,u)eR x[0,1]|go(w) <t <gq,(u)} (Figure

1a).
(2) y;=PB -0;, where o,:[0,1] >R x [0, 1] is given by a,(u) = (¢;(v), u) for
i=0,1.

(3) The map o, = [t — B(¢, u)] : [go(u), q,(4)] = X is a d-geodesic parameterised
with respect to arc length, for all ¥ € [0, 1].
(4) {(0B)o1)(t, u), (0B /0u)(t, u)) =0 for all (z,u)€S.

Note, in property (4), that the vectors df/ot = p,(0/0t) and 0f/0u = B (0/0u) are
well-defined over the whole of S.

01

S
/ N\
(@o(d).) / (@)
psssisiiiisis
t

Figure la’

| ao?/////////////?///////%
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Now,

do, _dg, 0, 0
du  dudt  Ou

and so

dy; dq; 0 0
;1):_41 (u) = _c?% (v) 5'[; (o;(w) + 6_5 (0, (1))

Thus,

dgq; dy; op '
T (w) = <—c—i; (), o (o (u))>-

Note that &;(u) = (0f/0t)(0;(v)) is determined by the points x = g,(u) and y = a7, (u).
Thus &(u) =Xy and &) = —yx.

Suppose, then, that we have y, and y,, and want to construct . We can obtain
the functions g;, up to an additive constant, by integrating the quantity {(dy; /du)(u),
&;(u) ). We see easily that (d/du)(q, (u) — go(u)) = (d/du)(d(yo(u), 7, (u))), and so we
can arrange that g¢,(x) — qo(w) =d(yo(v),y,(v)) for all ue[0,1]. Now let
a, : [go(w), g,(v)] > X be the geodesic joining y,(u) to 7y,(u), parameterised with
respect to arc-length. Define f:S - X by B(¢,u) =a,(¢). Thus, f o0, =7; and
(0B /0t)a;(u)) = &;(u) for ue(0,1). Now (from the Implicit Function Theorem),
we know that &,(u) varies smoothly in u. It follows that f is smooth. We
need finally to verify property (4). From the formula for dg,/du, we find that
{(8B0t)(ao(w)), (0B /0u)(ao(w)) » =0 for all ue(0,1). Now the vector field [t —
(0B /0u)(t, u)] along a, is the first variation of a geodesic, and so its component
parallel to «, is constant, and thus equal to 0, i.e. {(88/01)(t, u), (B /du)(t,u)) =0
for all (¢, u) e SN (R x (0, 1)) and so, by continuity, for all (¢, u) € S. We have thus
constructed f.

LEMMA 1.10. For all (t,u) € S, we have

0
¢w@u»5§@u)£l+a

Given this lemma, we may complete the proof of Proposition 1.5 as follows:
Suppose xq, Vo, X1, y; €X, and S, p are as above. Given ¢ € [g,(0), go(1)], let
7 : [0, 1] = S be the path defined as follows. If q,(4) < ¢ < ¢, () for all u € (0, 1), we
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set T = [u — (¢, u)]. Otherwise, we let T begin as the path [u — (¢, )] and continue
until it runs into either o, or ¢,. We then continue along either g, or ¢, until we
arrive at a4(1) or o,(1).

Now, let § =f0-1:[0,1]>X. Thus 6 is a path joining oy(t) €[x,, Vo] to
o, (6(1)) €[x,,y,]. Moreover, (do/du)(u) is either (3f/0u)(t,u) or (dy;/du)(u).
In any case, we have ¢(6(u))|(dd/du)(u)| <! +e¢, and so length, 6 </+e¢. Thus
p(ao (), [xy, ¥1]) <1+ €. But r and € > 0 were arbitrary, and we may also invert the
roles of [x,, yo] and [x,, y,], and conclude that hd(p)([x,, yol, [x1, »1]) <L

Now suppose that x,, y,, x;, ¥, € X¢, are arbitrary. Choose ¢ > 0. If x, # y,,
then we can find xg, yo € [xy, Yol 0 X so that [x,, xo] € N(p)(x,, €) and [y,, yo] &
N(p)(yo,€). (This is trivial given that p induces the usual topology on X..) If
Xo=Yo, We find xi=yo€X so that d(x,, x;) <e. In either case, we have
hd(p)([xo, ¥ol, [x5, ¥5]) <€. We can similarly find x}, y; e X with hd(p)([x,, »,],
[x1, ¥1]) < e. The general case of Proposition 1.5 now follows by applying the first
part, and letting ¢ tend to O.

Proof of Lemma 1.10. Fix ue(0,1) and write ¢, = qo(#) and ¢, = ¢q,(u). For
te [qO’ ql], set

g(1) = ¢(B(t, u)),

0
0= Za.0

and

G(1) = g(0)j(0).

We want to show that G(¢) </ +e¢.

Now j(g;) = |(8B/0u)(o; ()| < |(dy;/du)(w)|, and so G(g,) < d(y;(w))|(dy;/du)(w)|
< I + e. It thus suffices to see that G cannot attain a maximum in the open interval
(90> 91)-

We shall use primes and double primes, G’, G” etc., to denote the first and
second derivatives with respect to ¢.

Write a = a, for the geodesic [t — B(¢, u)]. Now, [t +— (0f/0u)(t, u)] is a Jacobi
field along a. Thus, except where it vanishes, j is smooth in ¢. Moreover, from the
Jacobi equation and the upper curvature bound (see for example [CE]), we have
that j"(¢) = j(2).
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We shall want to bound the first and second derivatives of g. Now,

8(1) = ¢(a(®)) = f(h(2)) = (sech kh(1))*,

where Ah(f) =d(p, a(f)), and u = 1/4k. Thus, g(t) = (H())* where H(f) =
cosh kh(f). We claim that |[H'(r)| < kH(¢) and |H"(f)| < k*H(t). Note that H is
smooth, even in the case where a(f) =p. In this special case, the inequalities
are easily verified, so we shall assume that a(f) # p. Let r(x) =d(x, p), so h(t) =
r(a(2)).

Now, H'(f) = k dr(a’(¢)) sinh xh(r). Since |dr| < 1, the first inequality follows.

For the second inequality, write D?r for the second derivative of r at the point
x =a(f). Thus D?r restricted to ker dr is the second fundamental form of the
sphere of radius r(x) = h(¢f) at x. From the lower curvature bound, the principal
curvatures of such a sphere are at most x coth x(h(¢)) (i.e. that of a sphere of
radius A(f) in H(x)). We see that |D?r(a’(2), 2'(2))| < k coth kh(£)(1 — dr(a’(£))?).
Now,

H'’(t) = x sinh(xh(2))D?r(a’(2), a’(2)) + x2 cosh(xh())(dr(a’(£)))?,
from which we deduce that 0 < H"(f) < k?H({), as required. This proves the claim.
Now, recall that g(r) = (H(¢)) *. Thus g’(1) = —uH'(t)(H()) "' ~# and g"(t) =
—uH"(OH@) 7' ~# 4+ u(1 + p)(H'(H))*(H()) ~2~*. We see that

lg’(0)] < kug(?)

and

g'(O| < k(2 + wg (o).

Now, finally, suppose for contradiction, that G(r) = g(¢)j(¢) attains a maximum
at some point ¢t € (qy, ¢,). Thus G’'(¢) = g’ (1)j (1) + g(¢)j’(t) = 0 and so

G'() _j'0) 2<g’(t))2 A0
G0 o \&0n) " &0

> 1 —2(rkp)® — k(2 + )
=1—x?u(2+3u)
>1—3k2u > 1/4,

Thus G”(¢) > 0 contradicting the existence of such a .
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In summary, there is no maximum of G on (gy,¢,) and so G(¢) <
max(G(q,), G(q;)) <!+ € as required. O

2. Spanning trees

In this section, we describe the treelike nature of convex hulls. First, we
introduce some terminology and notation.

Notation

From now on, we deal with only one metric on X, namely d, the path-metric
induced from the riemannian metric on X. If Q < X is closed, we write
N@Q,r)=Qui{xeX|d(x,QnX) <r} for the uniform r-neighbourhood of Q.
Thus, N(Q, r) is closed in X.

By a (combinatorial) tree, T, we mean a simply-connected finite 1-complex, with
vertex set V(T), and edge set E(T). We write V(T) < V(T) for the set of extreme
points of T, i.e. those vertices which have degree 1. We demand that each vertex of
Vi(T) = V(T)\V,o(T) should have degree at least 3. It follows that |V(T)|<
2|Vo(T)| — 2, and so there are only a finite number of combinatorial types of trees
with a given number of extreme points. Given s, ¢t € T, we shall write a(s, #) for the
arc in T joining s to ¢.

Suppose that P < X is finite. By a (geodesic) spanning tree, (T, f) for P, we
mean a tree T together with a map f: T — X, such that:

(a) f|Vo(T) is a bijection from V,(T) to P,
(b) f(V(T)) = X, and
(c) if e € E(T), then f(e) = [ f(v), f(w)] where v, w € V(T') are the endpoints of e.

It will be convenient to allow for the possibility that v = w so that f(e) is a single
point. Otherwise, we shall assume that f|e is injective. Note that, up to isotopy
along the edges, f is determined by its restriction to V(T). Note also that
f(T)nX,=PnX,.

The main theorem on spanning trees

THEOREM 2.1 (Figure 2a). Suppose that P < X is a set of n points. Then,
there is a spanning tree (T, f) for P such that
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(1) hull(P) contains f(T) and lies inside an r,-neighbourhood of f(T), and
(2) Suppose s, t € T and u lies in the arc a(s, t) < T joining s to t. If B is any path
from f(s) to f(¢) lying in hull(P), then f(u) lies a distance at most r, from p.
Here r; =r;(k,n) are functions only of n and k, which have the form r;(x,n) =
AK) + u;(n). Moreover, we can arrange that u,(n) = O(loglogn) and u,(n) =
O(log n).

In most (if not all) cases, one can take f to be injective, so that we get an
embedded tree. If the dimension v is at least 3, this can always be achieved by a
small perturbation. It seems more natural, however, to speak in terms of immersed
trees.

Note that property (1), alone, is not sufficient to capture the treelike nature of
hull(P). Without property (2), we could form a spanning tree simply by choosing
any point a € hull(P), and joining it to each point of P by a geodesic path. In this
way, r; would be independent of n.

Even if property (2) is added, I suspect that r, can be made independent of n,
i.e. that we should be able to get rid of the term u,;(n). However, u,(n) =
O(log log n) is the best I can do. On the other hand, u,(n) = O(log n) is the best
possible, as can be seen by considering a set of n points evenly spaced about a circle
of radius r in the hyperbolic plane. In this case, the convex hull is a regular polygon
with »n vertices. It is not hard to see that the best spanning tree (in the sense of
minimising u,(n)) is obtained by joining each vertex to the centre by a geodesic

Figure 2a
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segment of length r. Now, as r tends to infinity, 2r minus the length of a side of the
polygon tends to —log sin(z/n) = O(log n). I make no attempt here to find the best
multiplicative constant.

There are several ways one might attempt to refine this result. One of these will
be relevant to the proof of Theorem 4.1 in Section 4. Note that the term
U, = O(log n) only really enters when we have a cluster of O(n) vertices of f(V,(T))
in a small region of X. Thus, if we have a long edge f(e) in our spanning tree, we
would expect that hull(P) should have small cross-section along most of f(e). In
other words, hull(P) separates into two pieces joined by a long thin tube, which we
can imagine as a tubular neighbourhood of f(e). Such tubes have bounded volumes,
as will be explained in Sections 3 and 4.

It is by no means clear that the lower curvature bound —«x? is necessary.
Perhaps the term A(x) can be removed. However, Anderson’s construction gives
A(x) > o0 as k - 0. For this reason, we do not bother to estimate A(x) here. The
reader can obtain such an estimate by referring to [A] and [Bo2]. We note however,
that A can be assumed continuous in .

A basic geometric lemma

To study the geometry of spanning trees, we shall need a simple result (Lemma
2.3) related to well-known facts about the approximation of quasigeodesics by
geodesics in hyperbolic space. The argument we apply is a standard one. First, we
note the following simple consequence of Toponogov’s comparison theorem
(Lemma 1.1), and some hyperbolic trigonometry:

LEMMA 2.2. Suppose that a, b € X, and p €|a, b] is the midpoint of [a, b]. Set
r =d(a, p) = 3d(a, b). Suppose that B is a path from a to b with d(p, B) = r. Then
length f = & sinh r. O

LEMMA 2.3. Suppose the points x, y € X are joined by a path f of length at most
d(x,y) +h, where h 2 0. Then, B lies inside a ¢(h)-neighbourhood of the geodesic
[x, y). Conversely, [x, y] lies inside a 6(h)-neighbourhood of B. Here 6(h) = O(log h)
and ¢(h) = O(h) are universal functions of h.

Proof. Choose p €[x, y] so as to maximise d(p, ). Let r =d(p, B). Let a €[x, p]
and b €[y, p] satisfy d(a, p) =d(b, p) =r. If d(x, p) = 2r, let a’ €[x, p] be the point
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with d(a’, p) = 2r, and choose z € f with d(z,a") <r. If d(a’, p) <2r,seta’ =z = x.
Note that d(p,[a’, z]) = r. Similarly choose a point b’ €[y, p] and wef with
d(w,b’) <rand d(p, [b’, w]) = r (Figure 2b). It will not matter to us in what order

the points z and w occur along f. Let y be the segment of §§ lying between z and w.
Then, by Lemma 2.2, we have

d(a,a’) +d(a’, z) + lengthy + d(w, b’) +d(b’, b) = n sinh r,

and so

length y > & sinh r — 4r.

Let f’ be the path obtained from B by replacing y with the path [z, aJu[a’, b']
U[b’, w]. We have

h =length § — d(x, y) = length f — length g’

> lengthy — 6r =  sinh r — 10r.

Thus r < 8(h) where 8(h) = O(log h), and so

[x, y] = N(B, 6(h)).

Now suppose that g € . The point g divides B into two subpaths B, and f,. By
continuity, we can find some s € [x, y] with d(s, #,) < 6(h) and d(s, B,) < 6(h). Since
length f <d(x, y) + h, it follows easily that d(p, s) < ¢(h) = 20(h) + h/2 = O(h).
Thus g = N([x, y], ¢(h)). O

Figure 2b
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Spanning trees

Next, we describe the spanning tree construction. Given the upper curvature
bound, we see that X is k-hyperbolic in the sense of Gromov [Gr], for some fixed
parameter, k. (Here k depends only on the precise formulation of hyperbolicity we
choose to use.) In [Gr, Section 3.2], Gromov outlines a method of constructing
spanning trees of finite sets in such spaces. We quote the following refinement of
this result [Bo2, Theorem 7.6.1]:

LEMMA 2.4. Suppose P< X is a set of n points. Then, there is a geodesic
spanning tree, (T, f) for B, with the property that if v,w € V,(T), then

length f(a(v, w)) < d(f(v), f(W)) + h(n),
where h(n) = O(log n). O

Here, length f(a(v, w)) is equal to Z2_, d( f(v;), f(v; _,)) where vy =v, v, =w and
vy, 0,,...,0,_, are the successive points of V(T) along the arc a(v, w). Note that
it follows that for arbitrary s,¢ e T, then length f(a(s, 1)) < d(f(s), (1) + h(n).
Inspection of the construction of [Bol, Chapter 7], shows that f(T") < hull(P).

Most of the work in proving this lemma is involved in obtaining the logarithmic
bound on A(n) (which gives us the polynomial bound on volume in Section 3). If
one is unconcerned about this, it is possible to give an elementary argument as
follows. We choose an arbitrary order on the set of n points, and construct an
embedded spanning tree f(7) inductively by joining the (i + 1)th point by a
geodesic arc to the nearest point on the spanning tree of the first i points (see [Bol,
Lemma 3.3.1]). We easily see the existence of some bound A(n). With some work, it
turns out to be linear in n. (Unfortunately, the argument of [Bol, Chapter 7] is not
guaranteed to give us an embedded tree in the case where X has dimension 2,
though I suspect this ought to be possible.)

We want a version of Lemma 2.4 which allows for the possibility of P
containing some ideal points:

LEMMA 2.5. Suppose P < X is a set of n points. Then, there is a spanning tree
(T, f) for P such that if s,t € T and o(s, t) is the arc joining them, then

length f(a(s, 1)) < d(f(s), (1)) + h(n),

where h(n) = O(log n) is the same constant as in Lemma 2.4.
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Proof. As remarked after Lemma 2.4, the case where P < X is already dealt with.

For a general P < X, we choose a sequence (P;) of subsets of X, each with n
points, and with P; tending to P. From the first part, we obtain a spanning tree (T}, f;)
for each P;,. We can imagine V,, = V(T) as a fixed set, with f;(v) tending to a certain
element f(v) € P, for all v € V. Thus, f: V,— P is a bijection. Now there are only
finitely many possibilities for combinatorial trees with extreme points V,. Thus,
passing to a subsequence, we can take T; = T to be a fixed tree. It now suffices to
define f(u) for all u € V,(T') = V(T)\V,. We shall take f(u) to be a limit point of the
sequence f; (#). However we do not want f(u) to be an ideal point, so we have to rule
out this possibility.

Suppose then, that u € V,(T). By definition, ¥ has degree at least 3. Choose
U1, Uy, U3 € V5 (T) so that no two lie in the same component of 7'\ {u}. In other words,
u€a; Na,Nay where o; = a(v;, v, ) and 3+ 1=1. From the construction, and
applying Lemma 1.3, we have f(a;) < N([f:(v;), f;(v;41)], p) for all ieN and
je{l1,2,3}, where p =¢(h(n)). In particular, f;(u) € V-, N(f;(v)), f;(v;+ 1)), p).
Now, as i — oo, we have f;(v;) - f(v;) and so the geodesic [ f;(v;), f; (v, .. )] converges
to [ f(v;), f(v;, 1)]. In particular, given any € > 0, then for all sufficiently large i, we
have fi(u) e N = i1 N(f(v)), f(v;+1)], p +€). Now, this intersection, N, is a
compact subset of X (see the discussion of “centres’ in [Bol, Chapter 3].) Thus,
passing to a subsequence, we have that f;(«) converges to a point f(u) € X.

We have thus defined f: V(T) - X.. We may extend f over T by sending each
edge e € E(T) to the geodesic segment [ f(?), f(u)] where ¢, u € V(T') are the endpoints
of e. Note that f; (e) converges to f(e), so the conclusion of the lemma may be verified.

O

Note that, in the above proof, we have f;(u) € hull(P;) for all i, and for all
u e V,(T). It follows, by Theorem 1.5, that f(«) € hull(P). Thus, f(T) < hull(P).

Proof of the main theorem

From now on, we assume that X has curvature pinched between —x? and —1.
The proof of Theorem 2.1 will combine the results of the last section with the convex
hull construction of Anderson [A]. The ideas behind this construction will be
described in Section 3. For the present section we just need to quote one direct
consequence, which is described in [Bo2].

We say that a closed set Q < X is K-quasiconvex if a geodesic joining any two
points x, y of Q remains within a distance K of Q, i.e. [x, y] € N(Q, K). In [Bo2] it
was shown that, in such a case, hull(Q) lies in a uniform R-neighbourhood of Q,
where R depends only on K and k. The idea is that if we are sufficiently far away
from a quasiconvex set, it will appear “small” as measured by the maximal angle
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subtended by two points in the set. Now Anderson’s construction may be used to
find a convex surface separating us from the set.

Now suppose Q < X is an arbitrary closed set. Recall the definition,
join(Q) = U{[x, y] = Xc | x,y € @}, thought of as a first approximation to the
convex hull. Now any two points of join(Q) can be joined by a piecewise geodesic
path in join(Q) with at most 3 geodesic segments. It follows that join(Q) is
(2 cosh—! ﬁ)-quasiconvex. We arrive at the following (described in [Bo2]):

LEMMA 2.6. If Q < X, is closed, then hull(Q) lies inside a o-neighbourhood of
join(Q) where o = a(k) is some fixed function of the pinching constant k.

(Although it is not explicitly stated in [Bo2], it is apparent from the construction
that ¢ is independent of the dimension v.)

Proof of Theorem 2.1. Suppose that (7, f) is the spanning tree given by Lemma
2.5. Thus f(T) < hull(P). Applying Lemma 2.3, we see that if s,¢e T, we have
[£(s), f(D)] = N(f(a(s, 1)), uy(n)) where u,(n) = 0(h(n)) = O(log log n). In particular,
we have join(P) < N(f(T), u,(n)). By Lemma 2.6, it follows that hull(P) <
N(join(P), o(x)) =< N(f(T), r,), where r, = a(x) + u,(n). This proves property (1).

To see Property (2), suppose s,t€ T and u ea(s, f). We can suppose that
u¢Vo(T), and so T\{u} is disconnected. Thus we can write T = T, U T, with
seT, and teT, and such that u € a(x, y) whenever x € T,, and y e T,. (Thus
T,nT,={u}.) Now, let B be any path joining f(s) to f(z) in hull(P). By contin-
uity and using Property (1), we can find some bef with d(b, f(T,)) <r, and
d(b, f(T,)) <r,. Thus, we can find xeT, and y e T, with d(b, f(x)) <r, and
d(b, f(y)) <r, (Figure 2c). By the construction of (7, /), we have that

length f(a(x, y)) < d(f(x), /() + h(n) < 2r, + h(n).

f(t)
f(s)

0wy

(1) (1)

Figure 2c
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Since u e€a(x,y), we have, without loss of generality, that d(f(u),f(x)) <
3(2ry + h(n)). 1t follows that d(f(u), B) <r, +3(2r, + h(n)) = 2r, +3h(n) = A(x) +
p,(n), where A(x) = 20(k) and p,(n) = 2u, (1) + 3h(n) = O(log n). O

3. Tubular neighbourhoods of geodesics

In this section, we describe a variation of Anderson’s construction of convex
sets. Specifically we are aiming at Propositions 3.4 and 3.5. These will be used in the
proof of Theorems 4.1 and 4.2.

As remarked in the introduction, a uniform neighbourhood of a geodesic
segment is always convex (by the convexity of the distance function, Lemma 1.3).
The problem for us is that, given a fixed radius, there is no upper bound on the
volumes of such neighbourhoods. Indeed the volume will be infinite if one of the
endpoints is ideal. To deal with this problem we will need to vary the radius along
the tube in such a way that convexity is preserved. Our basic building blocks will
be called “joints”. They are convex pieces used to connect together pieces of tube
of different radii. By choosing these radii appropriately we arrange that total
volumes remain bounded.

Basic observations

Recall that X has dimension v and curvature pinched between —k? and —1.
Given a closed convex set Q < X, we shall write 7 = n, : X — Q for the nearest
point retraction. This map is continuous (see for example [Bo2]). We shall write
vol, for the v-dimensional volume. For m = 0, we write 4(m) for the m-volume of
the unit sphere in euclidean (m + 1)-space (so that 4(0) = 2).

Let us begin by recalling some basic facts about hyperbolic v-space, H'. The
volume of a uniform r-ball in H” equals

Ay —1) e —Dr

A(v——l)J sinh*~ ! x dx <
0 v—1

The boundary of the r-ball is a totally umbilic surface with principal curva-
tures equal to coth r. Suppose x, y are distinct points of H}. Let n be the nearest
point retraction of HY to [x, y]. Suppose a, b € [x, y] n X, and let / = d(a, b). Then,
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for all r >0,

vol,(N([x, y}, r) nn~Ya, b)) = l4(v — 2) J sinh” ~ 2 x cosh x dx
0

= 140 = 2) sinh” ~ ! r.
v—1

The boundary JIN([x, y], r) has one (longitudinal) principal curvature equal to
tanh r, and all the remaining principal curvatures (in the radial directions) equal to
coth r.

From these observations, we obtain bounds on the corresponding quantities in
X. These may be proven by standard arguments, using Jacobi fields and the Rauch
Comparison theorem (see [CE]). Thus, the volume of a uniform r-ball in X is at
most [4(v — 1)/k*(v — 1)] e~ ", Also the principal curvatures of a sphere of
radius r lie between coth r and « coth xr. Suppose that x, y € X;, and = : X —[x, y]
is the nearest point retraction. Suppose that a,b e[x, y}nX and [/ =d(a, b) and
r > 0. Then,

1A(v — 2)

m sinh” ! kr.

vol,(N([x, y], r) nn~Ya, b)) <

Also, the principal curvatures of dN([x, y], r) all lie between tanh r and « coth xr.
Note that for any a e[x, yJn X, the preimage n~'(a) is a properly embedded
codimension-1 submanifold — the image of a subspace under the exponential map
based at a.

The following may also be proven by comparison with hyperbolic space.

LEMMA 3.1. Given K >0, there is some | =1(K) >0 so that the following
holds. If x, y € X, are distinct, and nn : X —[x, y] is the nearest point retraction, then
Sfor all p,qeX with d(p,q) <1, we have that d(n(p),n(q)) < Ke™", where r =
min(d(p, [x, y)), d(g, [x, y])). O

A variation on Anderson’s construction

We now describe the idea behind Anderson’s construction. Given x € X, we
write T, X for the tangent space to X at x. We write T.X < T, X for the unit tangent
space at x. Given &, (e T X, we write (£, () and |£| for the riemannian inner-
product and norm respectively.
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Given a smooth function ¢ : X - R, we write grad ¢ for the gradient vector
field, and write D?¢ for the second derivative of ¢. Thus, if & { € T, X, we have

D*¢(&, ) = D*P(, &) = (¥, grad ¢, { ). We write
|D2¢(x)| = max{|D>$(x)(¢, &) |¢ € ToX}.

Suppose that Q = X is closed and convex. Define p =p, : X —[0, c0) by
p(x) =d(x, Q). Thus pis C', and |grad p| =1, on X\Q (see [BaGS]). Let us assume
that p is smooth on X\Q. (This is always true in the cases that interest us, for
example if Q is a single point or a bi-infinite geodesic. In fact it is enough to assume
that p is C2.) The boundaries of uniform neighbourhoods of Q are level sets of p.
We aim to join together pieces of such level sets by convex surfaces, obtained from
perturbations of p. Our goal, in this regard, is Lemma 3.3.

Now, D?p(x)(&, grad p) =0 for all £ e T, X, and D?p(x) restricted to the sub-
space (grad p(x))* =ker dp(x) gives us the second fundamental form of the
surface dN(Q, p(x)) at x. Since IN(Q, p(x)) is strictly convex, the second fundamen-
tal form is positive definite. It follows that if e T.X, then D?p(x)(&, &) 2
(1 —{¢, grad p »*)m(x), where m(x) is the mimimal principal curvature of
ON(Q, p(x)) at x. In fact, using the Jacobi field equation, we find that always
m(x) = tanh p(x). We shall only need this result here in the case where Q is a
bi-infinite geodesic, which we described above.

Now, suppose that we have a map ¢ : X - R which is continuous on X, and
smooth on X\ Q. Suppose that y(x) < 0 for all x € 0, and that {grad , grad p) >0
everywhere on X\Q. Given r >0, let M(r) =y ~'(— o0, r]. Then M(r) is a con-
nected submanifold of X with smooth boundary dM(r) = ~'(r), and containing Q
in its interior. We may compute the second fundamental form of OM(r) at
x €O0M(r) as (1/|grad Y(x))D*y(x) restricted to ker dy(x). Thus, M(r) will be
convex if D%J(x) is positive definite on ker di(x).

We shall take y to be a perturbation of p. Thus = p — e¢¢p where ¢ =0, and
¢ : X - [0, 1] is smooth, and satisfies |grad ¢| < ¢, and |D?*¢| < ¢, where ¢, and c,
are constants. If € < 1/c,, then (grady, gradp) 21— c,e >0 on X\Q. Suppose
r>0, and xedM(r). Then p(x)=2y(x)=r. If Eeckerdy(x)nTLX, then
K¢, grad p)| < c;e <1, and so D?p(x)(&, &) = (1 —(c,€)®)m(x). Thus D2Y(x)(, &)
2 (1 = (c;©)®»m(x) — c,e. Therefore, given that m(x) = tanh p(x) > tanhr, the
manifold M(r) will be convex provided that c,e < (1 — (c,€)®)tanh r. Note that

N(Q,r) = M(r) < N(Q,r +¢),
and that

OM(r) n ¢ ~'(0) =aN(Q,r) N ~'(0)
OM(r) A~ 1(1) = ON(Q, r + €) " ~(1).
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The following lemma gives us a suitable perturbation, ¢.

LEMMA 3.2. Given any | > 0, there exist constants c,, ¢,, n > 0, depending on [
and x, such that for all p € X, there is a smooth map ¢ = ¢, : X -0, 1] such that
|grad ¢| < ¢, and |D?¢| < ¢, everywhere, and such that ¢(x) =0 if d(x, p) <n and
¢(x) =1if d(x,p) 21 —n.

Proof. Let p, be defined by p,(x) =d(p, x). Thus p, is smooth on X\{p},
and we know from the above discussion that |D?p,(x)| < k coth kp,(x). Choose
any 1 <I/2, and some smooth function g : [0, o) —[0, 1] such that g|[0,n] =0,
g|ll —n, ) =1 and such that, for all r 20, |g’(r)| 2 ¢, tanh kr and |g"(r)| < cs,
where ¢, and c; depend only on x and /. Now let ¢ =¢,=gop,. Then
lgrad ¢(x)| < |g’(p, ()| < ¢, and  [D?()| < |g"(p,(x)| +|g'(0, ()| |D?p, (x| <
3+ Kep = ¢,. O

Let’s return to our discussion with Q € X closed and convex, and with
p(x) =p(Q, x) smooth on X\Q. Given r >0, we choose ¢=0 so that
¢, < (1 —(cie)®)tanhr. Given p € X, write Y, =p —e¢,. We see that M, (r,¢) =
Y, '(— oo, r] is convex. Suppose we have 4 < ON(Q, r +¢) and B < ON(Q, r) both
closed, and such that d(4, B) = Set Mg(r,€) = (\,c 5 M,(r,€). Then My(r, €) is
convex, and

N(Q,r) € Mg(p,e) = N(Q, r +¢),
and

OMg(r,e)nN(A,n) =0N(Q,r +€)nN(4,n)
OMg(r,e) "N(B, n) =0N(Q, r) nN(B, n).

The construction given in [A] takes Q to be a single point. Here, we take Q to
be a bi-infinite geodesic.

LEMMA 3.3. For all k > 0 there is some 6 = d(x, k) such that the following holds
(Figure 3a).

Suppose x, y € X, are distinct. Let n : X —[x, y] be the nearest point retraction.
Suppose r > 0, and that a, b € [x, y] n X with b €[a, y] and d(a, b) = k e . Suppose
that r < R <r + 6 tanh r. Then there is a convex set M < X such that

N([x, yl.r) € M = N([x, y], R),
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BN([x,y{,R) \z N([xyl.r)
B D §
- 3 b %y
I
~a1(a) ~ax"(b)
Figure 3a

and

OMnNU=0N([x,y], ) nU

OM NV =0N(x,yl,r)nV,

where U, V are, respectively, neighbourhoods in X of the sets ON([x, y], R) nn ~'[x, a]
and ON([x, y], r) nm~'[, b].

Proof. Given k > 0, let I = I(k) be the constant of Lemma 3.1. Given this, let ¢,
and ¢, be the constants of Lemma 3.2. Choose § > 0 so that ¢, < 1—(c,6)2 Thus,
0 depends only on k and k. Now suppose that x,y,a,b,r, R are as in the
hypotheses. Let e =R —r <dtanhr <. Thus ce <(1—(ce)®)tanhr. Set
Q =[x, y] and let 4 =3dN(Q, R) nn~'[x, a] and B = dN(Q, r) nn ~'[y, b]. Thus, by
Lemma 3.1, we have d(A4, B) 2 1. Set M = Mg(r,¢), U= N(A4,n) and V = N(B, n),
where # comes from Lemma 3.2. The result follows from the above discussion.

O

Given x, y,a,b,r, R as in the hypotheses of Lemma 3.3, we shall write
J(a, b, R,r) = M nn'[a, b], where M is the convex set thus constructed. We may
think of J(a, b, R, r) as a “joint” used to connect two tubes of unequal radii. Write
0oJ(a, b, R, r) =0M nn~'[a,b]. Since J(a,b, R,r) = N(x,y], R)nn~a,b], we
have

Alv =2
vol, J(a, b, R, r) < d(a, b) ;T_—g;(—v—__)]—)

sinh” ! kR.

(Recall that A(v — 2) is the volume of (v — 2)-sphere.)
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Application to the construction of long thin tubes

Suppose that x,y € X,, and pe[x,y]nX. Let H=n"![x, p]. (Thus H is the
image of a half-space under the exponential map based at p.) We construct a convex
set containing H U[x, y] by stringing together a bi-infinite sequence of joints as
follows.

For convenience, set k = 1, and let 6 = d(x, 1) be the constant given by Lemma
3.3. Let c=tanh 1, and n =cé. Let L =1/(1 —e~"). Note that tanh r > cr for
r€[0, 1] and tanh r 2 ¢ for r €[1, o0).

We form a bi-infinite sequence (q;)2 _ . of points of [p, y], with q,, , €[a;, y]
for all i, as follows. We set a, €[p, y] to be the point such that d(a,, p) = L, and
demand, for all i 2 0, that d(a;,a;,,) =1 and d(a_;, ), a_;) = e~ ". Note that as
i — o0, we have g, -y, and, since L =X ,d(a_;,a_, 1)), we have that a_, - p.

For i20, set r,=(14+#n)"" and r_,=1+ni. Thus, r,,,<r; for all i
If i20, then r;—r,, =n(1+n)"Y*V=nr,, ,=06(r;,,) <dtanhr,, , and 1=
da;,,,a;) 2e "i+1, Thus, by Lemma 3.3, we can construct the joint J,=
J@a;, a;y\,1i,r; o). We also have that r_,,,y—r_,=n=0dc <dtanhr_;, and
da_giy,a_;)=e M"2e 0+M=¢="-i Again, by Lemma 3.3, we construct
J_ ey =J@_ 41,8 i T_y1)s T—)-

Let J=Hu 2 _.J; (Figure 3b). Thus, J, is connected, with boundary
oJ = U 0oJ;. We see that, for all i, the boundary o0J agrees with

= —00

/
Zk
ZK
A
; N L (i+1)
7 -
7 TE
HZ/ r N
28-(&1) ¥ \‘_[x_\____\ 3,
%p = J a1]' a 2 e WL_—‘ —————— =
. y IS —=-=-
2 o‘ —————— :/L/_D\alﬂ '
7] Lo ’
7 -1
//// s
/
s
)
/

Figure 3b
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ON([x, y], r;) on some neighbourhood, U, of dN([x, y], r;) nn~'(a;), i.e. 8JnU =
(0gJ; W 0yJi_ 1 )NU =0N(x, yl,r;) nU. Since convexity for a connected set is a
local property, we see that J is convex. Clearly H u[x, y] < J.

For i 20, we have

ALy —2) sinh” ~ ! kxr

l,J £ —ie "
VoL Ji k' lv—1) !

Now, r,=(14+#n)"'<1, and so

sinh* “'xr, <r!7'sinh" "'k =(14+#n)"“ " Dsinh’"~'k.

Thus
A(v —2) [sinh k\* ! )
VOl‘,J,-g (V )<51n K) (1+,1)—(v—1)1,
v —1 K
and so

vol,(J nm~'[ag, y]) = >, vol, J;

i=0

<A(v——2) sinh k\" ! 1
ov—1 K 1—(1+#)~-¢-"Y

which is finite, and a function only of v and «.

Similarly, for any fixed i, 20, we have that vol,(Jnzn~'[a_,,a)) =
= ,vol, J_,, which is bounded by some function of v, x and i,. Note that given
any q €[p, y]\{p}, we can find some iy, such that g €[p, a; ]. This i, depends on «
and d(p, q). We conclude:

PROPOSITION 3.4 (Figure 3c). Given any (>0, there is some constant
K(v, k, {) such that the following holds. Suppose that x, y € X, are distinct points, and
that p, q €[x, Y] 0" X with q € [p, y] and d(p, q) =2 (. Let n : Xc —[x, y] be the nearest
point retraction, and let H = n~"[x, p] and Hy=n""[q, y]. Then,

vol,(Hynhull(H u {y})) < K(v, x, {). O
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ahull (HU{y })

VWI =y

~8H,

)

©
0

T
AOOMOMUNONONONNONNONV RSNSOI

Figure 3c

In fact, we see that K(v, x,{) -0 as { - .
By a similar argument, we arrive also at the following:

PROPOSITION 3.5 (Figure 3d). Given any { >0, there is some constant
K’ = K'(v, k, {) such that the following holds. Suppose that x, x’ € X, and p, q,p’, q
€[x, x']"X are points occurring in the order xpqq’'p’y along [x,Xx’], so that
dp,q)2¢ and d(p’,q)=2(. Let H=n"'x,p], H =n"'[x,p] and
Hy=n""[q, q’]. Then,

vol,(Hynhull(H U H")) < K'(v, &, {). O

For notational convenience, we set K'(v, k, {) = K(v, k, {). (Thus, Proposition
3.4 may be regarded as a corollary of Proposition 3.5.)

7

dhull(HUH')

)

X

-ov
i)

70 q;;?’

N
T T T
T

Ho

Figure 3d
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4. Boundedness and continuity of volume

The first result of this section is the fact that convex hull of finite sets have finite,
indeed bounded volume:

THEOREM 4.1. Given n € N, there is some constant C(v, k,n) such that if
P = X is a set of n points, then vol, hull(P) < C(v, k, n). Moreover, for fixed v and
K, C(v, k, n) is bounded by some polynomial in n.

We also note that, for fixed v and n, C(v, k, n) can be assumed continuous in x.
As far as I know, it may be possible to remove dependence on « altogether, though
I suspect not.

The second result of this section shows how these volumes vary continuously.
Let P ={p,,...,p,}. Thus P, and hence hull(P) vary continuously in (p,, ..., p,)
€ X¢. In proving Theorem 4.1, we will effectively show that most of the volume of
hull(P) lies inside a certain compact convex set. Usually this set can be chosen to be
locally constant. The only problem arises if two vertices p;, and p; converge on the
same ideal point. Let A be the set of (p,,...,p,) € X% such that for two distinct
i,je{l,...,n}, we have p, =p; € X].

THEOREM 4.2. The map from X¢ to [0, o©) which sends (p,,...,p,) to
vol, hull{p,, ..., p,} is continuous on X\ A.

Proof of boundedness of volume

The ingredients we use for Theorem 4.1 are the existence of a spanning tree
(T, f) with the property that length f(a(s, )) < d(f(s), f(#)) + h(n) for all s,teT
(Lemma 2.5), together with the fact that for such a tree we have hull(P) <
N(f(T), r,(x, n)) (Theorem 2.1). If we want the polynomial bound, we need that
h(n) = O(log n) and that r,(k, n) = A(x) + p,(n) where u,(n) = O(log n). (We know
that u, (n) = O(log log n).) I suspect that, in fact, C(v, k, n) is always bounded by a
linear function of n.

Given such a spanning tree, (7,f), we write V(T) = V,(T)u V,(T), where
Vo(T) is the set of extremal vertices, and V,(T) is the set of internal vertices. Thus,
f(Vo(T)) = P. We write E,(T) for the set of extremal edges, i.e. those incident on
some vertex of Vy(T). We write E,(T) = E(T)\Ey(T) for the set of internal edges.
We have |Vo(T)|=|Eo(T)|=n and [V(T)|<n—2 and E(T) <n-3.

The proof of Theorem 4.1 is based on the observation (Lemma 4.5) that hull(P)
lies inside a certain neighbourhood of f(T') which consists of uniform balls about
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each internal vertex, together with tubes along each of the edges. The volumes of
these tubes are bounded by the results of Section 3. The balls about the vertices can
be taken to have radii O(log n) which gives us our polynomial bound on C(v, k, n).

We assume that # > 3. Suppose that e € E,(T) with endpoints vy, v, € V,(T).
Any point in the interior of e divides T into two components, 7, and T,, with
v;eT,. Let W, =T,nVy(T) and P, =f(W;). Thus P = P,u P,. Let © : X — f(e) be
the nearest point retraction to f(e) =[f(v,), f(v,)].

LEMMA 43. Ifee E\(T), and vy, v,, P,, P,, T are as above, then d( f(v,), n( p))
< h(n) for all pe P;, and i =0, 1.

Proof. Let p = f(w) where we W,. Let n(p) =f(u) where u € e. Suppose first,
that peX. By the definition of =, we have d(f(w),f(u)=d(p,n(p)) <
d(p, f(v;)) < length f(a(w, v;)). By the construction of (7,f) (Lemma 1.5), we
have length f(a(w, u)) < d(f(w), f(w)) + h(n). Thus d(f(v;), n(p)) = d(f(v;), f(W) =
length f(a(w, u)) — length f(a(w, v;)) < h(n). The case where p =f(w) € X, can be
dealt with by taking a sequence of points w; € T\{w} tending to w. O

By a similar argument, we have:

LEMMA 4.4. Suppose e € Ey(T) is incident on ve V,(T) and w € V(T). Then
d(f(v), n(p)) < h(n) for all p € f(Vo(T)\{w}). L

Now suppose e € E(T). For any { =20, we define S(e,{) to be a (possibly
empty) closed segment of f(e) as follows. If e € E,(T), incident on v, w € V(T),
let S(e, () ={xefle) |dx{f(t),f(W)}) = h(n) +(}. Thus, by Lemma 4.3,
d(S(e,0),n(p) =2 for all peP. If eeEy(T), incident on ve V,(T) and
we Vo(T), let S(e, ) ={xefle)|d(x,f(v)) = h(n) +{}. Thus, by Lemma 4.4,
d(S(e, {), n(p)) =2 for all pe P\{f(w)}. In either case, set G(e, {) = hull(P)n
n = '(S(e, {)). Applying Propositions 3.4 and 3.5, we find that

vol, G(e, {) < K(v, , {)

for all e € E(T).

For the proof of Theorem 4.2, we will need to note that, given any ¢ > 0, we can
assume that G(e, {) lies inside a c-neighbourhood of f(e), provided { is sufficiently
large depending on ¢ and «.

We now come to the result that confines the convex hull to a union of balls
and thin tubes. Let R = R(k, n) =r,(x, n) + h(n) = A(x) + u,(n) + h(n) = A(x) +
O(log n).
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LEMMA 4.5. For any { >0,

hullP)= |J N/, R+DuU |J G ).

ve V(T) ee E(T)

Proof. Suppose x € hull(P). Let y € f(T) be a nearest point in f(T) to x. We
thus have d(x, y) < r,. Now, y e e for some e € E(T). If y € S(e, {), then x € G(e, {).
If y € f(e)\S(e, {), then, by definition of S(e, {), there is some v € V;(T), incident on
e, so that d( f(v), y) < h(n) + (. Thus x € N(f(v), R + (). O

Proof of Theorem 4.1. For the proof, we take { = 1.
In Section 3, we gave an upper bound for the volume of a uniform ball. Thus,

vol, N(f(v), R+ 1) < 40 -1 e~ DRem +1) — B(y, k, n).
K'(v —1)

From the form of R(k, n), we see that, for fixed x and v, B(v, k, n) is bounded by
some polynomial in n. By Lemma 4.5, we have that

vol, hull(P) < |V (T)|B(v, k, n) + |E(T)|K(v, k, 1)
<(n-2)B(v,k,n)+(2n —3)K(v, k, 1)
= C(v, k, n).

For fixed v, k, we see that C(v, k,n) is bounded by a polynomial in n. This
concludes the proof of Theorem 4.1. O

Proof of continuity of volume

To prove Theorem 4.2, we need to observe that the boundary, dQ of a convex
subset O = X has zero Lebesgue measure. (Note, for example, that the Lebesgue
density of Q at any point of dQ is at most 3.) Thus, if Q is compact, we can choose
n >0, to make vol, N(0Q, n) arbitrarily small.

We shall also need the following lemma, which will confine most of the volume
of a convex hull to a certain bounded set.

LEMMA 4.6. Suppose A,,...,A, are closed subsets of X, satisfying
X,nA;nA;= if i #j. Then there is a compact convex set M <X with the
following property. Suppose P ={p,,...,p,}, with p,€ A; for all i, and suppose
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(T,f) is a spanning tree for P satisfying the same criterion as that of Lemma 2.5,
(namely length f(a(s, 1)) < d(f(s), f()) + h(n) for all s,t € T). Then, f(v) e M for
each internal vertex v e V,(T).

Proof. Suppose v separates the three extremal vertices v;, v;, v, € Vo(T), so that
Py =f(v,) €A, for ae{ij, k}. As in the proof of Lemma 1.5, we see that
f() e N(Lp:i> ;) ) O N([p)> pel, p) "N N([ps pi), p) for some fixed p >0. Now this
intersection is bounded. Moreover, as p;, p;, and p, vary in A;, A; and A4,
respectively, these intersections are all contained in some bounded subset, D(i, j, k)
of X. (This is an elementary consequence of Gromov hyperbolicity of X — see [Gr]
or [Bol].) Now choose some compact ball M, which contains the sets D(i, j, k) for
all distinct 4, j, k € {1,...,n}. O

Proof of Theorem 4.2. Suppose (p;,...,p,) € X¢\A, and ¢ > 0. Choose { >0
so that K(v, k, {) <e/4n, where K(v,k,{) is the constant in Proposition 3.4.
Choose neighbourhoods 4; of p; so that X;nA,nA,=F if i #j. Let McX
be the compact convex set given by Lemma 4.6, and let M = N(M, R +{)
where R = R(k,n) is the constant of Lemma 4.5. Choose n >0 so that
vol, N(6(M’ nhull(P)), n) < €/2. By continuity in the Hausdorff topology (Theorem
1.5), we can assume (shrinking the A, if necessary) that if ;e 4, fori=1,...,n,
then hd(d)(M’ nhull(P), M’ nhull(Q)) <7, where Q@ ={q;,...,q,}. (Note that
Theorem 1.5, refers to a different metric on X, so we need to observe that any
two metrics induce the same uniformity on the compact set M’). So, by Lemma
1.7, hd(d)(@(M’ nhull(P)), d(M’'nhull(Q))) <, and so |vol, (M’ ~nhull(P)) —
vol,(M’ nhull(Q))| < ¢/2.

Now, let (7,f) be a spanning tree for P. By Lemma 4.5, we have
hull(P) € U,e vy N(f @), R+ ) U U c gy Gle, ). By Lemma 4.6, if ve V,(T),
then f(v) e M, so N(f(v), R+ ) € M. If e is an internal edge of T, then it follows
that f(e) = M, so, from the remarks following Lemma 4.4, we can assume that
G(e,{) = M’. Thus, hull(P)\M’ < U, c g, 1) G(e, (), where Ey(T) is the set of
extremal edges of T. So, vol,(hull(P)\M") < nK(v, k, {) < n(c/4n) = ¢/4.

Now exactly the same argument shows that vol,(hull(Q)\M’) < ¢/4. Putting
these facts together, we see that |vol, hull(P) — vol, hull(Q)| <. O

5. Appendix

In this appendix, we give a brief discussion of the case of constant negative
curvature. In this case, we can use a different technique to obtain a linear upper
bound on volumes. '

Let H* be v-dimensional hyperbolic space (of constant curvature —1). We can
define a (closed, convex, finite volume) polytope in Hy. as the convex hull of a finite



Geometry of convex hulls 79

set of points. Given such a polytope, I1, there is a unique minimal such finite set,
which we refer to as the set of vertices, vert(IT), of I1. Thus vert(IT) is the union of
I nHj and the set of extreme points of IT n"H'. We shall write f;(IT) for the
number of i-dimensional faces of II.

THEOREM 5.1. For all v, there is a constant c(v) > Q such that if I cH is a
polytope with n vertices, then vol, Il < nc(v).

Before beginning the proof, we make some general observations. We shall
assume that all polytopes have non-empty interior.

Suppose 2~ < Hf is a v-simplex (i.e. f,(2) =v + 1). Then, it’s not hard to see
that the volume of 2 is bounded in terms of the dimension, v. In fact it’s known
[HM] that vol, X is maximised precisely when X is a regular ideal simplex, X. Such
a simplex X§ is unique up to isometry.

Now suppose that IT < H. is a polytope with f,(IT) =n, and with non-empty
interior, int I1. By subdividing, we can assume that all the codimension-1 faces of
I1 are simplices. By choosing an arbitrary point v, € int I1, and coning on v,, we
obtain a subdivision of IT into f,_,(II) simplices of dimension v. Obviously,
f,—1(IT) < (%) and so this immediately gives us an upper bound for vol, IT which is
polynomial in n. In fact, the solution of the Upper Bound Conjecture (see [MS])
gives a sharp upper bound for f, _,(IT) which is O(n""?)) where [v/2] is the integer
part of v/2. Thus for v < 3, we get a linear bound. (This also follows directly from
Euler’s formula.) The 3-dimensional case is discussed in [SITT]. In higher dimen-
sions, we need to do some more geometry.

Suppose £ < H{ is a v-simplex. Let E(X) be the set of edges of X, i.e. closed
1-dimensional faces. Suppose x € X is an interior point of some e € E(X). Let
Q(Z, x) be the set of unit normal vectors to e based at x which point into the
interior of 2. Let @(Z, ¢) be the (v — 2)-dimensional spherical Lebesgue measure of
Q(Z, x). This is the “solid angle” of 2 in e. It is independent of the choice of x.
(Thus if v=23, then ©(Z,e) is the dihedral angle.) Given v evert(Y), let
E(Z,v) < E(Z) be the set of edges incident on v (so that |E(Z,v)|=v). Let
P2, v) =2, c gz O, €).

LEMMA 5.2. Given v, there is some k(v) > 0 such that if 2 < H is a v-simplex,
and v € vert(X), then vol, X < k(v)®(Z, v).
Proof. Since |J E(Z,v) < X is starlike, and 2 = hull( | E(Z, v)), we have some

universal constant r > 0 such that

ZeNWUEZ,v),n= |J N,n.

ee E(Z,v)
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(Note that a starlike set is quasiconvex — for example, since any two points are
joined by a path consisting of at most two geodesic segments.)

Fix, for the moment, some e € E(Z, v), and x in the interior of e. Any unit vector
£ eQ(Z, x), together with e, determines a 2-plane o which intersects X in a
hyperbolic triangle. Given u > 0, let I(¢, u) be the length of the arc 6 N2 N N(e, u).
We may obtain the total volume of X nN(e,r) by integrating the quantity
(&, u) sinh” ~ 2 y first in u from 0 to r, and then with respect to spherical Lebesgue
measure, as ¢ varies over (2, x). Now, we may bound j{) I(&, u) sinh’ ~* u du
independently of £ as follows. Note that /(¢, u) < L(u), where L(u) is the length of
the boundary of the u-neighbourhood of an edge in a hyperbolic ideal triangle 232.
Thus [ L(u) du = vol, £ =7 < o0, and so k(v) = [; L(u) sinh® =2 u du is finite. We
deduce that

vol,(Z N N(e, r)) <k(v)O(Z, e).
Finally, summing over all e € E(Z, v), we obtain
vol, 2 <k(v)®(Z,v). O

Proof of Theorem 5.1. Let II be a polytope with n vertices and non-empty
interior. We subdivide IT into a set & of v-simplices, by coning over an arbitrary
vo€int I1, as described above. In this triangulation, there are precisely n edges
(1-cells) incident on v,. If e is such an edge, then

Y O, e)=A>v -2),

ZeF(e)

where & (e) € & is the subset of those simplices which have e as an edge. Summing
over all edges incident on v,, we obtain

z D(Z, vy) =nd(v — 2).

e

Applying Lemma 5.2, we obtain
vol, IT < nc(v)
where c(v) = k(v)4(v — 2). ]

Certainly, we cannot do better than a linear bound. I don’t know what is the
best multiplicative constant in dimensions greater than 3. In dimension 3, the best
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such constant is twice the volume of a regular ideal 3-simplex (2 vol; 23 =
2 x 1.01494 . . ). In other words, the maximal volume of a polytope with n vertices,
divided by 2n vol, X3, tends to 1 as n tends to co.

Note that, in dimension v =2, the same method of subdivision works with
variable curvature, since convex hulls are always polygonal. Here, the lower
curvature bound is irrelevant, and we obtain a best multiplicative constant of
vol, 22 =,
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