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A regularity criterion for positive weak solutions of —Au = u”*

F. PACARD

1. Introduction

Let Q2 be an open of R”, in this paper we want to study the regularity of positive
weak solutions of

—Au = u*, (n

where o > 1 and u € L*(Q).
We only assume that u is a solution of (1) in the sense of distributions, i.e. for
every ¢ € € *(£2) with compact support in Q, we have

j Adp(x)u(x) dx = — J d(x)u*(x) dx.
Q Q

The fact that we have assumed that the solution u is positive is crucial. Obviously,
weak solutions of (1) have no reason to be regular on all of Q and examples of
singular solutions are given in [1], [2] and [S5].

Define S to be the set of points x € 2 for which u is not bounded in any
neighborhood V of x in Q. Let us notice that if u, solution of (1), is bounded in a
neighborhood of a point x, € Q, then the classical theory of regularity shows us that
u is in fact regular in a neighborhood of x,. With this definition, § the set of
singularities of u, is a closed subset of €.

The problem is to determine the structure of S. This structure can be very
complicated as the recent work of R. Schoen and S. T. Yau [8] shows in the case
of the critical exponent a = (n + 2)/(n — 2).

A reasonable conjecture seems to be the following:

The Hausdorff dimension of the set of singularities is less than or equal to

2 if o >
"Ta 1 T n-2
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Let us notice that in the case where a <n/(n — 2), a classical bootstrap argu-
ment shows that weak solutions of (1) are in fact regular.
For u € L'(Q), we define the map I, _,u(x) : Q >Ru{+ o0} by

I, ru(x)= L T):—_Ll‘(}xlz,:i dy.

Multiplied by a suitable constant, I, _,u is nothing else than the Poisson kernel of w.
We can now give the principal result of our paper:

THEOREM 1. For o 2 n/(n —2), let u be a positive weak solution of (1) and
suppose that the map I, _,u*~': Q —>Ru {+ o0} defined as above is continuous from
Q into Ru{+ c0}. Then the Hausdorff dimension of the singular set of u is less than
or equal to n — 2a /(o0 — 1).

Let us emphasize that we allow I, ,u* 2 to take infinite values.

2. Intermediate results

The result given in the first part is an easy corollary of some stronger results that
we give just after this definition:

DEFINITION 1. Let f: Q2 > RuU{+00}. We define the jump of f at the point
x € Q by

S(f)(x) = lim f(y) — lim f(y).

yox y-x

We add the following convention: If lim, , . f(y) = 4+ oo, then S(f)(x) =0.
We can now state our ¢-regularity result:

PROPOSITION 1. Let o = n/(n — 2). There exists a constant ¢, > 0 such that for
any positive weak solution u of (1) the following holds:

If

S(In — 2u1_ ])(x) % 605

In—Zuxﬁl(x) < +wa
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and if
— 1
lim ——7] u*(y)dy <e¢,
R—bORL B(’(,R)

then u is regular in a neighborhood of x.
Using this proposition we prove:

COROLLARY 1. Let a 2 n/(n —2) and let ¢,>0 be the constant given in
Proposition 1. Assume that for all x € Q there holds S(I, _,u* ')(x) < ¢,. Then the
Hausdorff dimension of the singular set of u is less than or equal to n —2u /(e — 1).

Notice that if we assume, as in Theorem 1, that the map

I, _u* "1 Q->RU{+o0}
is continuous from Q into Ru {+ oo}, this implies that for all x € Q, there holds
S, _,u* ")(x) =0. Thus Theorem 1 is a consequence of Corollary 1.

3. Proof of the results
The proof of the results is divided in a series of lemmas in order to simplify the

reading.
The first lemma is an easy estimate that has already been used in [6]:

LEMMA 1. Let u be a weak solution of (1) on Q. Then for almost every x € Q
we have the estimate

1 I u*(y)
| +-—————j 2,
w,r JB(\‘. r) n(n - 2)0)" B(x,r) lx - yl 2

where w,, is the volume of the unit ball of R" and r < dist (x, 09).

u(x) <

Using the fact that u is a solution of (1), we can write for almost every x € Q

d/ 1 rofr
— u(y)deo +—— | (12~ "—s2" ([ u” da)dt)=0.
(], a5 K ([, wo
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Integrating from s to s” we derive the following formula

1 1 s
"#'J' u(y)da—}-———J‘ (tz'"—sz")(f u°‘(y)da>dt
s 2B(x. 5) n—2J, aB(x. 1)
1

1 s
= /n—lJA u(y)da+———f (lz‘"—s’z‘")(J u“(y)do)dt.
s éB(x, 5) n—2J, OB(x, 1)

Passing to the limit when s” goes to 0 we obtain the estimate

1 sn! u*(y)
u(y)da+——————f BLAS/ S
hw, LB(x, D) n(n - z)wn B(x, 5) IX - y' g

Then we integrate this inequality on (0, r) in order to obtain the inequality of
Lemma 1.

Multiplying the inequality obtained in the last lemma by u*~ '(x) and integrat-
ing on the ball of center x and radius r we obtain the lemma:

s" 7 lu(x) <

LEMMA 2. Let u be a positive weak solution of (1) on 2, then there exists a
constant c, > 0 such that for any x € Q and for any sufficiently small number r > 0 we
have

1 1 af(x— 1)
uX(y)dy < ¢ {( u* () dy)

]B(x, ")’ B(x,r) lB(x, 2")1 B(x, 2r)

1 u*~'(2) ) }
T — u* ———dz }dy }.
|B(x9 2")! L(L 27 ) (L(y, 2r) |Z —y"? g

If we apply now the Proposition 1.1, page 122 of [4], we obtain the following
reverse Holder inequality:

LEMMA 3. Let u be a positive weak solution of (1) on Q and assume that there
exists some Ry, > 0 such that for all x € Q with dist (x, 02) < R, we have

u*~! 1
j (y)zdy<_
B

(x. Rg) lx—y‘”_ 2¢y’

where ¢, is the constant given in the last lemma. Then there exist f > o and a constant
¢, > 0 such that for all x € Q and for all r < Ry/2 we have

1 /B 1 1/x
u? d}sC{____mJ u“(d}.
{|B(xa r)' B(x, r) (y) y l IB(X, 27')! B(x, 2r) y) 4
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We now make the following assumption on solutions u of (1):

(H) There exists some R, > 0 for which

for all x € Q.
Under the hypothesis (H) we can prove the lemma:

LEMMA 4. There are some constants 0 € (0, 1) and ¢, >0 such that, for any

positive weak solution u of (1) satisfying (H), any x € Q and any R < R, for which

dist (x, 0Q) > 2R,

the following holds. If

j u*(y)dy < e3R*,
B(x. R)

where A =n — 2o /(a — 1), then

1 11
o u*(y) dy S———j u*(y) dy.
(6R) * Lw 0R) Y 2R* B(x. R)

We prove this lemma by contradiction. Let us assume that, for some suitably

chosen 0 > 0, there exists a sequence ¢, >0 going to 0, a sequence u, of positive
weak solutions of (1) satisfying (H), a sequence of points x, € 2 and a sequence of
radii R, < R, such that

dist (x,, 0Q) < 2R,,

1
(6R,)* B(x,. R,0)

un(y)dy 2 €;/2

and

Y un(y) dy = €.
R} jB(x. R,) .
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Define v,(x) = RY“~ Yu,(x, + R,x) and notice that v, is a weak positive solu-
tion of (1) on B(0, 2).
Moreover, the following estimates hold

1
i va(y)dy 2 ¢; /2
0~ B(O, 6)

and

J va(y)dy =¢€;.
B, 1)
In addition, from (H), for all x € B(0, 1), we have the inequality

oa— 1 1
J LN (ny_)z dy < —.
B(x, ) lx _yl 2¢q

Thus, the reverse Holder inequality that has been proved in Lemma 3 holds for
the sequence v, on B(0,1). We deduce from this that the sequence w, =v, /¢, is
solution of the equation — 4w, = ¢%~ 'w? and satisfies

/B 1/a
U wi(y) dy) <¢ (J wi(y) dy) :
B(0, 1/2) B0, 1)
1

wh(y)dy 21/2

6+ B, 6)

and

j wa(y)dy = 1.
B0, 1)

The sequence w, being bounded in L#(B(0, 1/2)) and in L*(B(0, 1)), we can take
a subsequence, that we will still denote by w,, such that

w, — w strongly in L'(B(0, 1)),

w, — w almost everywhere in B(0, 1),

w, —w weakly in L*(B(0, 1)),

w, — w strongly in L*(B(0, 1/2)).
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Let us notice that, passing to the limit in the equation satisfied by w,, we get

Aw =0 in B(0, 1) and also w = 0.
Passing to the weak limit we finally derive the estimate

J wXx)dx < 1.
B0, 1)

w being harmonic, we deduce from this information that for all x € B(0, 1/2) we
can write

1
- d
w(x) B, 172) me w(y) dy,

whence we get the inequality

] ' 4 x
0 wX(y)dy < c,0" (J w(y) dy> ;
B(0, 0) B0, 1)

Holder’s inequality allows us to conclude that

1 , :
ETJ‘ w*(y) dy SQO""‘I wX(y)dy < c,0" %
B(0, 6) B(0. 1)

If at the beginning we choose 6 such that ¢;0" ~* < 1/2 we obtain a contradic-
tion. Hence with this choice the hypothesis cannot be true and this proves the
lemma.

We are now able to state a partial regularity result:

LEMMA 5. Any u positive weak solution of (1) satisfying (H) is regular on
Q except for a closed set whose Hausdorff dimension is less than or equal to
n—2a/(a —1).

Choose Q' = < Q. In assumption (H), up to a reduction of R,, we can assume that
R, < dist (Q7, 0Q). Let ¢,> 0 be the constant obtained in the former lemma and
define

S={er’/VR<R0j

B(x, R)

u*(y)dy = eﬁR’} .
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The set S is closed in Q° and has Hausdorff dimension less than or equal to
n—2a/(a—1).

Take some point x, in Q'\S. By definition of S, there exists some R, < R, such
that

J u*(y)dy < €3Rf,
B(x, R)

for all x in some neighborhood of x,.
The assumptions of Lemma 4 are satisfied in some neighborhood of x,, so we
can conclude that in some neighborhood of x,, we have

1 1 1
TRV u“(y)dys———f u*(y)dy.
(HRI)A B(x,0R ) 21{l/1 B(x, R;) y y

As in the proof of Theorem 1.1, page 95 of [4], we claim that there exist some
constants y > 4 and ¢ > 0 for which

j. u*(y) dy < cR¥,
B(x, R)

for all x in some neighborhood of x, and for all R < R,.
In fact we obtain by induction that, in some neighborhood of x,, we have

1 1
— u*(y)dy <27%— u*(y) dy,
(Ole )i JB(_\?, Ble) (y) y Rll JB(X. Ry) (y) y

for all k € N. Choosing u > A such that §#~* > 3 we derive that for some constant
¢ >0 we have

j u(y) dy < c(0*R,)*,
B(x, 0kR )

for all k£ € N, from which we derive the claim.

Therefore there exists a neighborhood w = Q'\S of x, such that u € L**(w). In
a previous paper [7] we had obtained the following regularity criterion for weak
solutions of (1):

THEOREM 2. If u € L**(Q) is a weak solution of (1) and if p > n —2a /(e — 1)
then u is regular in all Q' < < Q.

For a definition of L*#(Q2) see [3] or [4].
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Using this result we can conclude that u is regular in a neighborhood of x,. This
finishes the proof of the lemma.

We can now derive the results stated in the second part of this paper.

Proof of Proposition 1. Proposition 1 is a simple consequence of Lemma 5.
On one hand, assume that the hypotheses of the proposition are satisfied at
X, € Q. Therefore there exists some R, > 0 such that

o1
J\ l‘(—fz‘?dy<€0.
B

(xo. Rg) lxo *yl

On the other hand, for all x, x” in some neighborhood of x, we have

u*~'(y) u* = '(y)
J‘ '1A2dy_ nA-Zdy S2€0'
B | B(x

(x. Rgp) IX -y " Rg) |x’ _yl

Finally the map

J u* ~'(y)
X = n~—2dy’
Q@ B(x. Ry |X _J’|

is continuous in some neighborhood of x,. We deduce from all this the existence of
a neighborhood w < Q of x, such that, for all x e w

x -1
J ) dy < 4¢,.
B

. Ry X —¥[" 72

Choosing ¢, small enough, the conclusion of the proposition is then a simple
application of the proof of Lemma 5.

Remark. In the case where o =2 we can drop the assumption
[ Bee. my u*(x) dx < ¢§R”. In fact if I, ,u*~'(x) < + oo then for all ¢ >0 there exist
some R > 0 such that

u* '(y)
J ———dy <¢.
B

(x. 2R) ’x “y’

So, we derive the estimate

J u* '(x)dx <c(2R)" 2
B(x, 2R)
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Since a = 2, Holder’s inequality gives us

e —1)
f u(y)dy < (J u* () dy) |B(x, 2R)|' ~ == D,
B(x, 2R) B(x,2R)

Therefore

J‘ u(y)dysc4el/(a~l)R}.+2.
B(x.2R)

Now, in a previous paper [7] we have proved that there exists some constant
¢s > 0, depending only on the dimension of the space such that

sz u*(y)dy < Csf u( y) dy,
B(x, R) B(x,2R)

for every positive weak solution of (1). The last two inequalities allow us to
estimate

J u*(y) dy < cge'* " VR?,
B(x, R)

for some constant ¢, > 0 depending only on the dimension of the space. Choosing
€ >0 such that €2 > cse'/®~ D we get the desired estimate.

We are now left with the proof of Corollary 1.

Proof of Corollary 1. 1t is sufficient to show that the set of points x in Q where
I, _,u*"'(x) =+o forms a set of Hausdorff dimension less than or equal to
n — 2a /(e — 1). Denote by E this set, u*~ ! € L™~ (Q), using the definition of the
Riesz capacity, we deduce from this [9] that R, ,,_)(E) =0, thus the Hausdorff
dimension of E is less than or equal to n — 2a /(o — 1). The result of Corollary 1 is
then a consequence of Proposition 1.

4. General remarks

In order to find a regularity criterion for weak positive solutions of (1) one
could be tempted to consider the natural quantity

1
— u*(y) dy,
R* Lm R)
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where A =n — 2a/(a — 1), and conjecture that if this quantity is small enough then
u is regular in some neighborhood of x. Unfortunately this conjecture does not
hold in general as can be shown using the examples given in [5]. In the last pages
of their paper the authors display all the radial positive solutions of (1) in R”, and

if
. n n+2
**\n=2 122

then they show that there exists a positive radial solution u of (1) which is
singular at 0 (i.e. u(x) behaves like C/|x|**~" near x = 0) and regular at oo (i.e.
u(x) behaves like ¢/|x|" ~* near c0). For some parameter § we consider the family
us(x) = 6%~ Du(dx). It is easy to see that us is a weak positive solution of (1)
having a singularity at the origin and that the quantity

]
s uz(y)dy,
RA J‘B(O, R) °

can be made as small as we want if ¢ is chosen large enough.

We finish this paper by giving some open question:

If u if a positive weak solution of (1) and if, for some x, € Q, the following
condition is satisfied

I, _u* " '(x) < + oo,

is I, ,u*~'(x) continuous at x,?
Let us observe that a positive answer to this conjecture would prove the
conjecture stated in the introduction.
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