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A regularity criterion for positive weak solutions of — Au u*

F. Pacard

1. Introduction

Let Q be an open of Rw, in this paper we want to study the regularity of positive
weak solutions of

-Au u\ (1)

where a &gt; 1 and u e La(O).
We only assume that u is a solution of (1) in the sensé of distributions, i.e. for

every &lt;/&gt; e ^^(Q) with compact support in O, we hâve

A(f)(x)u(x) dx -\ (j)(x)u*(x) dx.
JQ JQ

The fact that we hâve assumed that the solution u is positive is crucial. Obviously,
weak solutions of (1) hâve no reason to be regular on ail of Q and examples of
singular solutions are given in [1], [2] and [5].

Deflne S to be the set of points x e Q for which u is not bounded in any
neighborhood V of x in Q. Let us notice that if «, solution of (1), is bounded in a

neighborhood of a point x0 e Q, then the classical theory of regularity shows us that
u is in fact regular in a neighborhood of x0. With this définition, S the set of
singularities of w, is a closed subset of Q.

The problem is to détermine the structure of S. This structure can be very
complicated as the récent work of R. Schoen and S. T. Yau [8] shows in the case

of the critical exponent a (n + 2)/(n — 2).

A reasonable conjecture seems to be the following:
The Hausdorff dimension of the set of singularities is less than or equal to

2a n
n !f a &gt;

a -1 n-2
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Let us notice that in the case where a &lt;n/(n — 2), a classical bootstrap argument

shows that weak solutions of (1) are in fact regular.
For u g L l(Q), we define the map /„ _ 2 u(x) : O -» R u {+ oo} by

Multiplied by a suitable constant, In_2ui$ nothing else than the Poisson kernel of u.

We can now give the principal resuit of our paper:

THEOREM 1. For a &gt;n/(n — 2), let u be a positive weak solution of (1) and

suppose that the map /„ _ 2 wa ~ &apos;

:Q-&gt;IRu{ + oo} defined as above is continuous from
Q into (Ru{ + oo}. Then the Hausdorff dimension of the singular set of u is less than

or equal to n — 2a/(a — 1).

Let us emphasize that we allow In^2u*~2 to take infinité values.

2. Intermediate results

The resuit given in the first part is an easy corollary of some stronger results that
we give just after this définition:

DEFINITION 1. Let/:G-&gt;Ru{ + oo}. We define the jump of/at the point
xeQ by

We add the following convention: If )imv^x f{y) -foo, then S(f){x) =0.

We can now state our 6-regularity resuit:

PROPOSITION 1. Let a &gt; n/(n - 2). There exists a constant co&gt;0 such that for
any positive weak solution u of (1) the following holds:
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and if

i ç
hm — u
R-oR JB(X R)

(y)dy &lt;e0,

then u is regular in a neighborhood of x

Usmg this proposition we prove

COROLLARY 1 Let a &gt; n/(n - 2) and let eo&gt;0 be the constant gwen in

Proposition 1 Assume that for ail x e Q there holds S(In_2u&lt;x l)(x) &lt; e0 Then the

Hausdorff dimension of the singular set of u is less thon or equal to n — 2a /(a — 1)

Notice that if we assume, as in Theorem 1, that the map

is continuous from Q into Ru{-}-oo}, this implies that for ail x e Q, there holds
S(In 2U* l)(x) 0 Thus Theorem 1 is a conséquence of Corollary 1

3. Proof of the results

The proof of the results is divided in a séries of lemmas in order to simphfy the

reading
The first lemma is an easy estimate that has already been used m [6]

LEMMA 1 Let u be a weak solution of (X) on Q Then for almost every x e Q

we hâve the estimate

u(x) &lt; —H [ u{y) dy+ \ f U*iyl 2dy,

where o)n is the volume of the unit bail of U&quot; and r &lt; dist (x, dQ)

Using the fact that m is a solution of (1), we can write for almost every x e fi

u(y)da+-^- (V &quot;-s2 &quot;) (T W{y)
t s) n - 2 Jo \jdB(x 0
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Integrating from s to s&apos; we dérive the following formula

u\y)da]dt{ y)[\)( \y)]
^rrrf u{y)da+-^—[S{t2-&quot;-s&apos;2&apos;&quot;)([ u\y)da]dt.
S JdB(x,s) n ~ Z JO \JdB(x,t) /

Passing to the limit when s&apos; goes to 0 we obtain the estimate

n JB(Xj s)\x-y\

Then we integrate this inequality on (0, r) in order to obtain the inequality of
Lemma 1.

Multiplying the inequality obtained in the last lemma by wa~ \x) and integrating

on the bail of center x and radius r we obtain the lemma:

LEMMA 2. Let u be a positive weak solution of{\) on O, then there exists a

constant c0 &gt; 0 such that for any x e Q andfor any sufficiently small number r &gt; 0 we

hâve

«/(«-D

L
If we apply now the Proposition 1.1, page 122 of [4], we obtain the following

reverse Hôlder inequality:

LEMMA 3. Let u be a positive weak solution of(\) on Q and assume that there

exists some Ro&gt;0 such that for ail x e Q with dist (x, ôQ) &lt; Ro we hâve

where c0 is the constant given in the last lemma. Then there exist fi &gt; a and a constant

c, &gt; 0 such that for ail x e Q and for ail r &lt; Ro/2 we hâve

m r i
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We now make the following assumption on solutions u of (1)

(H) There exists some jR0 &gt; 0 for which

u* \y) 1

R«A*-y\n 2 y
2c0&apos;

for ail x g Q

Under the hypothesis (H) we can prove the lemma

LEMMA 4 There are some constants 0 g (0, 1) and e0 &gt; 0 such that, for any
positive weak solution u of (1) satisfying (H), any x g Q and any R &lt; R$for which

dist (x, dQ) &gt; 2R0

the following holds If

f u\y)dy&lt;elR\
JB(x R)

where X n — 2a /(a — 1), then

u\y) dy &lt;- — u*{y) dy
B(x 9R) 2 ^ JB(x R)

We prove this lemma by contradiction Let us assume that, for some suitably
chosen 6 &gt; 0, there exists a séquence en &gt; 0 going to 0, a séquence un of positive
weak solutions of (1) satisfying (H), a séquence of points xn e Q and a séquence of
radn Rn &lt; Ro such that

1
&apos;

ul(y)dy&gt;en\2
^n) jB(xn Rn6)

and

u*n(y)dy=e*n
n JB(x Rn)
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Define vn(x) R2J{!X l)un(xn H- Rnx) and notice that vn is a weak positive solution

of (1) on £(0,2).
Moreover, the following estimâtes hold

JB(O, 6)
~\ v«n(y)dy&gt;e°J2

and

f v*n(y)dy=e*n.
JB(O, 1)

In addition, from (H), for ail x e Z?(0, 1), we hâve the inequality

{
JB( -y\n~2 y

Thus, the reverse Hôlder inequality that has been proved in Lemma 3 holds for
the séquence vn on 2?(0, 1). We deduce from this that the séquence wn =vn/cn is

solution of the équation — Awn e*~~l w*n and satisfîes

K(y) dy
0, 1/2) /

w*n(y)dy&gt; 1/2
B(0, 6)

and

m

w*n(y)dy \.f
JB(0,\)

The séquence wn being bounded in Z/(Z?(O, 1/2)) and in La(£(0, 1)), we can take

a subsequence, that we will still dénote by wn, such that

wn -? w strongly in L^O, 1)),

wn-+w almost everywhere in B(0, 1),

wn~^w weakly in L%#(0, 1)),

wn-+w strongly in L*(B(0, 1/2)).
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Let us notice that, passing to the limit in the équation satisfied by wn, we get
Aw 0 in £(0, 1) and also w &gt; 0

Passing to the weak limit we finally dérive the estimate

w*(x) dx &lt; 1

JB(O 1)

w being harmonie, we deduce from this information that for ail x e B(0, 1/2) we
can wnte

1

JB(x 1/2)

whence we get the înequahty

Holder&apos;s înequahty allows us to conclude that

w\y) dy &lt; c30&quot;
&apos; w*(y) dy &lt; c39n~&apos;

B(0 6) JB(O 1)

If at the beginning we choose 9 such that c39n~/ &lt; 1/2 we obtain a contradiction

Hence with this choice the hypothesis cannot be true and this proves the
lemma

We are now able to state a partial regulanty resuit

LEMMA 5 Any u positive weak solution of (1) satisfying (H) is regular on
Q except for a closed set whose Hausdorff dimension is less than or equal to

n — 2a/(a — 1)

Choose QczczQ In assumption (H), up to a réduction of Ro, we can assume that
Ro &lt;dist (Q\ dQ) Let éo&gt;0 be the constant obtained in the former lemma and
defîne

\xe fi&apos;/VR &lt; Ro u*{y) dy
JB(x R)
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The set S is closed in Q&apos; and has Hausdorff dimension less than or equal to
n-2&lt;x/((x- 1).

Take some point x0 in Q&apos;\S. By définition of S, there exists some R{ &lt; Ro such

that

f
jB

u«(y)dy&lt;e«0RÀu

for ail x in some neighborhood of x0.
The assumptions of Lemma 4 are satisfied in some neighborhood of x0, so we

can conclude that in some neighborhood of x0, we hâve

f
B(x,QRx) A K\ JB(x,R0

As in the proof of Theorem 1.1, page 95 of [4], we claim that there exist some
constants /x &gt; X and c &gt; 0 for which

JBB(x, R)

for ail x in some neighborhood of x0 and for ail R &lt; Ro.

In fact we obtain by induction that, in some neighborhood of x0, we hâve

f
JB

u\y) dy,

for ail k g f^l. Choosing \i &gt; À such that ^~A&gt;^we dérive that for some constant
c &gt; 0 we hâve

f u
jB{x,e^Rx)

for ail k e N9 from which we dérive the claim.
Therefore there exists a neighborhood co cz Q&apos;\S of x0 such that u e La^(œ). In

a previous paper [7] we had obtained the following regularity criterion for weak
solutions of (1):

THEOREM 2. Ifu g La&quot;(£) w a w^A: ^/wto« &lt;?/(l) a«rf if\x&gt;n- 2a/(a - 1)

w w regular in ail Q&apos; a a Q.

For a définition of L*-&quot;(O) see [3] or [4].
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Using this resuit we can conclude that u îs regular in a neighborhood of x0 This
finishes the proof of the lemma

We can now dérive the results stated in the second part of this paper

Proof of Proposition 1 Proposition 1 îs a simple conséquence of Lemma 5

On one hand, assume that the hypothèses of the proposition are satisfied at
x0 g Q Therefore there exists some Ro &gt; 0 such that

f l(v)

On the other hand, for ail y, x in some neighborhood of x0 we hâve

«3 &apos;(y) f «* \y)lB(x Ro) \X ~~ y jB(x Ro) X ~~
&lt;2c0

Finally the map

W \y)
2

y\
dy,

is continuous in some neighborhood of x0 We deduce from ail this the existence of
a neighborhood œ a Q of x0 such that, for ail x e œ

\
JB{ \x-y\ ~2 d&gt;

Choosing c0 small enough, the conclusion of the proposition is then a simple

application of the proof of Lemma 5

Remark In the case where a &gt; 2 we can drop the assumption
\b{x r) u*(x) dx &lt; coR/ In fact lf ln iu* l(x) &lt; + oo then for ail e &gt; 0 there exist

some R&gt;0 such that

I Iv ^)\&quot; 2

JB(x 2R) \X — y\

So, we dérive the estimate

wa \x)dx&lt;c{2R)n 2f
JBB(x 2R)
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Since a ^ 2, Hôlder&apos;s inequality gives us

f
JBJB(x, 2R) \jB(x, 2R)

Therefore

{
JB(

u{y)dy
2R)

Now, in a previous paper [7] we hâve proved that there exists some constant
c5 &gt; 0, depending only on the dimension of the space such that

R2\ u\y)dy&lt;cs\ u(y)dy,
JB(x,R) jB(x,2R)

for every positive weak solution of (1). The last two inequalities allow us to
estimate

u\y)dy &lt;c6eÏK*-l)R\
JB(x,R)

for some constant c6 &gt; 0 depending only on the dimension of the space. Choosing
e &gt; 0 such that £g &gt; c6el/(&lt;x~ ° we get the desired estimate.

We are now left with the proof of Corollary 1.

Proof of Corollary 1. It is sufficient to show that the set of points x in Q where
In_2u&lt;x~x(x) +oo forms a set of Hausdorff dimension less than or equal to
n - 2a/(a - 1). Dénote by E this set, wa&quot; l e La/(a~l\Q), using the définition of the
Riesz capacity, we deduce from this [9] that /?2,a/(a- i)(E) 0, thus the Hausdorff
dimension of E is less than or equal to n — 2a/(a — 1). The resuit of Corollary 1 is

then a conséquence of Proposition 1.

4. General remarks

In order to find a regularity criterion for weak positive solutions of (1) one
could be tempted to consider the natural quantity

(y) dy,
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where X n — 2a /(a — 1), and conjecture that if this quantity is small enough then
u is regular in some neighborhood of x. Unfortunately this conjecture does not
hold in gênerai as can be shown using the examples given in [5]. In the last pages
of their paper the authors display ail the radial positive solutions of (1) in (R&quot;, and

if

n n + 2

n — 2 n — 2

then they show that there exists a positive radial solution u of (1) which is

singular at 0 (i.e. u(x) behaves like C/|x|2/(a~ ° near x 0) and regular at oo (i.e.
u{x) behaves like c/\x\&quot;~2 near oo). For some parameter ô we consider the family
uô(x) (52/(a~ l)u(ôx). It is easy to see that uô is a weak positive solution of (1)
having a singularity at the ongin and that the quantity

5(0 R)

can be made as small as we want if ô is chosen large enough.
We finish this paper by giving some open question:

If w if a positive weak solution of (1) and if, for some jc0 g Q, the following
condition is satisfied

4-2wa ](x0)&lt;-hoo,

is In^2u&lt;x~\x) continuous at x0?

Let us observe that a positive answer to this conjecture would prove the

conjecture stated in the introduction.
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