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Estimates for the energy of a symplectic map

H. HOFER*

1. Introduction

In [9] the author introduced a bi-invariant metric d for the compactly supported
symplectic difftomorphism group and studied its relevance in symplectic geometry.
This metric, though at the same time primarily introduced to study generalized
symplectic fixed point problems, turned out to be the natural measure of distance
in studying to what extent does the boundary of a symplectic manifold reflect
properties of its symplectic interior, see [6, 5, 7]. Shortly afterwards, J. Moser
(private communication) observed that certain quantities (e.g. mean action) in
Aubry—Mather-theory, see [13, 14], depend continuously on this metric. J. Moser
and J. C. Sikorav, [15], independently raised the question if it is possible to estimate
the d-distance in terms of C°-data.

The aim of this paper is to provide such an estimate. We also take the
opportunity to derive a good estimate for d from below. Related estimates from
below can also be obtained by combining results in [3] and [9], see also [2] and [9].
However, the present approach gives some interesting new inequality in symplectic
geometry and the proof is quite simple. This inequality can be taken as the single
starting point for developing the symplectic C-rigidity theory as well as the
existence theory for periodic orbits with prescribed energy.

A survey, based on this point of view, describing the recent developments in
symplectic geometry and topology, will appear elsewhere, [10]. In order to state the
main result we have to introduce some notation. Let € be the vectorspace of all
compactly supported smooth maps H : [0, 1] x C"— R. For p €[1, + o] we define
norms | ||, on € by

i, = ([ lewtor )" torpent +o

1
|#].- = max lea (0| for p =+ )

* Supported by SFB 237 and Procope
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with
ey(t) = max H(t, x) — inf H(t, x). (2)
xe Cn xeCn

Clearly the following inequality holds for every H € €
|H < [H], < [|H]...
We view C” as a real vectorspace with symplectic form w = —Im (-, -), where (-, *)

is the standard Hermitian inner product. Given H € ¥ we define the associated
Hamiltonian vectorfield by

lXle = dHr,

and a symplectic arc (¥/), c 0.3 bY

d
S =X, (P, vE=1d

Given H € ¢ we define the time-1-map ¥, by ¥,,:=¥¥. The collection 2 of all
time-1-maps is a group. We introduce a scale of energies (E,), .1, 4 as follows

E,: 2 -0, +00)
E,(¥) =inf {|H|, | ¥4 = ¥, H ¢ €}, (3)

One easily verifies that

E(¥)=E, ¥ ') =E,(®¥d ")
E,(¥Y®) < E,(¥) + E,(®) 4)

for all @, ¥ € 2. The crucial property, which follows from results in [9] is that
E,(¥)=0 < ¥ =1Id (5)

This will also be a consequence of theorem 2 below. Using (4) and (5) it follows
immediately that

d,(¥, ®):=E,(¥ '®)
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defines a bi-invariant metric on 9. Observe that the completions of the (2, d,) are
again groups, since d, is bi-invariant.
Our first result in this paper is the following estimate from above by C°-data.

THEOREM 1. The following estimate holds for d, .
d. (P, ¥) < 256 - diam (supp (®¥ ") ||[® — ¥ co (6)

for all @,V € 9. Here diam (Q) is the diameter of a subset Q of C" and
|¥ — @ co=sup,ccn |P(x) — D(x)|

Since d, < d, <d,, the above estimate holds for every d,, p € [1, + ©]. The reader
will observe later that the proof of theorem 1 can be adapted for example to
estimate the energy in terms of the diameter of the support and certain Sobolev
norms. For example in C the following type of estimate seems to be true for
D, YVYeD

d (P, ¥) < c diam (supp (¢ ') ||® — ¥ w12,

with

[® — % s =( » f ID*0(x) — DY) dx)l/z
|

o s 1

for a universal constant ¢. So the W'2-completion of the area preserving maps with
support in the unit disk can be considered as a subset of the completion ¥_, of
(2, d.,). Is the abstract inverse of such a map in &, again of class W'?? It would
be interesting to have more estimates of the above type.

In the same way distributions generalize functions, the groups 97,, seem to
generalize symplectic maps. It follows from theorem 2 below that the geometry of
9, is closely tight to phase space geometry.

In order to proceed further we denote by & the subset of € consisting of all
autonomous Hamiltonians with compact support. For H € o/ all the norms |# |,
coincide. Similarly to a construction given in [12] we define a quantity (%) for
every open subset % of C". Denote by /,, the subset of .o/ consisting of all
Hamiltonian H, such that every T-periodic solution x of x = X, (x) for T €0, 1] is
constant. Given an open subset # of C" we define

tSjad(@l) = {H € tSyad | Supp (H) < %}
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We note that &7, ,(F) = {0}. Then we put
c(U) =sup {|H||, | H € «4,,(%) and H < 0}. (7N

It is an easy exercise, see [12], to show that ¢(B**(1)) = n. It is however nontrivial
to show that ¢(B*"(1)) < n. But this will be a corollary of theorem 2.

THEOREM 2. For every Y €2 and open subset U of C", such that
Y(U) U = & we have the estimate

() < E,(P).
In particular
sup {c(%) | U = C" open, Y(U) " U = T} < E, (V).

As a by-product of the proof of theorem 2 we obtain the following result for
autonomous Hamiltonians.

THEOREM 3. Let H € &/,,, then for every p € [1, + 0] we have the equality
EF(’PH) = ”H”, ;

Finally I would like to point out that C. Viterbo [16], motivated by [9], constructed

a homological energy function. It would be interesting to understand the relation-
ships.

Acknowledgement. 1 would like to thank Y. Eliashberg, J. Moser, J. C. Sikorav,
C. Viterbo, and E. Zehnder for many enlightening discussions. In particular I would
like to thank K. Sieburg and E. Zehnder for pointing out an inaccuracy in an
earlier version of this paper.

2. Localization of symplectic maps

LetS,,...,S,, k =2 besubsets of C". We say S, ..., S, are properly separated
provided for every choice of bounded subsets B, =S, i=1,...,k, there exist
parallel hyperplanes 2,:=C" '®R,...,2X=a,+2,,...,2,_,, and a symplectic
map t € Z, such that the sets ©(B,), ..., 71(B,) are pairwise contained in different
components of C"\(I = Z)).
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For a given number p € [1, + oo] we define the proper displacement energy e, (S)
of a subset S of C” as follows:

e,(S) = inf {a > 0| For every bounded subset 4 = S there
exists ¥ € 2 with E,(¥) <a,
and 4 and ¥(A) are properly
separated}. (8)

Obviously e,(S) = ¢,(¥(S)) for every ¥ € & and S < C". It is another easy exercise
to show that

e,(B*(1) xC" ) <, for p e[, + 0] 9)

(see [9]). For the proof of theorem 1 the following type of problem turns out to be
important. Assume ¥ € 2 and a subset Q = C" and a number 4 = 0 are given. We
say ¥ | Q is localizable in a subset # = C" with E,-bound A provided there exists
@ € 9, such that

P|Q="Y|Q
supp () < % (10)
E,(®) < A

The key point for the proof of theorem 1 is to find on suitable sets Q localizations

in convenient sets # with small energy.

Assume ¥ € 9, ¥ #1d, is given. For x, € supp (¥) we denote by C, () the set
of all points x € C* which can be written in the form

x=(1=0x,+tz (1D
for some ¢ €[0,1] and z € supp (¥). Clearly C, (¥) >supp (¥) and C, (V) is
starshaped with respect to x,. We need the following lemma. The proof is straight

forward and left to the reader.

LEMMA 4. Let ®,, ..., @, be elements in & such that supp (D,), . . ., supp (¢x)
are properly separated. Then

EOO<I,£I dik) <2max {E (@), ..., E.(P)}.

i=1



Energy of a symplectic map 53

In [15] J. C. Sikorav stated the estimated E.(®,®,) < max {E_(®,), E (P,)},
which however is not correct. The next lemma which is due to J. C. Sikorav, [15],
relied in its original proof on the above wrong estimate. However replacing it by
Lemma 4 all arguments work, only the constant 8 has to be replaced by 16.
Sikorav’s proof, although quite short, is tricky and the result itself rather counter-
intuitive. We give the proof for the convenience of the reader.

LEMMA 5 (Sikorav’s Estimate). Let H € € be supported in [0, 1] x %. Then we
have the estimate

E, (¥Yy) <l16e (%).

In other words: the energy of a symplectic map ¥ can be estimated through the proper
displacement energy of the smallest support one needs to generate V.

Proof. Using the time evolution for the Hamiltonian H we find for given t >0
a finite sequence ¥, € 2, k =0, ..., N such that

Y, =1d, V=¥y
supp (V) =S¥ for k=0,...,N (12)

dm(?’k,‘llk+])<f fOI‘k=0,...,N——],
where S is a bounded subset of . We find a sequence @, ..., P,y in P with
&, =1d, &, = P, such that for j=1,...,2N the @’s are pairwise conjugated to

each other, and the sets S, = @;(S) for i =0, ..., 2N are pairwise properly sepa-
rated. Here @ € 2 is chosen in such a way that

@(S) and S are properly separated (13)
and

E,(®) <e,(S)+1
<e (%) +r. (14)

We define fori=1,..., N, maps «; € 2 by

ai:‘"(pzi—]qjidji;]—l (15)
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and for i =0,..., N maps f,€ 2 by

B:=®,¥;'d5;". (16)
Clearly we have

supp (o;) < S, fori=1,...,N
supp (B;) < S5, fori=0,...,N.
By construction any two different symplectic maps among the «,..., oy,

Bi, ..., By have properly separated supports and therefore they commute. In view
of lemma 4 we obtain

E@(ﬁ Ol,-ﬂi)£2max {Ew(diﬁi)|i=1,...,N} (17)
and
Em(“’ﬁ‘ CXH.]ﬁi) <2max {E, (%, B;)]i=0,...,N—1}. (18)

We have fori=1,..., N

o =Dy 'Pi¢2_il~ 1 (pzl_lp;l(pz—il

19
—(0,(@5 820, )(@sy_ D51 (=
for a suitable 6, € 2, and for i =0,...,N—1
0 1 Bi =@y Wi 1 P PP D!
=0, (P54 1900 NPy Wi P 'D3)
=0, (P51 1 PO NPy (Wi P NP5 L NPy D). (20)

Using conjugacy invariance and the triangle inequalities for E, we obtain from
equations (14), (19) and (20) since the &, were all conjugated for i = I:

E, (a8,) < E’L(¢2—;]— 192) + E (P 1¢:3_;1)
T <4FE, (D)
<4, (%) + ) (21)
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and

E (1) SE (@5, Py) +E (Vi \P7 D)+ E(Dy 1 P5Y)
<4E_ (D) +1
<4(e (%)) + 51.

Combining this with (17) and (18) gives
N
Eoo<l_[ aiﬂi) < 2(4e, (%) +41)
i=1
N-—1
Eoo( n & 4 lﬁi) < 2(4e, (%) + 51).
i=0

Next we observe that ¥ ' = ¥ ;! and B, are conjugated so that

E,(Yu)=E,(¥i") =E,(By)

We write
By = ﬂN( 'ljo o 4 1Bi>( 'ljo & 4 lﬁi)#
== <l:1| aiﬁi)ﬂ()( _ljl & 4+ 1ﬁi>_

= (U} “iﬁi)( 'ljo & 4+ lﬁi>‘ .

Combining this with (23) we deduce

N N—-1
E, (Yy) < Eoo(n at‘ﬁi) + Eoo( H oy 1Bi>
i=1 i=0
< 16e, (%) + 18z.
Since 7 > 0 was arbitrarily chosen

E (Yy) < 16e,(%).

Now we are ready to state the localization result.

55

(22)

(23)

(24)
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PROPOSITION 6. Let ¥ #1d, ¥ € 2, and & > |¥ — 1d| co. Suppose Q is an
open nonempty subset of C" intersecting supp (¥), and x, € Q nint (supp (¥)). Then
¥ | Q is localizable in B5(Q) N C., (V) with E-bound A, = 16e.,(B5(Q) N C, (¥)).

Here Bys(Q) is the open d-neighbourhood of the set Q.

Proof. Lett - ¥, e 2, t €[0, 1], be a smooth arc connecting Id with the given
Y. For s €[0,1) and r € [0, 1] we define ¥ € 2 by

Pi(x) =sx0+ (1 = )P, (x0 + (1 —5) " '(x — xp)). (25)
Pick R > 0 such that

supp (¥,) < Bg(xy) for all ¢ €0, 1].
We observe that

supp (¥7) < By _ yr(x0) (26)

for all (2, 5) € [0, 1] x [0, 1). (Note that definition (25) is in some sense the “inverse
Alexander trick’.) Moreover

supp (¥1) = C,(¥) (27)
for all s €[0, 1). Fix a s, € (0, 1) such that

B - pr(x) = C (¥)NQ

(1= 50)R < }|1d = ¥ | co. (28)

We define a subset I' = R? by

I'= ([0, 1] x [so, D)) v ({1} x [0, 1)).

We take a smooth map f:=(a, b) : [0, 1] — R? satisfying ([0, 1]) = I' and moreover

p(0) = (0, s,)

B(10, 3D < [0, 1] x [s0, 1)
Bz 1) = {1} x [0, 1)
p(1) =(1,0).

(29)
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Using B and ¢t —» ¥, we define a smooth arc t - @,, t €[0, 1], by
P, :=prn. (30)
By the preceding discussion we have

*supp (P,) = C, (¥) for all r € [0, 1].

*supp (®,) = B,;5(x9) = C, ()N Q for all 1 €0, 3]

with ¢ =min {3R(1 —s,), [1d — ¥, }- (31)
D, (x) —x| < (1 =b@®)|Id— ¥ | co for all x e C”

and ¢ €[3, 1].

Let A be the Hamiltonian in € generating ¢ — ®,. Since C, ,(P) is starshaped, we
have H(t,x)=0 for all re[0,1] and x e C"\C,,(¥), ie. supp (H) < [0, 1] x
C,,(¥). Let y : C"—>[0, 1] be a smooth function satisfying

Y | Bja— wjco(@) =1

_ 32
y | (CN\B5(Q)) =0 (32)

for some & € (||Id — ¥ co, 8). In view of equation (31) we note that

?D,(Q) < Bjia- v 0(Q) (33)
for all t €[0, 1]. We define a new Hamiltonian H € € by

H(1t, x) = ()AL, x). (34)
In view of (33) we must have

Y, |0=0,]0=Y]|0.
Using (31) and (32) we see that

supp (H) < [0, 1] x (C(¥) N B;(Q)) (35)

Hence we have shown the existence of a Hamiltonian H satisfying (35) and

Yy |0=¥1]0, supp(¥y) = (Cx (¥) N Bs(Q))
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From lemma 5 we obtain

E,(¥y) =< 16e,,(C,,(¥) N B;(Q)). (36)
L]

Assume % =(a,,a,) ®i(b;,b,) ®C" ' with —0w<g, <a,<+00, —w<h <
b, < +00. Given any ¥ € 2 with supp (V) «c % we can use the first part of the
proof of proposition 6 to construct a Hamiltonian H € € with supp (H) < [0, 1] x %
and ¥, = V. This is of course possible since # is starshaped. It is an easy exercise
similar to (9) that

e((a1,a) @i(by, b)) ®C" ') < (ay —a,)(b, — b)). (37)

Hence we obtain in view of lemma 5 the following corollary:

COROLLARY 7. Assume ¥ € & with

supp (V) < (a;, a,) @ i(h), b,) @C" .

Then E.(¥) < 16(b, — b, )(a, — a;).

3. The C°-Estimate
Using the results from section 2, theorem 1 can be quite easily deduced.

Proof of theorem 1. Let ¥ € 9, ¥ #1d and put ¢ = |¥ —Id| 0. Pick a 6 > ¢
and choose a sequence (a,) = R satisfying

ay=0, a,,,—a =29. (38)
We define Q, < C” by

Qe =(a—T,a+7)DC" ! (39)
for some small t > 0 satisfying

T+e<d. (40)
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Define 2 = {k € Z | Q, nsupp (¥) # &} and pick x, € Q, nint (supp (P)) fork e X
such that

B(x,) = supp (¥) (41)
with R = diam (supp (¥)). Clearly for k € X we have

Cy () © Br(xy). (42)
Pick a § satisfying

c<d and S+41<6. (43)
By the localization proposition we find @, for k € X satisfying

D, | O =Y l Q
supp (@,) < B5(Qx) N C, (¥) (44)
E (D) < 166 (B5(Qr) N C, (V).

We note that the
Bs(Q)) =(a, —1— 0,4, + T+ ) ®IRGC" !

are mutually properly separated. The same is then true for the sets B;(Q,) n
C,,(¥), k € Z. We note that for k € ¥ and a suitable choice of b, € R we have with
R = diam (supp (¥))

Bi(Q)NC (W) (@, —1—b,a,+1+8) ®i(b — R b +R®C"~ . (45)

For different k, j € X the supports of @ and ®, are properly separated. Hence from
equations (44), (45), lemma 4 and corollary 7

Ex<l—[ <Dk>£2max (E.(®) |keZ}

Kex
<32(2(t +6) - 2R)
=128 R(t + 9)
<128 R6.

(46)
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Next we write ¥ = Y(IT, . @,) ~'(IT, . » ®,) and estimate in view of equation (46)

1
EOO(Y’)SEOO(Y’(k]:[Z <pk) )-I—Eoo(k[;[z qsk) “
SEOO(‘P< I ¢k>_]) +128 - RS.

keXZ
On Q, for any k in Z we have with 0 =11, . ;s @,
Y0 (x) = x.

Moreover, for every k € 2 the support of &, was contained in B5(Q,) N C,, (¥).
Hence W60 ~' can be written as a finite product of maps in 2, say y,,...,7,, with
mutually properly separated supports contained in sets of the form

Up=[6; — (0 —1), 4+ @ — 1] @i(6;~ R, b;+ H®C""! (48)
for suitable 4, Bj € R. Hence arguing via corollary 7 along the previous lines

E,(P0~h<2max{E, (y))|j=1,...,1}

< 2 max {16e, (16, (%) |j=1,...,1}

<32-(2(6 —1) - 2R) (49)
=128 R(6 — 1)
<128 - RS.

Combining now (47) and (49) we obtain
E_(¥) <256 - Ré. (50)

Since R =diam (supp (¥)) and 6 was an arbitrarily chosen number greater than
|1d — ¥ | co we have arrived at

E, () < 256 - diam (supp (¥))||]1d — ¥ || co. (51)
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From this we deduce

d (o, ¥)=d (& ',¥ Y
—E_(o¥ Y
<256 - diam (supp (¥ ~ ")) [1d — @¥ ~'|| o
=256 - diam (supp (@¥ ") ||¥ — @||co. O

4. Functional analysis of the action integral

The method we are employing is close to [7,3,4, 11, 12] and utilizes the
variational approach to strongly indefinite functionals going back to Benci and
Rabinowitz, [1] and the author [8]. We denote by # the Hilbertspace consisting of
all functions u € L*((0, 2); C") with Fourier series

U= Z X3 enkr" X, € Cn
ke

satisfying the summability condition
" b Plk] < cc.

As norm we take
el = 27 3 [kl e [* + 2o

Clearly, | || is induced by some inner product (-, -). % has an orthogonal decompo-
sition =4 @ AB°®A™* given by

u=u“+u0+u+_____ Z xkemkt+x0+ Z xkemkt.
k<0 k>0

We denote the corresponding orthogonal projections by P, P° and P*. The
action integral is the quadratic form a : # —R defined by

1 1
a(u) = —EI{P"uHZ-f--z—IlP*qu. (52)



62 H. HOFER

If u:R/2Z - C” is a smooth 2-periodic loop we have

a(u) = —;— J: (—iu,u) dt, (53)

where (-, > = Re (-, *) is the standard real inner product on C". Note that the right
hand side of equation (53) is the classical action integral.

For pairs (H,K)e o x €, where o x € carries the norm |(H, K)|, =
|H|, + ||K], we define an associated smooth functional b, x, by

b(H,K)(u) = L

1

H(u(t)) dt + J 2 K, _,(u(1)) dt. (59

1

Moreover, the gradient of by, , denoted by by k) : # — & has a relatively compact
image. This follows since H and K are compactly supported and smooth and £ is
compactly embedded into L”((0, 2); C") for every p €[1, +00). Also by k(%) is
bounded in R. Using a variant of a construction in [3] we introduce a special
subgroup ¥ of the homeomorphism group homeo (#) of #. We say a homeomor-
phism & : # — % belongs to 4 provided h, h —' map bounded sets into bounded sets
and there exist continuous maps y*: # >R, K:%4 — % having the following
properties. y* and K map bounded sets into relatively compact sets. Moreover
there exists a constant R = R(h) >0, such that K(x) =0 and y*(u) =0 for all
u € B+ satisfying |u| = R. Moreover 4 has the representation

h(u) =e" “u~ +u’+ e “ut 4+ K(u). (55)

It follows immediately from its definition and elementary properties of nonlinear
compact operators that % is a group. In the following we shall need

LEMMA 8. For every h € ¥ we have
WBY)YN (B~ DB # .
Proof. We have to find u € #* such that P*h(u) = 0. This is equivalent to

O=u+e 7" ®PP*K(u)
=:u+ Tu
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forsomeue#B . T: %4+ -2 is a nonlinear compact operator with T(Z# *) being
compact. Hence via Schauder’s fixed theorem we find a u e #* with u = — T(u).

O

We define a map a: o/ x € > R as follows. For (H, K) € &/ x € we put

k) =a = by k) (56)
and define
o(H, K) =sup inf ag g (h(w)). (57)
heG ues

Let us define for (H,K)e o x% two real numbers ¢ (H,K)<0 and
q*(H,K) =20 by

1
q (H,K)= inf H(x) +J inf K(t, x) dt
0

xe Cn xeCn
! (58)
g (H,K)=sup H(x)+ | sup K(1, x) dt.
xeCn 0 xeCn
Observe that
|H|,+ |K|,=q*(H, K) —q (H, K). (59)

LEMMA 9. For (H, K) € o/ x € we have

—q*(H,K) <a(H,K) £ —q (H, K)

—q (0, K) +a(H,0) <a(H,K) <oa(H,0) —q (0, K). (60)
Moreover
lo(H,, K,) —a(H,, K)| < |H,—H |+ |K,— K, I (61)

Proof. We have forue 4™

|
Ay (U) = 5 ““ “2 — b))

1 2 +
2 Jul— g (H. K.
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Hence

W(H,K) > inf <1 lul? = g *(H, K))
ue®+\2

(62)
> —qg*(H, K).
For v e 4~ @ #° we estimate
L - 0
Ap.x)) = — 2 o~ [ = gy (@™ +0°)
(63)
< _q—(Ha K)

In view of lemma 8 we have for every he 4 (B )N (B ®A°) # J. Hence in
view of (63)

inf ag ) (h(u) < sup  ag (V)
ue 2+ ve 2RO

64
< —q (H, K). (64)
So we obtain from equation (62) and (64) and the definition of « the first part of

the assertion (60) of lemma 9. The second part can be proved similarly. The trivial
estimate

;a(Hz.Kz)(u) - a(Hl.K|)(u)l

Ll (Hy — H\ )(u(1)) dt + f ((K3), 1 (u(®) — (Ky), 1 (u(1))) dt
<|H - K| + | K = Ko,
gives immediately
l(H,, K,) —a(H,, K)| < |Hy— Hy |+ | K — K |- O
LEMMA 10. Let (H,K) € o/ x € and assume (u,) = B, d € R, such that
Axy() >0 in A, Ay i) (W) > d. (65)
Then there exists u € # satisfying

aEH.K)(u) = Os a(H’K)(u) =d.
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Note that this is a version of the so-called Palais—Smale condition. However for the

maps (H, K) € o x € the condition (65) will in general not imply that (u,) has a
converging subsequence.

Proof. Since b(y x,(#) is precompact and a’(v) = —u~ +u*, it follows immedi-
ately after taking a subsequence that

uf -utesR*.

Since 4° is finite dimensional we are done if (4?) is bounded. So without loss of
generality if suffices to study the case

uf -ute#B*, |uf| = + 0. (66)
From equation (66) we deduce immediately that

binxy(u)—>0 in B

b k() =0 in R,
since H and K have compact support. Hence u* =0 and we conclude

a(H.K)(uk) - 0.

That is d =0. Let ¢ e C” with [0, 1] x {¢} n[([0, 1] x supp (H)) usupp (K)] = &.
Then the constant loop R/2Z—-C":t—c is a critical point of a4, and

a(H,K)(C) = O‘
The key technical result for proving theorem 2 is the following construction of
a selection function:

PROPOSITION 11. There exists a not necessarily continuous map
oA X € — B satisfying

ok (B(H, K)) =0
ax)(B(H, K)) = a(H, K).

Proof. Tt is enough to find for every (H, K) € &/ x € a critical point u x, of

Ay (U xy) = o(H, K).



66 H. HOFER

Arguing indirectly let us assume a(H, K) € R is not a critical level. In view of lemma
10 we find ¢ > 0 such that

laiwo@| = ¢ if agy k(1) € [e(H, K) — ¢, a(H, K) + ¢]. (67)
Take a smooth map o : Z — [0, 1] satisfying

o(u) =1 for a y x,\(u) €[a(H, K) — ¢, a(H, K) + (]

6
o(u) =0 for ay k(1) ¢ [a(H, K) — 2¢, o(H, K) + 2¢]. (63)
Consider the ordinary differential equation in # given by
u = o(u)a k(v
(69)

=:G(u).

Ifue#™* and |u| is large we have g, x,(#) = a(H, K) + 2¢ and consequently by
(68) G(u) =0. (69) generates a global flow denoted by

RxZB—>RB :(s,u) >ux*s. (70)

In view of (67) we find a real number 7 > 0 such that the map h : # — % defined
by h(u) = u * T satisfies:

If ayxy(u) 20 —e¢ then oy g (h(u)) 2 a + ¢, (71)

with o =a(H,K). We note that Gu) = —ocWu™ + o@@u™ — o(U)b 4 k().
For given wue# define A,(t)=—oc(u*t)P~ +o(u )Pt and f, ()=
—0(u * )b{y k)(u * t). If t > u(t) solves u = G(u) with u(0) = u,, it solves the linear
inhomogeneous system

u(t) = A, (Du(t) + £, (1)

u(0) = ug. (72)

Now using the variation of constant formula we see that 4 € 4. By the definition of
a(H, K) we find hy € 4 such that

ue#+
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Since k = h o hy € ¥ it follows from equation (71), (73) and the definition of a(H, K)

a(H, K) 2 inf ay x,(k(u))
ue M+

=2 a(H, K)+ec (74)

This contradiction proves the proposition. O

Using proposition 11 and Sard’s theorem we will be able to investigate the
behaviour of a on certain subsets of &/ x €.

LEMMA 12. For all H € &/ ,; we have
«(H,0) = —min H(x) = —q (H, 0).
xeCn

In particular, if in addition H <0 we have a(H,0) = |H|,.

Proof. A critical point u of a x, satisfies

u :[0,2] - C” is continuous

u(0) =u(2)

i =X, on (0,1 (73)

u=Xg ,w on(l,2).
If K =0 we have u | (1, 2) = const, so that u(0) = u(1). This means u | [0, 1] can be
extended to a smooth 1-periodic solution of x = X, (x). Since H € &/, all those

solutions are constant. Consequently, denoting by Cr (H, K) the set of critical levels
for a , x, we must have

Cr (H, 0) < {— H(m) | dH(m) = 0}. (76)

The right hand side is obviously a compact subset of R and by Sard’s theorem
nowhere dense. Let ¢ € C"\{0} and denote by H? € .«/,, the Hamiltonian

H%x) = H(x — 0c)

for 6 € [0, + ). Clearly Cr (H? 0) = Cr (H, 0). Since 6 —»a(H?, 0) is continuous
and (76) holds this map must be constant. Hence we may assume without loss of
generality that

H(0) = inf H(x). (77

xeCn
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Now consider a(tH, 0), where we assume (77). Clearly for t € [0, 1]

tH(0) =t inf H(x).

xeCn

The map 7 — a(tH, 0) is continuous and since for t € [0, 1] tH € «/,, we infer from
the preceding discussion

a(tH, 0) € { — tH(m) | dH(m) = 0}. (78)
Hence for 7 € [0, 1] the map t — a(tH, 0) satisfies
a(tH,0) = —tH(m) (79)

for a suitable m € C” with dH(m) = 0. If we can show that m =0 is a good choice
we obtain

o(H,0) = — inf H(x)

xeCn

and the lemma is proved. For a suitable 7, > 0 small the following holds
tH(0) < tH(x) < tH(0) + n|x|? for all x e C" (80)

provided t € [0, 7,]. Hence for t € [0, 7,]

1

a(tH, 0) = ir;af+ I:a(u) ~—J

0

n|ul* dt ——*cH(O):|
> —tH(0) + inf |:a(u) —J‘27t|u|2 dt_J (81)
ueR+ 0

= —tH(0).
On the other hand lemma 9 gives
a(tH, 0) < —tH(0) (82)
for all T €[0, 1]. From equations (81) and (82) we obtain
a(tH,0) = —7 inf H(x) for 1 € [0, 1,].

xeCn

Hence a(tH, 0] = —tH(0) for all 7 € [0, 1] by the preceding discussions. O
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Let us denote by /(%) the collection of all H € o/ with supp (H) < %.

LEMMA 13. Let % < C" be a subset and K € € such that ¥ (U)NU = .
Then

ao(H, K) = a0, K)

for all H € S(U).

Proof. For 1 €[0, 1] we have tH € «&/(%). Moreover the map t - a(tH, K) is
continuous. We show that its image lies in a nowhere dense subset and consequently
has to be constant. Assume w, is a critical point of a4 x,. Then u, :[0,2] - C" is
continuous, u,(0) =u,(2), and

l'.l'r = TXH(ur) on (Oa 1)

u, = Xg, (u;) on(1,2).

Since ¥, (%)% = & and supp (tH) =% we must have u, |[0, 1] =const ¢ %.
Hence

a(thK)(ur) = Qo.x)(u.) € Cr (0, K).

Cr (0, K) is the set of critical levels for a smooth functional on a Hilbert space
having a Fredholm type gradient. Moreover it is a compact set. This can be used
easily to write Cr (0, K) as the countable union of critical levels for smooth finite
dimensional functionals (using the implicit function theorem near critical points).
Hence Cr (0, K) is compact and has an empty interior. Consequently the map
1 — a(tH, K) has to be constant, i.e.

x(0, K) =a(H, K). OJ

5. Estimates from below

The proofs of theorems 2 and 3 follow now quite easily by combining the results
in the previous section

Proof of theorem 2. Let t >0 and pick K € ¢ with

Yoe=% |K| <E(¥) +1 (83)
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Let % be any open set with Y(%) "% = & and pick any H € o/, (%) with H <0.
In view of lemmata 9, 12 and 13 we estimate

—q (0, K) =2 (0, K)

=a(H, K)
= o(H,0) —g™*(0,K)
=|H|, —¢%(0, K).
Hence
1Kl = | H]-

Consequently ||K||; = ¢(%) and since t > 0 was arbitrarily given
E,(P) = c(Z). 0
Now we prove theorem 3.

Proof of theorem 3. We can phrase the statement of theorem 3 alternatively as
follows: If H: C" - R is a compactly supported Hamiltonian in o7, and K € € such
that ¥, = Wy, then |H|, < |K|,. Of course this implies that

Ep(.:pH) 2 El('PH) = ”Hnl

Since however |H|, = |H| ., the conclusion of theorem 3 follows.
We observe that ¥ _, = ¥ ;' Hence

YV _py(x)=x

for all x e C". Hence the set of critical points for a_ ,, is path connected.
Consequently, since the gradient is Fredholm type, Cr ( — H, K) = R consists of a
single point. Since H and K have compact support it follows that Cr (— H, K) = {0}
for all pairs (H, K) € o, x €, which satisfy ¥, = ¥,. We estimate

0=o(—H, K)
2a(—H,0)—¢q*(0, K)
=q+(Ha O) —q+(0’ K)
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Hence
q7(0,K) 2q"(H,0). (84)

Define K(t, x) = — K(t, Y X(x)). Then ¥ = ¥ x'. Since ¥ = ¥_,, we obtain simi-
larly to (84)

qg*(0,K) 2¢*(—H,0). (85)
Observe that

q+(0’ K) =-—q (Os K)
q*(—H,0)=—g (H,0).

Hence (85) implies

q (H,0) 249 (0, K). (86)
Combining (84) and (86) gives

[&l = [I#],

and the proof is complete. Note that we actually have proved the stronger
statement that the ¢ *- and g ~-parts satisfy the inequalities (84) and (86).
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