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Realization of simply-connected 4-manifolds with a given boundary

STEVEN BOYER*

Introduction

One of the nicest applications of Michael Freedman’s work in 4-dimensional
topology is his classification of closed, simply-connected, oriented 4-manifolds in
terms of their intersection pairings and their Kirby-—Siebenmann invariants (see
§10.1 of [FQ]). A similar classification for compact, simply-connected, oriented
4-manifolds with connected boundary was begun in [B2]. The new features which
arose were the relationship between the intersection pairing of the 4-manifold and

(i) the torsion link pairing of the bounding 3-manifolds;
(i1) the induced spin structure on the bounding 3-manifold when the intersec-
tion pairing was even.

The point of view in [B2] was to fix a closed, connected, oriented 3-manifold M and
a symmetric, bilinear, integral pairing ¥ on a free abelian group FE, and then to
consider the oriented homeomorphism classes of 1-connected 4-manifolds with
boundary M and intersection pairing isomorphic to .. Invariants were constructed
which distinguished these classes and it was also shown that in many instances all
the potential values of these invariants were realized by appropriate manifolds. One
goal of this paper is to show that it is always the case that these invariants assume
their full range of values. In doing this we shall recast some of the work of [B2].
The main interest in these classification results is the tools they provide for studying
4-manifolds. In particular they have been used to study the representation of
2-dimensional homology classes by topologically locally-flat surfaces ([B1], [S1],
[S2]). In the final two sections of this article we apply our constructions to prove
some existence and uniqueness results on such representations. We now describe
more fully the contents of this paper. Precise definitions may be found in §1.

* Partially supported by NSERC grant A7819 and FCAR grant EQ3518.
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Let M? be a 3-manifold as described above and (E, %) a bilinear form space
presenting H , (M) (Definition (1.3)). The group A(M) of homological isometries of
M (Definition (1.4)) acts transitively and effectively on the left of the set of all
presentations of H, (M) by (E, ¥). When (E, £) is an even pairing, each presenta-
tion P:(E, ¥)— H, (M) determines a distinguished set of spin structures
Spin, (M) < Spin (M), which is an orbit of the natural action of I'(M) = image
(H' (M) - H'(M; Z/2)) on Spin (M). A marked presentation P, of H (M) is a pair
consisting of a presentation P : (E, ¥)— H, (M) and a marking of P, being

(1) an element of Z/2 when (E, ¥) is odd;
(i1) an element of Spin, (M) when (E, &) is even.

In the odd case, the group A(M) x Z/2 acts transitively and effectively on the left
of the set of marked presentations. In the even case, there is an extension A(M) of
I'(M) by A(M) which so acts (Definition (1.8)).

A topological realization of a given marked presentation of H (M) is a compact,
simply-connected, oriented 4-manifold V' with boundary M such that

(i) there is an isometry A : (E, ¥) - (H,(V), -) such that with respect to the
given presentations, d(A) = 1, 4, (see §1);
(i1) when (E, %) is odd, the Kirby—Siebenmann invariant ks(V) equals the
marking of the presentation;
(i1) when (E, &) is even, the unique spin structure on M extending over V
equals the marking of the presentation.

THEOREM A. Each marked presentation of H, (M) by a pairing (E, L) is
realized topologically. Any two realizations are homeomorphic by a homeomorphism
extending the identity function on M. [

Let "% (M) be the set of classes of compact, 1-connected, oriented 4-manifolds
with boundary M and intersection pairing isomorphic to (E, .#), where two such
manifolds are considered equivalent if they are homeomorphic by a homeomor-
phism restricting to 1,,. Theorem A defines a function from the set of marked
presentations of H, (M) by (E, £) to V% (M). Now each 4-manifold V representing
a class in 7% (M) determines such a marked presentation, and thus the function is
surjective. Further, two marked presentations have the same image if and only if
they have the same markings and there is an isometry between the two presenta-
tions whose boundary is 1 (. As these conditions are preserved under the action
of A(M) x Z/2 when & is odd, and by A(M) when % is even, these actions will
descend to transitive actions on ¥ % (M). Hence we may identify ¥~ % (M) with the
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left cosets of some subgroup of A(M) x Z/2 in the odd case, and with the left cosets
of some subgroup of A(M) in the even case. Explicitly, fix a 4-manifold ¥,
representing an element of "% (M) and let P, be a marked presentation realized by
Vo. In the odd case, the stabilizer of the class of V is 4,(M), the homological
isometries of H (M) induced by isometries of P (Definition (1.6)). In the even case,
the stabilizer of the class of V'is 4 p,(m)> consisting of those pairs (a, 7) € A(M) such
that « € 4,(M) and = fixes the marking. The resulting bijection between 7% (M)
and the cosets may be described by the function

co V" U(M) > AM)/Ap(M) (Definition (1.6))
and, when % is even, by the function

&5, (M) : V% (M) > AM)/Ap sy  (after Lemma (1.10)).

THEOREM B.
(a) If (E, &) is odd, c% x ks : V"% (M) > AM)|Ap(M) x Z]2 is a bijection;
(b) If (E, &) is even, &5 : V"% (M) > AM)/Ap(M) is a bijection. [

If M is a Q-homology 3-sphere then I'(M) = 0. In this case A(M) = A(M) and
Ap (M) = Ap(M). We deduce:

COROLLARY C. If M is a Q-homology 3-sphere then
(a) co xks: ¥ %M)—> AM)]|Ap(M) x Z/2 is a bijection when (E, ¥) is odd,
(b) ¢%: ¥ %(M)—>AM)/Ap(M) is a bijection when (E, &) is even. [

We remark that A(M)/Ap(M) =~ A'(M)/A%(M) where A (M) is the group of
link-pairing preserving isomorphisms of 7T,(M) and A%(M) is the subgroup of
A'(M) obtained by restricting the elements of 4,(M) to T,(M) (see Theorem (1.7)).
Similarly A(M)/Ap (M) is determined as a quotient A‘(M)/A% (M) of a finite
group A‘(M).

If fis an orientation preserving homeomorphism of M and V represents a class
in 7°% (M), then the 4-manifold ¥, =M X I U, g, sV does also. This determines
a left action of #, (M), the group of orientation preserving homeomorphisms of
M, on ¥"%(M). Now V"’ is in the class of V,if and only if there is a homeomor-
phism F : V' — V restricting to f on M. Thus, the orbits of this action correspond
to % (M), which denotes the orientation preserving homeomorphism classes of
compact, l-connected, oriented 4-manifolds with boundary M and intersection
pairing isomorphic to (E, ). Now under the identifications of Theorem B, the
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action of f on ¥ % (M) corresponds to the action of fx'x1,, on A(M)/
Ap(M) x ZJ2 in the odd case, and to fx' x f,' on A(M)/A, (M) in the even case
(here, f,' : Spin (M) — Spin (M) is the natural function induced by /). Thus if we
set

(i) H, (M) ={f.|f€# (M)} and By(M) = H, (M)\AM)/Ap(M);
(i) A, (M) ={(fu:f2) |f € #, (M)} and B, (M) = A, (M)\A(M)/A, (M),

and let ¢, and ¢p, denote the reductions of ¢} and ¢, we obtain

THEOREM D.
(a) If (E, &) is odd, cp x ks : V" ,(M) - Bpo(M) x Z/2 is a bijection;,
(b) If (E, L) iseven, Cp : ¥V o(M) — B?,,‘(M) is a bijection. [J

COROLLARY E. If M is a Q-homology 3-sphere
(a) % (M) =~ B,(M) x Z|2 when (E, &) is odd,
(b) %, (M) =~ Bp(M) when (E, &) is even. [

In the final two sections of the paper we apply the work above to prove certain
existence and uniqueness theorems for representations of primitive homology
classes in 1-connected, oriented 4-manifolds by closed surfaces. More precisely, let
W be such a 4-manifold and ¢,e H,(M) a primitive homology class. Define
O(,) € Z)2 to be the quantity

ks(W) + g[signature (W) — &, & if &, is characteristic,
O(&) = .
0 otherwise.
We say that an oriented surface F < W gives a simple representation of &, if F is

locally-flat in W with l-connected complement and the fundamental class of F
represents &,.

THEOREM F. If ©(&,) =0, then for each g = 0 there is a surface of genus g in
W giving a simple representation of &,. Further, such a surface is unique up to ambient
isotopy in W.

If ©(&,)) = 1, then the same result holds for each g 2 1. [

When ©@(¢,) =0, the existence part of Theorem F is due to Lee and Wilczynski.
They also prove some uniqueness results when g =0. Their method is to apply

4-dimensional surgery theory and is completely different from those we use here.
See [LW] for more details.
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The necessity of the condition @(&,) =0 (mod 2) for the realization of &, by a
locally flat 2-sphere originates in the work of Kervaire and Milnor [KM]. For
nonprimitive classes, other necessary conditions arise out of the G-signature theo-
rem (see [Tr], [R] and [HS]). Lee and Wilczynski [LW] have shown that in quite
general circumstances, these conditions are also sufficient to represent a homology
class by a locally flat 2-sphere.

The uniqueness statements in Theorem F may be elaborated on. Let F be
a surface of genus g >0 and let 4, denote the collection of ambient isotopy
classes of embeddings in W of F which give simple representations of &,. Next
set r =&, &, and let D(F, r) be the 2-disc bundle of euler class r over F. Let
J’g denote the collection of flat embeddings of D(F, r) in W which, when restricted
to F, give simple representations of &,. Finally let E = {& e Hy(W) | & - & =0}
and denote by ¥ the restriction of the intersection pairing on H,(W)
to E.

THEOREM G.

(a) If & is odd, both #, and jg are singletons;

(b) If & is even but &, is not characteristic (i.e. W is spin), then %, is a singleton
but #, has 2% elements;

(o) If & is even and &, is characteristic, then both ., and jg have
[28 4+ (—1)®€0022~ 1 elements, where (-] is the greatest integer less than or
equal to function. []

The paper is organized as follows. Section 1 contains definitions and conven-
tions. Section 2 contains the proof of Theorem A. Section 3 contains the proof of
the existence part of Theorem F and finally in Section 4 we complete the proof of
Theorem F and prove Theorem G.

The author gratefully acknowledges useful conversations with Ian Hambleton
concerning the material in §3 and §4.

§1. Notations and Terminology

We shall assume throughout this article that all manifolds are compact and
oriented. Further all homeomorphisms will be assumed to preserve orientations.
Boundaries of manifolds will have the orientation corresponding to the boundary
of the fundamental class of the manifold they bound. As in the introduction, M
will denote a closed, connected 3-manifold and T,(M) the torsion subgroup of
H,(M). The free part of H,(M) is the quotient F,(M) = H,(M)/T,(M).
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If C, and C, are disjoint l-cycles in M representing classes [C,] and [C,] in
T,(M), there is a rational value linking number 7o (C,, C,) € Q@ ([ST], §77). The
torsion pairing

oz Ti(M) x T\ (M)—-Q/Z
is just the (mod Z) reduction £g:
{a/z([C,], [C1]) =46 (Cy, Cy) (mod Z).

We shall assume that all links L in M are tame. T(L) will denote a closed
tubular neighbourhood of L. Given a knot K in M, let u be its meridian. More
precisely, let D be a small 2-disc fibre of T(K) oriented so that it intersects K
positively. Then p will be the boundary of D.

When M is a Q-homology 3-sphere there is a canonical isomorphism
{o(K, ) : H(M\K; Q) > Q determined by the requirement that [u] + 1.

(1.1) DEFINITION. The longitude of a knot K in a Q-homology 3-sphere M
is the unique class 4 € H,(0T(K); Q) satisfying (i) p -4 =1 in H;(6T(K); Q), and
(ii) the image of A in H,(M\K; Q) is zero.

Note that the first condition is equivalent to 4 being rationally homologous to
K in T(K) while the second is equivalent to 7o (K, 4) =0.

It is shown in [BL2] that when M is a Q-homology 3-sphere, a class
pu+ql € H(OT(K); Q) is represented by an essential simple closed curve on
0T(K) if and only if geZ and there is a ¢ e€Z coprime with ¢g such that
p=c¢—qlg (K, K) (mod Z). Oriented Dehn surgeries along K are classified by
such pairs (p, q) (see §1 of [BL2]).

(1.2) DEFINITION. An integral framing of a knot K in a 3-manifold M is one
for which the framing curve is isotopic to + K in T(K). An integrally framed link L
in M is a framed link for which each framing curve is integral.

Denote by x(L) the manifold obtained by performing the surgery prescribed by
L. ¥(L) has the orientation extending that of M\T(L).

Note that when M is a Q-homology 3-sphere, we may express an integrally
framed link L as L= K{Pv*0u- - - UK ) where ¢, € { £ 1} and p, = ¢,/ 2 (K}, K;)
(mod Z) for each i € {1,2,...,n}. In this case set

i ={a(K;, K;) I #J,
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and define the framing matrix of L as

[P ]
D>
B, = ; 8j/ij
&l

It is shown in [BL2] that
|B.| = +|H,(x(L))|/|H\(M)).

A bilinear form space is a pair (E, £) where E is a finitely generated free abelian
group and ¥ : E x E— Z is a symmetric bilinear pairing. For instance if V is a
l-connected 4-manifold, the intersection pairing (H,(V'), -) is such a pairing.

A form (E, &) is called even if L(&, &) =0 (mod 2) for each & € E and is called
odd otherwise.

An isometry of (E, #) is an isomorphism of E which preserves #.

Denote by E* the Z-dual of E : E* = Hom (E, Z).

(1.3) DEFINITION. A presentation of H, (M) by a bilinear form space (E, &)
1S an exact sequence

h ad(L) a

0— H,(M) > E »E* — H, (M) —0

such that
(1) if ad(LY)E)=mmn;(i=1,2) where mm,#0, then £q,,(0n,,0n,) =
—(mymy) ' L&, &) (mod Z);
(i) if p e H,(M) and n € E* then (dn) - B = n(h(p)).

For instance if M is the boundary of a 4-manifold V' then it is well known that
(H,(V), -) determines a presentation P, of H (M) (see §3 of [GL]).

(1.4) DEFINITION. A homological isometry between two closed 3-manifolds
M and M’ is a pair of isomorphisms o = («,,®,) where o, : H,(M) - H;,(M")
(i = 1, 2) which satisfy

(1) if vy, v, € T\ (M) then £g7(2;(v)), 2,(03)) =Zg2(vy, v2);

(i) if v e H/(M) and B € H,(M) then a,(v) - a,(f) =v - B.
When M = M’ we call a an automorphism. A(M) will denote the group of all such
automorphisms.
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Let P be a presentation of H (M), as in Definition (1.3), and let « € A(M). We
can define a new presentation of H,(M), a(P), by replacing 0 by «; - and h by
hoay'. It is an easy exercise to verify that this defines a transitive, effective, left

action of A(M) on the set of presentations of H, (M) by a bilinear form space
(E, £).

(1.5) LEMMA. If (E, £) is an odd form presenting H, (M), then the action of
A(M) x Z]2 on the set of marked presentations of H (M) given by

(2, m) - (P, n) = (a(P), m + n),
is both transitive and effective. [J

Any orientation preserving homeomorphism f of M, induces an element
fx€AM) and we let H, (M) be the subgroup of A(M) consisting of all such
automorphisms.

An isometry between presentations (E, &) of H (M) and (E’, &’) of H (M') is
a commutative diagram

h ad(¥) a
0— H,(M) > E » E¥ — H/(M)—0
N e s
h ad(L") 7
0— H,(M') — E’ (E)*— H(M') — 0

where A is an isometry of the pairings. Note that A determines completely the
isometry and so in particular we shall write (somewhat ambiguously)
(o), 0y) = d(A). As A is an isometry it follows that d(A) is a homological isometry
between M and M'.

(1.6) DEFINITION. Given a presentation P : (E, ¥) - H (M), let Ap(M) be
the subgroup of A(M) defined by

Ap(M) = {d(A)| A is an isometry of P}
The function ¢% : ¥ % (M) - AM)/Ap(M) given by c% = d(A)Ap(M), where
A : P— P, is an isometry, is easily seen to be well-defined.

Define

Bp(M) = H, (M)\A(M)/Ap(M).
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It was shown in [B2] that the quotients A(M)/Ap(M) and B,(M) depend only
on torsion information. To describe this let

(1) A'(M) be the set of /g, ,-preserving isomorphisms of 7' (M);
(i) AR(M) be the subgroup of A'(M) consisting of those 7, ,-preserving
isomorphisms induced from isometries of (E, ¥);
(i) HY (M) ={f,,: T\(M) > T\(M)|f e # . (M)}
(iv) Bp(M) = H', (M)\A'(M)/Ap(M).

Note that F,(M) and H,(M) are dually paired by the intersection pairing and
thus the restriction homomorphism A(M)— A‘(M) is surjective. Evidently this
homomorphism takes A,(M) onto A%(M) and H, (M) onto H', (M). The follow-
ing theorem is a combination of results from §1 of [B2]. For a € A(M) let
a'e A(M) be its restriction.

(1.7) THEOREM. An automorphism o lies in Ap(M) if and only if o' lies in
Ap(M). As a consequence, the restriction induces bijections

AM)/Ap(M) > A(M)JA'S(M) and Bp(M) — BL(M). 0

To deal with the case where (FE, %) is even, we need to enrich A(M). For a
spin structure ¢ on M, let q, : T,(M) — Q/Z be the associated quadratic enhance-
ment of 7/q,,; (see [T] for instance). If P is a presentation of H_ (M), as in
Definition (1.3), by an even pairing (E, ¥), then P determines a quadratic en-
hancement g, of £q,;: for € E such that ad(Z£)(¢) = mn where m # 0, then the
reduction of (—1/2m?)Z(&, &) (mod Z) defines gp(0n). The set Spinp, (M) of
spin structures ¢ on M with g, = q, is precisely an I'(M)-orbit where I'(M) =
image (H'(M) - H'(M; Z/2)) < H'(M; Z/2). If M is the boundary of a compact,
1-connected, spin 4-manifold V, and P, is the presentation of H (M) from the
homology sequence of (¥, M), the spin structure on J restricts to an element o,
of Spin, (M).

Let a € A(M) and suppose that n is a permutation of Spin (M). We shall say
that n 1s a-adapted if

(1) n(a¥(x) - 6) = x - n(o) for each x e H'(M; Z/2) and ¢ € Spin (M);
(11) Gn0)(%,(2)) = q,(2) for each z € T, (M) and o € Spin (M).

(1.8) DEFINITION. Let A(M) be the set of all pairs (a, 1) where o € A(M)
and n is «-adapted.
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Note that A(M) is a group under coordinate-wise composition. It is shown in [B2]
(Lemma (3.3)) that there is an exact sequence

| — I'(M) — AM) —— A(M) — 1 (1.9)

where p is the natural projection. I'(M) includes in A(M) owing to the fact that a
permutation adapted to the identity is just the translation in Spin (M) by an element
of I'(M) (see §3 of [B2]).

It is relatively straightforward to verify that the formula (o, n) - (P, 0) =
(a(P), n(o)) defines a left action of A(M) on the set of marked presentations of H x (M)
by an even form (E, ¥). Indeed we have the following,

(1.10) LEMMA. The action (o, ) - (P, 0) = (a(P), n(0)) defines an eﬂéctive, and
transitive action of A(M) on the set of marked presentations of Hx(M) by an even form
(E,%). O

Suppose that Px is a marked presentation of Hx(M) by an even form (E, &),
say o € Spinp (M) is the marking. For each isometry A of P, let n , be the d(A)-adapted
permutation of Spin (M) determined by n,(¢) = 6. There is a subgroup of A(M)

Ap (M) ={(8(A), m,) | A is an isometry of P}.
The function ¢ép : ¥ (M) - /T(M)//f,,*(M) given by ¢ (V) = (d(A), n,), where
A : P — Pis an isometry, is easily seen to be well-defined. Further, each fe H, (M)
determines an fx-adapted permutation f, of Spin (M). Thus there is another natural
subgroup of A(M)

H (M) ={(fs.14) |feH, (M)}
Define

B, (M) = H, (M)\A(M)/|A, (M).

We remark that as in Theorem (1.6), the quotients A(M)/A p, (M) and B,,*(M ) are

determined by torsion information. The reader is directed to [B2] for the details.

§2. Realization of simply-connected 4-manifolds

In this section we shall prove Theorem A. We shall divide the proof of existence
into two cases according to whether H,(M) is finite or not.
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Case 1 (H,(M; Q) =0). Let P:(E, &) —> Hx(M) be a presentation, say

ad(¥) 0

0— F > E* »H, (M) — 0.

As ad(Z)(F) has finite index in E*, the pairing (ad(Z)(&,), ad( L) (&) = L&, &)
extends uniquely to a symmetric rational valued pairing #* on E*. Explicitly, if
Ny, "N, € E* and m,, m, > 0 are chosen so that m,n,, m,n, € ad(Z)(E), then we set

1
L*(ny,m2) = L(ad(&) ' (mn,), ad(L) ~'(myn,)).

17782

Note that the following identities hold:

L*n, ad(ZL)E) =n(€)  VeEand nekE* (2.1
Caiz(0n, 0ny) = — L *(ny,1m,) (mod Z) Vn, n, € E*. (2.2)
Fix a basis &, ..., ¢, for E and let n,, . . ., 5, be the dual basis for E*: ,({;) = J;.

(2.3) LEMMA. The matrix of £* with respect to the basis n,,...,n, of E* is
the inverse of the matrix of ¥ with respect to the basis &, ..., ¢&,.

Proof. First note that the matrix of ad(.¥) with respect to the given bases is
(L& g

Extend ¥ to E® Q in the obvious way. Then we may consider ad(¥) as an
isomorphism ad(¥) : E® Q — (E*) ® Q. Note that identity (2.1) continues to hold.
Let (a;)" " be the n x n rational matrix which is inverse to the matrix of # with
respect to the given basis. Then

L*ni,my) =n.(ad(L)"'(n;)) by (2.1).

=N ( i akjéj)
k=1

= .. J

y

Let L = K, u---uUK, be an oriented link in M such that [K;], the class of K; in
H,(M), equals dn,. According to identity (2.2) we have for i #j

—L*mi,n;) = Lqz (K], [Kj]) (mod Z)
=(q(K;, K;) (mod 7).
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Now passing a strand of K, across a strand of K; alters /o(K;, K;) by +1. Hence
after a finite number of such isotopies we may suppose that L was chosen to satisfy

/Q(Kh K/) = *‘g*(r’i’ ’71) l;é.]

Next we determine preferred integral framings for the components of L. To do
this we observe that

—ZL*M.n) =4qz(K], [K]]) (mod 2Z)
and thus the class
—-y*(”ia ’71)#;‘ + ’{1

represents a parallel to K, (see §1). It therefore determines an integral framing of X,
1 <i < n. Let L be the associated framed link. By construction, the framing matrix
of L is given by

By = —(L*Mm,n)" "= —(LC&. &)

Hence
HGW)] 1+l
o0~ TP Hge o man)

It follows that y(L) is a Z-homology 3-sphere. Define a compact 4-manifold V,
V=MxIUHPU - OHPlU W

where H® is a 2-handle attached to M x {0} according to the framing on K; and
W is the contractible 4-manifold with boundary y(L) (see [F]). Turning the handles
upside-down we see that V is just W with n 2-handles attached. Hence V' ~ \/7_, S?
and so in particular 7, (V) =1 and H,(V) = Z".

Next we describe a natural isometry A4 : (E, &) — (H,(V'), ). Consider the basis
{n1,n5,...,.n,} of Hy(V, M) where ] is represented by a core of the ith 2-handle
H in V. Define an isomorphism A*: H,(V, M) — E* by setting A*(n;) =n,,
1 <i<n. Finally let A : E > H,(V') be the isomorphism dual to A*.
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(2.4) LEMMA. A :(E, &) - (H,(V), ") is an isometry.

Proof. We describe more precisely the isomorphism A.

Let L” be the framed link in y(L) inverse to L. The ith component of L', K] say,
is the boundary of the cocore of H!® and is oriented so that its meridian repre-
sents the class —.Z*(n,, n,)u; + 4, € H(0T(K;); Q) = H,(6T(K}); Q). Denote by
{&€:,¢&,,...,¢&,} the basis of H,(V) where &; is represented by a cycle consisting
of a Seifert surface in y(L) for K} and a cocore of H®. Evidently this basis is
dual to {#i,n5,...,n,} and hence A(&;) =¢&;,1<i<n. Now it is well known
that for i#j, ¢} - & =£q(K;, K;). On the other hand, Lemma (1.5) of [BL2]
shows 7o (K;, K;) = —(B('");, and thus by Lemma (2.3), &; - &) = L(&,, &) for
i #j. Finally &; - &; is determined by the framing on K;, and one may use the
results of §1 of [BL2] to deduce &; - &) = L(&,, &) for 1 <i <n. Hence A is an
isometry. [J

Now it is clear from the construction that with respect to the presentations P
and P,, 0(A) =14 (. Thus to complete the existence part of Theorem A, it
suffices to show how to vary the ks-invariant of ¥ when % is odd and how to
realize an arbitrary o € Spin, (M) when % is even. But in the latter case, the
hypothesis H,(M; Q) = 0 implies I'(M) = 0. Hence there is a unique marking in
Spin, (M) and this must equal the restriction of the spin structure on V. Thus this
case holds.

Suppose now that .# is odd. Refer back to the definition of V. It is clear that
ks(V) =ks(W) = 1/8u(x(L)) (mod 2). It will therefore suffice to show how to alter
L giving L’ say, so that u(x(L")) # u(x(L)). To that end we use the assumption that
% is odd to choose an index i € {1,2,...,n} for which Z(&,, &) =1 (mod 2). To
simplify the notation below, we assume that i = 1. Consider the three auxiliary
framed links described as follows,

(D) Ly=KP>POuKP>» Py UKD where p, = — Z*(n;, ;).
(2) I'=K""YUl, where K; differs from K, only through the addition of a
small trefoil:
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(3) L"=K{"" UL where K, is positioned as indicated below:

A
T

K,

Now by blowing down K{"" it is clear (L") = y(L") = ¢(K§" " U L) = y(C"- ")
where C is the knot in y(L) corresponding to the image of K,,. Hence

u(x(L)) = p(x(C" D)) = p(x(L)) + 8arf(C) (mod 16).

The proof will be finished when we show arf(C) =1 (mod 2). Now arf(C) is
congruent (mod 2) to the coefficient of z? in the Conway polynomial of C (see
[Ka]). This latter quantity was calculated in Lemma (1.4) of [BL1] in the case where
M is a Z-homology 3-sphere. Switching to rational homology in that calculation,
we see that the same argument works for M a @-homology 3-sphere. The result is
that

arf(C) =|B¥|/|B,| (mod 2)

where
3 7]
1 {12 /]3 fln
0
BI = 0 B‘L()
0

Hence |Bf|=|By,|= +|H,(x(L))|/|H,(M)|. We have already noted that |B,|=
+ 1/|H,(M)| and thus arf(C) = |H,(x(Ly))| (mod 2). In the proof of Lemma (2.4),
we proved that the framing curve for K| was the (£(¢,, £,), 1) curve. Thus

1(Lo) = x((K7) D),
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Then arf(C) = L(&,, &) =1 (mod 2) and this part of the proof of Theorem A is
complete.

Case 2 (M arbitrary). Let L = K,UK,u"--UK,, be an oriented link in M for
which the classes [K], [K], .. ., [K,] form a basis of F,(M) = H,(M)/T,(M). As
F, (M) is dual to H,(M) via the intersection pairing, there are classes
By, B2, - .., B € Hy(M) satisfying [K;] - B; = §,. It is well-known that each 8, may
be represented by a flat surface S; in M transverse to L. Hence, after tubing away
pairs of oppositely signed intersection points between K; and S;, we may assume
that K is transverse to S; and further that

Kir\Sj——-{Q A

X, i=]j

for 1 <i,j <m. Removing a small disc neighbourhood of x, in S, shows that the
meridian of K, y; say, is null-homologous in M,, the exterior of L.

(2.5) LEMMA. An integral surgery along L produces a Q-homology 3-sphere
M, as long as none of the surgeries is trivial, that is, none of the framing curves are
meridians. Further H,(M,) is naturally identified with T,(M).

Proof. Consider the homology sequence of the pair (M, M,),
0
o — Hy(M, My) — H\(My) — H\(M) — H (M, My) — - -

The excision theorem implies that H,(M, M,) =0 and that the image of 0 is
generated by the meridians of L. We have shown these curves to be null in H,(M,)
and therefore the homomorphism H,(M,) - H,(M) is an isomorphism. This means
that any collection of parallels to the components of L generate F,(M,) while
T,(My) =T,(M). 1t follows that any non trivial integral surgery of M along L
results in a 3-manifold M, with H,(M,) =T,(M,) =T,(M). O

Let K(¥) = ker (ad(¥)). The presentation P determines a naturally defined non
singular bilinear form space (E/K(%), £’) and presentation P': (E/K(%), ¥)—
H, (M) (see §1 of [B2]). (E, #) splits as an orthogonal sum (E/K(Z), L") ®
(K(£), 0). Denote by T the trace of an integral surgery as described in Lemma
(2.5). Form a 4-manifold V' =T u,, V, where V, is one of the spaces constructed
in Case (1) which realizes P’ and has boundary M,. The calculations in the proof
of Lemma (2.5) show that the inclusion M,— T induces an isomorphism
H,(M,) - H,(T). Hence, referring to the Mayer— Vietoris sequence stemming from
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the union V' =T v, V,, we may conclude that H,(V) = H,(T) ® H,(V,). The
intersection pairing on V also follows this splitting and thus there is a canonical
isomorphism

(Hy(V), ) = (HxT), ) ®(E/K(ZL), £L").

Now examination of the constructions of 7 and V, reveals that ¥ may be
expressed as the union of M x I with n 2-handles and a contractible manifold.
Hence H,(V) = Z". On the other hand, H,(M) =~ F,(M) and so the intersection
form an H,(V) has a summand of the form (Z™, 0). As (E/K(%¥), ") is non-
singular, we conclude (H,(T), -) =~ (Z",0). Clearly then (H,(V), ) = (E, &¥). Fur-
ther, we can produce an isometry A : E— H,(V) with (A) = ly ), just as in
Case 1.

Suppose now that & is odd. By varying the ks-invariant of V,, we vary
the ks-invariant of V. This proves the existence part of Theorem A when £ is
odd.

Assume now that ¥ is even. We must show how to vary the spin structure on
V over the elements of Spin, (M). To that end fix a nontrivial integral framing %,
on L as described in Lemma (2.5). Let M, be the associated Q-homology 3-sphere
and let T, denote the trace of this surgery. Let V', be chosen as before. For each
b € {0, 1}™ let #, be a nontrivial integral framing of L which agrees with %, on
K, when b, = 0 and differs from it by a meridinal twist otherwise. For each b let
T, denote the trace of the surgery prescribed by #,. Define V, =T, u, Vi,
b € {0, 1}", and note that if g, denotes the unique element of Spin (M) extending
over V,, then these spin structures are distinct. Indeed if b’ # b,, then %, and %,
differ by meridinal twist along K; and thus ¢,, which extends over the ith 2-handle
of T,, does not extend over the ith 2-handle 7, . Alternatively, we may argue
that as the components of L represent a basis for F,(M), then {c, |b € {0, 1}"}
is the orbit I'(M) -o,. Clearly then, each marking of the presentation P is
realized. This completes the proof of the existence part of Theorem A when & is
even.

Proof of uniqueness in Theorem A. Given two manifolds ¥, and V/, realizing a
marked presentation of H, (M), there is a morphism (1,,, A4) : V>V, (see [B2}).
If ¥ is odd, this may be replaced by a morphism (1,,4"):V,—>V, with
0(1,,,4") =0 (Proposition (0.8) (ii) of [B2]). As ks(V,) = ks(V,), this implies
there is a homeomorphism F : V|, — V, extending 1,, (see Theorem (0.7) of [B2]).
If % is even, the spin structure on M from V, equals that from V, and thus
6(1,,, A) =0 (Proposition (4.1) (v) of [B2]). As before, this suffices to prove
uniqueness.
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§3. Realization of homology classes

We prove the existence part of Theorem F in this section. Throughout, W will
denote a closed, l-connected 4-manifold, &, e H,(W) a primitive class and
v € Hy,(W) a class satisfying v - £, = 1.

Let E={¢ e Hy,(W)|& & =0} and define & to be the restriction of the
intersection pairing to E. Set r = ¢, - &,.

(3.1) LEMMA. (E, &) presents H (—L(r, 1)) in a canonical fashion.

Proof. Now v defines an element of E* in an obvious way: vg(&) =v - . We
shall show that

(1) coker (ad(¥)) =~ Z/r generated by v.;

(1) if r >0, L*(vg, vg) = —1/r (mod 7).
Assuming these two claims have been demonstrated, we may readily define the
desired presentation

ad(ZL)

0— Hy(—L(r. 1) — E E*— s Hi(—L(r, 1)) — 0

as follows. Let D(S?, r) be the 2-disk bundle over S* with euler number r. It is
well-known that dD(S?, r) = L(r, 1) thus giving L(r, 1) the structure of an S'-bundle
over S? and further, that any two such fibrings of L(r, 1) are isotopic. Thus we may
define a natural isomorphism coker (ad(.¥)) iHl(-L(r, 1)) by sending the class
of v, in coker (ad(¥)) to the negative of the class in H,(—L(r, 1)) carried by a
circle fibre. Note that this isomorphism is independent of the choice of v. Let
0:E*—> H,(—L(r, 1)) be the composition

E* — E*|ad(£)E) — H,(~L(r, 1)).

Now we define & : Hy,(— L(r, 1)) > E. When r #0, H,(— L(r, 1)) =0 and so we
take h=0. When r =0 we note that £,e £ and we define h(f) =&, where
p € Hy(— L(0, 1)) > Z is the generator satisfying f - d(vg) = 1. It is an easy exercise
to verify that these definitions determine a presentation of H,(—L(r, 1)).

Now we justify the two claims. First we show that v, generates coker (ad(%)).
To that end let p € E*. As E is a summand of H,(W), p extends to an element of
H,(W)*. By duality we can find a class y € H,(W) such that y - & = p(¢) for each
¢ € E. But then since y — (y - &y)v is an element of E, we see

p =" Covg+ad(L)y — (v - So)v).
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Hence coker (ad(¥)) is generated by v.. To see that v, has order r in
coker (ad(.?)), first observe that for each & € E, (rv) - € = ad(L)(rv — &,)(E). Hence
ro; € ad(ZL)(E). On the other hand, if 0 <m < |r| and mvz = ad(Z)() for some
& eE then m=(mv) - (§;—rv) =& - (&, —rv) =0 (mod r), a contradiction. Hence
vy has order precisely |r| in coker (ad(Z)).

Finally suppose r # 0. We have just observed that rv, = ad(£)(rv — &,). Hence

1
L *vg, vg) = (;5) L(rv — &g, rv — &)

=(r—12->(rzv-v—2r+r)

1

This completes the proof of Lemma (3.1). O

If T, is an unknotted torus in S*, say a torus coming from a Heegard splitting
of $*< 8% and if F is a surface in W with l-connected complement which
represents &, € H,(W), then F# T, < W # S*= W also has a 1-connected comple-
ment and represents &,. Hence, for the existence part of Theorem F, it suffices to do
the case g = 0 when @(£,) =0 (mod 2), and the case g = 1 when ©(£,) =1 (mod 2).

Existence when & is an odd pairing. Mark the presentation of H, (—L(r, 1))
with ks(W) € Z/2. According to Theorem A, this marked presentation is realized by
a compact, 1-connected 4-manifold V. Define a closed 1-connected 4-manifold W’
by W' =V u,D(S?% r) where the gluing homeomorphism f: dV — D(S?,r) is just
the identity of L(r, 1) when r #0. When r =0, f will be either the identity or the
homeomorphism which fixes the S'-fibre and acts as the identity on H, (L(0, 1)),
but which switches the two spin structures on L(0, 1). We shall specify which below.

Our goal now is to show that W’ is homeomorphic to W by a homeomorphism
sending the class &;, carried by the base S?< D(S% r) < W', to &. This will
complete the proof of existence when % is odd. Now ks(W’) = ks(V') = ks(W) and
so according to Theorem (1.5) of [F] and its addendum, it suffices to produce an
isometry I' : (Hy(W), ") = (H,(W’), ) such that I'({y) = &g.

As V realizes the given presentation, there is an isometry A : P — P, such that
0(A) = 1, (—L(r, 1)). Continuing with the notation from Lemma (3.1), let
n=(A%)""vg) € Hy(V,dV). Then dn =dv, e H,(—L(r, 1)) is, by construction,
represented by a negatively oriented S'-fibre. Hence there is a 2-chain in V
representing n whose boundary is this S'-fibre. Define v’ € H,(W’) as the class
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obtained from the sum of this 2-chain with an appropriate D2-fibre in D(S?, r).
In the case that r =0 we must take more care. First we choose the gluing map f
in the definition of W’ so that v'-v'=v-v (mod2). Next we replace v’ by
v +3(-v—0"-0) so that now v’ - v =v -v. These choices will be assumed
below. Note that in any event v" - &, =1.

Now it is not hard to see that the inclusions induce isomorphisms
Yy E®Zv-> H,(W)and ¢ : H,(V)® Zv'—» H,(W’). Further there is an obvious
isomorphism ¢ : E® Zv - H,(V) @ Zv” which restricts to 4 on E and sends v to
v.Set'=y' - -y ': Hy(W) - H,(W’). Clearly I'(¢,) - I'(¢&,) =&, - &, for each
&, & e E. We also have that when ¢ € E,

L) - 1) =v"I()
=n-A(E) by construction

=A*m) - ¢
=v - ¢ by definition of #.

It follows that

I'(x) - T()=x "¢ (3.2)

for each k € H,(W) and each ¢ € E. We will be finished when we indicate why
v’ v’ =v v (implying I' is an isometry) and why I'({,) = £;. To prove the latter,
we use (3.2) to deduce that if &’ € Hy(V), (&) - & =&, T "Y(&). But I' (&) e E
and thus I'(¢,) - £’ =0 for each &’ € H,(V'). It can be shown that a class in H,(W")
which kills H,(V), I'(§,) for instance, must be a multiple of £¢;. We also know
that &,, and thus I'(§,), is primitive. Hence I'(¢,) = +&;. To show the sign is
+ 1 we consider, first of all, the case r =0. Then {,e E and so by (3.2),
v - T()=TW) T') =v-&=1. But v'-&;=1 by construction and there-
fore I'(&y) =&y, If r+#0, recall &, —rvoe E. Then TI'(¢,—rv) € Hy(V) implies
0=¢,-T(E—rv)=¢5T'(E) —r. Hence &;-I'(Ey) =r and again we must have
I'(&o) = o

We may now complete the case where ¥ is odd by explaining why v" - v' =
v-v. When r =0 this was by construction. Assume then that r #0. Now
H,(—L(r,1)) @ Z/r and thus it can be shown rv =&, + ¢ for some & € E. Then
rv” =TI'(rv) = &, + A(E). Hence

P00 =& EF AQ) A =& G+ EE=r e,

and we obtain the desired identity.
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Remark. With a little more work, one can arrange for the gluing map to be the
identity in the r =0 case. For if v’ - v’ # v - v (mod 2), we use Proposition (0.8) (ii)
of [B2] to select a morphism (1,,,4,) of V such that the obstruction class
6(1,,, A,) evaluates nontrivially on an S'-fibre. If we now replace A by A, - A and
construct v’ with respect to the new A, we shall have v" - v"=v - v (mod 2).

Existence when & is an even pairing and ©(¢;) = 0. Let P be the presentation of
H , (—L(r, 1)) determined by Lemma (3.1). If r # 0, Spin, ( —L(r, 1)) has a unique
element ¢ and we mark P with it. If r =0, Spin, (— L(r, 1)) = Spin ( — L(r, 1)) has
two elements. Mark P with the unique spin structure extending over D(S?, 0) if W
is even and the other one if W is odd. '

Realize this marked presentation by a compact, 1-connected 4-manifold ¥ and
construct W’ as before, though now we shall take the identity as our gluing map in
all cases. The previous argument produces an isometry I' : (H,(W), -) = (H,(W’), ")
with I'(¢,) =¢;. The only point to verify is that when r =0, the congruency
v’ v’ =v v holds. But as . is even, W (respectively W’) is spin if and only if v - v
(respectively v” - v") =0 (mod 2). Now ¢ € Spin, (— L(0, 1)) was selected so that W
is spin if and only if W’ is. Hence v’ - v’ =v - v (mod 2).

If (H,(W), ") is even, the existence of I is enough to deduce the existence of a
homeomorphism f: W’ — W with f_(£;) = £, and so we are done in this case. The
final case for consideration is when (H,(W), ‘) is odd. This is precisely the case
where &, is characteristic and so by the hypothesis @(&;) =0 (mod 2), we see

ks(W) = i [signature (W) — &, - &] (mod 2)
= ¢ [signature (W) — r]. (mod 2)
On the other hand

ks(W’') = ks(V) (mod 2)
= g [signature (V) — u(— L(r, 1); 6)] (mod 2).
Now Novikov additivity shows signature (V') = signature (W) — sign (r). We also
know that as (H,(W’), -) is odd, the spin structure ¢ does not extend over D(S?, r).
This determines ¢ € Spin (—L(r, 1)) and it may be shown u(—L(r,1);0)=
sign (r) — r (Theorem (6.5) of [KT]). Hence
ks(W’) = 4 [signature (W) — r] = ks(W).

We conclude that I' is realized by a homeomorphism.
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Existence when & is even and @(¢)) = 1. Let T = S' x S! and denote by D(T, r)
the 2-disk bundle over T with euler number r. Set M, = —dD(T, r). Consider the
bilinear pairing (£, &) = (E, &) ® (72, 0). Using Lemma (3.1), it is not hard to see
that (£, 2) presents H,(M,) in such a way that if vz is the extension, by zero, of
vg to E, then dvs € H,(M,) corresponds to a negatively oriented S'-fibre in M, . Fix
such a presentation P and mark it with ¢ € Spin, (M,) satisfying
(i) ks(W) = g[signature (£) — u(M, ; 0)] (mod 2); 3.9
{(ii) o does not extend across D(T, r). (3-3)

It is not obvious at first glance that there are such spin structures. We shall prove
this in a moment. Assuming it, realize (P, ¢) by V and form W’ =V u D(T, r), glued
with the identity function. As & is even but Wis odd, v - v =1 (mod 2). The choice
of ¢ shows that W’ is also odd and so v’ - v’ =1 (mod 2) also. The construction of
an isometry I' : H,(W) — H,(W’) may now proceed as before. Finally, condition (i)
on ¢ shows

ks(W’) = ks(V') = 4 [signature (£) — u(M, ; o))
=ks(W) by (3.3) (i).

Hence I is realised by a homeomorphism and this final case of existence for Theorem
F will be done when we explain how to find o € Spin, (M,) satisfying (i) and (ii)
above.

Let Spin® (M,) denote the collection of spin structures on M, which do not extend
over D(T,r). It is not hard to see that Spin® (M,) has four elements, each pair
differing by an element p*(H'(T; Z/2)) < I'(M,), where p : M, — T is the projection.

(3.4) LEMMA. If r #0, Spin® (M,) = Spin, (M,).

Proof. If r is odd, both sets equal Spin (A,), so we may assume r is even.

Now Spin, (M,) is the I'(M,)-orbit in Spin (M,) of spin structures whose
associated quadratic enhancement of the link pairing equals ¢, the one defined by
the presentation P (see Proposition (2.11) of [B2] for instance). A calculation similar
to that of #*(vg, vg) in Lemma (3.1) shows g,(dvg) = (2r) ! — 3 (mod Z). On the
other hand, using the fact that r # 0, the remarks prior to this lemma imply that
Spin® (M,) is an I'(M,) orbit, whose complement consist of those spin structures
extending over D(T, r). Now H,(D(T, r)) is free and so the quadratic enhancement,
q say, of a spin structure extending over D(T,r) may be calculated from the
homology sequence of the pair (D(T, r), M,). In particular we have g(dvg) = (2r) !
(mod Z). Thus q # qp. The lemma now follows. [
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As Spinp (M,) = Spin (M,) when r =0, Spin® (M,) < Spin, (M,) always. We
need to produce an element ¢ € Spin®(M,) satisfying (i). To do this, let
x : Spin® (M,) — Spin (T') be the function of Lemma (6.2) of [KT]. It satisfies
x(p*(x) - 6) = x - x(o) for each x e H'(T; Z/2). Let B : Q5P™ — Z/2 be the isomor-
phism. Now T admits four spin structures, precisely three of which are nullcobor-
dant. Hence, using Theorem (6.5) of [KT], if & eSpin®(M,) there is an
x € HY(T; Z/2) such that

WM, ; p*(x) - 0) — u(M,; 0) =8 - B(T* *) — 8- f(T"")

=8 (mod 16).

If ¢ does not satisfy (i), then p*(x) - ¢ € Spin® (M,) will. This completes the proof
of the existence part of Theorem F.

(3.5) Remark. Suppose &, is characteristic and let F be a surface of genus g > 1.
We can use the method above to construct directly a locally-flat embedding of F in
W with l-connected complement which realizes &,. We let D(F, r) denote the 2-disk
bundle over F of euler number r and set M,= —dD(F,r). Then we show
(E, 2) = (E, &) ®(Z%*.0) presents H ,(M,) appropriately, say by a presentation P.
Now P must be marked by a spin structure ¢ € Spin, (M,) satisfying the conditions
(3.3). As g 2 1, this can always be done. Indeed there will be 28 4 (—1)®(<0)2¢ 1
such markings. To see this let Spin® (M,) be those spin structures on M, not
extending across D(F, r). As before, Spin® (M,) < Spin, (M,). Lemma (6.2) of [KT]
produces a bijection y : Spin® (M,) — Spin (F) and using Theorem (6.5) of that
paper we can show that for ¢ € Spin® (M,) condition (3.3) (i) is satisfied if and only
if @(&,) = B(FA”) (mod 2). Now there are 2% + 28~ ! nullcobordant spin structures
on F and 2% —2¢ ! non-nullcobordant ones. The result follows.

§4. Uniqueness

In this section we complete the proof of Theorem F and prove Theorem G.

Suppose F,, and F, are two locally flat surfaces of genus g in W with
1-connected complements which represent &,. Let 4 : F, - F, be a homeomorphism.
According to §9.3 of [FQ], each has a 2-disc bundle tubular neighbourhood, say
D(F,) and D(F,). As the euler number of these bundles are each equal to &, - &, =r,
there is a homeomorphism H : D(F,) — D(F,) extending A. We would like to extend
H to a homeomorphism A : W — W isotopic to the identity. We shall see that this
is always possible as long as &, is not characteristic. If £, is characteristic, there will
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be an obstruction, but it may be nullified by appropriately replacing the homeomor-
phism A4 : F, > F,. Now the details.

Let M,= —0D(F,) and M,= —0dD(F,). Consider the exteriors of F, and
F,: V,= W\D(F,) and V,= W\D(F,). By hypothesis these are compact, l-con-
nected 4-manifolds whose boundaries are homeomorphic via f= H | M, : M, > M,.
Note that f takes a positively oriented S'-fibre in M, to a positively oriented
S'-fibre in M,.

Denote by ¢; : H,(V;) — H,(W) the homomorphism induced by the inclusion
(j=1,2). Recall E={¢ e H,(W)|&-&=0}.

(4.1) LEMMA. Image (¢;) = E for j =1, 2.

Proof. Fix j. From the Thom isomorphism theorem, the natural homomor-
phism Hy(W) — H,(W, V;) = H,(D(F;), M;) = Z sends a class ¢ € H,(W) to & - &,.
Hence its kernel is E. But this kernel is clearly image (¢;). O

It follows from Lemma (4.1) that for each j, there is a sequence
0-H;(W,V,))>H,(V;) > E—0. As E is free abelian, these sequences split, and
thus there is an isomorphism A : H,(V,) - H,(V,) making the following diagram
commute,

0— H3(W, V) > Hy,(V) — E— 0

N
= /hl

H,(D(Fy), M) — H,(M,)

H, /n- A lE (42)

V

Hy(D(F,), M) — H,(M,)

= hz

vV N

0— Hy(W, V,) s Hy(Vy) — E — 0

It is not hard to verify that any such isomorphism A is an isometry. Our next goal
is to show that 4 may be chosen so that d(4) = £, with respect to the presentations
P, and P, .

For each j=1,2, let k;: Hy(W)—> H,(V;,, M;) be the composite H,(W) -
Hy(W, D(F)) = Hy(V,, M)).
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(4.3) LEMMA. The following diagram commutes

Hy(V) » Hy(Vy, M)

\

Hz(Vz > Hy(Vy, My)

At

/\

Proof. We only need to verify that k, = A* - k,. To see that let u € H,(W) and
¢ € H,(V,) be arbitrary. Then

A* (k2 (w) - & = Ky (p) - A(E)
=i+ 92(A())
=pu¢:(S)
=K (p <.

It follows that A* ok, =k,. [

(4.4) LEMMA. There is an isometry A : H,(V,) - H,(V,) making diagram
(4.2) commute such that 0(A) =f,.

Proof. Examination of diagram (4.2) shows that 0(A), = f, : H,(M,) - H,(M,).
Now both d(A) and f, preserve the intersection pairings H,(M;) x Hy(M;) - Z. By
the nonsingularity of these pairings (at least after dividing H,(M,) by its torsion
subgroup) we see that d(A), and f, : H,(M,) » H,(M,) are equal up to torsion.
When r =0, both H,(M,) and H,(M,) are free and so d(A) =f,.

Assume now that r#0. Recall ve H,(W) satisfies v-¢,=1. Then if
0, : Hy(V;, M;) » H(M;) is the boundary homomorphism, (0, - k;)(v) € H,(M,) is
represented by a negatively oriented S'-fibre in M,. Hence, by construction of
fiM - M,,

S (0,06, () = 0,(x,(v)) = 3, 0 (A*) ~' (%, (v)) by (4.3)
= 0(A),(0,(k, (1))

Now as r #0, T\(M;) = Z|r and is generated by J;(x;(v)) (j = 1, 2). Hence we have
shown d(A), | T,(M) =f, | T:(M,). But we observed that f, and d(A), differ by
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torsion elements of H,(M,). It follows that d(A), =f, | H,(M)+y for some
homomorphism ¢ : (H,(M,), T,(M,)) - (T,(M,),0). We now proceed as in the
proof of Proposition (1.6) of [B2] to show how A may be altered to satisfy
o(A) =f, and to make diagram (4.2) commute (see pages 338—-339 of [B2]). O

If A: Hy(V,)—> H,(V,) is chosen to satisfy the conclusion of Lemma (4.4) then
(f,A): V,-V, is a morphism. Recall 6( f, A) the associated obstruction class in
I'(M,) ([B2)).

(4.5) LEMMA. If 6(f,A) =0, then H extends to a homeomorphism
H:W W which is isotopic to the identity. In particular, the inclusion
K : D(F,) < W is ambient isotopic to H - K.

Proof. Now ks(V,) = ks(W) = ks(V,) and so the hypothesis 8( f, A) =0 im-
plies that f extends to a homeomorphism H' =V, - V, with H} = A (see Theorem
(0.7) of [B2]). Let H=HUH : W =D(F,)uV,—»W =D(F,)uV,. Then H is
clearly a homeomorphism for which A «(&o) = &,. From diagram (4.2) we see that
if £ e H,(V,) then

A ,(0,(0) = 0:,(H (8)) = 02(AE) = 9, ().

Hence ﬁ* | E=1g. Now if r #0, &, and E span H,(W) rationally. Thus in this
case, H « = lu, o). According to [Q], H is isotopic to the identity.

Assume now that r =0 and recall v € H,(W) satisfies v - {,=1. As noted
above, H,|E =1, and thus H, (&) -v=¢-v for each ¢ e E. This means that
H,(v) =v+mé, for some meZ. Then v-v=H,() H,)=v:v+2m. Then
m =0 and so ﬁ*(u) =v. As v and E span H,(W), we conclude fl* =1y, w In
the case r =0 also. As above, this means H is isotopic to the identity. [J

(4.6) Remark. We note the following consequence of the last lemma. Suppose
F, and F, are two locally flat surfaces in W with 1-connected complements which
represent &,. Let h: F, > F, = W be a homeomorphism. Then # is isotopic to the
inclusion F, < W if and only if for the restriction f: M, - M, of some homeomor-
phism H : D(F,) - D(F,) extending h, there is a morphism (f, A): Hy,(V,) —
H,(V,) such that A makes diagram (4.2) commute and 6( f, A) = 0.

Recall from the proof of Lemma (4.4) that the class 0,(k,(v)) is represented by
a negatively oriented S'-fibre in M,.

(4.7) LEMMA. For any isometry A . H,(V,) = H,(V,) making diagram (4.2)
commute and with 0(A) =f,, 0(f, A)(0,(k,(v))) = 0.
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Proof. When r is odd, 0,(x,(v)) has odd order and so the result is clear. Suppose
then that r is even. Fix a spin structure g, € Spin (M) extending over D,(F,). If
o,=f,(a,), it is clear o, extends over D(F,). Then by Proposition (4.1) of [B2],

0(f, A)(0(x2(v)))
= W,y (Va, My 4 (01))(K2(0)) — wa(Va, My; m4(0,))(k,2(0))
= wy(Vy, My; 05)(k,(0)) — wa(Vy, My, 0y (A *(K2(v)))
= w,(Va, My 05) (k3 (0)) —wy(Vy, My, 0,)(k,(v)) by Lemma (4.3)
= (W), v) — (W), v)
=0 (mod?2)

as g, extends over D(F,;) and o, extends over D(F,). Evidently this completes the
proof. O

Proof of uniqueness when ¥ is odd. Let A : H,(V,) = H,(V,) be an isometry as
guaranteed by Lemma (4.4). According to Proposition (0.8) (ii) of [B2], there
is a morphism (f, A"):V,—»V, with 0(f,4") =0. Now A’ can be chosen so
that diagram (4.2) still commutes. This is because A’ may be expressed as
A=A+ hyoy cad(¥,) where ¥ : Hy(V,, M,) > H,(M,) is a certain homomor-
phism with image generated by a class § € H,(M,) whose dual in H'(M,) reduces
(mod 2) to 8(f, A). When r #0, ¢,ch, =0 and so ¢, A" = ¢, A = ¢@,;, which is
what we wanted. When r = 0, we can use Lemma (4.7) to choose an appropriate f
with ¢,(h,(f)) =0. Again we shall have ¢, A" = ¢,.

In all cases then, we can arrange for the hypotheses of Lemma (4.5) to hold.
Hence the inclusion K : D(F,) — W is ambient isotopic to H o K. As the homeomor-
phism A : F, > F, and its extension H : D(F,) —» D(F,) were chosen arbitrarily, the
uniqueness statement in Theorem F and part (i) of Theorem G hold when % is odd.

Proof of uniqueness when & is even. Let ¢, and o, be the unique spin structures
on M, and M, extending over ¥, and V,. According to Proposition (4.1) (v) of [B2],
if (f,A):V,->V, is any morphism, then 6(f, A) is determined by the identity
fu(0,) =0(f, A) - 6,. We must therefore arrange for f,(o,) = 0,, if possible.

Consider, first of all, the case where W is spin. Then o; extends uniquely to a
spin structure ¢, on D(F;). Now it may be that H,(dG,) # G,, but this may be
corrected without altering 4 as follows. Let p : D(F,) — F, be the projection and fix
a class x € H\(F,; Z/2) such that H,(G,) =p*(x) - G,. Choose any X € H'(F,)
reducing to x and represent X by a function y : F,» S'. Now S' acts on D(F,) by
rotation of the DZ3-fibres. In particular we may define a homeomorphism
R : (D(F,), F,) = (D(F,), F,) by R(z) = y(p(2))(2). Clearly R | F, =1 r,- If we replace
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H by R o H, then we still have an extension of 4 : F;, —» F,, but now H,(d,) = 6,.
Restricting to M, and M, gives f,(o,) = 0,. Thus, as in the case when ¥ was odd,
no matter which homeomorphism 4 : F, — F, was chosen, the inclusion k : F, > W
is ambient isotopic to 4 o k. This gives the uniqueness part of Theorem F when W
is spin as well as the portion of Theorem G (ii) referring to .#. To complete the
proof of Theorem G (ii), we must show that .# has 2%¢ elements. But our arguments
show that when W is spin,

(1) two homeomorphisms H,, H, : (D(F)), F,) = (D(F,), F,) are ambiently iso-

topic if and only if (H,),(6,) = (H,).(6,);
(ii) for each x € H'(F,;Z/2), there is a homeomorphism H. :(D(F)), F,) -
(D(F,), F) such that (H.),(6,) =p*(x) - 6.
As D(F,) admits 2% spin structures, it follows that .# has 2°¢ elements.

The final case for consideration is when W is odd and % is even. This is
precisely the case where & is characteristic. We shall see that it may not be possible
to isotope the inclusion k : F;, — W to h o k, but that there is a homeomorphism
h,: F, > F, such that k is isotopic to 4, - k.

Let P, denote the presentation of H,(M;) arising the homology sequence of
(V,, M;) (j=1,2). Let Spin® (M) be the collection of spin structures on M, not
extending over D(F,). Then Spin® (M) has 2°¢ elements and arguing as in Lemma
(3.4) it can be shown that Spin® (M,) = Spin, (M,) if r # 0 and that Spin® (M) is
exactly one half of Spinpl (M,) =Spin (M;) when r =0. Lemma (6.2) of [KT]
constructs a bijection y;, : Spin® (M) — Spin (F;) for which it may be shown that the
following diagram commutes:

f
Spin® (M) —— Spin® (M)

o | | =

h 4

Thus f, (g,) depends only on A and further the following statements are equivalent:

(i) the inclusion K : D(F,) < W is ambiently isotopic to H - K

(11) the inclusion k : F, € W is ambiently isotopic to & ¢ k;

(iii) f,(01) = 03

(1v) hy, (X (0y)) = x:(02). .
Thus the natural restriction map ¥ — .# is bijective when &, is characteristic. We
remark further that 4, (x,(g,)) is spin cobordant to y,(o,). This follows from the
fact that if B : Q3P" — Z/2 is the isomorphism, then

PUFL# 1) = BIFTY) = ©(8o) = BFF) (4.8)

(see Remark (3.5)). Now there are exactly [2% + (—1)©©0)2¢ = 1] spin structures on
F, satisfying (4.8) and they form an orbit in Spin (F,) of the Homeo™ (F,) action.
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Thus, considering the compositions 4’ o h where A’ € Homeo ™ (F,), shows that both
# and 4 have [2¢ + (—1)®¢022 ~ ] elements and further that there is a homeomor-
phism A, : F, — F, such that A, o k is ambiently isotopic to k. This completes the
proofs of Theorem F and Theorem G.
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