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Classical knot and link concordance

PATRICK GILMER

Introduction

In [Gl1], we combined the slicing obstructions of Levine [L] with those of
Casson and Gordon [CG1], [CG2], [Go] in a nontrivial way. Essentially we related
the metabolizer for the Seifert form of a slice knot which Levine guaranteed to the
characters on the homology of the 2-fold branched cover (with vanishing Casson—
Gordon invariants) which Casson and Gordon guaranteed. In this paper we will
simultaneously consider all the g-fold branch covers for ¢ a prime power. We will
define I ™ which strengthens the group I'" of [G1]. In [GL2] Livingston and Gilmer
applied these methods to concordances of two component links with linking
number zero. They defined an algebraic group ¥ which enhanced I'" to study
concordances of links with two components. In this paper we will define an
analogous strengthening ¥ * of ¥. We also calculate enough Casson—Gordon
invariants to decide when a genus one knot maps to zero in I' *. Finally we give a
new example of a link which is a fusion of a boundary link but not concordant to
a boundary link. Cochran and Orr [CO] were the first to discover such links.
Livingston was the first to observe that our work on Casson—Gordon invariants
could be applied to this problem [Li]. We would like to thank Chuck Livingston for
many valuable conversations. We work in the smooth category.

§1. Seifert surfaces, branched covers and isometric structures

Let K be a knot in a homology 3-sphere S with Seifert surface F with
intersection pairing < , ». Let i, : H,(F) - H,(S — F) denote the map which pushes
a class off in the positive normal direction and let i/ denote the map given by
pushing off the other way. Let 6 denote the Seifert pairing, i.e. 8(x, y) is k(i x, y).
Let V denote the Seifert matrix for @ with respect to some basis {a,, ..., a,,} for
H,(F). With respect to this basis the intersection form is then given by the matrix
V-V Let {o,...,0,} denote the basis for H,(S — F) such that lk(a,, a;) = 9]
as in [R] p. 209. Then i, with respect to these bases is given by V'. Define
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c:H,(S~F)->H,(F)by {cx,y> =Ilk(x, y), so cis given by the matrix (V' — V) !
with respect to the above bases. We can describe ¢ geometrically as follows. First
represent x by a curve y. Let y bound an embedded surface G in S — K transverse
to F. Orient the curve G N F so that the positive normal to G followed by the positive
normal of F, followed by the tangent to G n F is a right handed system. Then G " F
represents c¢(x). This is because linking with y is given by intersection with G in S,
and for a curve on F intersection with G is the same as intersection in F with G N F.

Following Kervaire [Ke], and then Stoltzfus [St], we define the associated
isometric structure s : H,(F) — H,(F) by the equation 8(x, y) = {(sx, y>. We see that
sis ¢ o i, and so is given by the matrix G = (V' — V) ~'V"’. Note s — Id is given by
G—-I=W"-V)'Vandsos—1Idis actually ¢ i_. The map s can be described
geometrically and is related to Cochran’s derivatives [C]. If x € H,(F) is represented
by a curve y on F we can push y off of F in the positive normal direction and obtain
y.. Let y, bound a surface G in S — K transverse to F, then G N F represents s(x).
s — Id can be described similarly; one simple pushes off in the negative direction. See
[GL3] where this connection between s and Cochran’s invariants is explored.

Let M7 denote the g-fold branched cyclic cover of S along K. Let X denote S
slit along F i.e. the complement of the interior of B, a bicollar neighborhood of F.
M¢ (denoted M for short from now on) can be constructed from g copies of X say:
Xi,...,X,. Let F, and F_ denote the copies of F in X lying just above and below
Fin S. Let F', denote the copy of F, lying in X;. Then M is formed by identifying
F' with F2 , F> with F3 ..., and F9 with F' . Thus H,(M) is generated by the
homology of the pieces. In fact if we let o denote o, in H,(X;) then {o)} generate
H,(M) subject to relations coming from the g copies of F. So the following two
matrices are presentation matrices for H,(M). We follow the convention that the
rows of a presentation matrix give the relations among the generators:

v -V 0 0 0
0O V' -V 0 0
V¥=1| 0 0 Ve —V 0
0 0 0 V' -V
-V 0 0 0o v |
or
[ G I-G 0 0 0 |
0 G I-G 0 0
G = 0 0 G I-G 0
0 0 0 G I-G
| I-G 0 0 0 G |
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We have only indicated the matrices for ¢ =5. G~ is obtained from V* by
multiplying on left by a block matrix with (V' — V) ~! down the diagonal. It follows
from the following lemma due to Seifert [S] p. 576-579 that {a |1 <i <2g}
generates H,(M) and (G)?— (G — I)? is a presentation matrix for H,(M) with this
set of generators. Formally let y be I — G. Note Seifert finds a similar but different
presentation matrix for a different set of generators. Compare [R] p. 214. [F] p. 155,
and [B-Z] p. 115, [K2] p. 241.

LEMMA 1. There is a sequence of reversible row and column operations over
Z[y] leading from the q x q matrix

l—y y 0 0 1 * * *
0 1—y y 0 01 * *
0 0 I—y 0 to 0 0 1 *
Ly 0 0 11—y | L 00 0 yi—(y -0 |

Moreover the column operations together perform a cyclic permutation of the columns
putting the first column last, the second first, and the third second etc.

Proof. This is Seifert’s proof. We thank Steve Weintraub for translating the
passage. For n < ¢ — 1, consider the square matrix P, of order ¢ —n + 1:

[ —(y—=D" " 0 0
0 11—y y 0
0 0 1 —y 0
i y 0 0 l1—y |

Let w, denote (1 — y™)/(1 — y). Starting with P, with n < ¢ — 2, add w, times row
two to row one, then add y — 1 times the new row one to row two, finally
interchange column one and column two. The result is:

1 —(y=D" wy - 0]
0 _(y__l)n+1 yn+1 0
0 0 11—y 0
0 y 0 11—y |

Note that if we delete the first row and column we obtain P, ,. Thus starting with
P,, the matrix we are interested in, we may do these operations and obtain a matrix
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with P, nestled within. Then we may operate on this new matrix so we preform the
prescribed operations on the P,, and continue in this way. We obtain an almost
triangular matrix with the 2 x 2 matrix P,_, in the lower right corner. If we now
operate on the whole matrix to do the indicated operations on P, we obtain the
desired upper triangular matrix. [

q—1

We are really interested in H'(M, Q/Z), the characters on H,(M). Define ¢, to
be the endomorphyism of H,(F) given by s/ — (s — 1)? and AY< H,(F, Q/Z) to be
the kernel of ¢, ®idy,,. Given X r.a, € A9 where r,e Q/Z, we can define say
x € H'(M, Q/Z) by x(«;) =r,. This is consistent with the relations given by the
rows of G,=(G)Y— (G —1I)¥ precisely because [s?—(s—1)|Zra;)=0. So
HY(M, Q/Z) is isomorphic to A¢. This isomorphism only depends on the choice of
the lift of X which we label X,. As the group of covering translations cyclically
permutes the X, and preserves the Casson—Gordon invariants (K, ), we may
identify H'(M, Q/Z) with A% and view t(K,) which we denote simply 7 as a
function on A¢.

Note if we have any matrix A presenting a torsion abelian group B, we can
identify its dual group Hom (B, Q/Z) with the set of column vectors with Q/Z
coeflicients which become integral when multiplied by 4. We will call such a vector
a dual vector to the matrix.

A s-invariant direct summand H of H,(F) such that H = H* (with respect to
the intersection pairing {, ») is called a metabolizer for the isometric structure.
From now on q will always denote a power of a prime (say q’). Then G, is congruent
mod ¢’ to (—1)¢ and so A9 is finite with order congruent to +1 mod q’.

LEMMA 2. If H is a metabolizer for the isometric structure, then the order of
AIN(H® Q/Z) is the square root of the order of A“.

Proof. As in [G1] p. 309, we may extend a basis {x,, ..., x;} for H to a basis,

{x1,...,x,,xf,...,x} } for H(F) such that with respect to this basis, the Seifert
matrix
0 C+1I C'+I E'
o 5] e o= [0 2]

So ¢, is given by the matrix

(€)' *}
G, =[ K where C, = C?/— (C — 1)“.
/ O Cq q

Thus A’“N(H® Q/Z) is given by the dual vectors to (C,)’ and so has order the
determinant of (C,)’. Similarly the order of 4¢ is the determinant of G,. [
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§2. Slice knots

We say K is homology slice if there is some homology 4-ball D with 6D = S and
a smoothly embedded 2-disk 4 in D with d4 = K. Let 49, denote the p-primary
component of 49,

THEOREM 1. If F is a Seifert surface for a homology slice knot K then there is
a metabolizer H for the isometric structure on H,(F) such that (A, n(H® Q/Z))
vanishes for all prime powers q and primes p.

Proof. We begin by using transversality to find a 3-manifold in D with
boundary Fu 4. Let H < H,(F) be the kernel of the map induced by inclusion to
H,(R)/torsion. H is a direct summand. Lefshetz duality shows twice the rank of H
is the rank of H,(F). Curves on F representing elements of H rationally bound
surfaces in R. These surfaces made transverse provide null bordisms of the
intersections of the curves. Thus H = H*. As H is a direct summand, it follows that
H = H*. One may also use these surfaces to see 6(H x H) = 0. From this we may
conclude algebraically that H is s-invariant (see [Ke] p. 95). It is perhaps more
enlightening to note that s extends to a map s” on H,(R). s is defined by pushing
a curve in R off R in the positive normal direction, picking a surface in D — 4
which bounds this curve, and taking the intersection of this surface with R.

It remains to prove that the characters in 4" H ® Q/Z extend to characters on
W4, the g-fold branched cyclic cover of D along 4. As then by theorem 2 of
[C-G1], 7 vanishes on A9, "nH ® Q/Z. We will give a description of H'(W9, Q/Z)
parallel to that given above for H'(M9, Q/Z). First it would be best to present the
above description slightly differently. We have the following isomorphisms (with
Q/Z coefficients understood): H'(X) ~ H*S, X) ~ HXB, 0B) = H,(B) ~ H,(F)
given by, the coboundary, excision, Lefshetz duality, and a homotopy equivalence.
This isomorphism (in the reverse direction and with integral coefficients) sends the
class of a curve y on F to the map on H,(S — F) given by linking with y. Thus with
respect to the dual basis to {a;,...,a,} and the basis {a,, ..., a,,} the above
isomorphism is given by the identity matrix. A character in H'(M, Q/Z) arises as
a collection of characters in each H'(X;, Q/Z) which are compatible in that they
agree on the lifts of F. In fact we have an exact sequence

0->H'M,Q/1Z)~> @ H'(X,0/2)» @ H'F,Q/Z).
1<i<gq 1<i<gqg
The second map is given by V* with respect to bases built from the dual bases of
{o;} and {a;}. We can replace each H'(X;, Q/Z) by a copy of H,(F, Q/Z) via the
isomorphism given above. We can also replace each H'(F,, Q/Z) by a copy of
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H,(F, Q/Z) via Poincare duality. The Poincare duality isomorphism d from H'(F)
to H,(F) (defined by capping with the fundamental class) is characterized by
{d(w), ) = w(x). Thus with respect to the basis {o;} and its dual basis d is given by
(V' —V)~'. Thus the map o below is given by G" with respect to the basis {q, },
i.e. “pieces” of the map are given by s and I —s. This gives us the short exact
sequence

0>H'\(M,0/Z)> @ H,(F.Q/Zz)> @ H\(F. Q/Z).

l<i<g l<si<gqg
Let Y denote the complement of a bicollar neighborhood of R in D. We have the

following commutative diagram with Q/Z coefficients understood

H (YY)~ H¥D,Y)~H¥ R xIL,R x S°ud4 xI) x H,(R x I, F x I) ~ H,(R, F)

. | b

H (X))~ H(S, X))~ HX (FxI,F x S°UK xI) ~ H((F xI) =~ H/(F)
Let Y, denote the lifts of Y in the W. In the same way we have an exact sequence

0-H'W,0/Z)» @ H\(Y,,0/Z)» @D H'R,Q/Z).

1<i1=<g¢q I<i<g

Using the isomorphisms above we can replace each H,(Y;, Q/Z) with H,(R, F, Q/Z)
and each H*(R, Q/Z) via Lefshetz duality also with H,(R, F, Q/Z). This new exact
sequence fits into a commutative diagram with the one above

0> H'(W,Q/Z)»> @ HyR,F, 0/2)~ <(~_D< H,(R,F,Q/Z)

0-H'\M,0/Z)» @ H(F.Q/Zz) > @ H(F Q/Z)

1<i<yg 1<i<g
J@u
169 H\(R, Q/Z)
SiSq

The first vertical map is given by restriction. Now H ® Q/Z is the kernel of p, so
@ <,<, H®Q/Z is the kernel of @M*- Therefore the image of ¢* is contained in

( &) H@Q/Z)mkernel ().

l<i1<gq
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We must identify the subgroup of H'(M, Q/Z) given by

( @D H®Q/Z>mkernel (o)

Il<i1<g¢g

with that given by A“"H® Q/Z. Lemma 1 shows that one can find integral
determinant +1 2gq x 2gg matrices R and C which can be written as block
matrices whose blocks are polynomials in G (moreover C is a block permutation
matrix whose last column in block form consists of zero except for the first entry
which is 7), such that R(G")C =G ™ has the form

AR * T
0 ] * * *
00 I * W
00 0 [ .
00 0O (—~l)""‘Gq

where the stars mean some unspecified polynomials in G. The power of minus one,
could be absorbed into the last row of R. In the future we may need to give R
explicitly which will be easier if we leave it alone. Again we have only given the
g =5 case. Any element of 4% can be written in terms of the basis {a,;} as a dual
vector to G,. This vector can be extended uniquely to a dual vector to G*.
Multiplication by C gives an isomorphism of the group of dual vectors to G* to the
dual vectors of G”. In this way we obtain an isomorphism from the group of dual
vectors to G, to the group of dual vectors to G*. Because H is s-invariant, this map
induces an isomorphism from the subgroup of dual vectors to G, in H ® Q/Z to the
subgroup of dual vectors to G in @, ., , H® Q/Z. Thus we have identified the
subgroups mentioned at the beginning of this paragraph.

By Lemma 2, A~ H® Q/Z has order the square root of the order of 49. By
Lemma 3 of [C-Gl], the image of H,(M) in H,(W) has order the square root of
the order of H,(M) which is the order of 49. It follows that the image of :* has the
same order as ANH ®Q/Z. As the image of :* has been identified with a
subgroup of 4N H ® Q/Z, we see that the characters in A7~ H® Q/Z extend to
characters on W7 and the proof of the theorem is complete. O

§3. Linking forms and Levine’s Group

In this section, we prepare the way for the proof of the cancellation lemma for
I'" in the next section. We discuss the linking form on M¢9, the proof of the
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cancellation lemma for Levine’s Group G _ and discuss the Witt group of torsion
linking forms.

We begin with some generalities. Suppose N is a rational homology 3-sphere
and thus has a nonsingular linking form 7 : H,(N)x - H,(N)—- Q/Z. Define
c¢:H/(N)->Hom (H,(N),Q/Z)=H'(N, Q/Z) by c(x)(y) =/(x, y). Then we may
define a linking form B on H'(N,Q/Z) (called the dual linking form) by
Blc(x), c(y)) = —£(x, y). We insert the minus to be consistent with earlier papers
[G1], [G2], and [GL1]. Recall if N is the boundary of a 4-manifold W with H,(W)
zero, and Z is a matrix for the intersection form on H,(W) with respect to a basis
{z;}, then Z is a presentation matrix for H,(N) with respect to generators given by
the boundaries of the Lefshetz duals to the z;. Moreover # on these generators is
given by the entries in —Z~'. Thus if H'(N, Q/Z) is identified with the dual
vectors to Z and if u and v are dual vectors to Z we have f(u,v) =u'Zv. We
need to see how the dual linking form f on M can be described on A9 in terms of
s and (, ).

PROPOSITION 1. For each q there is a polynomial with integral coefficients f,,
such that B(x, y) =<f,(s)x, y) ([, is not unique).

Proof. Recall an element of 49 is a dual vector v to G? — (G — I)¢. This can be
extended to a dual vector v* to G* whose block entries are all given by
polynomials in s applied to V. Then C(v*) is a dual vector to G* and thus V*
again with all block entries polynomials in s applied to v. Now we can relate the
presentation of H,(MY) given by FV* to the presentation given by the
(g — 1) x (g — 1) block matrix with 2g x 2g blocks

V4V -V 0 0

T L A G
0~V V4V -V
0 0 —V V4V

for the intersection pairing on the g-fold branched cover of D along a copy of F
pushed slightly into D (again we only show the ¢ = 5 case) (see [V], [K1] corollary
5.7, [K2] p. 283, [AK]) This is a presentation matrix with respect to the generating
set

J
I
k=1

ordered lexigraphically (i comes first). Let D be the (¢ — 1) x g block matrix with
2g x 2g blocks with I down the diagonal and I everywhere beneath the diagonal

lsis2g,13j3q——l}
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and zeros elsewhere. Then v* = DCv* is the corresponding dual vector to V'*. Its
block entries are all polynomials in s applied to v. As in [G1], we see that for v, w
in A, given as dual vectors to G, we have B%v, w) =v*'V*w?*. As the nonzero
block entries of V'#* are just V' + V', ¥V and —V, and since a'Vbh = {sa, b>, and
a'V'b =b"Va =<{sb,a) = —{a,sb) = {(s — 1)a, b) (here we write a and b some-
times as elements of V' ® Q/Z, and sometimes in terms of our basis as column
vectors with Q/Z coefficients), it is clear that f%(v, w) can be written as {f,(s)v, w)
where f, is as above. [J

Remark. The above proof gives a method to find f,. We may take f, to be
(2s — 1). We do not need to know a formula for f,. There are other simpler ways
to give formulas for /. However this formulation is useful to us.

We now wish to recall Levine’s group G _ and its formulation in terms of
isometric structures. We consider triples (U, {, ), s) where U is a finitely generated
free Z-module, ¢, ) is a nonsingular skew symmetric bilinear form and s is an
endomorphism of U such that {sx, y> +<{x,sy> =<x, y)> for all x,y in U. Such
triples are called isometric structures. We say a triple is metabolic if there is a
s-invariant submodule H of such that H = H*. Such an H is called a metabolizer.
Note H is a direct summand as H = H*. The following cancellation lemma is due
to Levine [L]. The proof that Kervaire [Ke] p. 87 gave can be adapted to prove the
new cancellation lemmas we need. We motivate Kervaire’s proof with a geometric
proof which, as far as we know, is original with us. It only applies to the skew
symmetric case. Kervaire’s proof will be applied below to linking forms on finite
groups as well. That the same argument works in these two cases will be the key to
the proofs of the cancellation lemmas for the more complicated new Witt type
groups of the next section. This is why we repeat Kervaire’s proof here. The direct
sum of two triples is defined in the expected way.

LEMMA 3. If (U,, {, >,, s;) is metabolic, and (U,, {, >, 5,) ®(U,, <, >,,5,) is
metabolic then (U,, {, >,, s,) is metabolic. -

Geometric Proof. {, >, and, {, >, are isomorphic to the intersection forms on
two surfaces F, and F,. Let H, be a metabolizer for the first triple. We may
represent a basis for H, by a collection of disjoint simple closed curves on F,. Thus
we may attach 2-handles to F, x I along this collection of curves on one boundary
component and then a 3-handle to form a 3-manifold X, with boundary F,. The
kernel of the map induced by the inclusion of F; into X, on the first homology is
H,. Let H be a metabolizer to the direct sum. We can build a 3-manifold X with
boundary the disjoint union of F, and F, and with H the kernel of the map on first
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homology. First we add a one handle to (F, UF,) x I so that the connected sum is
a boundary component. Then we represent a basis for H by simple closed curves on
F, # F, and add 2-handles and a 3-handle as above.

Now let X, be the union of X, and X along F,. The boundary of X, is F,. Let
H, be the smallest direct summand including the kernel of the map on first homology
induced by the inclusion of F, in X,. A well known argument shows that H = H*.
Moreover the kernel is easily seen to be p((H, ® U,) n H) (here p denotes projection
on U,) or (H,+ H)n U, (where we think of all these groups as subgroups of
U,® U,). One way to see this is to represent a null homology of a curve on F, in
X by a surface which is transverse to F, # F,. Thus H, is s-invariant. [

Kervaire’s Proof. Let H denote (H®U,)nH. One easily sees that
(Hi+H)nU,1ie. p(ﬁ) is s-invariant and included in its own perp. It remains to
show it has the rlght rank. We write U, as H®C. Let n : U, ® U, - C denote the
projection, and H be n(H). We have a short exact sequence: 0—H—H— H-0.
There is also a short exact sequence 0 — Hn U=HnH - H- p(H) — (0. We have
that HnH, and H are orthogonal with respect to (, >,. As if v € H, then there
exist we H,, and xe U, such that W®v)®xeH. So if ue HnH,,
u,v ), ={u,v+w);=<u,w+v+xy=0. Here (,)> denotes the form on
U @U, As H, is also orthogonal to HH,, we have H,® H is orthogonal to
H N H,. Thus we have:

rank (H, @ H) + rank (H n H,) < rank (U,),
rank (H) =rank (i}) + rank (H),
rank (ﬁ) =rank (Hn H,) + rank (p([?)),
2 rank (H,) =rank (U,),
2 rank (H) = rank (U,) + rank (U,).
It follows that 2 rank (p(ﬁ)) > rank (H,). As p(H) is self annihilating and (, ), is

nonsingular, we must have equality. Let H, be the direct summand generated by
p(H). 1t is our desired metabolizer for U,. [

To complete the definition of G_, define —(U, {, ),s)=(U, —<, >,s), and
(U,, ¢, >, s) equivalent to (U,, <, >, s) if (U,, {, D, 5) ® —(U,, <, ), s) is metabolic.
The cancellation lemma shows this relation to transitive. G_ is the group of
equivalence classes of such tuples. The sum is induced by direct sum.

One can define the Witt group W(Q/Z) of torsion linking forms in much the
same way. See [AHV] for a slightly different approach. We consider pairs (%, .#)
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where % is a finite abelian group and .# is a nonsingular symmetric bilinear form
I U x U —Q/Z. Such a pair is called a symmetric torsion form. (%, .#) is said to
be metabolic if there exist a subgroup # <% with # = #*. It follows that
| #|> = |#|. Moreover if |#|*=|%|, and # < #*, then # = #*. Thus the order
of a subgroup plays a totally analogous role to that played by rank above. One may
prove the cancellation lemma by the same argument except one should not take the
summand generated by p(}?) in the last step. The desired metabolizer is p(%‘;"). One
goes on to define W(Q/Z) in an analogous way.

LEMMA 4. If (U, <, >,s) is an isometric structure and A< U Q Q/Z is the
kernel of (s — (s — 1)) ®1idy,,, then (A4, {f,(s), )) is a symmetric torsion form. If
H is a metabolizer for (U, {,>,s), then AnH®Q/Z is a metabolizer for
(A9, Sy (s), D).

Proof. Every isometric structure arises as the isometric structure of some knot.
The g-fold branched cover of S* along a knot is a rational homology sphere, and
a rational homology sphere’s dual linking form is a symmetric torsion form. So by
Proposition 1, (49, {f,(s), ») 1s a symmetric torsion form. Because H is s-invariant
and H is self annihilating under {, ), A" H ® Q/Z is self annihilating under
{f,(s), >. By Lemma 2, A~ H ® Q/Z has order the square root of the order of 47
So it is a metabolizer. [

Remark. Tt follows that there is a homomorphism from G_ to W(Q/Z) sending
the class of (U, (, ), s) to the class of (4%, {f,(s), >). Let #€ denote the group of
concordance classes of knots in homology 3-spheres were we allow a concordance
between knots to live in an integral homology cobordism of homology 3-spheres. Let
R A denote the group of rational homology cobordism classes of rational homology
3-spheres. There is a well defined homomorphism from #% to Z# given by taking
the g-fold branched cover. These maps fit into a commutative diagram with Levine’s
map from #'% to G_, and the map from ## to W(Q/Z) obtained by taking the
dual linking form.

RH — W(Q/Z)

]

HEC — G

§4. Some more Witt type groups

We begin by defining I' ¥ and a homomorphism from 3% to I' . The class of
a knot maps to zero if and only if it satisfies the conclusion of Theorem 1. We
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consider tuples (U, <, », s, t9,) where (U, {, ), s) is an isometric structure and for
each prime power g and prime p, t9, are functions. The domain of 17, is
A9, cU®Q/Z which is defined to be the p-primary part of the kernel of
(79— (s~-1)7)®id,,. We also specify that 79,(0) =0 and that 79,(—x) =17,(x)
for all x. The range of ¥, is W,. For p odd W, is the direct limit of the Hermitian
Witt groups of the field of rational functions over Q({,.) tensored with Z,,. If p is
two, we must tensor with Q instead. See [GL2] section 5. Note we would like to go
back and retroactively redefine t slightly in the groups I'’ and, ¥ in this way i.e.
defined on p-primary parts with range W,, even and vanishing on zero.

A metabolizer for the isometric structure (U, <{, ),s) such that
17,(A%, "H ® Q/Z) vanishes for all prime powers g and primes p is said to be a
metabolizer for (U, {, ),s,t%,). We say (U, {, », s, 17,) is metabolic if it has a
metabolizer.

LEMMA 5. If (U,, <, >y, 51,1%,,) is metabolic, and (U,, <, ), 5,77) @
(U, <, D2, 82, 129,) 1s metabolic then (Uz, {5 D2, 82, T,7,) 1s metabolic.

Proof. We begin exactly as in the algebraic proof of Lemma 3. We wish to show
that H,, the smallest direct summand including p(I-}) is a metabolizer. Given a
subgroup B of U, @ U,, let B denote 4/, DA4,,)nBRQ/Z, suppressing the
dependence on p and q. We only need to check that 7,, @ 1,7, vanishes on )28 ,- By
Lemma 4, H, 1 18 a metabolizer for the torsion form on 4,9, and His metabohzer for
the torsion form on A4,%, @ 4,%,. Now 1,9, @ 1,7, vanishes on p((H1 @ Uz)mH)
using additivity of 7 on direct sums and the vanishing of t on H , and H. But
p((f{v, @ (72 ) mﬁ) equals (171 + ﬁ) N l?; which also has the correct order to be a
metabolizer for the induced linking form on 4,7, ® 4,7, (by the proof of the
cancellation lemma for W(Q/Z)). Finally it is easy to see that (H  + H) . 5 € 28 2
As these two groups have the same order they must be the same and we are done.

O

As in [Gl], one defines —(U, {, ),s,19,) to be (U, —(, »,s, —1%,) and two
tuples to be equivalent if the direct sum of one with minus the other is metabolic.
The equivalence classes form a group I'* with the operation induced by direct sum.
There is a homomorphism y* from s#% to I' . The class of a knot K in S is sent
to the tuple (H,(F), <, >, s, t%,), where {, > is the intersection pairing on H,(F), s
is the isometric structure, and 19, is given by 19,(a) = ©(a) — 1(0) for a € 49,. y*
is well defined by Theorem 1. Here we must note that the Casson—Gordon
invariants are even, and are additive under connected sums. The hardest is
additivity [Lith] p. 335. Or one can adapt the proof of additivity in [G1] for 2-fold
covers.
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We may also define a group ¥™* as equivalence classes of tuples
(U, {, >, 5,19, A) where 4 is an element of U. H is a metabolizer if it meets the
conditions given in the definition I'* and 4 is an element of H. Everything goes
through as in the definition of @ in [GL3], and of ¥ in [GL2]. Note in [GL2] we
could have specified in the definition of metabolic that 1 was an element of H rather
than A was orthogonal to H, as H = H*. There is an injection from I' ¥ to ¥ *
obtained by taking A to be zero. Let B* denote the image. There is a left inverse
to this injection given by a map which forgets 4. Thus ¥* is isomorphic to
't ®¥Y*/B*. The following proposition is sometimes a convenient way to show
an element is not in B* or just non-zero in ¥ *.

PROPOSITION 2. Suppose Z = (U, {, ),s,t9,, A) represents an element of
B*, and let L be the smallest s-invariant summand of U which includes A. Then 19,
vanishes on (L ® Q/Z) N A“,.

Proof. Since & € B™, there is a &’ with 4 zero such that 2 @ &’ is metabolic.
So the s-invariant metabolizer H for & @ 2" must include A @ 0. It follows that H
includes s’ (1) @O for all i. As the s'(1) generate L ® Q as a vector space, H® Q/Z
includes (L ®0) ® Q/Z. The result follows as t is additive, vanishes on zero and
vanishes on 4, "H® Q/Z. [

Remark. The reason we included 79,(0) =0 in the definition of ' * and ¥ * is
so that this proposition would hold.

We may now assign to the concordance class of a two component link (X,, K,)
with linking number zero an element ¥ * (K, K,) in ¥ *. We begin by picking a
Seifert surface F for K, in S — K, setting 1 € H,(F) equal to ¢([K,]) where [K,]
denotes the homology class represented by K, in H,(S — K,) and ¢ denotes the map
of section 1. So 4 is really the homology class on F represented by the Sato—Levine
curve of the link [Sa] and s'(A) are the homology classes represented by Cochran’s
derivatives. We define ¢ *(K,, K,) to be the equivalence class of the tuple
(H,(F),<,>,s, A) where <, > and s are as in the definition of y*. The proof of the
Theorem 9 in [GL2] together with the above shows:

THEOREM 2. The map Y * is well-defined.

COROLLARY (2.1). If (K,,K,) is concordant to a boundary link,
Y+(K,,K,)eB"*.

Using Proposition 2, we have
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COROLLARY (2.2). Let L be the smallest s-invariant summand of H,(F) which
includes A. If (K, K,) is concordant to a boundary link, then t9, vanishes on

(L®Q/Z)NAY,.

COROLLARY (2.3). Suppose (K,, K,) is concordant to a boundary link, and
y*(K,) is zero (for example if K, is slice), then Y *(K,, K,) is zero.

Proof. An element in B* which maps to zero under the forgetful map is zero.
O

§5. Algebraically slice genus one knots

Recall a knot is called algebraically slice if it has a half dimensional summand
of the homology of a Seifert surface which is self-annihilating with respect to the
Seifert form. This summand is called a metabolizer for the Seifert form (or
isometric structure). Let K be an algebraically slice knot with a genus one Seifert
surface F. Then there are two (up to sign) primitive elements in H,(F) which are
self annihilating with respect to the Seifert form, and thus potential generators for
a metabolizer.

PROPOSITION 3. The curves representing a non-trivial homology class on a
punctured torus are all isotopic.

Proof. We may deduce this from the same but well known fact for a closed torus.
Consider the isotopy on the closed torus: every time the knot passes over the deleted
point we are effectively taking a connected sum of the curve with a loop around the
hole. Thus we only need to see that the result of this one move does not change the
isotopy class on a punctured torus. This can be checked readily from a picture. [J

The two curves on F generating metabolizers are precisely the curves on F that
one would want to surger F along in the 4-ball to obtain a slice disk. This is
Levine’s method to show that algebraically slice knots in high dimensions are slice.
In [G1], we showed that the Casson—Gordon invariants associated to the 2-fold
branched cover which should vanish if the knot were slice are given by certain
signatures of one of these curves when viewed as knots in S. Here we will do the
same for all prime power covers. Actually we are working with a slightly refined
Casson—Gordon invariant here (for odd primes we only tensor with Z localized at
2 instead of @), and so the invariants are given by certain Witt invariants of these
curves. As these Witt invariants are themselves obstructions to the knots in the
band being algebraically slice, we can view the Casson—Gordon invariants as some
sort of secondary obstruction.
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Let x € H,(F) generate a metabolizer, and extend {x} to form a basis {x, y} for
H,(F). With respect to this basis (replacing y by — y if necessary, the Seifert matrix
V has the form

V=[ 0 —(m+1)}
—m a

Moreover

0 -1 m+1 —a
V—-Vi=V'-V)'= ' G = )
( ) l:l O:I [ 0 —m_J

and

m —da
G“Iz[o —(m+1)]'

1. . oy
Now the vector [ 0] is an eigenvector for both G and G — I with eigenvalues m + 1

and m respectively. Similarly the vector [ 5 ] 1s an eigenvector for both G and

m+1
G — I with eigenvalues —m and —(m + 1) respectively. Thus if we let
u=(m+ 1) —m9 then we have that

Iz 0 .
G'—(G-1)=P P
0= =g (i)

or

i 2m+1 —(1+(—1D%a
2m+1[ 0 (——l)"(2m+1)]'

So we see that the order of H,;(M¥) is u? and A7 is the cyclic subgroup of order u
generated by x ® (1/p).

Now we can calculate t on 49,. We follow the procedure used in the proof of
Theorem 5 [GL2]. We express our answer in terms of the Witt knot invariants w; ,(J)
(defined in [GL2]) which live in the group of Witt classes of Hermitian forms over
the cyclotomic field Q({,). The signature of this form (using the usual embedding
in the complex numbers) is an ordinary signature of J :0,,(J). Let x denote the
character which corresponds to x ® (1/d) and assigns 1/d to the lift to X, of a
meridian of the first band of K. Here d is a prime power which divides u. We
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need to see what value y assigns to the different lifts of the meridian. For this we

consider the derivation of the presentation matrix V*, and note that m + 1 and m
. . 1/d . .

are relatively prime to u. The dual vector [ Z) :| to GY— (G — 1)7 is the beginning

of a unique dual vector to V* whose further 2 x 1 block entries are given by applying

m+ 1
— —d
V&lV"—“ m
L
m+1

repeatedly to the previous block entry. Thus y assigns to the different lifts of the
meridian of the first band the value (m*(m + 1))’ where m*m is congruent to 1
modulo 4.

Let J be the knot in S obtained when we represent x by a simple closed curve
on F. Suppose we form a new knot K’ by tieing —J (reversing both the string and
ambient orientation) in the first band of F. For a knot in S?, tying the knot in the
band is equivalent to replacing a tubular neighborhood of the meridian of the band
by the exterior of the knot. In this way we may make sense of the operation if S is
just a homology sphere. Moreover this is key to the method we used to calculate t
for algebraically doubly slice knots in [GL2]. Now J’ the knot given by representing
x" on F’" is J#(—J) which is slice. So K’ is slice by Levine’s method with
metabolizer generated by x’. Thus ©(x ® (j/d)) is zero by Theorem 1. We calculate
the effect of replacing the meridian of the first band of F by the exterior of —J on
7 as in [GL2], and we thus prove:

THEOREM 3. Let K be a knot with a genus one Seifert surface F and Seifert
matrix

- [ 0 —(m+ 1)}
—m a
with respect to a basis {x,y} for H (F). Let {x) denote the subgroup of H,(F)
generated by x. Then AN ({x)>® Q/Z) is a cyclic group of order u generated by
x®@(1/u) where pu is (im+ 1) —m? If d is a power of a prime p dividing pu,
(x ®(c/d)) is the image in W, of ;. .+ wy,(J) under the map (injective for p odd)
induced by the inclusion of Q((,) in its field of rational functions. Here J is the knot
in S obtained by representing x by a curve on F, and viewing that curve in S. T is the

multiplicative subgroup of Z,* generated by m*(m + 1), where m* is the inverse of m
modulo d, and c is any element in Z;*.

Combining Theorems one and three, we have:
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THEOREM 4. Suppose K is a homology slice knot with a genus one Seifert surface
F. Then there is a nontrivial class x € H,(F) with 0(x, x) zero such that if J is a simple
closed curve on F representing x viewed as a knot, then X, _ .+ w;,(J) is zero. Here d
is prime power dividing u = (m + 1)9 — m9, q is a prime power, m = (/det (K) — 1)/2,
where ¢ and T are as above. Consequently ¥,  .r 0,,(j) is zero.

A genus one knot maps to zero in I' * if and only if it satisfies the conclusion
of this theorem. Daryl Cooper [Co] in his thesis proved a stronger theorem than the
signature version of Theorem 4 using different methods. His theorems at present
only apply to the genus one case. See [GL2] for a discussion. In joint work with
Livingston, we have made use of the torsion Witt invariants to show certain knots

are not slice even though the knots ““in the bands™ are torsion in Levine’s group
[GL4].

§6. Examples

Examples 1, 2 and 3 [GL2] of links not concordant to boundary links can all be
deduced from Corollary (2.2). We will give a new example of a link which is a
fusion of a boundary link but not concordant to a boundary link. Moreover while
this will be detected using Corollary (2.1), it cannot be detected by Corollary (2.2).

We begin by discussing Example 3 of [GL2]. The Seifert matrix with respect the
basis given by the bands from left to right, each oriented counterclockwise is the
direct sum of two copies of the matrix labelled V in the previous section with a = 0.
So the matrix for s is the direct sum of two copies of the matrix labelled G in
the previous section with m =1. We may calculate 4 is [1,0,0,1]’, and s4 is
[2,0,0, —1]°. Thus the smallest s-invariant summand including A and s is the
summand denoted Hy in [GL2]. This is ruled out by the signatures of J, as in
[GL2].

Our new example is modelled on Example 3. K, is the same except J, is tied in
the third band instead of the fourth. Here we take m =1, J, =J, J,= — RJ. We let
R(K) denote the reverse of K obtained by reversing the string orientation only. J
should be any knot for which the Witt sum of Theorem 3 (for m = 1, and some g,
d and ¢) does not vanish. K, is an unknot linking the second and fourth band once
in a simple way. See Figure. The isometric structure is given by the same matrix as
before. Now A =[1,0, —1, 0], and so s(4) is just 24. Thus L is just the subgroup
generated by 4. Note A is represented by a curve on F which when viewed as a knot
in S? is the slice knot J # —J. We see that T must vanish on (L ® Q/Z) N A9, using
additivity of the Casson—Gordon Invariant and Theorem 3. Now we may look at
the list of metabolizers for the Seifert form worked out in Example 3 [GL2]. Only
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3V«

Figure

two contain A: H generated by [1, 0, 0, 0] and [0, O, 1, 0], and H  with p = —1 and
q = 1 generated by [1,0, —1,0]" and [0, 1, 0, 1]*. We can rule out H. as [1, 0, 0, 0}’
is represented by a curve of knot type J and we assume the Witt sum of Theorem
3 (for m =1, and some q,d and c¢) for J does not vanish. For H; we consider
[1,1, —1,11'®(1/3) in A%;,. We can see 7 of this character is nonzero using Theorem
3.5 of [G1] (warning in [G1] t takes values in W, ® Q) and additivity. We view F
as the connected sum of two genus one Seifert surfaces. Note that [1, 1] can be
represented on the first surface by a curve with the knot type of J, and [ —1, 1]’ can
be represented by a curve on the second surface with the knot type of —J # a trefoil.
Thus H is ruled out as well, and the link cannot be concordant to a boundary link.

Addendum. These results also apply to locally flat topologically embedded
slice disks and concordances. We only need to note that Quinn [Q] has pointed out
that map transversality continues to hold in these dimensions as 4-manifolds are
almost smoothable. Moreover the Casson—Gordon invariant may be calculated
with nonsmooth null bordisms as 2,7°P() ® Z,, and 2,7°P() ® Q are generalized
homology theories and similar arguments to those made in the smooth category work.
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