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Codimension one foliations on solvable manifolds

SHIGENORI MATSUMOTO

1. The objects of our interest are codimension one foliations on (possibly open)
manifolds. If we consider C™ foliations in general and put no particular conditions
on them, then they can be extremely complicated even when the manifolds are
simple. For example, $**' (k > 1) admits foliations with nonzero secondary
characteristic classes. In other words, the topology of the manifolds does not have
a strong effect on the nature of the foliations they carry.

On the other hand, if we confine ourselves to foliations without closed leaves on
closed 3-manifolds, then the topology of the manifolds does have a remarkable
influence on the foliations. For example, closed 3-manifolds with finite fundamental
groups do not admit such foliations ([N]); one can classify foliations on closed
3-manifolds with solvable fundamental groups ([GS], [P,]); also, quite recently,
complete understanding is obtained for foliations on the unit tangent bundle of a
surface of genus >1 ([G], [Ma)).

For higher dimensional manifolds, the influence is not so clear. It is known that
all closed manifolds of dimension =4 with Euler number 0 admit C' foliations
without closed leaves ([Sch]). The problem about C? foliations remains unsolved.
However if we focus our attention upon C¢ foliations, then there is a clue to the
problem. L.e. they are known not to admit null transversals ((H,], [H,]). As a result,
e.g., closed manifolds with finite fundamental groups do not admit C* foliations.

In this paper we consider foliations on manifolds of arbitrary dimensions and
make two assumptions on them, i.e. that they do not have closed leaves and that they
behave like C* foliations. Our purpose is to investigate the influence of the topology
of the manifolds upon such foliations. In particular we shall show that foliations on
manifolds with solvable fundamental groups admit ‘transverse structures’.

To be precise, let # be a codimension one transversely oriented C” foliation
(r 2 0) on a (possibly open) connected smooth manifold M. Throughout this paper
we shall work under the following assumptions.

(I) IT =mn,(M) is solvable.
(IT) F does not admit closed leaves.
(II1) Every nontrivial leaf holonomy of & has an isolated fixed point.
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Denote by % the lift of % to the universal covering space M of M. Our first
result is the following.

THEOREM 1. There exist a C" submersion D : M — R which carries each
leaf of % to a point of R and a homomorphism ¢ : IT - Diff” (R) such that
D(yx) = ¢(y)D(x) for any y € Il and x € M.

In 1983 paper [P,], J. Plante showed the following.

THEOREM. If a solvable group I' acts on the real line R in such a way that the
fixed point set of any nontrivial element of I is isolated ( possibly empty), then there
exists a nontrivial locally finite measure u on R and a homomorphism a : I’ - R_,
such that for any y eI, y, u=a(y)u. If further all the orbits are dense, then the
I'-action must be topologically conjugate to an affine action.

Applying this to Theorem 1, we get the following corollary.

COROLLARY 2. Suppose all the leaves of & are dense in M. Then ¥ is
topologically conjugate to a transversely affine foliation.

The methods that we use here are to study the 1-connected (possibly non-Haus-
dorff) 1-manifold ¥ = M /%, and the action of the fundamental group IT on Z.

The qualitative study of foliations often leads to the work on 1-manifolds. First
of all, their fundamental properties are investigated in connection with foliations
without holonomy on open manifolds ((HR]). Since then, works have been done
especially on their relations with particular classes of foliations. For example, the
completeness (as defined below) is discussed for foliations without holonomy on
closed manifolds ([I]). There are extensive studies on foliations with singularities
which are defined by closed 1-forms, especially in their connection with the
fundamental group ([L,], [L,], [Si]). Here the algebraic key is [BNS]. Foliations
with transversely affine or projective structures have also been investigated along
this line ((M,], [M,], [M;], [IMT)).

Another purpose of this paper is to give some criteria for the completeness of
foliations. The foliation % is called complete if the leaf space & = M/F is
homeomorphic to R. Notice that there are examples of noncomplete all-leaves-
dense foliations on closed 3-manifolds. See [M,].

THEOREM 3. If II is polycyclic, then F is complete.

In [M,], G. Meigniez already obtained Theorem 3 assuming % is transversely
affine.
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THEOREM 4. If all the leaves of F have finitely generated fundamental groups,
then F is complete.

Before this paper is prepared, Thierry Barbot obtained the result that codi-
mension one (un)stable foliations of Anosov flows on solvable manifolds are
complete and topologically transversely affine. This is undoubtedly the most
interesting case.

V. V. Solodov asserted ([S,] Theorem 1) that under some mild condition, any
foliation with a single Novikov component on a compact manifold must be
complete provided the fundamental group of the manifold does not contain a free
subgroup on two generators. But this is not correct. A counterexample due to
Nobuo Tsuchiya will be given in Section 5. However this noncomplete foliation has

a compact leaf. In fact it is almost without holonomy. We do not know the answer
to the following problems.

PROBLEM. Does there exist an noncomplete all-leaves-dense foliation on a
compact solvable manifold?

If we drop the condition ‘compact’, then the answer is positive. The following
example is communicated by the referee.

Take a finitely presented solvable group I' and a homomorphism y : I’ - R of
rank =2 such that y € 2(I') in the notation of [BNS] but that —y ¢ Z(I'). For
example, the metabelian group

I' =<a,b|ala, bla"' = bla, blb ' =[a, b]*>

and any rank 2 homomorphism y such that y(a), x(b) > 0 will do ([BS])).

Let N be a compact manifold of dimension >3 with fundamental group I'. The
class y € H'(N, R) is represented by a closed I-form w on N with Morse type
singularities and dense leaves ([L,]). Let M be the manifold obtained from N by
deleting the singularities of w. The foliation drawn by w on M is of type V, to be
defined later (Theorem 5.1, [BNS]).

Also communicated by the referee, we shall show in Section 5 that any group of
orientation preserving homeomorphisms of R can be lifted to an action on a
1-connected non-Hausdorff 1-manifold.

The author is glad to express his thanks to the referee, whose valuable
comments are indeed helpful for the improvement of this paper.

This paper was prepared while the author was staying at Universit¢ Claude
Bernard, Lyon I. The author wants to thank the institute and especially Gilbert
Hector for his warm hospitality.
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2. Like all the other parts of this paper, we assume that our manifold M and
foliation & satisfy conditions (I) ~ (IIT) of Section 1. First of all, let us recall the
theorem of Haefliger. See [H,], [H,] or [CL]. When r =0, we need additional
arguments about general position. For this, see [S,] and [HH].

THEOREM. The foliation # cannot have a null transversal (i.e. a null homotopic
closed curve which is transverse to F).

Let us consider the leaf space & = M/% of the foliation lifted to the universal
covering space.

LEMMA (2.1). & is an oriented, connected and simply connected (possibly
non-Hausdorff) 1-manifold.

Proof. That Z is a l-manifold is an easy consequence of the theorem of
Haefliger. The orientation of & is obtained by the transverse orientation of %. The
other statements follow from the corresponding properties of M. (Fundamental
natures of 2 with full proofs will appear in [IMT].) O

Since the foliation % is the lift of the foliation % on M, the action of the
fundamental group IT on M yields an orientation preserving action of IT on &. Let
I" be the quotient of IT by the subgroup which acts trivially on Z. Thus I" acts on
Z effectively. In this paper we focus our attention on this I'-action.

Properties of the foliation # can be observed through the action of I' on Z. For
example, a leaf of & corresponds to a I'-orbit; A dense leaf corresponds to a dense
orbit. One needs to be a bit cautious to see what kind of orbits correspond to closed
leaves of #. Let us call a subset S of Z closed discrete if for any embedded compact
interval J of 2, we have #(SnJ) < oo. Then a closed leaf corresponds to a closed
discrete orbit.

Notice that this notion is apparently a bit different from Hausdorff intuition.
For example, imagine a non-Hausdorff 1-manifold Z whose nonseparating points
(to be defined below) are dense. Consider an embedded real line R in . Then the
boundary J0R contains all the points which form nonseparating pairs with some
points of R. (See Figure 1.) Hence to a Hausdorff eye R might look dense in R.
But in our terminology, JR is ‘closed discrete’.

Next let us interpret the condition (III) in terms of I'-orbits. One has to notice
in the first place that the fixed point set Fix (y) of y € I' is not necessarily a closed
set of Z. (Imagine e.g. the exchange of branches in Type V, Figure 2.) Therefore
even under (III), Fix (y) may not be a closed discrete set. Suppose x, € Fix (y) are
distinct points and that lim,,_, ., x, = x,. It might happen that x, ¢ Fix (y). (III) says
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OR

N— R

Figure 1

that if x, € Fix (y), then y must be the identity near x,. This is the same as saying
that any component of Fix (y) is either an open set or a single point which is
isolated in Fix (y). Here a point x of a subset S is called isolated in S if x has a
neighbourhood U such that Un S = {x}.

Now let us summarize the conditions that we got for the induced I'-action.

(I') I' is a solvable group which acts effectively and orientation preservingly on
an oriented 1-connected 1-manifold Z .
(I1") There are no closed discrete I -orbits.
(III") For any y € I', any component of Fix (y) is either an open set or an isolated
point.

Two distinct points x and y of & are said to form a nonseparating pair if for
any open interval U (resp. V') containing x (resp. y), we have UV # . Define
U=U_u{x}uU, and V=V_u{y}uV, in accordance with the orientation of
Z. For a nonseparating pair x and y, choosing U and V sufficiently small, we have
either of the following two cases. See [IMT] for detailed arguments.

WWU_=V_and U, nV, =@.
M U_nV_=Fand U, =V,.

DEFINITION (2.2). & is called of type I if it does not have nonseparating
pairs, of type W if it admits nonseparating pairs of both (i) and (ii), and of type V
otherwise.

See Figure 2. Saying % is complete is the same as saying & is of type 1. In the
rest of this section, we shall show the following.

PROPOSITION (2.3). The 1-manifold & cannot be of type W.

The key fact is the following lemma, which is a variant of so called Klein’s
criterion or the “Table Tennis Lemma’’, rather. The proof in the case of non-Haus-
dorff 1-manifolds will be found in [IMT].
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type I

type V

type W
Figure 2

LEMMA (2.4). Let P be a connected open subset of & with 0P consisting of four
distinct points a, b, ¢, d. Suppose f,g € I' satisfy f(a) =c, f(P)nP =, glb) =d
and g(P) P = . Then f and g generate a free subgroup in I'. ]

Notice the situation of Lemma (2.4) occurs only when £ is of type W. See
Figure 3. On the other hand if Z is of type W and if all the leaves of &% are dense
(i.e., all the I'-orbits are dense in &), it is easy to find two elements fand g of I'
which satisfy the hypothesis of Lemma (2.4). Then we get that I cannot be solvable
and this contradiction shows Proposition (2.3). However in order to show Proposi-
tion (2.3) in full generality, we need a bit more.

DEFINITION (2.5). For a subset S of %, define
S=U{ | J is an embedded closed interval joining two points of S}.

When S =2, we say S fills up Z.

Figure 3
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LEMMA (2.6). For any subset S of X, the boundary S is a closed discrete set.

Proof. For any interval I embedded in &, clearly we have IS is connected.
Lemma (2.6) follows from this. O

LEMMA (2.7). Any orbit O of the I'-action fills up % .

Proof. 0 is not closed discrete by (II'). Hence 0 is not empty. By Lemma (2.6),
00 is a closed discrete set, invariant by the action of I'. Hence by (II') we have that
00 = . That is, O fills up Z. O

Now by Lemma (2.7) it is easy to find two elements f and g which satisfy the
condition of Lemma (2.4). The details are left to the reader. We have completed the
proof of Proposition (2.3).

3. In this section we shall show Theorems 1 and 3. If & is of type I, then there is
nothing to prove. So let us assume that Z is of type V. (Recall Proposition (2.3).)
Assume that the condition (i) of Section 2 occurs for each nonseparating pair. That
1s, there is only one end in the — oo direction. We use the following notations in Z.

DEFINITION (3.1).
(a) For x and y € &, denote x <y if there is an orientation preserving embed-

ding f: [0, 1] » % such that f(0) =x and f(1) = y.
(b) For x <y, let
[, )]={zeZ |x<z <y}
]—oo, x[={z|z<x}.
(c) Denote x ~ y if x =y or x and y form a nonseparating pair.
(d) For y eI, let
Fix (y) ={x e Z |yx =x},
Fix* (y) ={xeZ

7X ~ x}.

We shall summarize properties which follow immediately from the definitions
and the assumption that Z is of type V.

LEMMA (3.2).

(a) The relation < is a partial order.

(b) For any points x and y € Z, there exists a point z € Z such that z <x and
z<y.
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(¢) If x <z and y <z, then we have either x <y or y <X.
(d) The relation =~ is an equivalence relation. O

Notice that [x, y] is diffeomorphic to [0, 1] if x <y. Also ] — oo, x[ is diffeomor-
phic to ]— oo, 0[. However for example for x € Z, the set {z € Z | x <z} is not
diffeomorphic to ]0, oo[. Clearly we have Fix (y) < Fix~ (y).

LEMMA (3.3). If an element y € I satisfies Fix~ (y) = (&, then there exists a
unique y-invariant properly' embedded copy of the real line, Axis (y), called the axis

of v.

Proof. Suppose Fix~ (y) = . Given an arbitrary point x € 4, choose a point z
such that z < x and z <yx. Then we have yz <yx and z < yx. Therefore by Lemma
(3.2) (¢), either yz < z, yz = z or yz > z holds. Since Fix (y) = &, yz # z. Assume, to
fix the idea, that yz <z. Consider the set

Axis (y) = U {y(lyz, 2]) | i e Z}.

Since Fix~ (y) = &, {y'z} must be closed discrete. Therefore Axis (y) is a properly

embedded copy of the real line, invariant by y. It is easy to show that such a line

is unique. O
Let

r>r,>r,>--->r,=Q>{1}

be the descending sequence of I. We are particularly interested in the action of the
last normal subgroup .

LEMMA (3.4). For any element w € Q\{1}, we have Fix~ (0) = &.

Proof. Suppose the contrary and let
Qr = {w e Q\{1} | Fix~ (0) = J}.

Then w e 2, has an axis. Since 2 is an abelian group, we have that
Axis (w) = Axis (w”) for any o, " € Q. Denote this set by 4. Since 2 is a normal
subgroup, we have that # is I'-invariant. But then we get a nonempty I -invariant
closed discrete set 04, contradicting (II"). OJ

! ‘proper’ means that the inverse image of a compact subset is compact.
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Fix™ (w)

Figure 4

The original idea of the proof of Theorem 1 is to find out a good Q-invariant
measure and using it to define an equivariant submersion of Z onto R. However it

turned out to be difficult and we have to be content with the worst one, i.e., a Dirac
measure.

LEMMA (3.5). There exists a nonempty Q-invariant closed discrete subset
ScZ.

Proof. First of all assume for contradiction that for any element w € Q\{1}, we
have Fix (w) = &J. By Lemma (3.4), we have Fix~ (w) = ¢J. Since Fix (w) = &,
one can show without much difficulty that Fix™ (w) is a single ~ class. (See Figure
4.) Since @ is abelian, Fix™ (w) must be kept invariant by any other element
n € Q\{1}. That is, Fix™ (w) = Fix™ (). The converse inclusion also holds and
hence Fix™ = Fix~ (w) is independent of the choice of w € Q\{1}. Since Q is a
normal subgroup of I', Fix™ is I'-invariant. But this is contrary to (II"), since Fix~
1s closed discrete.

Thus we have shown that there exists an element w € Q\{1} such that
Fix (w) # .

If Fix (w) is closed discrete, then let the required set S be Fix (w). Notice that
Fix (w) is Q-invariant since  is an abelian group, completing the proof.

Suppose on the other hand that Fix (w) is not closed discrete. That is, there exist
infinitely many points x, € Fix (w) such that x,, — x,. At this point we do not know
whether x, € Fix (w) or not. We only have that x, € Fix™ ().

For a while assume for contradiction that Fix (w) fills up Z. Then there exists
y € Fix (w) such that x,<y. This implies that x, € Fix (w). Now by the condition
(ITT) or by its equivalent (III") we have that w must be the identity near x,. Next
consider the interval ] — o0, x,[. Notice that w keeps ] — o0, x,[ invariant. Therefore
by the condition (III") and the continuity of w, we get that ] — o0, x,[ < Fix (w).
Now take an arbitrary point x € Z. Then there exists a point z € & and a point
u € Fix (w) such that z < x, and z < x <u. Then again since w is the identity near
z and w keeps ] — oo, u[ invariant, we have that w(x) = x. Therefore @ must act as
the identity on Z. This is contrary to the assumption thzi I' acts effectively.

Hence we have shown that Fix (w) < Z. Let § =0 Fix (w). S'is Q-invariant and
closed discrete as required. O
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Notice that for an Q-invariant closed discrete subset S and for an element y € I,
S 1s again Q-invariant and closed discrete. This is an immediate consequence of the
normality of Q. Let us set

F={n=019,7%%- -}

and let

LEMMA (3.6).
(a) S; (i <o) is an increasing sequence of Q-invariant closed discrete subsets.
(b) S, fills up X.

Proof. (a) is immediate. For (b), since S, is ['-invariant and nonempty, we
have S fills up & by Lemma (2.7). O

Let us define a mapping p; : S; = Z for i < oo. First fix the base point x, € S;.
Given any x € S;, choose z € & such that z <Xx, and z < x. Define

pi(x) = #([z, x]nS;) — #([z, X)] N S).

Notice that this is well-defined, independent of the choice of z.
LEMMA (3.7). Whenever z < x and z <y, we have
#(z, y108;) = #([z, x1 0 S;) = pi(y) — pi(%).

Proof. Notice that the L.H.S. is independent of the choice of z so far as it
satisfies z <x and z < y. Therefore we can choose z so that it also satisfies that
z < x,. Then Lemma (3.7) follows directly from the definition of p;. O

COROLLARY (3.8). For any w € Q and x, y € S;, we have
pi(wy) — pi(wx) =p;(y) — p;(x).
Proof. Choose z so that z <x and z <y. We have

pi(wy) — pi(wx) = #([wz, wy] N S;) — #(wz, wx] N S;)
= #(z, ] nS;) — #(z, x] n ;) =p:(y) — p: ().

The second equality follows from the Q-invariance of S;. O
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COROLLARY (3.9). There exists a homomorphism ¢, : Q —Z such that
pi(wx) = p,(x) + ¢;(w).

Proof. Corollary (3.8) says in particular that if p;(x) = p,(y), then we have
pi(wx) = p;(wy). That is, the action of w projects down to an endomorphism of the
set p;(S;) = Z. Again by (3.8), this mapping is the translation by a fixed integer, say
¢;(w). The required properties of ¢; can easily be established by (3.8). O

DEFINITION (3.10). Define a subgroup K of Q by

K=1J () Ker (¢,).

i=1y=2i

An element w € © belongs to K if and only if ¢, (w) = 0 for any sufficiently large

LEMMA (3.11). We have K = Q.

Proof. By definition, we have that K < Q. Let us show the converse. Choose an
arbitrary element w € Q. If w =1, then there is nothing to prove. So let w # 1.
Then by Lemma (3.4), Fix™ (w) = #. Take a point x € Fix™ (w) and consider
] — o0, x[. Notice that ] — oo, x[ is invariant by w. Since S fills up 2 (Lemma (3.6)),
for any sufficiently large i, we have | — oo, x[ " S; # (. Take an arbitrary point
y €]—00, x[ nS;. Suppose for contradiction that w(y) #y. Then we have either
y<wy or wy <y. Assume y <wy. Then the sequence {w*y |k =0} lies in the
compact interval [y, x], contrary to the closed discreteness of S;. This absurdity
shows that wy = y. Thus we have ¢, (w) = 0 for any sufficiently large i and therefore
w e K. ]

LEMMA (3.12). Let w € Q and x € Z. If either wx < x or x < wx holds, then we
have wx = x.

Proof. Assume the contrary. Without loss of generality, one may assume that
wx < x. Then we have

w(]—o0, x[) =] — 00, wx|[ =]—o00, x[.

For any point y €] — o0, x[ nS;, we have either wy <y or y <wy. But then since
w € K (Lemma (3.11)), we have wy = y. (The point y can be viewed to belong to
S; for arbitrarily large j.) That is, w keeps points of ] —o0, x[ NS, fixed. Consider
an accumulation point z of S.,. The orbit I'z fills up Z (Lemma (2.7)). In particular
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we have I'zn] — oo, x[ # . That is, S, ] — o0, x[ is not closed discrete. There-
fore @ must be the identity on ]—oo, x[. But this is a contradiction because
wx € ]— 0, x[. O

COROLLARY (3.13). For any w € Q, we have Fix (w) is a nonempty open set.
If x € Fix (w) and if y < x, then we have y € Fix (w).

Proof. Let w € Q. Choose an arbitrary point x € £ and a point y € Z such that
y<x and y <wx. Then it is easy to show that either y <wy or wy <y holds.
Therefore by Lemma (3.12), we have w(y) =y, showing that Fix (w) = .

Next let x € Fix (w) and y < x. Then since ] — o0, x[ is kept invariant by w, we
have either y <wy or wy <y. Therefore y € Fix (w).

Finally it follows quickly from (IIT’) that Fix (w) is an open set. O

COROLLARY (3.14). Q is not finitely generated.

Proof. Suppose the contrary. Let w,, w,, ..., ®, be generators of Q. Choose
points x; € Fix (w,;) and a point y <x; (1 <i <n). Then y is a common fixed point
of w;. That is, if we put

Fix(Q ={xeZ |ox =x, Yo € Q},
we have
Fix () = () Fix () # &.

Since Q is a normal subgroup of I', we have Fix () is a I'-invariant subset. It has
the following property; If x € Fix (Q) and if y < x, then y € Fix (Q). Therefore we
have that 0 Fix () is a closed discrete I'-invariant subset. Therefore by (I1"), we have
0 Fix (2) = & and Fix (Q) = Z. This contradicts that I' acts effectively on Z. [

Recall that a solvable group is polycyclic if and only if all its subgroups are
finitely generated ([W]). Therefore we have already shown that if Z is of type V, then
I' and hence IT cannot be polycyclic. This finishes the proof of Theorem 3.

We shall continue the proof of Theorem 1. Let
r=r/Q, T =%/Q.
As a matter of fact, I" acts on %.

PROPOSITION (3.15). Z is a 1-connected 1-manifold of type I or V. The action
of T satisfies the conditions (11') and (I1T1).

Proof. That Z is a 1-manifold follows from Lemma (3.12).
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Next we shall show that there does not exist a nonseparating pair of type (ii) of
Section 2. Suppose there exists a sequence {[x,]} of points of Z such that [x,] | [x]
and that [x,] | [¥]. Let us show that [x] =[y]. Choose an open interval I c &
containing the point x € Z. One may assume that x, el (n =1, 2,...). Likewise
choose an open interval J containing the point y € 2. One may assume that there
exists a sequeince {y, } = J such that [y,] =[x,]. As a matter of fact, we have x, | x
and y, | y. There exists an element w, € Q such that w,x, =y,. If we show that
w, x, =y, for any n, then this would imply that w,x = y, i.e., [x] = [y]. To show this
consider the two points w, x, and y, = o,x,. They satisfy w,x, <y, and w,x, < y,.
Therefore we have either w,x, <w,x, or w,x, <w,x,. Now w,w,' € Q carries
Yo = w,X, to w,x,. Therefore by Lemma (3.12), we have y, = w, x,,.

Thus we have shown that there does not exist a nonseparating pair of type (ii).
This implies that Z is 1-connected and of type either I or V.

The other properties are easy to establish and are left to the reader. O

End of proof of Theorem 1. If in Proposition (3.15), & is of type I, then we are
done. If not, consider the action of I' on . We can apply the same argument that
we developed in this section. Notice that the step of I is less than that of I'. Now
an abelian group cannot act on a 1-manifold of type V in such a way that no orbits
are closed discrete. (Recall Lamma (3.5).) Therefore we will obtain a 1-manifold of
type I at some stage. This shows Theorem 1.

4. We shall show Theorem 4. Let us assume that the foliation % is not complete,
that is, the 1-manifold & is of type V. Our goal is to show that there exists a leaf
of # whose fundamental group is not finitely generated.

By Theorem 1, we have obtained a submersion D : M - R and a homomor-
phism ¢ : [T — Diff” (R). Clearly D yields a submersion, also denoted by D, from &
to R. Define the quotient group I' of IT as in Section 2. Clearly ¢ induces a
homomorphism, also denoted by ¢, from I' to Diff” (R). In summary, we have the
following.

PROPOSITION (4.1). There exists a submersion D : Z - R and a homomor-
phism ¢ : I’ - Diff” (R) such that D(yx) = ¢(y)D(x) for any y eI and x € Z. ]

Let A = ¢(I'). Proposition (3.15) implies that the action of A4 on R also satisfies
the conditions (I") ~ (IIT"). That is, we have:

(I') A solvable group A acts on R preserving the orientation;
(II") There are no discrete A-orbits;
(IIT") For any A € A, Fix (1) is discrete.
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By virtue of the theorem of Plante, we have the following.

PROPOSITION (4.2). There exists a locally finite nontrivial measure u on R and
a homomorphism a : A - R, such that A p = a(A)u for any 1 € A. ]

Fix a base point, say 0, of R. Define a mapping £ : R—-R by

u([0, x[) if x>0,
Ex)=< 0 if x=0, (*)
—u([x,0]) if x <O.

Also define a mapping b : 4 = R by b(1) = E(A(0)). Define a mapping y from A
to the group of the orientation preserving affine transformations, Aff* (R), by

W(A)(x) = a(A)x + b(A).

It is a routine work to establish the following lemma. The proof is left to the
reader.

LEMMA (4.3). E is a monotone increasing map.  : A — Aff* (R) is a homomor -
phism. For any A € A and x € R, we have E(Ax) = Y (L)E(x). O]

Next let us show the continuity of E and its consequences. Let us prove first of
all that y(A) is neither trivial nor free cyclic. First of all, since u is nontrivial, we
have that Im (F) contains at least two points, say a < f8.

Assume for contradiction that y(A) is trivial. Let ¢ = sup E ~'(«). Clearly ¢ must
be kept fixed by the A-action, contrary to (II"”).

Next assume that y(A) is free cyclic, generated by a translation, say by 1. For
each integer n, let ¢, =sup {x € R| E(x) < n}. Clearly we have u((c,_,,c,]) =1.
Since u is locally finite, {c,} is a discrete A-orbit, again contradicting (II").

Finally consider the case where /(A1) is free cyclic, generated by a homothety. One
can divide into subcases according to Im (E£). An argument similar to the above
works to show that this case is also impossible. The details are left to the reader.

Now we have shown that y/(A) is neither trivial nor free cyclic. By the nature of
the group Aff*(R), we are led to either of the following two cases.

Case 1. Y(A) contains arbitrarily small translations.
Case 2. y(A) is an abelian group consisting of homotheties.

Let us show that Case 2 can be reduced to Case 1. For this, we need to replace
E, y and u by new maps E’, ¥ and a new measure p’. (Simply we will take the
logarithm.)
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Assume Case 2. Let the common fixed point of /(A) be c. Then Im (E) is contained
either in R or R_,. For otherwise one could find a discrete 4-orbit by considering
either inf E-'(R. ) or sup E~'(R_,). Suppose, to fix the idea, that Im (E) < R. ..
Define E’ by E'(x) =log (E(x) — ¢) and ¢’ by Y'(A)(y) = y + log a(A), where a(4) is
the slope of y(4). It is easy to check that E” and ¢’ satisfy the conditions of (4.3)
and Case 1. Using (*), one can define a new measure p’ from E’.

Now rename E’, " and p’ by E,  and u. In this way, we may assume without
loss of generality that Case 1 holds.

Then it follows from the condition of Case 1 that u is nonatomic and therefore
E is continuous.

An element y € I' is called a translation of & if y(¢(y)) is a nontrivial transla-
tion. The translation number of Y(¢(y)) is called the translation number of y. A
translation y has an axis, since Fix™ (y) = .

Now let us summarize the properties of the action of I' on Z. The proof is easy
and omitted. ((3) below follows from (2) and (III").)

PROPOSITION (4.4).

(1) T contains a translation of arbitrarily small translation number.

(2) up is nonatomic and E is continuous.

(3) ¥ is a monomorphism.

(4) The union of axes of all the translations on I’ coincides with Z . ]

Let u, = D*p and let .# = Supp (u,). We shall show that .# is a unique
minimal set for the I'-action. First we need a lemma.

LEMMA (4.5). Let x € .#. Suppose there exist points x; and x. such that
x,<x<x;and that u,([x;, x,]) =0. Then we have either x, > x or x; — X.

Proof. Let {I,} be a fundamental system of neighbourhoods of x, each homo-
morphic to an open interval. Let us define

I; ={yel,|y<x},
Iy ={yel,|x<y}.

Since x € Supp (u, ), one has that u, (1, ) >0 for any n or u,(I,;) >0 for any n.
Assume the former. Then given n, we have p, ([x;, x7]) < uy (1) for any sufficiently
large i. That is, x; € I,. Therefore we have x; - x. O

LEMMA (4.6). Any I'-orbit in & contains M in its closure. Especially, # is a
unique minimal set for the I'-action. The set M either coincides with X or is locally
homeomorphic to a Cantor set.
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Proof. By Proposition (4.4), there exists a translation in I' of arbitrarily small
translation number. Take any points x € .# and y € Z. Let us show the following;
For any small € > 0, there exist points y’, y” € I'y such that y'<x < y” and that
ur([y’, "] <e. By the previous lemma, this suffices for the proof of the first part.

First choose three translations y,, 7, and y, as follows. (By Proposition (4.4) (4),
this is possible.)

* x € Axis (y,) and y € Axis (y,).
* The translation number of vy, is positive and smaller than c.

For some integers » and m, we have y{(x), y5(y) € Axis(y,). Then there
exists k such that y*(y7(y)) <77(x) <7¥*'(y%(y)). Now one can choose y’ =
P GEGS () and Y =y "GET T ().

For the remaining part, notice that since u, is nonatomic, there are no isolated
points in .#. Also since .# is minimal, 0.# is either empty or coincides with .. If
oM = &, then clearly we have # = X. If 0.4 = 4, then . is locally a Cantor set.

U]

Now we have finished the preparations for the proof of Theorem 4. Let
N =Ker (¢) =Ker (Yy¢) < TI.

PROPOSITION (4.7). N is nontrivial.
Proof. By the argument of Corollary (3.13), one knows that Q < N. O

The following two lemmas are easy to establish. The proofs are left to the
reader. For x € Z, denote by N, the isotropy subgroup of N at x.

LEMMA (4.8). For v e N, the set Fix (v) is a nonempty open subset of Z. If
x € Fix (v) and y < x, then we have y € Fix (v). O

LEMMA (4.9). If y <x, then we have N, > N . O
Now we shall show the following key lemma.

LEMMA (4.10). There exists a point x € X such that the isotropy subgroup N.
is not finitely generated.

Proof. Assume for contradiction that for any point x € Z, N, is finitely gener-
ated. Consider the global fixed point set Fix (N,) of N.. Since N, is finitely
generated, Fix (N,) is a nonempty open set and if y € Fix (N,) and z <y, then we
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have z € Fix (N ). Let
V.={zeFix(N,)|x<z}.

V.is a nonempty connected set and if z € V', we have N, = N, by Lemma (4.9).
Let

9 ={xeX|N,#N, Ix, T x}.

Notice that since N is a normal subgroup, we have N,, =yN,y ' forany y e I'. In
particular we have 2 is I'-invariant. Choose x € 2. Then by Lemma (4.6), we have
v,(x) | y for some y, € I' and for some y € .#. But this is absurd, since we have
N. =N, for any z € V,. This contradiction shows that & is empty.

Now it follows easily that N. = N, for any x and y € Z. This shows, via Lemma

(4.8), that N=N_ for any x e Z. That is, N acts on % trivially. A contra-
diction. O

LEMMA (4.11). There exists a point y € X such that the isotropy subgroup I, is
not finitely generated.

Proof. Let
% ={y e Z | N, is not finitely generated}.

By the previous lemma, we have # # (¥. It is easy to show that % is I'-invariant.
By Lemma (4.6), we obtain that Cl (%) is an uncountable set. Consider a copy R
of the real line properly embedded in Z. We shall use the coordinates of R in R. By
the argument of Lemma (4.10), we know that if N_ is finitely generated for some
x € R, then there exists an ¢ >0 such that if x <y <x +¢, then N, is finitely
generated. Therefore any component of R\# is of the form either [a, b[ or ]a, b].
This shows that the set (Cl (#)\#%) n R is countable. That is, Cl (#)\% is count-
able. Therefore % is an uncountable set.
Consider the set

S ={xeX |N #T.}.

I is countable and for each y € I'\N, Fix (y) is countable. Therefore & is countable.
That is, there exists a point y € ¥ N(ZX\¥). O

Proof of Theorem 4. Let L be the leaf of # which corresponds to the point y
of Lemma (4.11). Thus I', and hence I1, is not finitely generated. Let L be the leaf
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of & which covers L. We have the following exact sequence.
1 -7, (L) - n,(L) -1, - 1.

Hence we have obtained that =,(L) is not finitely generated. This conclusion is
derived from the hypothesis that & is not complete. Therefore if all the leaves of
Z have finitely generated fundamental groups, then & must be complete. O

5. First we shall construct an example, due to Nobuo Tsuchiya, of a non-complete
real analytic foliation with a single Novikov component, on a closed 4-manifold
whose fundamental group is solvable. Consider the 4-manifold D? x S', Let 4 be
the bundle foliation corresponding to the projection to the second factor. Let
f:S8'>Int(D?x S') be an embedding transverse to ¥ and which winds twice
along the S'-direction. Let N(f) be its tubular neighbourhood and let
P = D3 x S"\Int (N(f')). Turbulize the foliation ¥, along the boundary P as in
Figure 5. Paste the two boundary components by some diffeomorphism to obtain
a closed oriented 4-manifold M. Then we get a transversely oriented foliation % on
M. We can do all this to obtain a transversely real analytic foliation. It is not
difficult to show that the corresponding l-manifold is of type V and looks like
Figure 6. Also we have

n(M)=<H,T|H'T*H =T).

That is, M has a solvable fundamental group.
Next we shall show that any group of orientation preserving homeomorphisms
of R can be lifted up to an action on a I-manifold of type V.

THEOREM 5. For any group I'y of orientation preserving homeomorphisms of
R, there exists a 1-manifold X of type V, a group I' which acts on ¥, a submersion

Q% )

~—
—

1) )

\

Figure 5
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Figure 6

D:Z >R and a homomorphism ¢ :I' >R such that D(yx) = ¢(y)D(x) (y € T,
xeld).

Furthermore if I'y is finitely generated (resp. solvable, minimal on R), then I is
also finitely generated (resp. solvable, minimal on X).

Proof. Fix a I'g-orbit " = R. Define a Z/2Z vector space X by
2 ={0:0->Z2Z|o(x) =0 except finite x € O}.

Define the left action of I'y on X by (y,0)(x) =0(y 'x). Form the semidirect
product I' = X X I'y. The homomorphism ¢ : I’ - I'y is defined to be the canonical
projection.

On the other hand, define an equivalence relation on 2 x R by

(6, x) ~(1,y) < x=y, o=1on]—o,x|.
The quotient space 2 is obviously a 1-manifold of type V. I' acts on & by

(0, 7)(1, x) = (0 + 7,7, 7(x)).

Define D : Z - R by D(o, x) = x. All the required properties are easy to establish.
O
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