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A classification of polynomial algebras as modules
over the Steenrod algebra

Jeanne Duflot, Nicholas J. Kuhn* and Mark Winstead

1. Introduction

Suppose that sé2 is the mod-2 Steenrod algebra, and that R F2[jc15 xn] is

the polynomial ring in n variables over the prime fîeld F2. Campbell and Selick [3]
observed that the équations Sq1 xt xj_ for 2 &lt; i &lt; n, and Sq1 xx x*9 define an
action of sé2 on ^ that makes R isomorphic as an .53/2 -module to the j/2-module
defîned by the standard action on R. In that paper, they also pose the following
question, due to Tom Hunter: does the équation Sq1 xt E7 mi;xj (where M [mu]
is any n-by-n matrix over F2) define an action of sé2 on RI

In this paper we given an affirmative answer to the above question and classify
the actions defined in this way. More precisely, let S(V) be the symmetric algebra
generated by a finite dimensional F2 vector space V concentrated in degree 1. Then

we hâve

THEOREM 1.1. Given M e End (K), the équation Sq1 v =(Mv)2 extends to an

unstable action of stf2 on S{ V) satisfying the Carton formula.

Let SM(V) dénote S(V) with this sé2-action.

THEOREM 1.2. Given two éléments of End (F), Mx and Àf2, SMl(V) is

isomorphic to SMl(V) as sé2-modules if and only if

dim (ker {M\ dim (ker (M2)) for ail i &gt; 1.

In particular, if M is invertible, SM{V) is isomorphic to SX{V), i.e., S(V) with the

standard sé2-action.

* Research supportée in part by the NSF.
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Theorem 1 1 îs proved in sections 2 and 3 using the Bullett and McDonald
approach to the Adem relations introduced in [2] Theorem 1 2 îs proved in section
4 The proof] uses nothing more than basic hnear algebra and Galois theory, and
avoids the use of Davenport&apos;s normal basis theorem needed in [3] The last section
contains an alternate proof of a cntical step of Theorem 1 2, as well as some
remarks about the obvious generalizations of our results to odd primes

2. Higher dérivations and ^/2-algebras

Suppose F îs a commutative ring of charactenstic 2, and let R be a Z-graded
F-algebra

It is convenient to introduce the idea of a higher dérivation, adapted from
commutative algebra (e g see [4])

A higher dérivation2 of R over F îs a séquence

Dt {D0,Dl, ,Dn, }

such that

1 D, îs an endomorphism of the graded F-module R of degree i, and
2 D,(Jg)=&apos;L&apos;l 0Dl(f)D, ,(g), for every f,geR and for every

ie {0,1,2, }

Suppose that T and U are indeterminates If D^ îs a higher dérivation of R over
F, then D^ induces a ring homomorphism

defined by

D*(T)(f)= f D,(f)T&apos;

i 0

Therefore, D^ also induces a ring homomorphism

1

Spécial thanks to Thann Ward for showing us Lemma 3 4 of [5]
2 Some refer to higher dérivations as dwided séquences
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defined by

oo / oo

Io(jLo^)

Z Z Dk(an_k)TkU&quot;~k
n 0 \k 0

Mimicking Bullett and MacDonald [2], we say that a higher dérivation D^ of R

over F satisfies the mod-2 Adem relations on R if and only if

(D^(s2 + st)D^(t2))(f) (D#(t2 + st)D^(s2))(f) for every /g Z£. (1)

In the équation (1) we interpret D^(s2 + st)D^(t2) as the ring homomorphism
defined by the composite

DAT) DAT, U)
R &gt; R[[T]] R[[T, U]] -+R[[s, t]]

and similarly for the right hand side of the équation (1). (Hère, s and t are new
indeterminates.)

A higher dérivation D^ of R over F is unstable if and only if

D,(f) 0 for every / &gt; deg/

Following Bullett and Macdonald [2], we see that the next thing to do is to

prove

THEOREM 2.1. Let R be a graded F-algebra that is generated by éléments

of degree 1 as an F-algebra. Suppose that D^ is a higher dérivation of R over F
such that

(i) D^ is unstable

(ii) DODX =Z),/)o5 and

(iii) DlDl=0.
Then D^ satisfies the mod-2 Adem relations on R.
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Proof. In view of the fact that R is gênerated as a ring by F Ro and Rx; and
the fact that both D ^(s2 + st)D ^(t2) and D^(t2 + st)D*(s2) are ring homomor-
phisms, we need only verify (1) for /e F and for feRx.

Iffe F, then £&gt;,(/) 0 ifi &gt; 0, so both sides of 1) reduce to D0D0(f). Iffe R,
then 2)^7, tf)(Z)jr)(/))=i;?=0(L^

0 if « - &amp; &gt; 1 or if k&gt;n -k + 1, and DXDX 0, we see that

D0D0(f) + DxDQ{f)T + D0Dx{f)U + D2Dx{f)T2U.

Setting r s2 -h sf and (7 t2, we get

and setting r t2 H- ^/ and U s2, we get

DxD0(f)(t2 + tf) + D0Dx(f)s2 + D2Dx(f)(t2

Since (^2 + sOV ^2/4 + 2^3/3 + ^4r2 r2(j2 + j02, and DoDx(f) DxDo(fl the
theorem is proved.

Let j^2 dénote the mod-2 Steenrod algebra. Thus s/2 is the graded F2-algebra
generated by éléments Sq&apos; of degree /, / &gt; 0, satisfying Sq° 1 and certain quadratic
Adem relations. The point of Bullett and Macdonald&apos;s article [2] is that thèse

relations can be encoded in the following élégant way. Let D^(T) =£/cxL0Sq/ T\
where T is an indeterminant. Then the Adem relations are équivalent to the power
séries identity

Thus Theorem 2.1 has the following corollary.

COROLLARY 2.2. Suppose that R and D^ are as in Theorem 2.1. In addition,

suppose that Do identity. Then the équation

Sq&apos;(/)=/&gt;,(/)

defines an action of,s/2 on R. This action is F-linear, satisfies the Cartan formula and
the unstable s/2-module condition

Sq&apos;(/)=0 i//
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but does not necessarily satisfy the unstable se\-algebra condition

Sqdeg/(/) =/2.

3. Proof of Theorem 1.1 and other examples

In this section V is a free F-module of rank n. The symmetric algebra S(V) is

graded in the usual way by requiring the éléments of V to hâve degree 1.

A dérivation of S(V) (over F) is a linear endormoprhism Dx of the graded F-
module S(V) of degree 1 such that Dx{fg) Dx(f)g +fDx(g) for every/, g e S(V).

LEMMA 3.1. If d : V S(V)X -*S(V)2 is an F-linear map, then there exists a

unique dérivation Dx of S(V) such that Dx d on F, and Dx 0 on F.

LEMMA 3.2. Suppose Dx is any dérivation of S(V) such that Dx 0 on F. Then

there exists a unique unstable higher dérivation D^ of S(V) over F such that

The proofs of the above lemmas can be derived from the following formula. Let

xx,. xn be a basis for V. Then

V &gt; -Dk(x

\J \Jn
/, &gt;0

Proof of Theorem 1.1

Let F F2. Suppose that M eEndF(V). Using Lemmas 3.1 and 3.2, define a

higher dérivation M^ of S(V) over F by Mx(v) (M(v))2 for evpry v e V. Since

F ¥2, Mx is linear. Since M^ is unstable, to check that MXMX =0, it suffices to
show Mx Mx (v) 0 for v e V. Setting w Mv, we see that

M, M, (v) M, ((Mv)2) Mx (w2) wMx (w) + M, (w)w 0.

Theorem 1.1 now follows from Corollary 2.2.

From now on, we refer to this particular example of an ^2-m°dule as

SM(V).
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EXAMPLE 3.3. Again, let F F2 and let n 2 and choose a basis {xl9 x2} for
F, Le., S(V) ¥2[xx, x2]. Let D^ be the unstable higher dérivation of S(V) over F2

deflned by

Dx(xx) xî + x,x2 and x,(*2) x1x2 + x2\

Then

DxDx(xx) =Dx(x] + xxx2) Dx(xxx2)=(x2x+xxx2)x2 + xx(xxx2 + x22)=Q.

Similarly, DxDx{x2) 0, so that /)„, deflnes an sé2 action on S(V). Call this module
R. This srf2-module /? cannot be isomorphic (as an sé2-module) to any of the

examples given in Theorem 1.1. For, we see immediately that Dx is zéro on R2;

however, if MeEnd2 (F) and M [mu] as a matrix with respect to our basis

{xl9 x2}, then

Mx(xxx2) (mxxx2 H- mxlx\)x2 + x,(w2i^î + m22x\)

m2Xx] + mux2x2 -h m22x,x2 H- m12x2,

and this quantity cannot be zéro if M is not zéro.

sé2 -modules similar to those in this section can be constructed over any
commutative ring F of characteristic 2.

4. The classification of the twisted sé2-actions on S(V)

Suppose that q 2S for some s &gt; 0, and let F^ be a finite field of order q. Let
G Gai (F^Yï^); i.e., G is a cyclic group {1, cp, &lt;p2,. cps~ &apos;} of order s generated

by the Frobenius automorphism q&gt; oîYq. From algebra, we know that there exists

an élément œ e¥q such that {œ, (p(œ), (ps ~ l(co)} is a basis for F^ over F2. Thus

we hâve

LEMMA 4.1. Corresponding to this choice of basis, there is an isomorphism

a : Fq-&gt;F2[G] of¥2[G]-modules given hy

where Çt e F2 for every i.
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If N is a graded F2 [G] -module, we let Nmv dénote the same underlying vector

space with the trivial G-action. Furthermore, if TV is a graded vector space over F2,
and N is simultaneously an sé2-module and an F2[G]-module such that the actions
of se2 and G on N commute, then we will say that N is a G-^2-module.

In what follows, let N be a G-j/2-module.
The tensor products ¥q®N and F2[G] ®N (ail tensor prducts are taken over

F2) hâve stf2 -module structures via the formula

0(z ® n) z ® 8{n) for 6 e sé2.

They also hâve F2[G]-module structures, given by the (standard) diagonal action of
G, i.e.,

g{z®ri) =gz ®gn.

Note that this action of G commutes with the &lt;s/2-action on both F^OvV and

F2[G] ® N, hence both ¥q®N and F2[G] ® N are G -sf2 -modules.
Define the map fi : F2[G] ® Ntnv -^F2[G] ® N by

LEMMA 4.2. The map /? is an isomorphism &lt;?/F2[G] ®Ntru and F2[G] ®N as

G-sé2-ynodules.

COROLLARY 4.3. The map

given by the composite

a® 1 p a~l ® 1

F, ® N,m &gt; F2[G] ® TV &gt; F2[G] ® N F, ® N

is an isomorphism of G-s/2-modules.

Since &lt;P takes fixed points to fîxed points and noting that

we hâve

COROLLARY 4.4. The fixed point map is an isomorphism of sé2-modules
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Explicitly,

*G(»)=4Ë &lt;p&apos;(œ)®q&gt;&apos;(n). (2)
7 0 ~

Now suppose that N is a graded algebra and that G acts on iV via algebra maps.
Furthermore, suppose that TV is an sé2-algebra, i.e., an algebra with an j^-module
structure satisfying the Cartan formula. For example, TV might be H*(X; F2), where
A&quot; is a G-space.

By construction, N^ will be a sub-j/2-algebra of F^ ®N. Inspection of formula
(2) reveals that the isomorphism of j&gt;/2-modules, &lt;PG : N -&gt; N^, is not an algebra map.
However, if we let ï :Fq®N(p-+Fq®N dénote the inclusion / : N^ &lt;^Fq®N with
the scalars in the domain extended to F^, then fis visibly a map of j3/2-algebras and

we hâve

PROPOSITION 4.5. The srf2-algebra map

is an isomorphism.

This is Lemma 3.4 of [5]. The proof is a pleasant and élégant exercise in basic

Galois theory, using nothing deeper than the nondegeneracy of the trace form of F^

over F2.

Let us investigate what this discussion implies about our modules SM(V). Suppose
that M g End (F) and A e Gl (V) satisfy AM MA and As I. If we set q 2S and

G Gai (F(/\F2), then G will act on SM{V) via ^2-algebra maps by letting cpx Ax.
Applying Corollary 4.4 and Proposition 4.5 to N SM(V), we conclude

&lt;PG : SM(V) -*SM(V)y is an isomorphism of j^-modules, (3)

and

F(y®^M(^)&lt;p is a symmetric algebra. (4)

Thèse statements comprise most of the proof of the next theorem.

THEOREM 4.6

as s/2-algebras. In particular, SM(V) £ SAX1(V) as s#2-modules.
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Proof. We start by observing that for many graded F2-algebras N, e.g. finitely
generated polynomial algebras, it will be true that

F,? ® N&apos; ¥q ® N as algebras =&gt; N&apos; N as algebras.

Thus (4) implies that ^(F)^ is the symmetric algebra generated by its degree 1

part, which, by (3), can be identified with &amp;G(V). Therefore to show that
Sm(V)&lt;p=Sam(V) as j^-alg^ras, it suffices to show that if v e V then
Sq1 (&lt;PG(v)) (&lt;PG(AM(v)))2. We compute:

s- 1

Sq1 (&lt;PG(v)) Sq1
&apos;

/ 0

&apos;X &lt;PJ(co)®A\(Mv)2)

£ ip\œ)®A\M){v2)
7 0

(&lt;PG(AM(v)))2. D

With this last theorem, we can now prove Theorem 1.2.

Proof of Theorem 1.2

=&gt;): We first establish that

ker(M&apos;: V^ V) ker (Sq27&quot;1 • • • Sq2 Sq1 : V-+S%(V)) ifj^l. (5)

To see this, we note that in SM(V), we hâve

We can see this by induction on deg (/). It is true for / 1 by définition; suppose
that deg (/) / &gt; 1. We may suppose that / is a monomial by linearity of both
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sides of the équation; say/= m{m2 where deg (m,) 1 and deg (m2) deg (/) - 1.

Since the sé2 -action is unstable and satisfies the Cartan formula,

Sqdeg(/)(/) =Sqi (mj) Sqdeg(«2)(/W2) =(M(ml))2(M(m2))2 (M(m]m2))2

since M is a ring homomorphism.
It follows that if v e V, then in SM(V\

Sq2/
&apos;

• • • Sq2 Sq1 (v) {M&apos;(v))21 for ail j &gt; 1.

Since SM(V) has no nonzero nilpotent éléments, (5) holds.
Now, if SM](V) is isomorphic to SMj(V) as ,s/2-modules, then (5) implies that

dim (ker (M1,)) dim (ker (M2)) for ail / &gt; 1.

&lt;=): In Theorem 4.6 and the discussion preceding it we hâve established that
SM(V) ^SAM(V) as «s/2-modules if A eGl(K) commutes with M e End (V). It is

also clear SM(V) ^SCMC i(V) as j/2-modules for ail CeG\(V). The following
exercise in linear algebra complètes the proof of Theorem 1.2.

PROPOSITION 4.7. Let % be the équivalence relation on End (V) generated by
(a) M ^ CMC ifCeG\(V), and

(b) M % y*M if /4 eGl (K) w such that AM Myl.
Suppose that Mx and M2 are in End (F). Then MX^M2 if and only if
dim (ker (M1,)) dim (ker (M&apos;2)) for each i&gt; 1.

Proof. =&gt;): This is straightforward.
&lt;=): Regard M, and M2 as matrices. Then Mx and M2 are conjugate to matrices

of the form Nt® Pn where Nt is nilpotent and Pt is invertible. The hypothesis that
dim (ker (M\ dim (ker (M2)) for ail / is precisely the condition that ensures that
N] and N2 are conjugate. Multiplying At by I © P, l (which commutes with At) we
thus obtain conjugate matrices, hence M, % M2.

5. Final remarks

We begin this section by offering an alternate, more explicit, proof of the fact
that, in the situation of Theorem 4.6, the twisted algebra ^(K)^ is, in fact, a

symmetric algebra. This proof uses a resuit about the action of the Frobenius map
on algebraic groups defined over finite fields.
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Let K be an algebraic closure of Fv. The Frobenius map cp of F^ is of course
defined on K and defines a Frobenius map cp on K ® F, End* (K ® F), and

S(A:®F) K®S(V) with the property that {z e Z \ cps(z) z} equals F,, ® F,

EndF&lt;/ (F^ ® F), or F^®S(K), if Z equals AT® K, End*(À&apos;®K), or K®S(V\
respectively. According to a theorem of Lang (see, e.g., [1, V 16.3, p. 211]), there
exists an élément B eG\{K®V) such that A B~lcp(B). Since As l and

(/?(^) ^, we see that cps(B) B (since I v4&lt;p(,4) • • • cps~\A) B~xcp%B)). thus
B g EndF (F^ ® F) and so can also be considerd as an algebra isomorphism of the

symmetric algebra

PROPOSITION 5.1. B induces an isomorphism between the subalgebras

and¥2®SM(V)of¥q®SM(V).

Proof. It suffices to show that if y e Sj^iV)^, then cp(By) By where cp is just
acting on the scalars of ¥1/®SM(V). To see this, we suppose that y &lt;PGx with
xeSM(V). Then

B(&lt;PG(x)) =&apos;X (p%œ) BA&apos;(x) =^ &lt;p&apos;(œ) • (&lt;p(B)A&apos;~ l)(x) (p(B&lt;PG(x)).
/ 0 / 0

Finally we note that the odd prime analogues of this proposition and ail the

arguments in section 4 clearly hold. Thus the odd prime version of Theorem 1.2 will
hold, assuming the odd prime version of Theorem 1.1 has been established. For
this, most of the arguments in sections 2 and 3 will generalize in a straightforward
manner, though property (iii) of Theorem 2.1 will obviously need modification.
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