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A classification of polynomial algebras as modules
over the Steenrod algebra

JEANNE DUFLOT, NICHOLAS J. KUHN* AND MARK WINSTEAD

1. Introduction

Suppose that .o/, is the mod-2 Steenrod algebra, and that R =F,[x,, ..., x,] is
the polynomial ring in n variables over the prime field F,. Campbell and Selick [3]
observed that the equations Sq' x; = x?_, for 2 <i <n, and Sq' x, = x2, define an
action of &/, on R that makes R isomorphic as an .&/,-module to the .&/,-module
defined by the standard action on R. In that paper, they also pose the following
question, due to Tom Hunter: does the equation Sq' x; = X, m;;x; (where M = [m,}]
i1s any n-by-n matrix over F,) define an action of <&/, on R?

In this paper we given an affirmative answer to the above question and classify
the actions defined in this way. More precisely, let S(}') be the symmetric algebra
generated by a finite dimensional F, vector space V' concentrated in degree 1. Then
we have

THEOREM 1.1. Given M € End (V), the equation Sq' v = (Mv)? extends to an
unstable action of </, on S(V') satisfying the Cartan formula.

Let S,,(V) denote S(V) with this «/,-action.

THEOREM 1.2. Given two elements of End (V), M, and M,, S\ (V) is
isomorphic to Sy, (V) as o/ ,-modules if and only if

dim (ker (M})) = dim (ker (M}%)) for all i = 1.

In particular, if M is invertible, S,,(V) is isomorphic to S,(V), i.e., S(V) with the
standard .of ,-action.

* Research supported in part by the NSF.
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Theorem 1.1 is proved in sections 2 and 3 using the Bullett and McDonald
approach to the Adem relations introduced in [2]. Theorem 1.2 is proved in section
4. The proof' uses nothing more than basic linear algebra and Galois theory, and
avoids the use of Davenport’s normal basis theorem needed in [3]. The last section
contains an alternate proof of a critical step of Theorem 1.2, as well as some
remarks about the obvious generalizations of our results to odd primes.

2. Higher derivations and .o7,-algebras

Suppose F is a commutative ring of characteristic 2, and let R be a Z-graded
F-algebra.

It is convenient to introduce the idea of a higher derivation, adapted from
commutative algebra (e.g., see [4]).
A higher derivation® of R over F is a sequence

D*={D0,Dl,...,D",...}
such that

1. D; is an endomorphism of the graded F-module R of degree i, and
2. Di(fg) =%_oD,(f)D,_,(g), for every f,geR and for every
ief{0,1,2,...}.

Suppose that T and U are indeterminates. If D, is a higher derivation of R over
F, then D induces a ring homomorphism

D, (T):R—-K[T]

defined by

D(T)f) =3 Dy(f)T"

i=0
Therefore, D, also induces a ring homomorphism

D (T, U) : R[[T]] - R[[T, U]]

! Special thanks to Thann Ward for showing us Lemma 3.4 of [5].
2 Some refer to higher derivations as divided sequences.
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defined by

D (T, U)(_i a,.:r*') = i D, (T)a)U’

1=

= i ( 3 Dj(ai)Tj>Ui

i=0\/j=

= i (i Dk(a,,_k)T"U""‘).

n=0\k=0

Mimicking Bullett and MacDonald [2], we say that a higher derivation D, of R
over F satisfies the mod-2 Adem relations on R if and only if

(D, (s*+sOD () S) = (D, (> +s)D (sH)(S) for every feR. (D

In the equation (1) we interpret D, (s*+ sf)D (%) as the ring homomorphism
defined by the composite

R 25 RITY =2 RIT, UT) ~ R{ls, 4]
T+ 5%+ st

U t?

and similarly for the right hand side of the equation (1). (Here, s and ¢ are new
indeterminates.)
A higher derivation D, of R over F is unstable if and only if

D,(f)=0 for every i > deg f.

Following Bullett and Macdonald [2], we see that the next thing to do is to
prove

THEOREM 2.1. Let R be a graded F-algebra that is generated by elements
of degree 1 as an F-algebra. Suppose that D, is a higher derivation of R over F
such that

(1) D, is unstable

(i) DyD, = D,D,, and

(iit) D,D, =0.

Then D, satisfies the mod-2 Adem relations on R.
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Proof. In view of the fact that R is generated as a ring by F = R, and R,; and
the fact that both D (s*+ sr)D,(¢*) and D, (¢*>+ st)D ,(s?) are ring homomor-
phisms, we need only verify (1) for fe F and for feR,.

If fe F, then D,(f) =0if i > 0, so both sides of (1) reduce to DyDy( f). If f€ R,
then D (T, U)YD (T)f) =Z7_ o (Zi -0 Di(D, (S NT“U" ). Since D, D, _ 1 (f)
=0ifn—k>1lorifk>n—k+1, and D,D, =0, we see that

D (T, UYD . (T)f)) = Do Do(f) + Dy Do(f)T + Do D, (f)U + D,D,(f)T?U.
Setting T =s?+ st and U = 12, we get
DoDo(f) + D, Do(f)(s*+ st) + DoDy(f)t? + D, Dy (f)(s% + st)%t2,
and setting T =1>+ st and U = 5%, we get
DyDy(f) + Dy Do(f)1* + st) + Dy D (f)s* + D, D, (f)(t? + st)%s2.

Since (¢2 + s1)%s? = s2t* + 2532 + 5%? = t}(s* + st)%, and DyD,(f) = D, D,(f), the
theorem is proved. [

Let o/, denote the mod-2 Steenrod algebra. Thus .7, is the graded F,-algebra
generated by elements Sq' of degree i, i > 0, satisfying Sq° = 1 and certain quadratic
Adem relations. The point of Bullett and Macdonald’s article [2] is that these
relations can be encoded in the following elegant way. Let D (T) =Z2,Sq' T,
where T is an indeterminant. Then the Adem relations are equivalent to the power
series identity

D, (s*+ st)D (t*) = D . (* + st)D . (5°).
Thus Theorem 2.1 has the following corollary.

COROLLARY 2.2. Suppose that R and D, are as in Theorem 2.1. In addition,
suppose that D, = identity. Then the equation

Sq' (f) =Di(f)

defines an action of ./, on R. This action is F-linear, satisfies the Cartan formula and
the unstable .o/ ,-module condition

Sq' (f)=0  ifi>degf,
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but does not necessarily satisfy the unstable <f,-algebra condition

Sqie/(f) =/>.

3. Proof of Theorem 1.1 and other examples

In this section V is a free F-module of rank n. The symmetric algebra S(V') is
graded in the usual way by requiring the elements of ¥ to have degree 1.

A derivation of S(V') (over F) is a linear endormoprhism D, of the graded F-
module S(V') of degree 1 such that D,(fg) = D,(f)g +fD,(g) for every f, g € S(V).

LEMMA 3.1. If 0 : V =8S(V), > S(V), is an F-linear map, then there exists a
unique derivation D, of S(V') such that D, =0 on V, and D, =0 on F.

LEMMA 3.2. Suppose D, is any derivation of S(V') such that D, =0 on F. Then
there exists a unique unstable higher derivation D, of S(V) over F such that

D*-—:—{id, Dl" . .}.

The proofs of the above lemmas can be derived from the following formula. Let
X,...,X, be a basis for V. Then

Dy(xf1 - xr) =

) 7‘) - (O?")x? T X (@) (0, )
T J

Proof of Theorem 1.1

Let F =F,. Suppose that M € End. (V). Using Lemmas 3.1 and 3.2, define a
higher derivation M, of S(V) over F by M,(v) = (M(v))? for every v € V. Since
F=F,, M, is linear. Since M, is unstable, to check that M, M, =0, it suffices to
show M, M,(v) =0 for v € V. Setting w = Mv, we see that

M, M,(v) = M,(Mv)?) = M,(w?) = wM,(w) + M,(w)w = 0.
Theorem 1.1 now follows from Corollary 2.2. O

From now on, we refer to this particular example of an 4,-module as

Sy (V).
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EXAMPLE 3.3. Again, let F =F, and let n = 2 and choose a basis {x,, x,} for

V,1e., S(V) = F,[x,, x,]. Let D, be the unstable higher derivation of S(V') over F,
defined by

D\(x;) =x7+xx, and x,(x;) =x,x, + x3.
Then

D\D\(x,) = Dy(x1+ x,x,) = D, (x,x5) = (x7 + X, X)X, + x, (X, X, + x3) = 0.
Similarly, D, D,(x,) = 0, so that D, defines an ./, action on S(¥). Call this module
R. This .o/,-module R cannot be isomorphic (as an .o/,-module) to any of the
examples given in Theorem 1.1. For, we see immediately that D, is zero on R,;
however, if M eEnd, (F) and M =[m;] as a matrix with respect to our basis

{x,, x5}, then

M, (x,x;) = (M X7+ myx3)x; 4+ X, (M X7 + MpX3)
= My, XY 4 My X7 4 My X X5 + My X3,

and this quantity cannot be zero if M is not zero.

o/,-modules similar to those in this section can be constructed over any
commutative ring F of characteristic 2.
4. The classification of the twisted .«7,-actions on S(V)

Suppose that ¢ =2’ for some s >0, and let F, be a finite field of order q. Let
G = Gal (F,\F,); i.e., G is a cyclic group {1, ¢, ¢°, ..., ¢*~ '} of order s generated
by the Frobenius automorphism ¢ of F,. From algebra, we know that there exists
an element w € F, such that {w, p(w), ..., ¢’ '(w)} is a basis for F, over F,. Thus

we have

LEMMA 4.1. Corresponding to this choice of basis, there is an isomorphism
a : F, - F,[G] of F,[G]-modules given by

W w4 +E@ @) =+ E L

where &, € F, for every i.
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If N is a graded F,[G]-module, we let N,,,. denote the same underlying vector
space with the trivial G-action. Furthermore, if N is a graded vector space over F,,
and N is simultaneously an «/,-module and an F,[G]-module such that the actions
of &/, and G on N commute, then we will say that N is a G-.o/,-module.

In what follows, let N be a G-</,-module.

The tensor products F, ® N and F,[G] ® N (all tensor prducts are taken over
F,) have &/,-module structures via the formula

0(z®n) =z® O(n) for 6 € o«/,.

They also have F,[G]-module structures, given by the (standard) diagonal action of
G, ie.,

g(z®n) =gz Rgn.

Note that this action of G commutes with the »/,-action on both F, ® N and
F,[G] ® N, hence both F, ® N and F,[G] ® N are G-o,-modules.
Define the map § : F,[G] ® N,,.,. = F,[G]® N by

B(g®n) =g Rgn.

LEMMA 4.2. The map B is an isomorphism of F,[G]® N,,,, and F,[G] ® N as
G-<of ,-modules.

COROLLARY 4.3. The map
®:F,®N,,—»F,QN
given by the composite
F,® N, s Fy[G]® N —> B[] @ N 25 F, @ N
is an isomorphism of G-<Z,-modules.
Since @ takes fixed points to fixed points and noting that
Nyw=F,®N,;, =(F,®N,;)°,
we have

COROLLARY 4.4. The fixed point map is an isomorphism of o/ ,-modules

$°: N —>(F,®N)°=N,.
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Explicitly,

s—1

®(n) = _Zo (@) ® ¢'(n). (2)

Now suppose that N is a graded algebra and that G acts on N via algebra maps.
Furthermore, suppose that N is an ./,-algebra, i.e., an algebra with an o/,-module
structure satisfying the Cartan formula. For example, N might be H*(X; F,), where
X is a G-space.

By construction, N, will be a sub-.</,-algebra of F, ® N. Inspection of formula
(2) reveals that the isomorphism of .«/,-modules, #¢: N — N, is not an algebra map.
However, if we let i : F, ® N, —»F, ® N denote the inclusion i : N, o F, ® N with

the scalars in the domain extended to F_, then 7 is visibly a map of .«/,-algebras and
we have

PROPOSITION 4.5. The ./,-algebra map
I.F,®N,—-F,®N
is an isomorphism.
This is Lemma 3.4 of [5]. The proof is a pleasant and elegant exercise in basic

Galois theory, using nothing deeper than the nondegeneracy of the trace form of F,
over F,.

Let us investigate what this discussion implies about our modules S,, (V). Suppose
that M € End (V) and 4 € Gl (V') satisfy AM = MA and A* = 1. If we set ¢ = 2° and
G = Gal (F \F,), then G will act on S, (V) via .«/,-algebra maps by letting px = Ax.
Applying Corollary 4.4 and Proposition 4.5 to N =.S,,(V), we conclude

Q¢ Sy (V) - Sy(V), is an isomorphism of .o/,-modules, (3)
and

F,® Sy (V), is a symmetric algebra. (4)

These statements comprise most of the proof of the next theorem.

THEOREM 4.6

Su(V)p = Sam(V)

as of 5-algebras. In particular, S, (V) = S, (V) as o ,-modules.
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Proof. We start by observing that for many graded F,-algebras N, e.g. finitely
generated polynomial algebras, it will be true that

F,® N'=F,®N as algebras = N’= N as algebras.
Thus (4) implies that S,,(V), is the symmetric algebra generated by its degree 1
part, which, by (3), can be identified with ®¢(V). Therefore to show that

Su(V), =S.m(V) as f,-algebras, it suffices to show that if vel then
Sq! (%(v)) = (P9 (AM(v)))%. We compute:

Sq' (#°()) = Sq! (Z ?/(©) ® Af(v))

s—1

= X ¢/) @ 4(Sq' ()

s—1

= T ¢l ® 4(M0)?)

s—1

= T ¢/0) ® A0

- ( OV '(AM<V)>)

= (@9(AMW)))* 0

With this last theorem, we can now prove Theorem 1.2.

Proof of Theorem 1.2
=): We first establish that
ker(M/:V—-V)=ker(Sq¥ ' ---8q*Sq': V> S%(V) ifj=1. (5)
To see this, we note that in S,,(V), we have
SqUt ) (f) = (Mf)? = M(f?).

We can see this by induction on deg (f). It is true for i = 1 by definition; suppose
that deg (/) =i > 1. We may suppose that f is a monomial by linearity of both
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sides of the equation; say f = m,;m, where deg (m,) = 1 and deg (m,) =deg (f) — 1.
Since the .o7,-action is unstable and satisfies the Cartan formula,

Sqet ' (f) =Sq' (m,) Sqiet 2 (my) = (M(m,)) (M (m,))* = (M(m, m,))?

since M 1s a ring homomorphism.
It follows that if v € V, then in S,,(V),

Sq” '+--8q?Sq' (v) = (M'(t))¥  for all j > 1.

Since S, (V') has no nonzero nilpotent elements, (5) holds.
Now, if Sy, (V) is isomorphic to S,,,(V) as .o/,-modules, then (5) implies that

dim (ker (M})) = dim (ker (M}%)) for all i > 1.

<): In Theorem 4.6 and the discussion preceding it we have established that
Su(V) =S, (V) as of5,-modules if 4 € Gl (V) commutes with M € End (V). It is
also clear S,,(V) = Scyc 1(V) as o/,-modules for all C € Gl (V). The following
exercise in linear algebra completes the proof of Theorem 1.2.

PROPOSITION 4.7. Let ~ be the equivalence relation on End (V') generated by
(a) M~CMC ' if CeGl(V), and
(b) M~ AM f AeGl(V) is such that AM = MA.
Suppose that M, and M, are in End (V). Then M, =M, if and only if
dim (ker (M})) = dim (ker (M})) for each i > 1.

Proof. =): This is straightforward.

<): Regard M, and M, as matrices. Then M, and M, are conjugate to matrices
of the form N, ® P,, where N, is nilpotent and P, is invertible. The hypothesis that
dim (ker (M?)) = dim (ker (M?%)) for all i is precisely the condition that ensures that
N, and N, are conjugate. Multiplying 4, by [ @ P, ' (which commutes with 4,) we
thus obtain conjugate matrices, hence M, ~ M,. O

S. Final remarks

We begin this section by offering an alternate, more explicit, proof of the fact
that, in the situation of Theorem 4.6, the twisted algebra S,,(V), is, in fact, a
symmetric algebra. This proof uses a result about the action of the Frobenius map
on algebraic groups defined over finite fields.
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Let K be an algebraic closure of F,. The Frobenius map ¢ of F, is of course
defined on K and defines a Frobenius map ¢ on K® V, Endy (K® V), and
S(K®V)=K®S(V) with the property that {ze€Z |¢p*(z) =z} equals F,®V,
Endg (F,®V), or F,®S(V), if Z equals K®V, Endg (K® V), or K® S(V),
respectively. According to a theorem of Lang (see, e.g., [1,V 16.3, p. 211)), there
exists an element BeGlI(K® V) such that 4 =B '¢(B). Since A°=1 and
@(A) = A, we see that ¢*(B) = B (since I = Ap(A4) - - - ¢*~'(4) = B~ '¢*(B)). thus
B eEndg (F,®V) and so can also be considerd as an algebra isomorphism of the
symmetric algebra F, ® S,,(V).

PROPOSITION 5.1. B induces an isomorphism between the subalgebras Sy, (V),
and F, @ Sy (V) of F,® Sy, (V).

Proof. It suffices to show that if y € S},(V),, then ¢(By) = By where ¢ is just
acting on the scalars of F, ® S),(¥). To see this, we suppose that y = ®°x with
x €Sy (V). Then

s—1 s—1

B(9°(x)) = ‘ZO ¢'(w) - BA'(x) = ‘ZO @'(@) - (p(B)A'~')(x) = @(BP(x)).

Finally we note that the odd prime analogues of this proposition and all the
arguments in section 4 clearly hold. Thus the odd prime version of Theorem 1.2 will
hold, assuming the odd prime version of Theorem 1.1 has been established. For
this, most of the arguments in sections 2 and 3 will generalize in a straightforward
manner, though property (iii) of Theorem 2.1 will obviously need modification.
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