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On Cheeger’s inequality

ROBERT BROOKS', PETER PERRY? AND PETER PETERSEN V3

In [Ch], Cheeger proved the following general lower bound for the first
eigenvalue 4, of a closed Riemannian manifold:

THEOREM ([Ch)):

|
A == h?
T4
where
b —inf area (N)

~ min (vol (4), vol (B))

where N runs over ( possibly disconnected) hypersurfaces of M which divide M into
two pieces A and B, and where area denotes (n — 1)-dimensional volume, and vol
denotes n-dimensional volume, where n = dim (M).

h(M) is called the Cheeger constant of M.

Cheeger’s inequality is quite straightforward to prove, and is essentially the
co-area formula of geometric measure theory. It is therefore surprising that the
inequality plays such a crucial role in the study of the geometry of the Laplace
operator, see [Bu3]. Indeed, one has the following general upper bound for 4, in
terms of A, due to Peter Buser [Bu]:

! Partially supported by NSF Grant DMS-9000631 and by NSF grant RII-8610671 and the
Commonwealth of Kentucky through the Kentucky EPSCoR Program.

2 Partially supported by NSF Grant DMS-9006092 and by NSF grant RII-8610671 and the
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THEOREM ([Bu)):
Ay S ceh + ey h?,
where c,, ¢, depend only on a lower bound on the Ricci curvature of M.

Thus, from a qualitative point of view, 4, and 4 are essentially the same thing,
in the sense that one tends to zero if and only if the other does (in the presence of
bounded curvature).

We observe that Cheeger’s inequality is true, and is proved in exactly the same
way, when M is a complete, non-compact manifold, or a manifold with boundary
and either Dirichlet or Neumann boundary conditions, provided one interprets 4,
and & correctly.

It has therefore been an interesting question to understand, in a general way,
how sharp Cheeger’s inequality really is. A major problem in coming to terms with
this question has been that, for the most part, Cheeger’s inequality is the only
generally useful method known for estimating 4, from below.

In this paper, we will explore this question in three ways. First of all, by a
celebrated theorem of Selberg [Se], there are general lower bounds

3
S ——

for certain arithmetic Riemann surfaces S,, which we will discuss below. Selberg
raised the question of whether

1
MCAES

for these surfaces, and it was suggested in [ Bi] that perhaps one could demonstrate
this by showing that A(S,) = 1 for these surfaces.

We will show that this is not the case, and indeed A(S,) is so small for these
surfaces that one cannot even obtain Selberg’s & bound via Cheeger’s constant:

THEOREM 1.1. For p =1 (mod 4),

h(S).<_310g(3) (p—l)

2n p+1
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Note that 3log(3)/2n has a value of approximately .52455. The value of
(1/4)(.52455)° is approximately .068788, a little bit bigger than 1/16.
Secondly, we will show:

THEOREM 2.1. There exist two isospectral Riemann surfaces S, and S, whose
Cheeger constants satisfy

h(S,) # h(S,).

This too answers a question raised in [Bi].

Both of these results lie in the category of surfaces with boundary geometry —
and indeed the examples have constant curvature — 1. For our third result, we will
leave this category to study the spectral geometry of manifolds of 2 and 3
dimensions with no curvature assumptions. We will show:

THEOREM 3.1. For n =2 or 3, there is a constant K(n) such that, if M is a
compact n-manifold satisfying

| Ricc,

Vol (M)’

then the Cheeger constant of M is bounded above and below in terms of the spectrum
of M.

4, > K(n)

We give some numerical estimates for K(n) below. In a separate paper [ BPP], we
show by example that the number K(n) cannot be made arbitrarily small.

According to Cheeger’s inequality, 4, is bounded below by 4, so the content of
Theorem 3.1 is to give an upper bound for 4, in terms of 4 analogous to Buser’s
inequality, where the constants involved depend only on spectral data, rather than
pointwise curvature bounds. Indeed, Theorem 3.1 may be thought of as a version
of Buser’s Inequality, with L” curvature bounds for p > n/2, n = dim (M), replacing
pointwise curvature bounds. The dimension restriction enters from the fact that L2
bounds are available from the spectrum, so one requires that 2 > n/2.

The first two results answer questions which were raised by Frederic Bien in
[Bi]. We would like to thank him for his prodding, which encouraged us to write
the present paper.

Acknowledgements. The first two authors acknowledge with gratitude the sup-
port of the N.S.F. and the Commonwealth of Kentucky through the Kentucky
EPSCoR program. The first author would also like to thank the Department of
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Mathematics of UCLA and the Mathematical Sciences Research Institute for their
hospitality during the preparation of this paper.

1. Selberg’s theorem

Let I' = PSL(2, Z), and let

a b 1 0
ol ety ]

be the congruence subgroup of I' of level n. It is easily seen that I'/[", =~
PSL(2, Z/n). Then I' (and hence I',) acts on the hyperbolic plane H, with quotient
a finite area Riemann surface with singularities, whose fundamental domain is the
well-known figure shown in Figure 1.

For all n, H/I',, is a finite orbifold covering of this surface, and for n # 2 or 3,
H/I',, has no singularities.

It was shown by Selberg [Se] that A,(H/I',) = for all n, and he further
conjectured that A,(H/I,) = 1.

Selberg’s Theorem can be ‘“‘compactified” in a number of ways, to provide
families of compact Riemann surfaces with large 4,. For our purposes, one of the
most interesting of these compactifications is a recent result of Burger, Buser, and
Dodziuk [BBD], which proceeds in the following way:

Let us take a Riemann surface S with an even number of cusps, and pair off the
cusps in some arbitrary way. Then, for each ¢, we may perturb the metric on S
slightly, to obtain a new Riemann surface S,, which is compact and bounded by
geodesic circles of length &. We may then glue corresponding cusps together to
obtain a closed surface S,.

L~

Figure 1. The fundamental domain.
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It is more-or-less evident that, as ¢ tends to zero 4(S,) tends to 4(S). To see this,
observe that as ¢ — 0, the necks in S, become arbitrarily long, so that the optimal
way of dividing S, into two pieces is to divide S into two pieces, and then snip off
the appropriate thin necks. Any other method would have to involve a curve which
passed through the whole length of the neck, and hence contribute too much to the
numerator in the ratio defining A.

It is less obvious that 4,(S,) tends to 4,(S) as ¢ tends to 0. This is shown in
[BBD].

If we now set S, = H/I',, we will now estimate A(S,) from above:

THEOREM 1.1. Let p =1 (mod 4).
Then

Hs,) < (3 log (3) (p — 1)).

2n (p+1)

Proof. We will first pick two generators

7=(o 1)

and

0 —1

(i )
for PSL(2, Z). Note that these two generators are the “‘geometric” generators for
the fundamental domain F shown in Figure 1 — that is, they correspond to elements
of m,(S) which identify the edges of F.

We may now describe S, in the following graph-theoretic way: Consider
the graph G, whose vertices are given by elements of PSL(2, Z/n), and whose
edges are given by left-multiplication by U and V. This is a trivalent graph,
where every vertex has two edges corresponding to U and one corresponding
to V.

To obtain S,, we will take one copy of F for each vertex of G,, and glue

boundary components of F according to the edges of G,,.
We will now try to decompose S, in the following way: we will write

S,=A,UB

n ns
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where 4, and B, are unions of copies of F. This will be accomplished by cutting S,
along boundary components of F. Since we want the cuttings to be of finite length,
we will only cut along edges corresponding to V.

To record this information in a useful way, we observe that if W is a matrix in
SL(2, Z), then multiplication by U does not change the bottom row of W, while V
flips top and bottom rows with a sign change. Thus we are led to the graph G|,
described as follows: the vertices of G, are equivalence classes of row vectors in
Z/n x Z/n, with (a, b) ~(—a, —b), and the greatest common divisor of a and b
relatively prime to n. Furthermore, (a, ) and (c, d) are joined by an edge if

a b
det (b d): + 1 (mod »n).

We show G, for n =5 in Figure 2. Note that each vertex of G, has exactly n
edges leading from it.

In order to visualize G,,, we note that G5 is the 1-skeleton of the icosahedron.
In general, G, is dual to the I-skeleton of a polygonal division of a surface into
regular n-gons, so that G5 is the 1-skeleton of a tetrahedron, G is the 1-skeleton of
an octahedron, and so on.

We will now estimate h(G,) for p a prime number.

LEMMA 1. For p =1 (mod 4),

2.——
p 2p+5<

. _(p=Dp
Wp—1) MO =

S 2p+ 1)’
Proof. We begin with the following algebraic:

LEMMA 2. Given (a, b) and (a’, b’) with

a b
t 0
de <a’ b’>¢ !

there exist two distinct paths of length 2 joining (a, b) and (a’, b’) in G,

Proof. A path of length 2 joining (a, b) and (a’, b’) is given by a vector (c, d)
satisfying:

(a) det <Z Z) = +1 (mod p)
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AL’),O)

(0,2)
Figure 2. The graph G5.

and

(b) det (:, :/) = +1 (mod p).

Two such paths given by (¢, d) and (c¢’, d”) will be distinct unless
(c,d) = t(c’, d).

Since

det(a, b,)=oc7é0,
a b
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any vector (¢, d) may be written as

(C’ d) = kl(a’ b) + kz(a/’ b/)a

so that
a b a b
det (C d) =k, det (a’ b’)
- kza,
while

c d a b
det(a, b’>—k'(a’ b,)=k,cx,

so that choosing

k1=i k2='_+'

R | ==
KR | =~

gives four possible choices for (¢, d), which represent two distinct paths in G,.
This completes the proof of Lemma 2.

Now let us decompose G, into two sets 4 and B by removing a collection of edges
E, and suppose that #(A4) < #(B). We wish to estimate #(E)/#(A) from below.
For each element (a, ) € A, and for each element (a’, ") € B not a multiple of
(a, b), the Lemma establishes that these are two paths of length 2 joining (a, b) to
(a’, b’). In each of these two paths, one of the two edges must lie in E. Furthermore,
each edge lies in at most 2(p — 1) different sets of paths of length 2. It follows that

2#(A)(#(B)—(—52;1>+1)
E) >
#(E) 2 5 1)

so that

_(r=1
#(E)>2(#(B) ( 2 )+1>
#(4) 20p—1)

L (P?=2p+59)
- Ap-D 7

since #(B) = #(G,)/2=(p>—1)/4.
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This establishes the lower bound of the lemma.

To establish the upper bound, we will assume p =1 (mod 4), and divide G, into
two sets A and B as follows: Let

A ={(0,a):ais asquare (mod p)} U{(b,c) : b #0 is a square (mod p)}

and

B ={(0,a) : a is not a square (mod p)}
U {(b,c) : b #0 is not a square (mod p)}.
Note that #(A) = #(B) =(p?—1)/4.

Let E be the number of edges joining an element of A with an element of B.
Then:

CLAIM:

~ 1 — ]
#(E)z(p4 ),p(p2 )

Proof. No element of A of the form (0, a) is joined with an element of B of the
form (b, c), since

0 a
= —ab
det <b c) a

is not a square (mod p). Similarly, (0, @) is not joined to an element of the form
(0, a’), since

0 a
det = 0.

On the other hand, every element of A of the form (b, c), b #0, is joined to

# 4

b L
exactly (%) elements of B, since if det ( b CC>= 1, then the vertices joining

(b, ¢) are the vectors of the form (b’,c¢’) +k -(b,c)=(b"+k -b,c’+k - ¢), and,
since b # 0, each equivalence class (mod p) occurs as the first coordinate of such a
vector exactly once.
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It follows that

(p—D-p (p—1

#(E) 4 2
#(A) (p*-1
4
_(p=Dp
2Ap+ 1)’

and so n(G,) <(p — Dp/2(p + 1), as desired.

To prove the theorem, we may now divide S, into two pieces in the following
way: let .o/ be the union of the fundamental domains corresponding to matrices in
PSL(2, Z/p) whose bottom row lies in 4, and # =S§, —.«/. Then &/ and # are
separated by a geodesic curve (possibly with several components) consisting of one
arc for each element of E. This arc is isometric to the bottom arc in Figure 1, and
the length of this arc is easily calculated by elementary hyperbolic trigonometry to
be log (3).

On the other hand,

area ((¢)) = area (F) - #(A) - p,

since each vertex of G, corresponds to p copies of Fin §,, and

area (F) =g,

so that
| —1
s, < '983) MG, 3log(3) (1)
/3 D T 2Ap+1)
as desired.

2. Isospectral surfaces
In this section, we will prove:

THEOREM 2.1. There exists a pair of isospectral Riemann surfaces S, and S,
with h(S,) # h(S,).
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We begin the proof with the analogous statement for graphs. Consider the
graphs G, and G, shown in Figures 3 and 4.

These graphs are the Cayley graphs for coset spaces G/H, and G/H, respec-
tively, where the G = PSL(3, Z/2),

1 * =
H =|0 =«

0 ,

1 0 0
H,=|=* ,

* x

with generators

0 1 1
A=10 1 0
1 0 0
//””—— P \:\\\
//’ ,””’ \ \\\
/ P et i \ ~
e S I ,<>
| T~ ,’ -~
\\ ‘\\\\\ /’//
S ~S~o /! -
e v

Figure 3. The graph G,.

Figure 4. The graph G,.
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representing the solid lines, and

_—0 O

representing the dotted lines, see [Bu2] for details.

This triple of groups was used in [BT] to provide examples of isospectral
surfaces of genus 3 and 4, and by Buser in [Bu2] to provide examples of flat
surfaces which are isospectral and topologically planar. The drawings in Figures 3
and 4 came from [Bu2].

The fact that these graphs are isospectral comes from Sunada’s Theorem [Su],
or can be verified directly.

We now observe the following distinction between the two graphs: graph G, can
be disconnected into two pieces, one of which contains 2 vertices and the other of
which contains four vertices, by removing one vertex, while the graph G, cannot be
so disconnected.

Now consider a Riemann surface S, as shown in Figure 5, which is built out of
two Y-pieces as shown in Figure 6.

Here the bottom boundary component has length ¢, assumed small, while the
top two components are of some sizeable length (say, for instance, at least 10¢). It
is easy to arrange this so that every geodesic of S, other than the one of length ¢
has length at least, say, 3e.

We now form two surfaces S, and S,, which are coverings of the surface
Sy, and are obtained in the follow way from the graphs G, and G,: we open
up S, along the two curves 4 and B to obtain a surface S which is conformally
S? with four disks removed. At each vertex in the graph G, (i=1,2), we
place a copy of S, and then join boundary components corresponding to
A whenever the corresponding vertices are joined by a solid edge, and similarly
for B.

According to Sunada’s theorem [Su], the surfaces S, and S, are now isospectral.

We claim that A(S,) # h(S,). To see this, we first observe that

&

h <
(S2) ]07_[ )

since S, may be disconnected into two pieces, the smallest of which contains five
Y-pieces, by cutting one curve of length &, and each Y-piece has area 2.
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Figure 5. The surface S,.

On the other hand, we have that
3
h(S,) =2 —,

which can be seen as follows: the most efficient way of dividing S, into two pieces
by a geodesic curve of length ¢ has the smaller piece consisting of 3 Y-pieces. One
can get a somewhat better Cheeger constant by cutting along a curve of constant
mean curvature homotopic to this geodesic, rather than the geodesic itself, but this
curve cannot cut off an area larger than four Y-pieces. Thus the best Cheeger
constant that can be achieved by cutting along only one curve is ¢/8n. But if one
cuts along two curves, the length must be at least 2¢, while the smallest piece can
be at most 14zn. Thus, A(S,) is at most &/8x.

This completes the proof of Theorem 2.1.

N

Figure 6. One Y-piece.
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3. A bound for the Cheeger constant

In this section, we will prove:

THEOREM 3.1. For n =2 or 3, there is a constant K(n, 2) such that, if M is a
compact n-manifold satisfying

|Ricel|,
Vol (M)’

then h(M) is bounded above and below by the spectrum of M.

A (M) > K(n, 2)

Our proof gives a value of K(2, 2) of approximately 58.16359, and a value of
K(3, 2) of approximately 236.65428. In [BPP], we show by example that K(n, p)
cannot be arbitrarily small.

Note that, from Cheeger’s inequality, #(M) is bounded above by 2ﬁ . Thus,
the non-trivial part of Theorem 3.1 is to bound A(M) from below in terms of
spectral data. In fact, we will prove:

THEOREM 3.2. Given n and p > n/2, there is a constant K(n, p) such that if M
is an n-manifold satisfying

|Rice],

A(M) > Ko, p) o ra s,

then h(M) is bounded from below in terms of Vol (M), A,(M), and ||Ricc|,.

We remark that Theorem 3.1 follows from Theorem 3.2 by noting that Vol (M)
is the a, term in the heat expansion of M, and hence a spectral invariant, while for
manifolds of dimension <6, |Ricc|, is bounded by the a, term in the heat
expansion.

We begin our discussion by first considering the function

eX—1
g(x) =—
X

which occurs in the volume and eigenvalue estimates below. It is easily seen that as
x —»0* and as x » + 00, we have that g(x) - c0. Since g’(x) has a unique zero in
(0, o0), it follows that there is a positive number x, at which g(x) attains its
minimum. This value is given approximately by

Xo = 1.594625
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and
g(x,) = 1.55441386.

We do not know a closed-form expression for either x, or g(x,).

The idea of the proof of Theorem 3.2 can now be described as follows: Suppose
that D is a judiciously chosen domain in M, and denote by D, the tubular
neighborhood

D, ={x e M :dist (x, D) <&}

about D, with boundary dD,.
Suppose that the volume of D, — D is not too big, and vol (D) and ¢ are not too
small. Then we may construct test functions f, . and f,, by

fie=1 on D
2 . €
=1 — dist (x, D) for dist (x, D) < 5
) £
=0 for dist (x, D) > 3
and
f?_,s = 1 on M — DC

2 )
=~—dist (x, D) — 1 for % <dist(x,D) <¢
€
) €
=0 for dist (x, D) < 5

Then f,, and f,, are functions with disjoint support whose Rayleigh quotients are
bounded by

fur lgrad (£.) | _ 4 (Vol (D, — D)
j‘Mf%,s - 82 VOl (D)
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and

Jur lgrad (£ [> _ 4 ( Vol (D, — D)
fuf3c & \Vol(M—D,)

respectively.
If vol (D,) < vol (M) — vol (D), then we have that
. 4 (vol (D, — D)
S SR
A(M) 52( vol (D) )’

by the minimax characterization of 4,.

The strategy is now to choose D and ¢ so that if A(M) is too small, then the
right-hand side of the equation will be smaller than the left-hand side. This will then
give an implicit bound for A(M) from below.

This is essentially the strategy of the argument of Buser in [Bu].

In order to implement this strategy, we will need an effective way of estimating
the volume of D, from above. In the situation of [Bu], where one assumes pointwise
curvature bounds, this is handled by the Heintze—Karcher Theorem [HK]. In our
case, we will need the following estimate, due to Gallot [Gal], which is an L”
version of the Heintze—Karcher Theorem:

THEOREM [Gal]. Let Q be a domain in M with boundary 02 = H a hypersur-
face. Denote by Qr the domain consisting of all points at distance at most R from .
Then

Vol (2. .) — Vol (2%)

< (eBPre — 1)[\701 (Qz) — Vol (Q) + (B(p)a) ! Vol (6Q)

( __1 2p—1 Sne | _ p
+m’ZB(p))a)2” LQ [7. (x)]* ' d area + Jﬂk+,.—0 (i—;— 1)+ d vol:|, (1)

where p is any number >n/2, B(p) is an explicit constant given by

2p — 1\ D — 1 \1/2-12p
B = ___ —Nni-vesf ,
(p) ( > ) (n—1) (p_n/z
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1 denotes the positive part of the mean curvature of H, o is any constant, r_ is the
negative part of the Ricci curvature, and

r
= ——1,0),

See [Gal] for a discussion of notation.

Note that |r_ /a® — 1|, < |Ricc|/a?.

We will apply (1) in the following way: let H be a hypersurface which realizes
the Cheeger constant (see [Bu] for a discussion of the existence of such a
minimizer), and let Q be the component of M — H which has the smallest volume,
making an arbitrary choice if both components have the same volume. Then H is
a hypersurface with

r_
_5__1
x

area (H) =h - Vol (Q)
and
In(H)| < h,

with equality if H does not divide M into two pieces of equal size.

From here on, we will always let H and Q denote these choices.

In order to illustrate our line of argument, and also because we will need part
(b) below later, we will prove:

LEMMA 3.1. Let k and c be positive numbers, and let M be a manifold satisfying
one of the two following conditions:

Either

(a) The Ricci curvature is bounded below by

or

(b) The volume of Q is bounded below by c - Vol (M).

Then, for p > n/2, h is bounded below in terms of the spectrum of M and |Ricc|,.
In case (), h is bounded below by A,, p, and k, while in case (b), h is bounded below
in terms of A;, Vol (M), |Ricc||,, and c.

s

Note that case (a) is a weak version of Buser’s inequality.
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Proof. We apply inequality (1) with R =0. We then have
Vol (2,) — Vol (Q) < (e8> — 1)[(8( p))~'h - Vol (Q)

(n—1)%-1
(B(p))*

2

h? - Vol (Q) +f

M

=
o

’ d vol] (2)

+

and

4 Vol (2,) — Vol (@) _ 4(e™ "
2

—_ 1 B -1
€ Vol (22) - g2 ) ( ip)) h + (B(p)oc)~2p(n — > p

Vol (Q) ' )

Let us choose ¢ = x,/B(p)a, so that B( p)ae = x,. We may then eliminate ¢ from
the above, so that the right-hand side of inequality (3) becomes

r
L 1
, o (n—1)%"1 2 J‘QRLAQ o’ +

Let us first consider case (a). In this case, we may choose a so large that the
third term in (4) is 0.
In inequality (2), we may then find a constant A, such that if & < h,, then

Vol (2,) — Vol (Q) < -;— Vol ().

Similarly, in inequality (3), we may find A, such that if 4 <h,, then

4 Vol (@) —Vol (@) _4
g2 Vol (Q) 2"
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On the other hand, by the minimax characterization of A,, we have

. (i Vol (2,) — Vol () 4 Vol (Q,) — Vol (Q) >

g2 Vol(@ &’ Vol(M)—Vol(Q,)
< 4 Vol (2,) —Vol (@) 4 Vol (Q,) — Vol (2)
< max g? Vol (2) " &2 Vol (M) — (3/2) Vol (Q)>

e Vol (Q) "e2 (1/2) Vol (@)
§ 2(4 Vol (2,) — Vol (Q)>’

< max (i Vol (2,) — Vol () 4 Vol(Q,) — Vol (Q))

& Vol (2)

using that Vol (M) = 2 Vol (Q).
Therefore, if & < min (hy, h,), we have a contradiction. This establishes (a).
To establish (b), we argue similarly, except that we can no longer make the third
term in (4) disappear by choosing o large. We can, however, replace

J;z,~9

by

r p

ﬁ-l

-+

far |Riccl?

o?P

We now have the two inequalities

Vol (Q,) — Vol (Q) < (e* — 1)[(3( p)a) ~'h - Vol (Q)

(n— 1>~

B h? - Vol (Q) + « ”2”||Ricc||f,:| (5)

and

4 Vol (2,) — Vol (Q)
g2 Vol (Q)

< 4(g(x0)B(p) 2)[(0:/3(1)»/: +(B(p)~2(0)?~ #(n — 1)~ 1h?

_5, || Ricef
Fe Y Ne ) | ©
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We may now choose « sufficiently large so that the third right-hand term in (5)
1s less than (1/3) Vol (2), while the third right-hand term in (6) is less than 4,/3.
Then, as before, we may find 4, and h, such that if » <h, and h < h,, right hand
sides of (5) and (6) are less than (1/2) Vol (Q) and (1/2)4, respectively. The proof
of (b) now concludes in the same way as the proof of (a).

The difficulty in proving Theorem 3.2 is now clearly that we have no a priori
control over Vol (), and hence the denominators in the third terms may go to zero.
We will remedy this by choosing R in the inequality (1) so that Vol (Q) is large.
To do this, we will not need to choose a value for R, but only for 6, where
Vol (2z) = (1+ 62 Vol ().

Applying (1) to these choices, we have

4 | Vol (Q —Q 4(e B _ ] 62
,_|: ol (€2 . R)]S (e )[1_’_524‘(3(1))0‘)#'

g’ Vol (2¢) &’ 1+ 52
(n—1)¥-1 p%¥ is | Ricc|?
(B(p))* (146%)  a* (1462 Vol (Q)
02 o h

— A(R? 2

=4(B (p))g(xc)[a 1+52+B(p) s
(n—1)>-1 p%¥ 1 | Rice|? 7
B(p) " 21462 a% 2(1+ 0% Vol (@) |

It now remains to choose « and ¢ in a reasonable way. We will do this in such
a way as to minimize the sum of the two terms not involving 4. To do this, we will
need the following elementary

LEMMA 3.2. For A and B positive, the minimum of

a’A + B

a2p~2

is

B A"~ 'P((p — 1)) (———” )
p—1

and occurs when

B e
052‘—‘[(P“ 1)2] -
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Applying this to (7), we see that the sum of the first and last terms is minimized
by

) e P |Rice], 67
4(B*(p)eg(xo)(p — 1) <p — 1) 537 Vol ()7 (1 + 6?%)°
for
Up Rice|,
0’ = (p - l) : 52/,}HVOI (L)l/p'
Setting
Q(p. n) = 4(B*(p))g(xo)(p — l)l/p(p—’j—l),

we may rewrite the minimum as

| Rice|, 5?2
527 Vol (@) (1+6°)

Q(p, n) (8)

We want to make (8) less than 4,, which will be achieved when

62/;: VO] (Q)l/p > Q(p’ n) ”RICC”P

A
using the fact that
62
(+59 ="
so that
Ay
=D

Notice that a does not depend on Vol (2), while  —» oo as Vol (€2) — 0.
Notice also that the sum of the two remaining terms is

o h-Vol(Q) (n — 1)1 hzf’-Vol(Q)]

4B*(p)g(xo) [B(p) (1462 Vol (Q) ' (B(p)*a® ) (1 + 6%) Vol (Q)
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so that the coefficients of 4 - Vol () and A% - Vol () depend on 6% Vol (), and
not on 462 alone.
In order to make use of (8), we must have that

Vol (2., .) < Vol (M) — Vol (),

or, in other words,

Vol (2z..) — Vol (Qg) < Vol (M) —2 Vol (Qp). (9)
But
1
Vol (Qz..) — Vol (Q) < (e8P — 1)|:Vol (Q2z) — Vol () + mh Vol (Q2)
[B(p)a]* o
Ricc|”
= (e™° — 1)[62 Vol () +---+ ———*—” fc”"],
a p
where - - - denotes terms which are small when 4 and Vol (Q) are small.
Substituting
2 v IRice],
a’=(p—1"

627 Vol (Q)'7’
we find that (9) holds when

62 Vol (Q)

(e — 1)[52\/01 @+ + |

] < Vol (M) — 2(1 + 82) Vol (Q),
or
52 Vol (Q)[(e"o - 1)(1 +,T1-iT) F24 ] < Vol (M) — 2 Vol (Q).

Now suppose that

Q(p, n) |Rice|, [ p 'p
e syt (G e J LR R
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We may then find a value for 62 Vol () such that (7) is less than A, and (9)
holds, unless either Vol () is bounded from below or the ““ - - - terms are bounded
from below. In the first case, Lemma 3.1 gives us a lower bound for 4. In the second
case, we then have lower bounds for two expressions of the form

(const)h - Vol (Q) + (const’)h?” - Vol (Q).

Using the upper bound for & by Cheeger’s inequality, we then have a lower
bound for Vol (). We then also have a lower bound for 4. Note that since we also
have a value for 6% Vol (€2), we now have a bound for & as well.

This concludes the proof of Theorem 3.2, and hence also Theorem 3.1.

REFERENCES

[Bi] F. BIEN, Construction of telephone networks by group representations, Notices AMS 36 (1989),
5-22.

[BPP] R. BROOKS, P. PERRY, and P. PETERSEN, Some examples in L” spectral geometry, to appear in
J. Geo. Anal.

[BT] R. BRoOKS and R. TSE, Isospectral surface of small genus, Nagoya Math. J. 107 (1987), 13-24.

[Bu] P. BUSER, 4 note on the isoperimetric constant, Ann. Sci. Ec. Norm. Sup. 15 (1982), 213-230.

[Bu2] P. BUSER, Cayley graphs and planar isospectral domains, in T. Sunada (ed.), Geometry and
Analysis on Manifolds, Springer Lecture Notes 1339 (1988), pp. 64-77.

[Bu3] P. BUSER, On Cheeger’s inequality i, = h?/4, in Geometry of the Laplace Operator, Proc. Symp.
Pure Math 36 (1980), 29-77.

[BBD] P. BUSER, M. BURGER, and J. DoODZIUK, Riemann surfaces of large genus and large 4,, in T.
Sunada (ed.)., Geometry and Analysis on Manifolds, Springer Lecture Notes 1339 (1988), pp.
54-63.

[Ch] J. CHEEGER, A lower bound for the smallest eigenvalue of the Laplacian, in Gunning (ed.),
Problems in Analysis, Princeton Univerity Press (1970), pp. 195-199.

[Gal] S. GALLOT, Isoperimetric inequalities based on integral norms of Ricci curvature, Astérisque
157-158 (1988), 191-216.

[Se]  A. SELBERG, On the estimation of Fourier coefficients of modular forms, Proc. Symp. Pure Math.
VII (1965), 1-15.

[Su] T. SUNADA, Riemannian coverings and isospectral manifolds, Ann. Math. 121 (1985), 169-186.

Department of Mathematics
University of Southern California
Los Angeles, CA 90089-1113

Department of Mathematics
University of Kentucky
Lexington, KY 40506-0027

and

Department of Mathematics
University of California at Los Angeles
Los Angeles, Ca 90024

Received March 12, 1992



	On Cheeger's inequality.

