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Homotopy classes of truncated projective resolutions

K. W. GRUENBERG

Let X be a finite connected m-dimensional CW-complex whose universal cover
X is (m — 1)-connected. Then the homotopy type of X can be recognised in the
following sense from the homotopy type of the cellular chain complex C(X): If Y
is another space like X then Y is homotopically equivalent to X if and only if there
exists an isomorphism of n,(X) to =m,(Y) under which C(X) and C(Y) are
equivariantly homotopically equivalent (as augmented chain complexes). This result
is essentially due to S. Mac Lane and J. H. C. Whitehead ((MW]; cf. also [D]); it
transforms a topological problem into one about the integral representation theory
of the fundamental groups. When these groups are assumed to be finite, the
algebraic problem was studied with great effect by Wesley Browning [B1, 2, 3]. He
showed how the chain homotopy classes of truncated projective ZG-resolutions of
Z for a given finite group G can be parametrised by the elements of a certain
naturally occurring group within the K-theory of G.

Browning worked with pointed lattices, whose relevance in this context was first
explored by J. S. Williams [W]. (A pointed lattice means here a pair (L, x)
consisting of a ZG-lattice L and an element x belonging to some specified
H*(G, L).) Browning developed a general theory of pointed lattices that parallels
ordinary lattice theory. This led to a plethora of new definitions and notations and
is perhaps one reason why his work is generally regarded as difficult to absorb. He
circulated his papers in 1979 but they have unfortunately never been published.
However the material in them is now beginning to be widely used. An account of
the results in the 2-dimensional case together with Browning’s proofs has appeared
recently [GL]. One of the main results in [B1] is a cancellation theorem, generalising
one of Williams, discovered independently at about the same time by P. Linnell,
who did eventually publish his result in 1985 [L1].

The point of the present paper is to give a new treatment of all the main
theoretical results in Browning’s three papers (but excluding the cancellation
theorem which I use in the form given in [L1]). I avoid entirely the notion of
pointed lattice and base my account solely on old concepts from elementary K-
theory (but I explain the connexion with pointed lattices in §2.7). The basic
object of study here is an Abelian group of which the ordinary genus class group
is a homomorphic image. This basic object I christen Browning’s class group.
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It is defined for any ZG-lattice M and any covariant additive functor @ from
ZG-lattices to Abelian groups such that &(M) has finite exponent. There is a
natural homomorphism of the Browning class group Cl (M; @) onto the genus class
group Cl (M) of M (§2.1). In particular, Cl (ZG) is the familiar reduced projective
class group and if M is the (m + 1)-st kernel in a projective resolution of Z, there
is a natural homomorphism of Cl(M; H"*Y(G, —)) into Cl(ZG) (§2.6). The
kernel of this homomorphism is the group that classifies the G-linked homotopy
classes of the spaces considered by Mac Lane and Whitehead (§4.1). Our discussion
in the final part of the paper (§4.2) seems to go beyond the point reached by
Browning.

In Browning’s third paper he applies his theory to 2-complexes with finite
Abelian fundamental group. His results in this case are subsumed in recent work of
Linnell who obtains complete information for n-complexes [L2]. I shall indicate
how Linnell’s results fit into the scheme proposed here (§4.3).

I warmly thank John Moody and Alfred Weiss for helpful conversations and
Peter Linnell for an enlightening correspondence.

1. Discussion of the relevant K-theory

Everything in this section is well known and readily accessible, or easy to deduce
from the published literature. A convenient reference is the book by Swan—Evans
[SE]. We give detailed references to [SE] as we proceed.

1.1. We work with a finite group G and the category Lat (ZG) of ZG-lattices.
If M is a ZG-lattice and = is a finite set of rational primes, then M, will denote
M ® Z, (where Z, is the semi-localization of Z at n). If M and N are ZG-lattices
and ¢ e Homg;(M,, N,), then ¢ =f/s, where f € Hom;(M, N) and s is an integer
prime to 7. We shall later work with a given n-number e (an integer involving only
primes in 7n). Then we may and shall always assume s in the expression for ¢ is
chosen so that s = 1(mod e): Let d = et, where ¢ is the product of all primes in 7 not
in e and suppose ss’+dd’ = 1. Then f/s = fs'/ss’. Note that if Coker f is finite of
order prime to 7 then the same holds for Coker fs'.

We write P,(M) (P for “projective”) for the Grothendieck group on the full
subcategory of Lat (ZG) consisting of direct summands of direct sums of copies of
M, constructed relative to split exact sequences; and analogously P,(M,). (So
P,(ZG) is the Grothendieck group on projective ZG modules.) Further, T,(M, n) (T
for “torsion”) will denote the Grothendieck group on the category of all finite
G-modules U that are images of direct sums of copies of M and have order |U|
prime to 7w, constructed relative to all exact sequences. We shall always abbreviate
Auty 6 (M) as Aut M, .
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Henceforth we assume throughout that n 2 n(G), the set of prime divisors of the
group order |G|. Ky-theory provides us with the following exact sequence of groups:

Aut M, — Ty(M, 1) 2 Po(M) —— Py(M,) — 0,
with maps defined thus:

v o [L] = [L,];

B (T] s[M]—[K],

where 0 > K > MY > T - 0;

x: ¢ = [4],

where, if ¢ =f/s with fe End,; (M), the integer s prime to n and, when e is
involved, s = I(mod e), then [¢] =[Coker /] — [Coker s] (here s is viewed as the
endomorphism of M given by multiplication by s). Cf. [SE], Chapter 8, pp.
140-147.

We propose to call the kernel of y the class group of M and write it Cl (M).
(Note that Cl(ZG) is then the usual (reduced projective) class group.) The
subgroup Cl (M) is finite and consists of the ser of all differences [N] — [M] for all
N v M (N is the genus of M). (Cf. [SE], pp. 113-4.) If L v M, then there exists a
Z,G-isomorphism p : L, - M, and T,(L, n) = T,(M, n). This last equality is true if
one merely assumes QL ~ QAM: for S is a finite simple n’-image of L if and only if
QL has a simple QG-summand QD with D a lattice and S an image of D; whence
the simple n’-images of L and M coincide. Moreover, it is easy to see that the
following triangle is commutative:

AutL, .,
> To(M, )
Aut M, *™

where the vertical down map is ¢ — p “'¢p. (If ¢ =f/s, p =g/t,p ' =g’/t’, then
0=1[p 'p] =[Coker g’g] — [Coker ¢'1] and so

(p " '¢p)a,, =[Coker g'fg] — [Coker ¢t'st]
= [Coker f] — [Coker s]
= ¢a,.)

Call A(M, ) the common image of «,, and a, .
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A further notational point: We shall frequently write [ /] instead of [Coker f].

1.2. We need some generalities about T,(M, n). These are essentially Lemmas 3
and 4 in Browning’s first paper [Bl]. Cf. also [S], Lemma 4.1.

If [U] € Ty(M, n) (so U is a finite G-module of order prime to © and there exists
a surjection M — U), then every composition factor of U is an image of M: cf.
[SE], p. 171. This shows that T,(M, n) is Z-free on all [S], where [S] is a simple
image of M of order prime to n. Moreover we claim there exists an image V of M
such that [V] =[U]. This is proved by an induction on the composition length of
U: If S is a simple submodule of U, then by induction we have [V,] =[U/S] where
V, is an image of M, say 0->M,—>M — V,—-0. Now S is an image of M (as
observed at the beginning of this paragraph) and since M, v M, we have
0->M,>M,—» S -0, whence

[M/M,] =[M/M\] +[M,/M,] =[V\] +[S] =[U].

We next claim that every element in T,(M, ©) can be written as [U] — [M/rM],
where U is an image of M, r is prime to 7 and (if e is involved, r = 1(mod ¢)). For
take x =[A] —[B] and, by the above, find V so that [V]=[B] and 0> M, >
M -V —0. Let r be an integer prime to 7, r = 1(mod ¢) and so that rM < M,.
Then [V]®[M,/rM]=[M/rM] and x =[A ®(M,/rM)] — [M/rM]. Again by the
last paragraph we can find an image U of M such that [U] =[4 & (M, /rM)].

1.3. Let us look at the connexion between T,(M, n) and T,(ZG, n). It is clear
that the former is a subgroup of the latter. Since T,,(M, ) has a Z-basis that is part
of a Z-basis of Ty(ZG, n) (cf. §1.2), so Ty(M, n) is a direct summand of 7,(ZG, n).
Also note the related fact, which we use later, that T,(M, =) is a direct summand of
To(M, n(G)): a complement is the Z-submodule on all [S] with S a simple image of
M of characteristic p, where p € 1 — n(G).

Now consider

Bm
To(M,n) — CIl(M) —0

1

B
T,(ZG, 1) —% C1(ZG) — 0,

where 1 is inclusion. The image of 1, was studied by Swan in [S], p. 198. We shall
here denote the image of 18,; as C(M, ). Swan wrote Cg,, for our C(M, n(G)).
This notation is permissible since C(M, n) depends only on (n and) the QG-module
determined by M. The reason is that, as we have already remarked in §1.1,
QL ~ QM implies To(M, n) = Ty(L, ).
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2. The Browning class group

2.1. Let @ be an additive covariant functor Lat (ZG) — Ab such that &(M) has
finite exponent e. Henceforth we assume 1 contains all primes in e.

If e Homy;(M,, N,) and ¢ =f/s =f"/s’, where s and s’ are prime to n and
s=s5 = 1(mode), then s’f =sf’. If s and 5" are viewed as endomorphisms of M,
then @(s) = @(s”) is the identity on ®(M). Therefore &(f) = P(f’) and conse-
quently we can denote @( f) unambiguously as &(¢).

If ¢ e Aut M,, then ¢ +— &(¢p) is a group homomorphism @,, : Aut M, —
Aut &(M), whose kernel we write Aut (M, ; ®). Let A(M; &, n) denote the image of
Aut (M, ; @) under « : Aut M, —» T,(M, n). (We shall frequently omit = or M from
A(M; &, 1) when these are understood.) We now have the exact sequence of
Abelian groups

Aut M, /Aut (M, ; ®) —> To(M, 1)/ A(®) — Cl (M) — 0. (%)

We propose to call T,(M, n)/A(P) the Browning class group of M with respect to ®
and shall denote this group by Cl(M; @, n). Note that if &(M) =0 then
Cl(M; &, ) ~Cl(M). (Of course, Cl (M) does not depend on n because of
our permanent assumption that n 27(G).) For example if ®(ZG) =0, then
Cl(ZG; @, n) is (isomorphic to) the usual projective class group CI (ZG).

2.2. If ®(M) is finite, then so is Cl (M ; @, ). For the finiteness of @(M) implies
that the image of @,, is finite and since Cl (M) is finite anyway, therefore the exact
sequence (*) in §2.1 gives the required conclusion.

Let L be a lattice in the genus of M and p:L,—M,. Then ®(p) is an
isomorphism ®(L) - ®(M) and we have the following commutative square:

?L
Aut L, — Aut &(L)
P
Aut M, — Aut &(M)
where the left vertical map is ¢ — p ~'¢p and the right one is 4 — @(p) ~'A®(p), for
A in Aut®(L). It follows, using also the commutative triangle displayed in §1.1, that
the «, -image of the kernel of @, coincides with the a,,-image of the kernel of @,,.
Thus A(M; @, n) = A(L; @, n), whence Cl (M; &, n) = Cl(L; @, n).

2.3. If N v M, we can embed N in M with finite cokernel prime to =, say

0 > N M > U 0.
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Call this embedding (N, f). If (L, g) is another embedding, we define

to mean that there exists an isomorphism A : N = L so that ®(hg) = &( f). Clearly
~ 1is an equivalence relation. Let [N, f] be the equivalence class containing (N, f)
and E(M; @, n) (E for “embedding”) the set of all equivalence classes.

THEOREM 1. There exists a surjection E(M; @, n) - Cl (M; @, 7).

We associate to (N, f) the element [Coker f]+ A(®, n). The fact that this
procedure gives a well-defined mapping on E is a consequence of the following

LEMMA. If (N,f) ~ (L, g), then [Coker ] = [Coker g] mod A(®).

Proof. Let h: N5 L so that ®(hg) = &(f). If (f/1)~' =f’/s’, then ff = s’ and
so @(f’f) is the identity, whence [Coker f'f] € A(®). Consequently

[Coker hgf'f] = [Coker g] + [Coker f'f] = [Coker g] mod A(P).
Now &(hgf”) = &( f)P(f’) = identity, whence [Coker hgf’] € A(P) and so

[Coker hgf'f] = [Coker ] mod A(P).

The map of Theorem 1 is surjective because every element in Cl (M; &, n) can
be written in the form [U] + A(®) for a suitable image U of M (cf. §1.2). So

Theorem 1 is established.

2.4. When M satisfies the Eichler condition, the surjection of Theorem 1
becomes a bijection. The proof of this depends on the following result.

THE BROWNING-LINNELL CANCELLATION THEOREM [B1], [LI].
Let M satisfy the Eichler condition. Then there exists n (containing n(G) as always)
so that if we are given

with [U] =[V] in To(M, n) and ®(g) = identity, then there exists h : N > M so that
®(h) = ®(f) (in other words, (N, f) ~ (M, g)).
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This statement follows directly from Linnell’s Lemma 3.3 [L1].

The existence of 7 is explained in [SE], Chapter 9; especially p. 196. Sometimes
n(G) will do. A case in point, and this will be important for us later, is the
following: Given any lattice M, then M @ M always satisfies the Eichler condition
and here (i.e., for M @ M) the Cancellation Theorem holds with = = n(G) ([SE], p.
173 and [GrL], p. 364).

THEOREM 2. If M satisfies the Eichler condition and 7 is chosen suitably for
this, then the map in Theorem 1 is bijective.

Proof. Suppose [N, f],[L,g] have the same image in Cl(M; ®, ). Let
U = Coker f, V = Coker g. So [U] =[V] mod A(®P). If (g/1) "' =g’/r, then

[Coker gg’] =[V] + [Coker g’] =[Coker r] € A(P)
(because @(r) =identity); and so
[Coker fg'] =[U] + [Coker g'] =0 mod A(P).

Hence [Coker fg’] is the image under a (cf. §1.1) of some ¢ € Aut(L,; ®). If
¢ =1]s,

[Coker fg'] + [Coker s] = [Coker ]
and

jg’s

0 N L s D >0

is exact, where [D] = [Coker 7]. Since &(¢) = identity, therefore by the Browning—
Linnell Theorem there exists an isomorphism 4 : N — L so that ®(h) = &(fg’s).
Since @(s) and P(g’g) are both identities, so ®(hg) = &(f). Thus [N, ] =[L, g].

2.5. It is clear that always T,(M,n)=T,(M ® M, n). Also AM, P) <
AM @ M, n): For if [ f/s] e A(M, ®), then f is an endomorphism of M satisfying

&( ) = identity and [ f] € A(M, ®) because s = 1(mod ¢). If g is the endomorphism
0 : :
of M ® M given by ({; 1), then [g] =[f] and &(g) =identity on &(M ® M).

Hence [f]l e A(M & M, D).

PROPOSITION [B2, 6.5]. A(M, ®) = A(M & M, P).
Proof. Let [f]le A(M @ M, ®). We need to prove [f] € A(M, ®). Now fis an
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endomorphism of M @ M with &( /) = identity. By [L1], Lemma 3.1, we can find
endomorphisms f,, f8,, f; with matrices

n 51 5] 62 ny 0
0 n) 0 n) & ny)

0
where n; = 1(mod e) for all i, so that B,fB,f; =g has matrix (g 5). Since

P(g) = P(B))P(B)P(B5), so P(y) = P(9) = nynyn; = identity on &(M) (cf. [L1], p.
454), whence [g] =[y] + [0] € A(M, ®). But

(gl =[/1+ 8] +[B.] +[B:] =[f] mod A(M, P),
because [B;] =2[n;] € A(M, ®). Thus [f] e A(M, ®), as required.
COROLLARY. CI(M; &, 1) =CIl (M @ M; D, 1n).

2.6. Suppose we are given a projective presentation

0—s M —Q —>D—0, ()

of a module D. Take @ = Extj, (D, —). To apply our theory to this & we must
check that @(M) has finite exponent. This is clear when D is a lattice because then
&(M) ~ H'(G, Hom (D, M)); it is also clear when D itself has finite exponent. For
a general D, apply @ to the short exact sequence 0— Tor (D) -»D —D -0 to
obtain the required conclusion.

If fis an endormorphism of M with cokernel of order prime to m and
&( f) = identity, then [f] € A(®). We claim that the image of [f] in Ty(ZG, n)
(under the inclusion T,(M, n) —» T,(ZG, n)) lies in A(ZG, n): Since &(f) is the
identity, the pushout to f of () is equivalent (as an extension of modules) to (x)
and hence there exists a map f: Q — Q which restricts to the identity on D and to
f on M. Consequently [f]1=[f] and [f] € A(Q, n) = A(ZG, n) if Q v ZG";
moreover A(ZG"", n) = A(ZG, =) by the Proposition in §2.5. So we have established

PROPOSITION 1. There exists a natural homomorphism
Cl (M; Ext}; (D, —), n) — CI (ZG).
The image of the map in this Proposition is Swan’s group C(M, ) (§1.3).

There is an important special case when the map of Proposition 1 is an
isomorphism. Assume M is not core-equal: this means that M = M’ @ P for some
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non-zero projective module P. Here Ty(M, n) = T,(P, n) = To(ZG, n) and we claim
AM; @, ) 2 A(ZG, ) provided @(ZG) =0: for if ¢ = f/s is an automorphism of
Z,G, then ¢ extends to an automorphism of P, (since Z, G is a summand of P,) and
hence Yy = (id, ¢) : M@ P > M’ @ P is an automorphism of M for which [y] = [¢]
and ®(y) = ®(id) because ¢(P) = 0. (Notice that this argument works with a general
®). We have Ext}, (D, ZG) =0 if D is a lattice and so we have established

PROPOSITION 2. If M is not core-equal and D is a ZG-lattice, then
Cl (M; Ext}, (D, —), n) ~ Cl(ZG).

2.7. We conclude this section by discussing the connexion with the theory of
pointed lattices. A pair (N, x) is a ®-pointed ZG -lattice if N is a ZG-lattice and x
is an element in @(N). It is obvious how to define morphisms of such objects. In par-
ticular, (N, x) ~ (L, y) means that there exists a ZG-isomorphism 4 : N = L such that
x@®(h) = y; moreover, (N, x) and (L, y) are in the same genus if there exists an iso-
morphism p : N, - L, so that x®(p) = y. Write [N, x] for the isomorphism class con-
taining (N, x) and \/(M, z) for the set of all isomorphism classes in the genus of (M, z).

Recall (from §2.1) that Aut M, acts on @(M); it also acts on E(M; &, n): if
p € Aut M, then [N, f]p =[N, fg], where p = g/r. Let St(z) be the stabilizer of z in
Aut M.

PROPOSITION. There exists a bijection E(M; &, n)/St(z) > (M, 2).

Proof. Given an embedding (N, f), let x = z®((f/1) "), thus producing the
pointed lattice (N, x). It is easy to check that [V, f]— [N, x] is a well defined map
of E(M; &, 1) into \/(M, z). Clearly this is surjective.

Suppose (L, g) produces (L, y) isomorphic to (N, x). So there exists & : N - L
such that x®(h) =y. If (f/1) ' =f’/r and o = (f'hg)/r, then

z®(0) = xP(hg) = yd(g) = z,

so that o € St(z). Now [L, g] = [N, ff'hg] =[N, f]o, whence (N, x) and (L, y) belong
to the same St(z)-orbit.

Note that by definition St(z) contains Aut (M, ; @), the kernel of the action of
Aut (M,) on &(M). There are situations where St1(z) = Aut (M, ; ). We shall meet
one such in the next section (§3.5).

It should also be observed that Aut M, acts on Cl(M; @, n) via the group
homomorphism Aut M, — Cl (M; &, ) (cf. (¥) in §2.1) and the kernel of this action
is Aut (M, ; ®). The surjection of Theorem 1 (§2.3) is equivariant.
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3. Truncated resolutions

3.1. If 4 is a G-module (not necessarily a lattice) and (P, C) denotes the
projective resolution

=P P, — - Ph— A —0,
X
G

then ,,(P, C) or just ,, P will mean the truncated resolution

0—“)Cm+l Pm R PO > A >0

and y,,(P) =X o (—1)"""rank P; its Euler characteristic. (We interpret 4 as C,.)
If ,,P and ,, P’ are chain homotopically equivalent (as augmented complexes over
A), we shall write ,, P ~ ,, P” and denote the equivalence class containing ,, P as [, P).

Let P(A4;m, /) denote the set of all [, P] with Euler characteristic /. Suppose
that ,,P ~,,P" and let a:,P—, P, B:,P —, P be chain maps yielding the
homotopy. It is easy to see, but will be important for us later, that « induces an
isomorphism C,,, ,— C,.. , (with inverse f).

Pick and fix one particular truncated projective resolution ,,(Q, D) of A with
Euler characteristic # and set D,, . , = M. Following Dyer [D], p. 256, we call (Q, D)
the reference resolution. If ,,(P, C) is a truncated projective resolution with the same
Euler characteristic, then it is easy to see that C,,, , v M (compare Q, and P, by
Schanuel’s Lemma and use the fact that Z G-projectives are free; e.g. [G], 3.3).

Let @ be the functor ExtZ*' (4, —) and n be a given finite set of primes
containing n(G). The n-number e of §1.1 will continue to be the exponent of ®(M)
(cf. §2.1). When m 21 or A is a lattice, then |G|®(M) =0 and so e is actually a
n(G)-number. But when m =0 and A4 is not a lattice, e could very well involve
primes outside n(G).

Given ,, (P, C) with Euler characteristic #, there exists an embedding of C,, . | in
M with finite cokernel prime to n. We claim that among these embeddings there is
one class that determines a well defined map of P(A4; m, ¢) into E(M; &, n). The
main result (Theorem 3, below) is that this map is a bijection.

3.2. We begin by proving that we really do obtain a map. Given (P, C), we
consider chain maps ¢ : ,,(P,) — ,,(Q,) over the identity on A, such that ¢ restricts
to an isomorphism on (C, . ,).. If ¢ =f/r on (C, ., )., where (as usual)
f:C,. > M, ris prime to n and chosen so that r = 1(mod [G ), then since f is
injective, [C,,, ,f] € E(M; &, n).
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If Y is another chain map like ¢, both ¢ and y extend to dimensions >m and
give chain maps P, — Q, over the identity on A,. Hence they are homotopic:
there exists a chain map 6 of degree +1 such that ¢ —y =60 + 06. Then 0
induces

, O 0
(Cm+])1r ——_)(Pm)n ___)(Qm+l)7t —* Mn

where 1 is inclusion and 0 is surjective. Now @(i0,, 0) = 0 because ¢ vanishes on
projectives. Hence @(¢) = () on &(C,, ., ;) and so, if Yy =g/s, then &(f) = &(g)
which, by the definition of E(M; @, n), gives [C,,,. 1, f] =[Cp. 1> &l

We next show that maps like ¢ do exist. Adjust the resolutions P, and Q, to
produce new resolutions 2, and 0, that differ from P, and Q, only in dimensions
<m and satisfy rank P, =rank 0, for 0<i<m. If, say, rank Q,— rank P, =
|G|r >0, replace P, by P,@®@ZG"” and P, by P,@®ZG" (this leaves the Euler
characteristic unchanged) and then P, = P,@® ZG" has the same rank as Q, = Q,.
We repeat this procedure all the way up to dimension m — 1. Then the resolutions
have their m-dimensional terms of equal rank since the m-th partial Euler charac-
teristics are the same. Hence there exists an isomorphism ¢ :,(P,) > ,,(0,) of
complexes over A4, (cf. [G], 3.5). Let ¢ be the composite of the following maps (all
are over the identity on A4,):

w(P) —— o (B) o (D) —2 o (0),

where 1 is the natural inclusion and p the natural projection. Then ¢ restricts to an
isomorphism on (C,,, |),.

Finally, suppose ,,P’ is homotopic to ,,P with chain maps ,,,Pi,,,P’L}»,,,P.
We may construct, by the method explained above, allowable chain maps
¢, (P)—,,(0,) and ¢, (P,) - .(0,). Let ¢ =f/r and ¢"=f"/r’, so that , P
yields the embedding (C,, . ,,f) and ¢’ the embedding (C,, ,.f’). Since « restricts
to an isomorphism on C,, ., (cf. §3.1), a, ¢  restricts to an isomorphism on (C,, , ),
and hence yields the embedding (C,, . ,, 2f’). Because of”’/r’ and f/r are maps over
the identity on A,, they induce the same map on homology: ®(af’) = @(f).
As « restricts to an isomorphism on C,, ., so (C,,.,,f) ~(C,..,f). Hence
[.(P, C) =[C,,.,f]is a well defined map. Call it #.

3.3. The proof that 5 is a bijection involves a well known fact from homological
algebra: If ,,(P, C) and ,(P’, C’) have C,,,,=C,,, =L, say and determine the
same element ¢ in ®(L), then they are homotopically equivalent. I have been unable
to locate a satisfactory reference for this, so here is a proof.
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Construct a map f: ,, P — ,, P’ lifting id, and take the pushout to fon L:

0 s L

» P, >»P, _,—-
1T
0 > L > X > P, —

The pushout also determines £. Since @ is naturally equivalent to Extl (C,,, —),
therefore the extensions

0— L > P, > C,, 0,
0— L » X — C,, >0

are equivalent. Hence the pushout is isomorphic (and therefore certainly homotopi-
cally equivalent) to ,,P. Moreover, the pushout provides a map g : X — P, giving
the following commutative diagram:

0— L > P, > P, _, Py,— A4 >0
T N

0— L > X > P, _, P,— A 0 (%)
1T -

0 > L P,— P, > Py > A > 0.

Cf. [HS], Chapter 4, §9. The complex homomorphism in (*) taking the middle
complex (the pushout) to ,, P’ is an isomorphism on homology, whence these two
truncated resolutions are homotopically equivalent (cf. [Sp], Chapter 4, §2). But we
already know the middle complex is homotopically equivalent to ,, P and so we are
done.

3.4. We are now ready to prove
THEOREM 3. The map n : P(A;m, ¢) - E(M; Extz+! (4, —), n) is a bijection.

Note that the E-set involves n but the P-set is independent of n. We return to
this point in Theorem 5. We continue to write ¢ = ExtZ ! (4, —).

Surjectivity of n. Given (C,f), let f' = g/s and take the pushout to g:
0 > M > O > Q1 > > 0o A >0

S CE G €

0— C— X —0Q,,_, > oo » Qo » A — 0,
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As fg =5, g. ' =f/s and [C, f] is the image under # of the class of

O ’C X ;Qm“l et >Q0 714 >O-

Injectivity of n. Suppose [, P],[,P’] have the same image: [C,,.,,f]=
[C.. .1,/ Construct the pushout to h (where h:C, ,,—>C, ., and ®(hf’) =
P(f)):

0— Cpy1 = Py Py =

NS

0—Chy1— X —P

m— 1 )

and let the lower sequence yield [C,, . , g]. Since the above two truncated resolu-
tions are isomorphic, [C,,, ,f] =[C,, ., hg] and ®(hg) = &(f) = @(hf”), whence
®d(g) =D(f’). Thus [C,,, ,,f]1=I[C,.+,g] and we are reduced to showing

0O—C, .,y —X— P, | —>
i1s homomorphic to
0 Chuoy— P Pl =

These two truncated resolutions represent the same element in ExtZ+' (4, C,, . )
(because @(g) = @(f’)) and so are homotopically equivalent (§3.3).

3.5 Consider again pointed lattices, as in §2.7. Let z be the image of the identity
map on M under the surjection End; (M) — ExtZ+! (4, M). We claim that here
St(z) = Aut (M, ®). Suppose p € St(z) and let [N, f] determine the pointed lattice
class [N, x], where x®( f) = z. Then [N, x]p also determines [N, x] and therefore, by
§3.3, the corresponding elements in P(A4; m, /) are equal. Thus [N, f] =[N, f]p and
we conclude that the bijection of the Proposition in §2.7 is here a bijection
EM; &, 1) > \/(M, z).

3.6. Theorems 3 (§3.4) and 2 (§2.4) provide a parametrization of the homotopy
classes [, P] by the elements of the Browning class group of M for the functor ¢ =
ExtZ?*'! (4, —) and relative to n chosen suitably for the Eichler condition on M.
The next point is that, for this particular functor, = can be taken to be the smal-
lest possible set, viz. n(G), provided only that e (the exponent of ®(M)) is a
n(G)-number.
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Let 7 2 (G) and consider the links established by Theorems 1 (§2.3) and 3:

EM; ®, 1) «—— P(4; m, {) — E(M; &, n(G))

ni n2
€ €

Cl(M; &, n) Cl(M; @, n(G)).

The two horizontal bijections come from Theorem 3 and the two vertical surjections
from Theorem 1.

Now T(M, n) is a subgroup (even a direct summand) of T(M, n(G)) (cf. §1.3)
and clearly A(®, n) < A(®, n(G)). Hence there is a natural group homomorphism

y:Cl(M; &, 1) — Cl (M; ®, n(G)).

It is easy to check that y is induced by the above diagram in the sense that
Xy = eny 'ny¢&,, where e is any element satisfying eg, = x.

Consider the above diagram with M replaced by M @ M (so that necessarily A
is replaced by A @A, @ by ¥ =Ext2+*' (4@ A, —) and ¢ by 2¢). The Eichler
condition on M @ M and the fact that n(G) is suitable for M @ M (cf. §2.4) make
¢, and &, bijections (Theorem 2). Hence y for M @ M is an isomorphism. It follows
that y for M is an isomorphism, by the Corollary in §2.5 and the easily verified fact
that C1 (M; &, ) =Cl (M; ¥, n). So we have

THEOREM 4. Assume the exponent of ExtZ*' (4, M) is a n(G)-number. Then
for any © 2 n(G),

Cl(M; Extz*' (4, —), 1) — Cl(M; ExtZ "' (4, —), n(G)).

THEOREM 5. If M satisfies the Eichler condition and the exponent hypothesis of
Theorem 4 holds, then there is a bijection

P(4; m, ¢) — Cl (M; Extz*' (4, —), ©(G)).

This is immediate: the class group over n(G) is isomorphic to the class group
over n by Theorem 4 and Cl (M; &, n) is bijective with P(A4; m, /) by Theorems 2
and 3.

The exponent hypothesis in Theorems 4 and 5 is not a serious restriction: the
exponent can only fail to be a n(G)-number if m =0 and 4 has torsion group
involving primes not in 7n(G).
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4. Free elements

In this section we assume the exponent of ExtZ ™' (4, M) is a n(G)-number.
This enables us to work exclusively with n(G).

4.1. We continue the discussion begun in §1.3 and explore the link between
To(M) = Ty(M, n(G)) and Cl(ZG). First we claim there is a well defined map
P(A;m, /) - Py(ZG) given by ,, P —¢,,[P], where the Euler class ¢,,[P] is defined by

m

enlPl =3 (=" 1P,].

=0

To see that ¢,[—] is well defined amounts to verifying that if , P~ P’
(homotopy equivalent), then ¢, [P] =¢,,[P’]. Let f:,P—, P be a map giving a
chain homotopy. We noted (cf. §3.1) that f induces an isomorphism:
C,n.1—C, .. It follows that the mapping cone M of f is acyclic and so
0=¢,[M]=¢,[P] —¢,[P]

Next, starting with [, P], construct its image [C,, . ;,/] and then as in the proof
of the surjectivity in §3.4, find

0—Cpy 1 —mX—0,,—  —Q—4—0
which is chain homotopy equivalent to ,,P (by Theorem 3, §3.4). Hence

8m[l)] =[X] _[Qm»—l] +-
=¢,[0] —[Q,] +[X]
and [Q,,] —[X] is the image of [Coker f] under T, (M) — Cl (ZG) (§1.3). It will be

safe to denote this image also as [Coker f]. It is an element of C(M). Thus
en[P] = &,[0] + [f]

Thus we have shown that [, P] —¢,,[P] — ¢,,[Q] is the composite of

P(A;m,?) — E(M; ExtZ 1 (4, —), n(G)) (the bijection of Theorem 3, §3.4)
—— Cl (M; Extg+ ' (4, —), n(G)) (the surjection of Theorem 1, §2.3)
— Cl (ZG)

by Proposition 1 in §2.6 and using that Ext% ™' (4, —) is naturally equivalent to the
functor Ext}, (D,,, —). The image is C(M). This gives



594 K. W. GRUENBERG

PROPOSITION 1. The map P(A;m, ) - Cl(ZG) given by [,,P]—¢,[P] —
&, [Q] has image C(M).

Let us-call a class [, P] free if it contains a truncated free resolution. If
QP; ~QG“’ for 0 <i < m, then the Euler characteristic x,,(P) = |G|e,,(P), where
e, (P) =X ,(—1)""‘e,. Hence if , P is free, ¢,,[P] = e,,(P)[ZG]. The converse also
holds and we have

PROPOSITION 2. [, P] is free if and only if ¢,,[P] = e,,(P)[ZG).

Proof. Let ¢,[P] =e,,(P)G]. We replace P, and P, by P;=P,® P, and
P, ® Py, respectively, where P is chosen to make P free; then we continue this
process up to dimension m — 1. This does not change the Euler class and so the
constructed truncated resolution has its m-dimensional term stably free. Adjusting
dimensions m and m — 1 finally produces a free resolution which is homotopically
equivalent to ,,P.

Suppose our reference resolution ,,Q is free. Then by Proposition 2, the set of
free elements in P(A4; m, £) is the inverse image of 0 under the map of Proposition
1 above. Hence, using also Theorem 5 (§3.6) and Proposition 2 of §2.6 (for the last
part of the following result), we obtain

THEOREM 6. If M satisfies the Eichler condition and ,,Q is free, then the set of
all the free elements in P(A; m, () is bijective with the kernel of the homomorphism

Cl(M; ExtZ*' (4, —), n(G)) — CI (ZG).

In particular, if M is not core-equal and m 21 or m =0 and A is a ZG-lattice, then
10] is the only free element.

When A is a lattice, then to say that M is not core-equal is equivalent to the
condition ¢ > y,,(A4), where y,,(4) means the m-th partial projective Euler charac-
teristic of A in the sense of [G], §2.

Theorem 6 has topological content. The free elements in P(Z; m, ) parametrise
the G-linked homotopy classes of (G, m)-complexes of Euler characteristic £. We
use the term (G, m)-complex to mean a finite connected m-dimensional CW-com-
plex X for which n,(X)=0 for i=2,...,m—1 and there is given a group
isomorphism 6, : 7,(X) — G. This is the slight variant of Dyer’s usage [D] proposed
in [B3]. The notion of G-linked homotopy classes (though not the term) also
appears in [B3]. It is this: If X and Y are (G, m)-complexes then a homotopy



Homotopy classes of truncated projective resolutions 595

equivalence f: X — Y is G-linked if f,0, =0,, where f; is the isomorphism on
fundamental groups determined by f.

By the theorem of Mac Lane and Whitehead [MW] there is a one-one map of the
set of all G-linked homotopy classes of (G, m)-complexes of Euler characteristic £ into
the set of free elements in P(Z;m,¢). This map is known to be surjective (and
therefore bijective) if m =3 and also if m =2 provided G is Abelian ([D]; [B3],
[GL], [L2]); it may possibly be surjective always.

If the Euler characteristic Z is non-minimal, then M satisfies the Eichler
condition except when m is odd, ¢/ = |G|, Z is periodic with m + 1 a free period and
ZG does not satisfy the Eichler condition. This may be seen as follows. If we let
e = /|G|, then the free truncated resolution ,,Q of Z gives

QM =eQG +(—-1)"+'Q (%)

(cf. [GrL], proof of (3.5)) and if M = M'® P, where M’ is core-equal and P is
projective, then £ = y,,(Z) + dim QP (cf. [G], proof of (3.2)). When m is even, ()
yields QM ~ (e — 1)QG @ QAG, where AG denotes the augmentation ideal of ZG
and e — 1 2 | because 7 is non-minimal. Hence QG @ QAG is a summand of QM.
When m is odd, (*) gives QM ~ QG @ Q, whence M satisfies the Eichler condition
when e > 2. Suppose ¢ =1 (¢ #0 by non-minimality). This implies P v ZG and
M ~7, so that M v Z® ZG. Hence M satisfies the Eichler condition if ZG does.
Finally consider the standard example due to Swan: G is the generalised quaternion
group of order 32 and P is a projective ZG-module so that P@® ZG ~ZG @ ZG and
where also d;(P/P¢) = 2. The free periodic resolution

057Z->7G->72G?P >57GP 727G -7 -0

yields

0-Z®P->72GP->2ZG?->2GP->72G—->Z—-0 (H
and

0-Z@®2G->2GP-2ZGP—>2G® ->2ZG —»Z 0. (2)

These two truncated free resolutions are not homotopically equivalent because
Z@®P +Z®ZG (since d;(P/P°) =2 while d;(ZG/ZG) =1). We sum up in

PROPOSITION 3. If X, Y are (G, m)-complexes of equal non-minimal Euler

characteristic £, then X, Y are G-linked homotopically equivalent except possibly when
misodd,/ = |G|, m + 1is afree period of Z and ZG does not satisfy the Eichler condition.
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4.2. Let W denote the kernel in Theorem 6 and again set @ = ExtZ2+! (4, —);
also n shall here stand for n(G). So

w_ AZO ATy (M)
A(M, D)

where we recall that A(ZG) is the image of Aut Z,G =GL, (Z,G) under oy, =:a,
(cf. §1.1). In what follows M need not satisfy the Eichler condition.

As a rule the numerator in the above formula for W is just A(ZG). This
happens when M is ZG-faithful, for then T, (M) = T,(ZG). This is true when
A is non-periodic for all sufficiently large m [GrL]. It is also true when 4 =7
except when m is odd and the Euler characteristic # =0 (whence M = Z) or m is
even and / =|G|. In any case (for any 4) T,(M) is a direct summand of To(ZG)
and so A(ZG)/A(ZG) nT,(M) is free Abelian, whence W is the torsion group of
A(ZG)]A(®) (cf. §2.2).

Elementary K, -theory gives us the exact sequence

K,(ZG) —— K\(Z,G) —> A(ZG) — 0,
where a” arises from a decomposition of a, (for any 7 = 1):

GL,(Z,G) — Ty(ZG)

x,\ /1'
K(Z,G)

Hence Ker «” = (Ker «,)k, and if K denotes the inverse image of A(®) under a’, then
W is isomorphic to the torsion subgroup of K,(Z,G)/K.
Recall that M arises at the tail end of ,,Q:

0

0— M —Q,, —— D, — 0.

Defining
B=(¢eAut(Q,). |90, =0,
and assuming (Q,,), ~Z,G", then a, and k, contain B in their domain.

THEOREM 7. The kernel W of the homomorphism of Theorem 6 is isomorphic
to the torsion subgroup of the cokernel of

(k,,2") : B x K,(ZG) —> K,(Z,G).
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Proof. We already know that W is isomorphic to the torsion subgroup of K,(Z,G)
modulo K (the inverse image of 4(®) under «’). So it remains to show that (i) Ba, <
A(®) and (i1) if ¢ € Aut (Q,,), and ¢a, = [¢] € A(P), then [¢] = [Y] for some Y € B.

Let ¢ =g/s e B. Then gd = ds and Mg < M. The connecting homomorphism
Homg (M, M) — Ext{; (D,,, M) maps multiplication by s on D to Ext' (s, M), which
is the identity on Ext' (D, M). However, Ext' (s, M) =Ext' (D, g|), where g|
denotes the restriction of g to M. Now

[¢] =[g] —[Q/sQ] =[gl] +[D/sD] —[Q/sQ] =[gl] — [M/sM] = [gl/s]

and [g]/s] belongs to A(®). Hence (i) is proved.

Next let ¢ = g/s satisfy [¢] =[ f/r], where f is an endomorpism of M with f, an
automorphism and @( /) the identity. As in the proof of Proposition 1 in §2.6, f
gives a map f: Q,, —» Q,,, and similarly r gives #. Then [ f/r] =[f] —[F] and f, 7 are
both in B. So [¢] = [y], where ¥ =1, (F,) "

4.3. To conclude, let us see how the present set-up relates to two situa-
tions where W has been calculated. We shall need the obvious fact that
Ext?*'(Z, M) ~ Z/|G|Z.

EXAMPLE 1. 4 =7 and Z is periodic with m + 1 a free period. This case was
studied by Dyer [D].
Since Cl (Z) =0 we have the exact sequence

AutZ — Aut Z, —— To(Z) — 0;
and there is also the exact sequence (cf. §2.2)
1 — Aut(Z,, ®) — AutZ, — GL, (Z/|G|2) — 1.

Hence
Cl(Z; &) ~GL, (Z/|G|D)/{ £ 1},

where the isomorphism makes an integer k prime to |G| correspond to
[Z/kZ]) + A(®). This element maps to [ZG] — [AG + kZ] in Cl(ZG). (AG again
denotes the augmentation ideal of ZG.) Thus W is isomorphic to the kernel of
GL, (Z/|G|Z)/{ £ 1} - C(ZG) and it is easily checked that this map is exactly the
same as in [D].

EXAMPLE 2. 4 =7 and G is Abelian. This is the case studied by Browning
when m =2 and by Linnell in general [L2].
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We may restrict attention to the non-cyclic case and to m > 0. Then QG is a
summand of QM ([L2], 5.3) and so M satisfies the Eichler condition and
To(M) = Ty(ZG), whence A(ZG)/A(®) is finite. Therefore by Theorem 7 (§4.2), W
is the cokernel of B x K,(ZG) - GL, (Z,G). This map is the determinant homo-
morphism on B and the image of K,(ZG) is the image of GL, (ZG) also under the
determinant homomorphism. Hence

W ~GL, (Z,G)/(det B) GL, (ZG).

Let ¢ : Z,G — Z, be the augmentation homomorphism and take the composite of ¢
and Z, — Z/tZ, where t is the greatest common divisor of the invariant factors of
G. Then we obtain a surjection GL, (Z,G) —» GL, (Z/tZ) and the key result in [L2]
(6.1 and 6.2) is that this surjection has kernel (det B). Hence

W ~GL, (Z/tZ)/{+1}.
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