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Homotopy classes of truncated projective resolutions

K. W. Gruenberg

Let X be a finite connectée m-dimensional CW-complex whose universal cover
X îs {m — 1)-connectée. Then the homotopy type of X can be recognised in the

following sensé from the homotopy type of the cellular chain complex C(X) : If Y
is another space like X then Y is homotopically équivalent to X if and only if there
exists an isomorphism of nx(X) to nx{Y) under which C(X) and C(Y) are

equivariantly homotopically équivalent (as augmented chain complexes). This resuit
is essentially due to S. Mac Lane and J. H. C. Whitehead ([MW]; cf. also [D]); it
transforms a topological problem into one about the intégral représentation theory
of the fundamental groups. When thèse groups are assumed to be finite, the

algebraic problem was studied with great effect by Wesley Browning [Bl, 2, 3]. He
showed how the chain homotopy classes of truncated projective ZG-resolutions of
Z for a given finite group G can be parametrised by the éléments of a certain

naturally occurring group within the A^theory of G.

Browning worked with pointed lattices, whose relevance in this context was first
explored by J. S. Williams [W]. (A pointed lattice means hère a pair (L, x)
consisting of a ZG-lattice L and an élément x belonging to some specified
Hk(G, L).) Browning developed a gênerai theory of pointed lattices that parallels
ordinary lattice theory. This led to a plethora of new définitions and notations and

is perhaps one reason why his work is generally regarded as difficult to absorb. He
circulated his papers in 1979 but they hâve unfortunately never been published.
However the material in them is now beginning to be widely used. An account of
the results in the 2-dimensional case together with Browning&apos;s proofs has appeared

recently [GL]. One of the main results in [Bl] is a cancellation theorem, generalising
one of Williams, discovered independently at about the same time by P. Linnell,
who did eventually publish his resuit in 1985 [Ll].

The point of the présent paper is to give a new treatment of ail the main
theoretical results in Browning&apos;s three papers (but excluding the cancellation
theorem which I use in the form given in [Ll]). I avoid entirely the notion of
pointed lattice and base my account solely on old concepts from elementary K-
theory (but I explain the connexion with pointed lattices in §2.7). The basic

object of study hère is an Abelian group of which the ordinary genus class group
is a homomorphic image. This basic object I christen Browning&apos;s class group.
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It is defined for any ZG-lattice M and any covariant additive functor &lt;P from
ZG-lattices to Abelian groups such that &lt;P(M) has finite exponent. There is a

natural homomorphism of the Browning class group Cl (M; &lt;2&gt;) onto the genus class

group Cl (M) of M (§2.1). In particular, Cl (ZG) is the familiar reduced projective
class group and if M is the (m H- l)-st kernel in a projective resolution of Z, there
is a natural homomorphism of Cl (M; Hm+ !(G, -)) into Cl (ZG) (§2.6). The
kernel of this homomorphism is the group that classifies the G-linked homotopy
classes of the spaces considered by Mac Lane and Whitehead (§4.1). Our discussion
in the final part of the paper (§4.2) seems to go beyond the point reached by
Browning.

In Browning&apos;s third paper he applies his theory to 2-complexes with finite
Abelian fundamental group. His results in this case are subsumed in récent work of
Linnell who obtains complète information for «-complexes [L2]. I shall indicate
how Linnell&apos;s results fit into the scheme proposed hère (§4.3).

I warmly thank John Moody and Alfred Weiss for helpful conversations and
Peter Linnell for an enlightening correspondence.

1. Discussion of the relevant À-theory

Everything in this section is well known and readily accessible, or easy to deduce

from the published literature. A convenient référence is the book by Swan-Evans
[SE]. We give detailed références to [SE] as we proceed.

1.1. We work with a finite group G and the category Lat (ZG) of ZG-lattices.

If M is a ZG-lattice and n is a finite set of rational primes, then Mn will dénote

M®Tn (where Zw is the semi-localization of Z at n). If M and N are ZG-lattices
and (j) eHomG(Mn, Nn), then &lt;/&gt; =f/s, where/eHomG(M, N) and s is an integer
prime to n. We shall later work with a given 7i-number e (an integer involving only
primes in n). Then we may and shall always assume s in the expression for cj) is

chosen so that s l(mod e): Let d — et, where / is the product of ail primes in n not
in e and suppose ss&apos; + dd&apos; 1. Then fjs =fs&apos;/ss&apos;. Note that if Coker/ is finite of
order prime to n then the same holds for Cokerfs&apos;.

We write P0(M) (P for &quot;projective&quot;) for the Grothendieck group on the full
subcategory of Lat (ZG) consisting of direct summands of direct sums of copies of
M, constructed relative to split exact séquences; and analogously P0(Mn). (So
P0(ZG) is the Grothendieck group on projective ZG modules.) Further, T0(M, n) (T
for &quot;torsion&quot;) will dénote the Grothendieck group on the category of ail finite
G-modules U that are images of direct sums of copies of M and hâve order \U\
prime to n, constructed relative to ail exact séquences. We shall always abbreviate

Autz G (Mn) as Aut Mn.
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Henceforth we assume îhroughout that n 3 n(G), the set of prime divisors of the

group order \G\. A^0-theory provides us with the following exact séquence of groups:

Aut Mn ^U T0(M, n) JU P0(M) -U P0(Mn) &gt; 0,

with maps deflned thus:

where 0-K^&gt;M{s)-+ T-0;

a : (j) t—? [0],

where, if 0 =//.s with /eEndZG(M), the integer s prime to n and, when e is

involved, s l(mod&lt;?), then [(/&gt;] [Coker/] —[Cokers] (hère 5 is viewed as the

endomorphism of M given by multiplication by s). Cf. [SE], Chapter 8, pp.
140-147.

We propose to call the kernel of y the class group of M and write it Cl (M).
(Note that Cl (ZG) is then the usual (reduced projective) class group.) The

subgroup Cl (M) is fïnite and consists of the set of ail différences [N] — [M] for ail
N v M (Nis the genus of M). (Cf. [SE], pp. 113-4.) If L v M, then there exists a

Z^G-isomorphism p : Ln ^&gt;Mn and TQ(L, n) T0(M, n). This last equality is true if
one merely assumes QL ~ QM: for S is a fïnite simple n &apos;-image of L if and only if
QtL has a simple QG-summand QD with D a lattice and S an image of Z); whence
the simple n &apos;-images of L and M coincide. Moreover, it is easy to see that the

following triangle is commutative:

Aut Lw a,

Aut

where the vertical down map is (j) \—? p~l(j)p- (If 0 =//^ P g/t, p~x =g&apos;lt&apos;, then
0 [p ~ ]p] [Coker g&apos;g] - [Coker t&apos;t] and so

[Coker g/g]- [Coker t&apos;st]

[Coker/] -[Cokers]

Call /J(M, 71) the common image of olm and aL.
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A further notational point: We shall frequently write [/] instead of [Coker/].

1.2. We need some generalities about T0(M, n). Thèse are essentially Lemmas 3

and 4 in Browning&apos;s first paper [Bl]. Cf. also [S], Lemma 4.1.

If [U] e T0(M, n) (so U is a finite G-module of order prime to n and there exists

a surjection M(r) -&gt; U), then every composition factor of U is an image of M: cf.

[SE], p. 171. This shows that T0(M,n) is Z-free on ail [S], where [S] is a simple
image of M of order prime to n. Moreover we claim there exists an image V of M
such that [V] [U]. This is proved by an induction on the composition length of
U: If S is a simple submodule of (7, then by induction we hâve [F,] [U/S] where

Vx is an image of M, say 0^Ml -+M -? Vx-+0. Now S is an image of M (as
observed at the beginning of this paragraph) and since M, v M, we hâve

0 -&gt; M2 -&gt; M, -&gt; 5 -&gt; 0, whence

[M/M2] [M/M,] + [M,/M2] [F,] + [5] [t/].

We next claim that every élément in T0(M, n) can be written as [U] — [M/rM],
where U is an image of M, r is prime to n and (if e is involved, r l(mod e)). For
take jc [^]-[5] and, by the above, find V so that [F]=[£] and 0-^Mj-»
M-+ V-+0. Let r be an integer prime to n, r l(mod e) and so that rM ç M,.
Then [K] ©[Af,/rAf] [Af/rAf] and x [A ®{MJrM)] - [Af/rAf]. Again by the

last paragraph we can find an image U of M such that [U] [A

1.3. Let us look at the connexion between T0(M, n) and T0(ZG, n). It is clear

that the former is a subgroup of the latter. Since T0(M, n) has a Z-basis that is part
of a Z-basis of T0(ZG, te) (cf. §1.2), so T0(M, n) is a direct summand of T0(ZG, te).

Also note the related fact, which we use later, that T0(M, n) is a direct summand of
T0(M, n(G)): a complément is the Z-submodule on ail [S] with S a simple image of
M of characteristic p, where peu— n(G).

Now consider

Pm
T0(My n) &gt; Cl (M) &gt; 0

&apos;1

T0(ZG, n) -^&gt; Cl (ZG) &gt; 0,

where i is inclusion. The image of i[ïZG was studied by Swan in [S], p. 198. We shall
hère dénote the image of ipZG as C(M9 n). Swan wrote CQM for our C(M, n(G)).
This notation is permissible since C(M, n) dépends only on (n and) the QG-module
determined by M. The reason is that, as we hâve already remarked in §1.1,

QL ~ QM implies T0(M, te) T0(L, n).



Homotopy classes of truncated projective resolutions 583

2. The Browning class group

2.1. Let &lt;2&gt; be an additive covariant functor Lat (ZG) -* Ab such that &lt;P(M) has

finite exponent e. Henceforth we assume n contains ail primes in e.

If (j) eHomG(Mn, Nn) and § =f/s =f&apos;/s\ where s and s&apos; are prime to n and

s s&apos; l(mod e), then s&apos;f sf. If s and s&apos; are viewed as endomorphisms of M,
then &lt;ï&gt;(s) &lt;P(s&apos;) is the identity on &lt;P(M). Therefore &lt;P(f) &lt;P(f) and conse-

quently we can dénote &lt;P(f) unambiguously as &lt;£((/&gt;).

If (/&gt;GAutM^, then &lt;f&gt; h-» &lt;£(&lt;/&gt;) is a group homomorphism $M : Aut Mn -?
Aut &lt;£(M), whose kernel we write Aut (Mn ; &lt;2&gt;). Let A(M\ &lt;P, n) dénote the image of
Aut {Mn ; 0) under a : Aut Mn -&gt; ro(M, 7i). We shall frequently omit n or M from
A(M; &lt;P, n) when thèse are understood.) We now hâve the exact séquence of
Abelian groups

Aut MJAut (Mn\ 0) T0(M, n)/A(&lt;P) &gt; Cl (M) 0. (*)

We propose to call ro(M, n)/A(&lt;P) the Browning class group of M with respect to &lt;P

and shall dénote this group by Cl (M; 0, n). Note that if &lt;P(M) 0 then
Cl (M; 0, n) ~ Cl (M). (Of course, Cl (M) does not dépend on n because of
our permanent assumption that n 3 n(G).) For example if &lt;J&gt;(ZG)=0, then
Cl (ZG; &lt;2&gt;, 7r) is (isomorphic to) the usual projective class group Cl (ZG).

2.2. If&lt;P(M) is finite, then so is Cl (M; &lt;£, n). For the finiteness of &lt;P{M) implies
that the image of &lt;PM is finite and since Cl (M) is finite anyway, therefore the exact

séquence (*) in §2.1 gives the required conclusion.
Let L be a lattice in the genus of M and p : Ln-^ MK. Then &lt;P(p) is an

isomorphism &lt;P(L) ^» &lt;P(M) and we hâve the following commutative square:

Aut Ln
-^-&gt; Aut &lt;P(L)

i i
Aut Mn Aut &lt;P(M)

where the left vertical map is 0 h-&gt; p ~x$p and the right one is A i—? &lt;P(p) ]À&lt;P(p), for
X in Aut&lt;P(L). It follows, using also the commutative triangle displayed in §1.1, that
the aL-image of the kernel of &lt;PL coïncides with the aM-image of the kernel of &lt;PM.

Thus A(M; &lt;f&gt;, n) A(L; 0, tc), whence Cl (M; &lt;J&gt;, n) Cl (L; &lt;Ê, n).

2.3. If N v M, we can embed iVin M with finite cokernel prime to n, say

0 N —f-&gt; M U &gt; 0.
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Call this embedding (N,f). If (L, g) is another embedding, we defîne

to mean that there exists an isomorphism h : N ^&gt;L so that &lt;P(hg) &lt;£(/). Clearly
~ is an équivalence relation. Let [N,/] be the équivalence class containing (N,f)
and E(A/; &lt;£, 7t) (£&quot; for &quot;embedding&quot;) the set of ail équivalence classes.

THEOREM 1. There exists a surjection E(M; &lt;Z&gt;, n) -&gt;C1 (M; #, tt).

We associate to (N,f) the élément [Coker/] + ^4(&lt;2&gt;, n). The fact that this

procédure gives a well-defined mapping on E is a conséquence of the following

LEMMA. // (N,f) ~ (L, g), then [Coker/] [Coker g] mod A(&lt;P).

Proof. Leth.N^Lso that &amp;(hg) 0(f). If (//l)&quot;1 =/7^/, then///=5/ and

so ^(/&apos;/) is the identity, whence [Coker//] e,4(&lt;£). Consequently

[Coker %/&apos;/] [Coker g] + [Coker//] [Coker g] mod A(&lt;P).

Now &lt;P(hgf) ^(/)^(/0 identity, whence [Coker hgf&apos;\ g A{&lt;P) and so

[Coker %//] [Coker/] mod

The map of Theorem 1 is surjective because every élément in Cl (M; &lt;2&gt;, n) can
be written in the form [U] + A(&lt;P) for a suitable image U of M (cf. §1.2). So

Theorem 1 is established.

2.4. When M satisfles the Eichler condition, the surjection of Theorem 1

becomes a bijection. The proof of this dépends on the following resuit.

THE BROWNING-LINNELL CANCELLATION THEOREM [Bl], [Ll].
Let M satisfy the Eichler condition. Then there exists n (containing n(G) as always)
so that if we are given

0 &gt;

0 &gt;

N

M

J

g

&gt;M

-&gt;M &gt;

U &gt;

y &gt;

o,

¦0

with [U] [V] in T0(M, n) and &lt;P(g) identity, then there exists h : N-+M so that
&lt;P(h) &lt;*&gt;(/) (in other words, (NJ) - (M, g)).
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This statement follows directly from Linnell&apos;s Lemma 3 3 [Ll]
The existence of n is explained in [SE], Chapter 9, especially p 196 Sometimes

n(G) will do A case in point, and this will be important for us later, îs the

following Given any lattice M, then M ®M always satisfies the Eichler condition
and hère (î e for M © M) the Cancellation Theorem holds with n n(G) ([SE], p
173 and [GrL], p 364)

THEOREM 2 If M satisfies the Eichler condition and n is chosen suitably for
this, then the map in Theorem 1 is bijectwe

Proof Suppose [N,f], [L, g] hâve the same image in Cl (M, &lt;£, n) Let
U Coker/, V Coker g So [U] [V] mod A(&lt;P) If (g/1) l

g&apos;/r9 then

[Coker gg&apos;\ [V] + [Coker g&apos;] [Coker r] e A(&lt;P)

(because &lt;P(r) =identity), and so

[Coker fg&apos;] [U] + [Coker g&apos;] 0 mod A(&lt;P)

Hence [Coker fg&apos;] is the image under a (cf §1 1) of some (/&gt; e Aut (Ln, &lt;P) If
(t&gt; ^Is,

[Coker fg &apos;] + [Coker s] [Coker /]

and

0 &gt;N-^-&gt;L &gt;D &gt;0

is exact, where [D] [Coker /] Since &lt;P(/) îdentity, therefore by the Browmng-
Linnell Theorem there exists an isomorphism h N-+L so that &lt;P(h) &lt;P(fg&apos;s)

Since &lt;P(s) and &lt;P(g&apos;g) are both identities, so &lt;P(hg) &lt;P(f) Thus [N,f] [L,g]

2 5 It is clear that always T0(M, n) T0(M©M, n) Also A(M, &lt;P) ç
A(M © M, n) For if [f/s] e A(M, 4&gt;), then / is an endomorphism of M satisfying
&lt;p(f) îdentity and [/] e A(M, 0) because s l(mod e) If g is the endomorphism

of M®M given by r Y then [g] =[f] and &lt;P(g) =identity on &lt;P(M®M)

Hence [/] g A(M©M, 0)

PROPOSITION [B2, 6 5] A(M, 0) A(M © M, &lt;P)

Proof Let [f]eA(M®M, 0) We need to prove [/] sA(M, 0) Now/is an
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endomorphism of M ® M with &lt;£(/) identity. By [Ll], Lemma 3.1, we can find
endomorphisms /?,, /?2, /^ with matrices

«, É,\ //i2 £2\ //i3 0

0 nj \0 &quot;2/ U n3

where «, l(mode) for ail z, so that P\fP2P3=g has matrix 1. Since

&lt;P(pl)0(P2)&lt;P(p3), so 4&gt;(y) &lt;J&gt;((5) =«,«2^3 identity on &lt;f&gt;(M) (cf. [Ll], p.
454), whence [g] [y] + [S] e A(M, &lt;*&gt;). But

[g] [/] + [/M + [&amp;] + [j83] [/] mod A(M9 *),

because [/?,] 2[«;] e ^(M, &lt;P). Thus [/] g ^(M, 0), as required.

COROLLARY. Cl (M; #, te) Cl (M © M; 0, tu).

2.6. Suppose we are given a projective présentation

0 &gt;M &gt;Q &gt;D &gt;0, (*)

of a module D. Take &lt;£ Ext^ (D, — To apply our theory to this &lt;P we must
check that &lt;P{M has finite exponent. This is clear when D is a lattice because then
&lt;P(M) ~ H1 (G, Hom (Z), M)); it is also clear when Z) itself has finite exponent. For
a gênerai Z), apply &lt;2&gt; to the short exact séquence 0 -? Tor (D) -&gt; D -? 5 —? 0 to
obtain the required conclusion.

If / is an endormorphism of M with cokernel of order prime to n and
&lt;p(f) identity, then [f]eA(0). We claim that the image of [/] in To(ZG,k)
(under the inclusion T0(M, n) -&gt; ro(ZG, zc)) lies in v4(ZG, xc): Since 4&gt;(/) is the

identity, the pushout to/of (*) is équivalent (as an extension of modules) to (*)
and hence there exists a mapf:Q-*Q which restricts to the identity on D and to

/on M. Consequently [/]=[/] and [/] e A(Q, n) A(ZGir\ n) if g v ZG(r);

moreover A(ZG(r\ n) A(ZG, n) by the Proposition in §2.5. So we hâve established

PROPOSITION 1. There exists a natural homomorphism

Cl (M; Ext^ (D, -), 7i) &gt; Cl (ZG).

The image of the map in this Proposition is Swan&apos;s group C(M, n) (§1.3).
There is an important spécial case when the map of Proposition 1 is an

isomorphism. Assume M is not core-equal: this means that M M&apos; ®P for some
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non-zero projective module P Hère T0(M, n) T0(P, n) T0(ZG, ri) and we claim
A(M, &lt;2&gt;, n) 2 A(ZG, n) provided &lt;P(ZG) 0 for if (f) =f/s îs an automorphism of
ZnG, then &lt;/&gt; extends to an automorphism of Pn (since ZnG îs a summand of Pn) and
hence ^ (îd, (j)) M&apos; ® P -+ M&apos; ® P îs an automorphism of M for which [\j/] [&lt;/&gt;]

and &lt;P(ij/) — &lt;£(id) because &lt;P(P) — 0 (Notice that this argument works with a gênerai

0) We hâve Ext^ (D, ZG) 0 if D îs a lattice and so we hâve established

PROPOSITION 2 IfMis not core-equal and D is a TG-lattice, then

Cl (M, Ext^ (£&gt;, -), 7i) - Cl (ZG)

2 7 We conclude this section by discussing the connexion with the theory of
pointed lattices A pair (N, x) is a #-pointed ZG-lattice if N is a ZG-lattice and x
is an élément in &lt;P(N) It is obvious how to define morphisms of such objects In par-
ticular, (iV, x) ~ (L, j/) means that there exists a ZG-isomorphism h N —? L such that
x^&gt;(/z) =^, moreover, (TV, x) and (L, y) are in the same genus if there exists an îso-
morphism p Nn-*Ln so that x&lt;P(p) y Write [N, x] for the isomorphism class con-

taining (N, x) and \/(M, z) for the set of ail isomorphism classes in the genus of (M, z)
Recall (from §2 1) that AutM,, acts on &lt;P(M), it also acts on E(M, 0, n) if

p g Aut Mn, then [N,f]p [iV,yg], where p g/r Let 5r(z) be the stabilizer of z in
AutM,

PROPOSITION There exists a bijectwn E(M, 0,7c)/,S/(z) ^ \J(M, z)

Proof Given an embedding (N,f), let x=z4&gt;((//l) ]), thus producing the

pointed lattice (N, x) It is easy to check that [N,f] -+[N, x] is a well defined map
of E(M, (P, n) into \J(M, z) Clearly this is surjective

Suppose (L, g) produces (L, j) isomorphic to (N9 x) So there exists h N ^&gt;L

such that x&lt;P(h) y If (//l) &apos; =/r/r and a (f&apos;hg)/r, then

Z(f&gt;(&lt;7) x^(%) y&lt;P(g) z,

so that a e St(z) Now [L, g] [NJf&apos;hg] [N,f]&lt;r, whence (AT, x) and (L, y) belong
to the same 5/(z)-orbit

Note that by définition St(z) contains Aut (Mn, &lt;£), the kernel of the action of
Aut (Mn) on &lt;P(M) There are situations where St(z) Aut (Mn, 0) We shall meet

one such in the next section (§3 5)

It should also be observed that Aut Mn acts on Cl (M, &lt;Z&gt;, te) via the group
homomorphism Aut Mn -&gt; Cl (M, &lt;2&gt;, n) (cf (*) in §2 1) and the kernel of this action
is Aut (Mn, &lt;P) The surjection of Theorem 1 (§2 3) is equivariant
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3. Truncated resolutions

3.1. If A is a G-module (not necessarily a lattice) and (P, C) dénotes the

projective resolution

• • • &gt;P, &gt;P,_l &gt;--P0 &gt;A &gt; 0,

c,

then W(P, C) or just mP will mean the truncated resolution

0 &gt; Cm + &gt;Pm &gt;&apos;&quot; &gt;P0 &gt; A &gt; 0

and xm(P) S^Lo - l)m~&apos; rank P, its Euler characteristic. (We interpret A as Co.)

If mP and mP&apos; are chain homotopically équivalent (as augmented complexes over
A), we shall write mP ~ mP&apos; and dénote the équivalence class containing mP as [mP].

Let P(v4;m,/) dénote the set of ail [mP] with Euler characteristic f. Suppose
that mP ~ mP&apos; and let a:mP-&gt;mP&apos;, fi : mP&apos;&apos;-+ mP be chain maps yielding the

homotopy. It is easy to see, but will be important for us later, that a induces an

isomorphism Cm+ {
-&gt;C&apos;m+ { (with inverse fi).

Pick and fix one particular truncated projective resolution m(Q, D) of A with
Euler characteristic i and set Dm+ M. Following Dyer [D], p. 256, we call (g, D)
the référence resolution. If m(P, C) is a truncated projective resolution with the same
Euler characteristic, then it is easy to see that Cm+Ï v M (compare Qn and Pn by
SchanueFs Lemma and use the fact that Z^G-projectives are free; e.g. [G], 3.3).

Let 4&gt; be the functor Extg + 1

(A, —) and n be a given finite set of primes
containing n(G). The 7r-number e of §1.1 will continue to be the exponent of &lt;t&gt;(M)

(cf. §2.1). When m &gt; 1 or A is a lattice, then |G|(P(M) =0 and so e is actually a

7c(G)-number. But when m 0 and A is not a lattice, e could very well involve
primes outside n(G).

Given m(P, C) with Euler characteristic /, there exists an embedding of Cm+ in

M with finite cokernel prime to n. We claim that among thèse embeddings there is

one class that détermines a well defîned map of P(A; m, *f) into E(M; &lt;£, n). The
main resuit (Theorem 3, below) is that this map is a bijection.

3.2. We begin by proving that we really do obtain a map. Given (P, C), we
consider chain maps (j&gt; : m(Pn) -+m(Qn) over the identity on An such that 0 restricts

to an isomorphism on (Cm+l)n. If &lt;f&gt; =fjr on (Cm+])n, where (as usual)

/: Cw+ i -* M, r is prime to n and chosen so that r l(mod |G|), then since / is

injective, [Cw + ,,/] e E(Af ; (P, tt).
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If \jf is another chain map hke &lt;/&gt;, both (j) and \\i extend to dimensions &gt;m and

give chain maps Pn -? Qn over the îdentity on An Hence they are homotopic
there exists a chain map 6 of degree +1 such that &lt;/&gt; — \j/ 6ô + dO Then 0

induces

where i is inclusion and d is surjective Now &lt;P(iOm d) 0 because &lt;Ê vanishes on
projectives Hence &lt;£((/&gt;) #(^) on &lt;£(CW +,) and so, if ^ g/s, then &lt;£(/) &lt;2&gt;(g)

which, by the définition of E(M, &lt;2&gt;, 7c), gives [Cm+ ,,/] [Cm+ g]
We next show that maps hke &lt;f&gt; do exist Adjust the resolutions P^ and 2^ to

produce new resolutions P\ and Q^ that differ from P #
and Q^ only in dimensions

&lt; m and satisfy rank P, rank Q, for 0 &lt; i &lt; m If, say, rank Qo — rank Po

|G|r&gt;0, replace PO by P()0ZG(r) and P, by P,©ZG(r) (this leaves the Euler
charactenstic unchanged) and then Po P0®ZG{r) has the same rank as Qo Qo

We repeat this procédure ail the way up to dimension m — 1 Then the resolutions
hâve their w-dimensional terms of equal rank since the m-th partial Euler charac-

tenstics are the same Hence there exists an isomorphism \j/ m(Pn)-^m(Qn) of
complexes over An (cf [G], 3 5) Let (/&gt; be the composite of the following maps (ail
are over the îdentity on An)

where i is the natural inclusion and p the natural projection Then cf) restricts to an

isomorphism on (Cm+l)n
Finally, suppose mP&apos; is homotopic to mP with chain maps mP ^&gt;mP&apos; -+mP

We may construct, by the method explained above, allowable chain maps
&lt;/&gt; m(Pn)-+m(Qn) and V m(P&apos;n)-&gt;m(Qn) Let 0 =//r and V =f&apos;\r\ so that mP

yields the embedding (Cm + uf) and 0&apos; the embedding (C^J+ ,,/&apos;) Since a restricts
to an isomorphism on Cm+ (cf §3 1), an0&apos; restncts to an isomorphism on (Cm+ )„
and hence yields the embedding (Cw+ a/&apos;) Because a/V&apos; and//r are maps over
the îdentity on An, they induce the same map on homology ^(a/&apos;) &lt;P(f)

As a restricts to an isomorphism on Cm+J, so (Cw+l9/) ~ (C^+!,/&apos;) Hence

[m(P, C)] -&gt;[Cm+,,/] is a well defined map Call ît n

3 3 The proof that r\ is a bijection involves a well known fact from homological
algebra If m(P, C) and m(P\ Cr),have Cm+l C&apos;m+l=L9 say and détermine the

same élément £ in 0(L), then they are homotopically équivalent I hâve been unable

to locate a satisfactory référence for this, so hère is a proof
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Construct a map/: mP-+ mPf lifting id^ and take the pushout to/on L:

0 &gt;L &gt;Pm &gt;Pm_l •••
&apos;i i i-

The pushout also détermines £. Since &lt;2&gt; is naturally équivalent to Ext^ (Cm, —

therefore the extensions

0 &gt;L &gt;Pm &gt;Cm &gt;0,

0 &gt;L &gt;X &gt;Cm &gt;0

are équivalent. Hence the pushout is isomorphic (and therefore certainly homotopically

équivalent) to mP. Moreover, the pushout provides a map g : X-*P&apos;m giving
the foliowing commutative diagram:

(*)

Cf. [HS], Chapter 4, §9. The complex homomorphism in (*) taking the middle
complex (the pushout) to mPf is an isomorphism on homology, whence thèse two
truncated resolutions are homotopically équivalent (cf. [Sp], Chapter 4, §2). But we
already know the middle complex is homotopically équivalent to mP and so we are
done.

3.4. We are now ready to prove

THEOREM 3. The map rj : P(A,m91) -*E(M; Extg+ l (A, -), n) is a bijection.

Note that the E-set involves n but the P-set is independent of n. We return to
this point in Theorem 5. We continue to write 0 Extg+ l (A, —

Surjectivity ofrj. Given (C,/), let/&quot;1 =g/s and take the pushout to g:

0 &gt;L —
&apos;i

0 &gt;L —
1

0 &gt;L —

—? Pm —

ï

IV-

—&gt; Pm x —

II&quot;1-

-&gt; &gt;P0 —

—&gt; &gt; Po —
V

— &gt;P&apos;o-

-&gt; A

i
&quot;1

-*A
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As fg s, gn
l =f/s and [C,/] îs the image under rj of the class of

0 &gt;C &gt;X &gt;Qm &gt; &gt;Q0 &gt;A &gt;0

Injectmty of y\ Suppose [^P], [mPf] hâve the same image [Cm+1,/]
[C&apos;m+i,f] Construct the pushout to h (where h Cm + l^C/m+l and &lt;P(hf&apos;)

0 —

0 —

-&gt; Cm + -

:[-
&gt; Pm

1

&gt; X

—&gt;pm

i
—? /&gt;

and let the lower séquence yield \C&apos;m
+ {, g] Since the above two truncated resolutions

are isomorphic, [Cw+ ,,/] [Cm+]9hg] and &lt;P(hg) &lt;P(f) &lt;P(hf), whence
&lt;P(g) — 4&gt;(/r) Thus [C&apos;m+ ,,/&apos;] [CArn+ ,,g] and we are reduced to showing

0 &gt; c^ + X Pm j
&gt;

îs homomorphic to

0 &gt;C&apos;m+x &gt;P&apos;m &gt;P&apos;m
{

&gt;

Thèse two truncated resolutions represent the same élément in Extg+1 (A,C&apos;m+l)

(because &amp;(g) &lt;P(/&apos;)) and so are homotopically équivalent (§3 3)

3 5 Consider again pointed lattices, as in §2 7 Let z be the image of the îdentity
map on M under the surjection EndG (M) -&gt; Extg+ ] (A, M) We claim that hère

St(z) Aut (Mn, 0) Suppose p e St(z) and let [N,f] détermine the pointed lattice
class [N, jc], where x&amp;(f) z Then [N, x]p also détermines [N, x] and therefore, by
§3 3, the corresponding éléments in P(A, m, t) are equal Thus [N9f] [N,f]p and

we conclude that the bijection of the Proposition in §2 7 îs hère a bijection
E(M, &lt;P,n)^

3 6 Theorems 3 (§3 4) and 2 (§2 4) provide a parametnzation of the homotopy
classes [mP] by the éléments of the Browning class group of M for the functor 4&gt;

Ext£ + l (A, - and relative to n chosen suitably for the Eichler condition on M
The next point îs that, for this particular functor, n can be taken to be the smal-

lest possible set, viz n(G), provided only that e (the exponent of &lt;P(M)) îs a

7i(G)-number
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Let n =2 (G) and consider the links established by Theorems 1 (§2.3) and 3:

•¦ i
Cl (M; 0

n
-r(A;
1

m, -&gt;E(M;

Cl (M;

1

7l(G))

n(G)).

The two horizontal bijections corne from Theorem 3 and the two vertical surjections
from Theorem 1.

Now T(M, n) is a subgroup (even a direct summand) of T(M, n(G)) (cf. §1.3)
and clearly A(&lt;P, n) ç A(&lt;P, n(G)). Hence there is a natural group homomorphism

y : Cl (M; *, n) &gt; Cl (M; *, n(G)).

It is easy to check that y is induced by the above diagram in the sensé that

xy erj^ln2s2, where e is any élément satisfying esx =x.
Consider the above diagram with M replaced by M ®M (so that necessarily ,4

is replaced by A ®A, 0 by W Extg+1 (^ ®A, -) and / by 2/). The Eichler
condition on M ©M and the fact that n(G) is suitable for M ®M (cf. §2.4) make

£j and e2 bijections (Theorem 2). Hence y for M ©M is an isomorphism. It follows
that y for M is an isomorphism, by the Corollary in §2.5 and the easily verified fact
that Cl (M; 0, n) Cl (M; *F, n). So we hâve

THEOREM 4. Assume the exportent o/Ext^+ 04, M) w a n(G)-number. Then

for any n =&gt; 7i(G),

Cl (M; ExtS+
&apos;

(^, -), 7i) -^-&gt; Cl (M; Ext^+
&apos;

(A, -), tt

THEOREM 5. IfM satisfies the Eichler condition and the exponent hypothesis of
Theorem 4 holds, then there is a bijection

V(A;m, i) -^ Cl (M; Exr£+ * (^, -), tt(G)).

This is immédiate: the class group over n(G) is isomorphic to the class group
over n by Theorem 4 and Cl (M; &lt;P, n) is bijective with P(A ; m, *f) by Theorems 2

and 3.

The exponent hypothesis in Theorems 4 and 5 is not a serious restriction: the

exponent can only fail to be a 7i(G)-number if m 0 and A has torsion group
involving primes not in n(G).
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4. Free éléments

In this section we assume the exponent of Ext™+1 (A, M) is a 7r(G)-number.
This enables us to work exclusively with n(G).

4.1. We continue the discussion begun in §1.3 and explore the link between

T0(M) T0(M, n(G)) and Cl (ZG). First we claim there is a well defined map
P(A;m, f) -+P0(ZG) given by mP-&gt;zm\P\ where the Euler class sm[P] is defined by

To see that sm[— ] is well defined amounts to verifying that if mP ~ mP&apos;

(homotopy équivalent), then em[P] =£m[/&gt;/]. Let/: mP-&gt;mP&apos; be a map giving a

chain homotopy. We noted (cf. §3.1) that / induces an isomorphism:
Cm+]^&gt;C&apos;m+l. It follows that the mapping cône M of / is acyclic and so
0 sm[M]=em[P]-sm[P&apos;].

Next, starting with [mP], construct its image [Cm+,,/] and then as in the proof
of the surjectivity in §3.4, find

0 &gt;Cm+l &gt;X &gt;Qm^x—&gt; &gt;Q0 &gt;A &gt;0

which is chain homotopy équivalent to mP (by Theorem 3, §3.4). Hence

em[P\=[X]-[Qm ,] + •••

and [Qm] - [X] is the image of [Coker/] under TQ(M) -&gt;C1 (ZG) (§1.3). It will be

safe to dénote this image also as [Coker/]. It is an élément of C(M). Thus

Ufl=&lt;UG]+[/].
Thus we hâve shown that [mP] -&gt;ew[P] — sm[Q] is the composite of

P(A ; m, 0 &gt; E(M; Ext£ + l (A, -), n(G)) (the bijection of Theorem 3, §3.4)

Cl (M; Extg+ l (A, -), n(G)) (the surjection of Theorem 1, §2.3)

Cl (ZG)

by Proposition 1 in §2.6 and using that ExtS+
&apos;

(A, -) is naturally équivalent to the

functor Ext^ (Dm, -). The image is C(M). This gives



594 K W GRUENBERG

PROPOSITION 1. The map V(A\mJ)-*C\(ZG) given by \mP\ -&gt;em[P] -
sm[Q] has image C(M).

Let uscall a class [mP] free if it contains a truncated free resolution. If
QP, ^ QG{e&apos;] for 0 &lt; i &lt; m, then the Euler characteristic xm(P) \G\em(P), where

em(P) STLo (- l)m&quot;&apos;^. Hence if mP is free, em[P] em(P)[ZG]. The converse also

holds and we hâve

PROPOSITION 2. [mP] isfree if and only if sm[P] em(P)[ZG].

Proof Let sm[P] em(P)[G]. We replace Po and Px by PS Po©^o and
P\®P&apos;o, respectively, where P&apos;o is chosen to make P&apos;q free; then we continue this

process up to dimension m — 1. This does not change the Euler class and so the

constructed truncated resolution has its m-dimensional term stably free. Adjusting
dimensions m and m — 1 finally produces a free resolution which is homotopically
équivalent to mP.

Suppose our référence resolution mQ is free. Then by Proposition 2, the set of
free éléments in P(A ; m, i) is the inverse image of 0 under the map of Proposition
1 above. Hence, using also Theorem 5 (§3.6) and Proposition 2 of §2.6 (for the last

part of the following resuit), we obtain

THEOREM 6. IfM saîisfies the Eichler condition and mQ isfree, then the set of
ail the free éléments in P(A ; m, /) is bijective with the kernel of the homomorphism

Cl (M; ExtS+
&apos;

{A, -), n(G)) Cl (ZG).

In particular, if M is not core-equal and m ^ 1 or m 0 and A is a ZG-lattice, then

m[Q] is the only free élément.

When A is a lattice, then to say that M is not core-equal is équivalent to the

condition £ &gt; im{A), where xm{A) means the m-th partial projective Euler characteristic

of A in the sensé of [G], §2.

Theorem 6 has topological content. The free éléments in P(Z; m, /) parametrise
the G-linked homotopy classes of (G, m)-complexes of Euler characteristic £. We

use the term (G, m)-complex to mean a fini te connected m-dimensional CW-com-

plex X for which nt (X) =0 for i 2,. m — 1 and there is given a group
isomorphism 0X : nl (X) -»(?. This is the slight variant of Dyer&apos;s usage [D] proposed
in [B3]. The notion of G-linked homotopy classes (though not the term) also

appears in [B3]. It is this: If X and Y are (G, w)-complexes then a homotopy
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équivalence /: X-&gt; Y is G-linked if f\6Y 6X, where/, is the isomorphism on
fundamental groups déterminée by /.

By the theorem of Mac Lane and Whitehead [MW] there is a one-one map of the

set ofail G-linked homotopy classes of(G, m)-complexes ofEuler characteristic £ into
the set of free éléments in P(Z; m,/). This map is known to be surjective (and
therefore bijective) if m &gt; 3 and also if m =2 provided G is Abelian ([D]; [B3],
[GL], [L2]); it may possibly be surjective always.

If the Euler characteristic é is non-minimal, then M satisfîes the Eichler
condition except when m is odd, £ — \G\, Z is periodic with m + 1 a free period and
ZG does not satisfy the Eichler condition. This may be seen as follows. If we let

e — £/\G\9 then the free truncated resolution mQ of Z gives

QM =eQG + (-\)m+lQ (*)

(cf. [GrL], proof of (3.5)) and if M M&apos;®P, where M&apos; is core-equal and P is

projective, then / #W(Z) + dim QP (cf. [G], proof of (3.2)). When m is even, (*)
yields QM ~ (e — l)QG ©QÀG, where AG dénotes the augmentation idéal of ZG
and e — 1 &gt; 1 because f is non-minimal. Hence QG © QAG is a summand of QM.
When m is odd, (*) gives QM ~ eQG © Q, whence M satisfîes the Eichler condition
when e &gt; 2. Suppose e 1 (e ^ 0 by non-minimality). This implies P v ZG and

Mr ~ Z, so that M v Z © ZG. Hence M satisfies the Eichler condition if ZG does.

Finally consider the standard example due to Swan: G is the generalised quaternion

group of order 32 and P is a projective ZG-module so that P © ZG ~ ZG © ZG and

where also dG(PjPG) 2. The free periodic resolution

0 -&gt; Z -&gt; ZG -&gt; ZG(2) -&gt; ZG(2) -&gt; ZG - Z -&gt; 0

yields

0 -&gt; z © P -» ZG(2) - ZG(2) -&gt; ZG(2) -+ ZG -&gt; Z - 0 1

and

0 -» Z © ZG -&gt; ZG(2) -+ ZG(2) -&gt; ZG(2) -&gt; ZG -&gt; Z -? 0. (2)

Thèse two truncated free resolutions are not homotopically équivalent because

Z©P £ Z©ZG (since dG(P/PG) 2 while dG(ZG/ZGG) 1). We sum up in

PROPOSITION 3. If X, Y are (G, m)-complexes of equal non-minimal Euler

characteristic £, then X, Y are G-linked homotopically équivalent except possibly when

mis odd, f \G\,m + 1 is afree period ofZ andZG does not satisfy the Eichler condition.
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4.2. Let W dénote the kernel in Theorem 6 and again set # Extg + l (A, -);
also n shall hère stand for n{G). So

A(ZG)nT0(M)
A(M, 0)

where we recall that A(ZG) is the image of AutZ7rG=GL1 (ZnG) under ocZG=&apos;al

(cf. §1.1). In what follows M need not satisfy the Eichler condition.
As a rule the numerator in the above formula for W is just A(ZG). This

happens when M is ZG-faithful, for then T0(M) T0(ZG). This is true when
A is non-periodic for ail sufficiently large m [GrL]. It is also true when A Z

except when m is odd and the Euler characteristic £ 0 (whence M Z) or m is

even and / \G\. In any case (for any A) T0(M) is a direct summand of T0(ZG)
and so A(ZG)/A(ZG) n T0(M) is free Abelian, whence W is the torsion group of
A(ZG)/A(&lt;P) (cf. §2.2).

Elementary Kx -theory gives us the exact séquence

Kx (ZG) -^U Kx (ZnG) -^U A(ZG) &gt; 0,

where a&apos; arises from a décomposition of a, (for any t &gt; 1):

GMZ^G) -X 70(ZG)

Kx(ZnG)

Hence Ker a&apos; (Ker &lt;xt)Kt and if A^ dénotes the inverse image of A(&lt;P) under a&apos;, then

W is isomorphic to the torsion subgroup of Kx(ZnG)/K.
Recall that M arises at the tail end of mQ\

0 &gt;M—+ Qm-^Dm—+0.

Defining

and assuming (Qm)n ~ZnGu\ then a, and Kt contain B in their domain.

THEOREM 7. 7%e kernel W of the homomorphism of Theorem 6 is isomorphic
to the torsion subgroup of the cokernel of

&gt;Kt(ZKG).
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Proof We already know that Wis isomorphic to the torsion subgroup ofK{(ZnG)
modulo K (the inverse image of A(&lt;P) under a So ît remains to show that (1) Boct c
A{4&gt;) and (n) if 0 g Aut (Qm)n and 0a, [0] e A{$), then [&lt;p] [\j/] for some \\f e B

Let (/&gt; g/s e B Then gd ôs and Mg ç M The Connecting homomorphism
HomG (M, M) -? Ext^ (Dw, M) maps multiplication by s on Z) to Ext1 (s, M), which
îs the îdentity on Ext1 (D, M) However, Ext1 (5, M) Ext1 (/), g j), where g[
dénotes the restriction of g to M Now

m [g] - [ô/*ei teii + u&gt;/*j&gt;] - [e/^ei teii - [^/^3 tel/*]

and [gI/5] belongs to .4(&lt;2&gt;) Hence (1) îs proved
Next let (j) g/s satisfy [0] [//r], where/is an endomorpism of M withfn an

automorphism and &lt;£(/) the îdentity As in the proof of Proposition 1 in §2 6, /
gives a map/ Qm-+Qm, and similarly r gives f Then [//r] [/] — [r] and/, r are
both in B So [(/&gt;] [^], where ^ =Lifn) &apos;

4 3 To conclude, let us see how the présent set-up relates to two situations

where W has been calculated We shall need the obvious fact that
ExtS+I (Z,M)-Z/|G|Z

EXAMPLE 1 A Z and Z is penodic with m + 1 a free penod This case was
studied by Dyer [D]

Since Cl (Z) 0 we hâve the exact séquence

Aut Z &gt; Aut Zn -^-&gt; ro(Z) &gt; 0,

and there is also the exact séquence (cf §2 2)

1 &gt; Aut (Z,, 4&gt;) &gt; Aut Zn &gt; GL, (Z/|G|Z) &gt; 1

Hence

where the isomorphism makes an integer k prime to \G\ correspond to

[Z/kI]+A(0) This élément maps to [ZG] - [AG +kZ] in Cl(ZG) (AG again
dénotes the augmentation idéal of ZG Thus W is isomorphic to the kernel of
GL, (Z/|G|Z)/{±1}-»C(ZG) and ît is easily checked that this map is exactly the

same as in [D]

EXAMPLE 2 A Z and G is Abelian This is the case studied by Browning
when m —2 and by Linnell in gênerai [L2]
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We may restnct attention to the non-cychc case and to m &gt; 0 Then QG îs a

summand of QM ([L2], 5 3) and so M satisfies the Eichler condition and

T0(M) T0(ZG), whence A(ZG)/A(&lt;P) îs fini te Therefore by Theorem 7 (§4 2), W

îs the cokernel of B x K{{ZG) -&gt;GL, (ZnG) This map îs the déterminant homo-
morphism on B and the image of KX(ZG) îs the image of GL2 (ZG) also under the

déterminant homomorphism Hence

W ~ GL, (ZKG)/(det B) GL, (/G)

Let s ZnG -+Zn be the augmentation homomorphism and take the composite of e

and Zn -+Z//Z, where / îs the greatest common divisor of the invariant factors of
G Then we obtain a surjection GL, (ZnG) -&gt;GL, (Z/fZ) and the key resuit in [L2]
(6 1 and 6 2) is that this surjection has kernel (det B) Hence
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