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The Geometry of Periodic Minimal Surfaces

WiLLIAM H. MEEKS IIT* AND HAROLD ROSENBERG

1. Introduction

In this paper we shall demonstrate a surprising relationship between the
topology of a properly embedded periodic minimal surface in R? and its global
geometry. We shall call a minimal surface periodic if it is connected and invariant
under a group G of isometries that acts freely on R*. We will analyze these surfaces
by studying their quotients in R*/G. We have already carried out this study for
doubly-periodic minimal surfaces [16].

Recall that a surface has finite topology if it is homeomorphic to a closed surface
with a finite number of points removed. Our main theorem is:

THEOREM 1. 4 properly embedded minimal surface in a complete nonsimply
connected flat three-manifold has finite total curvature if and only if it has finite topology.

When the flat manifold is R?, the existence of the helicoid (which has finite
topology and infinite total curvature) demonstrates that the condition that N be
nonsimply connected is a necessary one.

Theorem 1 has important topological and analytical consequences. One topo-
logical consequence is that a properly embedded orientable minimal surface of finite
topology in an orientable flat nonsimply connected three-manifold always has an
even number of ends or it is a plane (see Theorem 9 in Section 9).

A theorem of Huber [10] states that a complete Riemannian surface with
nonpositive Gaussian curvature whose total curvature is finite must be conformally
diffeomorphic to a closed Riemann surface punctured in a finite number of points.
We will prove that a complete minimal surface of finite total curvature in a flat
three-manifold can be described in terms of meromorphic data on its conformal
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Applied Mathematical Science subprogram of Office of Energy Research, U.S. Department of Energy,
and National Science Foundation grant DMS-8900285.
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compactification. We shall exploit these analytic conditions to prove the following
uniqueness theorem.

THEOREM 2. The plane and the helicoid are the only properly embedded simply
connected minimal surfaces in R* with infinite symmetry group.

In [16] we proved Theorem 1 in the case where the flat three-manifold N was
isometric to the product T x R where T is some flat torus. In fact we proved that
a properly embedded minimal surface M in T x R has finite total curvature
C(M) =2ny(M). Tt follows from the classification of flat three-manifolds that a
flat, noncompact, nonsimply-connected three-manifold is finitely covered by T x R
or by R*/S, where S, is the right hand screw motion obtained by rotation around
the positive x;-axis by 6 followed by a nontrivial translation along the x;-axis.
Thus, to prove Theorem 1, it remains to consider only the case where the manifold
N is isometric to R*/S, for some 6, 0 < 8§ < n. However, our proof of Theorem 1
will not actually depend on our previous theorem in the special case of T x R.

We have the following classification of the annular ends of the surfaces
described in Theorem 1. As shown by work in [2, 3, 11, 12, 13], every R%/S, has
many examples with each possible end type.

THEOREM 3. An annular end of a properly embedded minimal surface of finite
topology in R*/S, is asymptotic to a plane, a flat vertical annulus, or to an end of a
helicoid (with horizontal limit tangent plane). If 0 is nonzero and the end is asymptotic
to a plane, then the plane is horizontal. If 0 is irrational, then the end is not asymptotic
to a flat vertical annulus.

The total curvature of minimal surfaces of finite topology in N = R*/S, can be
computed in terms of the winding numbers of its annular ends. Suppose 4 is the
image of a proper embedding of the punctured disc D* in N. Let y be the geodesic
representing the image of the x;-axis in N. After removing a compact neighborhood
of A, we may assume that A is disjoint from the ¢-tubular neighborhood T of y with
boundary torus 07. The torus is obtained as a quotient by S, of the flat cylinder C
of distance ¢ from the x;-axis. A basis for n,(0T) is obtained from the quotient «
of the oriented circle C nR? and the quotient f of the oriented right handed helical
arc of least-length on C joining a point p with Sy(p). The boundary curve of 4 is
homotopic in N —7 to a unique element of n,(67). Suppose 04 is homotopic to
no + mpB. The winding number of the end of A is then defined to be (2n) ~'|2n - n+
m -8 |. If M is a complete embedded minimal surface of finite total curvature in
R3*/S,, then define the total winding number of M to be the sum of the winding
numbers of the ends of M. We let W(M) denote the total winding number of M.
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THEOREM 4. If M is a properly embedded minimal surface of finite topological
type in R*|S,, then the total curvature of M is

C(M) =2n(x(M) — W(M)).

When the ends are asymptotic to flat vertical annuli, this formula yields C(M) =
2ny(M). When there are k planar ends, C(M) = 2n(y(M) — k).

The paper is organized as follows. In Section 2 we develop the analytic theory
of complete minimal surfaces of finite total curvature in R*/S, when 6 =0 and in
Section 3 we consider the case when 6 # 0. The main theorem of Section 3 is a
Weierstrass-type analytic representation for a complete minimal surface M of finite
total curvature in R3/S,. In particular we show that these minimal surfaces are
conformally equivalent to a closed Riemann surface M punctured in a finite number
of points and that the coordinates of M can be recovered from two meromorphic
one-forms on M. In Section 4 we characterize the asymptotic behavior of properly
embedded minimal annuli of finite total curvature in R3/S, and prove some global
results on their geometry including the main reduction of the proof of Theorem 2
from Theorem 1. In Section 5 we prove a multi-valued version of Picard’s theorem
that was used in the earlier Section 3. In Section 6 we prove that an annular end 4
of a properly embedded minimal surface in R3/S, is trapped between two embedded
minimal annuli of finite total curvature. In Sections 7 and 8 we use the result of
Section 6 to show that 4 must have finite total curvature. The proof that A has
finite total curvature breaks up into two cases depending on the asymptotic
behavior of the finite total curvature annuli that trap it. This result on 4 proves
Theorem 1. The remaining theorems are proved in Section 9.

We refer the reader to [3] and to [8] for related theoretical results.

2. Finite total curvature annular ends in R3/T

In this section we will analytically parametrize embedded finite total curvature
ends 4 in N = R*/T, where T is the group generated by translation by v € R>.

Let E denote a connected lifting of 4 to R?. The Weierstrass data of E (Gauss
map and holomorphic one-form) are invariant by T, hence, pass to a Gauss map on
A and holomorphic one-form w. As usual g denotes the composition of the Gauss
map with stereographic projection to Cu {c0}. Since 4 has finite total curvature, 4
is conformally the punctured disk D*={z € C|0<|z| <1} and (g, w) extend to
meromorphic data at the origin. This last fact is well known, however in Section 3,
we will prove a more general result.
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Now, after a rotation of E in R?, we can assume g(0) = 0, and after a conformal
reparametrization (of a subend of) of 4 we have:

g(z) = z*, w(z) = <%+£:"—fl—'+ - - ) dz, (2.1)

z4

where p > 1.
The period vector is v = Re (g1 ¢, where

(1-g% i(1+g? "
2 T 2 8

¢ =(¢’1,¢2,¢3)=(

A (multi-valued) parametrization of E is given by X(z) =Re [ ¢. We have
X(r, 0 + 2nn) = X(r, 0) + nv, z = r e®.

The case v = 0 is well known [23]. 4 is then an embedded finite total curvature
annulus in R? and is asymptotic to a plane or catenoid. Henceforth, assume v # 0.
The analysis of the type of A is determined by the order ¢ of the pole of w and the

coeflicient €y

THEOREM 5. Let (g, w) be as in equation 2.1 and assume v # 0. The nature of
the end A is determined by p and q as follows.
(1) If g =1, A is a Scherk-type end (this is made explicit shortly);
(2) if g > 1, then A is embedded only if g =p + 1. When q > p + 1, the trace of
A on a large cylinder is not embedded (this is Toubiana’s lemma). If ¢ <p + 1,
a translation by a large horizontal period will give a self-intersection point.

Proof. First suppose ¢ = 1. We will see that 4 is a Scherk type end (e.g. the
ends of Scherk’s surface g(z) =z, w = i dz/(z* — 1), on the sphere punctured at the

four roots of unity) and converges to a flat annulus. Let a =c¢_,. Then

g(z) =z7, W =<g +f(z)>dz, and
¢3(2) = (azP ~ "+ h(z)) dz, f, h holomorphic in z € D.

Hence ¢, is holomorphic at 0, v is a horizontal vector, and x;(z) converges to a
constant (which we take to be 0) as z »0.

After a rotation about the x;-axis, we can assume v =(—2n Imgq, 0, 0), a € iR.
Then

1
Xy = D) ap arg (z) + O(1),

1
X, = =5 do In |z| + O(1),
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1
X5 =; Re (az?) + O(1), a, = Im (a),
. a
X, —ix, = 5 log (z) + O(1).

Here (1) denotes a function continuous at z = 0. Henceforth, we will let ¢y(1)
denote such a function that vanishes at 0.

The image by X of the line 8 =0, 0 < r < 1, is a curve asymptotic to a line parallel
to the x,-axis: x; =0, x, = ¢, = lim, _, , x,(r, 0). The image of theline @ =27,0 <r < 1,
is the same curve translated by v. So a fundamental domain in R? is a half band
bounded by these two curves. The surface is asymptotic to the flat annulus x; =0,
x,> 0. If we think of v as vertical, then A is asymptotic to a vertical flat annulus.

Now suppose ¢ > 1. E. Toubiana has proved that 4 embedded implies
g <p+1 [26]. He proves this by showing the trace of 4 on a large cylinder
centered at the x;-axis, is not embedded when g > p + 1.

We now show that ¢ = p + 1. Assume the contrary: ¢ <p + 1. Then ¢;(z) is
holomorphic at 0 and x;(z) tends to a constant as z —0, which we take to be zero.
Notice that x; changes sign on every circle |z| = r > 0, since it is harmonic on the
disk. Also the period vector v is horizontal since the residue of ¢, is zero at 0. We

have
(X, +ix;)(z) = f jgw fw-i—@(l <__—T+(9°(1)>
a=c_,, = /Xt xi= _,( il +(90(1))
rd q—1

As z — 0 along a ray arg (z) = constant, (x, + ix,)(z) is asymptotic to a straight line
and X(z) is an embedded curve in R® whose projection on the (x,, x,)-plane is
(x, + ix,)(z) and whose x;-coordinate tends to zero. For r fixed, r #0, the total
change of the argument of (x,, +ix,)(z), as z transverses once the circle |z| =r is
(g — D2n + Oy(1), by the above formula for (x,, +ix,)(z).

Now consider the surface M, = X(0 <arg(z) <4n,0<r <1). Let T denote
the vertical cylinder of radius R, centered at the x;-axis. For R, large, M, projects
surjectively onto the complement of the disk Dr = {x{+ x3 < R}}. (In fact, 47 can
be replaced by 2n + ¢ for any ¢ > 0 for this projection to be surjective.)

Choose (r, 8) so that § = x,(X(r, 8)) > 0; for convenience, take 8 =0. Let « be
the arc X(r, 0), 0 < 6 < 27; notice that the endpoints of a differ by v and so have the
same x;-coordinate. There are points on « above and below the (x,, x,)-plane, since
x; changes sign on |z|=r. Let ¢ = 1/2 min{d, | min x o|}.
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Now consider the surfaces M, = X(2kn <arg(z) <(2k +dn,0<r < 1). M, is
obtained from M, by horizontal translation by 2kv. Let R, > R, be chosen so that
on the complement of T , M, is at most a distance ¢ from the (x,, x,)-plane.

Choose k so that kv > R;. The arc a on M, is translated horizontally to an arc
& on M, by the translation by 2kv. Outside of T , M, is at a height at most ¢ and
M, projects surjectively onto the complement of D, , so M, must intersect &. This
contradicts 4 is embedded.

Thus, g =p +1 and x; =0, In|z|+ f arg (z) + O(1), a,, B € R. As before, we
have R = /x{+x3=1/r*"'(|al]/g — 1) + Oy(1)) so x;=a In R + B arg(z) + O(1),
o € R. (Note that o # a,.)

The trace of E on the cylinder Sy is converging to the helix « - In R + f - arg (2),
for 0 <arg(z) <2m, hence E is embedded for R sufficiently large. Notice that the
period vector v need not be vertical: e.g. g(z) =z, w = (i/z*> + 1/z) dz. This is an
embedded helicoidal type end with a non vertical axis v. If both o and § are non
zero, then the helicoidal end has a logarithmic growth as R — oo, given by «; just
as the usual catenoid where f§ = 0. We shall see later that if the end A4 is part of a
properly embedded surface M of finite topology and f #0, then there is no
logarithmic growth (x = 0), v is vertical, and so 4 is asymptotic to a helicoid (see
Theorem 3 in the Introduction).

In summary, the embedded ends in R?*/T are planar type (asymptotic to flat
annuli), catenoid type, or helicoidal type. The latter ends are helicoidal ends which
may have logarithmic growth and possibly an axis not orthogonal to the end. [

3. Finite total curvature annular ends in R3/S, and their Weierstrass Representation

Let 4 be a finite total curvature minimal annulus, embedded in N = R*/S, where
0 <6 <2n. In this section we will derive meromorphic data on the disk that
parametrizes A, and describes its aymptotic behavior at co.

We take S, to be a translation along the x;-axis followed by rotation by 6 about
the x;-axis. Since 4 has finite total curvature, A4 is conformally the punctured disk
D*. We no longer have a single valued Gauss map g on A4; g is a multi-valued
meromorphic map on D* whose values differ by multiplication by 1™, 1 = >, To
see this, let E be a connected lifting of the universal covering space of 4 to R?. The
Gaussian image of the normal vector to E at p € E and the image of the normal
vector to E at S,(p), differ by rotation about the x;-axis by 0. Hence, the
stereographic projections of these vectors on the sphere, differ by rotation by 6 in
C, i.e., by multiplication by i = e?™*.

Lifting g to the Riemann surface of g (i.e., the covering Riemann surface where
g is defined), we have a well defined meromorphic map g, on the half plane
H = {x <0}, satisfying §(z + 2nmi) = A"g(z), for z € H. Then g = g(exp™').
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We wish to show that 4 has a limiting tangent plane at oo, i.e., g extends
continuously to 0 (even though g is multi-valued). This will follow from the fact
that the area of the spherical image of g (i.e. a single valued branch of g on the slit
punctured disk D’) is finite (see Theorem 6 below). We are grateful to Dennis
Sullivan for explaining the length-area inequality of conformal maps which is used
repeatedly in the proof of Theorem 6.

THEOREM 6. Let g be a multi-valued meromorphic map on D*, g = g(exp™ '),
with §(z + 2ni) = 4g(2), for z € H, and some 1, |A| = 1. If Area(g(D")) is finite, then
g extends continuously to 0.

The proof of Theorem 6 will be postponed to Section S.

Now we shall use Theorem 6 to obtain a Weierstrass representation on the disk
D, for finite total curvature annuli 4 in N = R*/S,. We use the notation of Section
2. By Theorem 6, the multi-valued g extends continuously to 0 and since the
limiting value is fixed by multiplication by 4 and 4 # 1, the limiting value is 0 or oo;
so we can assume g(0) = 0. Write 4 = e?™ with 0 < a < 1. Since g(z + 2mni) = Ag(2),
the map z ~“g(z) is indeed single valued on D*. Furthermore, z' ~“g(z) is bounded
in a neighborhood of 0, hence g(z) =z“ 'h(z) where h is holomorphic in a
neighborhood of 0. Hence, dg/g is a well defined meromorphic one-form on D*,
and 0 is a removable singularity. The multi-valued g on D, is obtained from this
form by g(z) = exp (| dg/g).

Next notice that ¢, is a well defined holomorphic form on A. To see this let
x(u,v) be local conformal coordinates about a point p € E. Then x(u,v)=
So(x(u, v)) are local coordinates about S,(p) and X;(u, v) = x;(u, v) + t,, t, the
vertical translation component of S,. Hence,

~ 0X; 0%y 0x; 0x5

4?3(“,0)=”5;—13;—E;—150—=¢3(u,0)-

Denote ¢; by n. We claim 0 is a removable singularity of 7: the metric on 4 is given
by

1 1
ds == (le|+ = Jnls
2(Ig| Igl)l'”

(lg| is well defined on A), and since the metric is regular and complete, 7 # 0 on A,
and for y a path on A tending to 0, we have [, ds = c0. Since g(0) =0 and g is
continuous at 0, this implies |, |n|/|g| = co. Now there is an integer m such that
lg(z)| > |z|" for |z| small (|g(z)| is of the order |z|**" for 0<a <1 and n 21 an
integer, so m = 2n works). Then |n|/|g| < |n|/|z"|, hence |, ||/|z| = oo for every path
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y in D* tending to 0. This implies 0 is a removable singularity of #/z™, hence of y
too, [19].

We take as Weierstrass data on A4 the pair (dg/g, n); these forms are mero-
morphic at the puncture and A is obtained from this data by the formula g=
exp ({ dg/g)

1 g i g
=R — ==, — 4=, n.
x(z2) eJ(2g >’ 2g+ X m

In particular, we have proved:

THEOREM 7. Let M be a complete finite total curvature minimal surface in
R*/Sq. Then there exists a conformal compactification M of M, and meromorphic
forms (dg/g, n) on M, such that M is parametrized by

1 - d,
x(2) =Rej<zg-%,§§+%, l)n, where g = exp (Jf)

REMARK 3.1. H. Karcher has given many new examples of such M with this
data [11].

4. Some global properties of finite total curvature M in N = R3/S,

Let M be a properly embedded minimal surface in N of finite total curvature.
Since the lift of M to R? is orientable (since it is embedded) and M is invariant
under S,, S7 acts on the lifted surface in an orientation preserving manner. Hence,
after lifting to a two-sheeted covering space, we can assume M is orientable. We
know M is conformally equivalent to a compact Riemann surface M punctured at
a finite number of points. A neighborhood of a puncture in M is an embedded
annulus of finite total curvature, hence the previous section applies and (dg/g, n) is
meromorphic on M; in particular, each of the ends of M has a limiting normal
vector.

PROPOSITION 4.1. Let A be a finite total curvature embedded minimal annulus
(homeomorphic to S' x [0, ©0)) in R3/S,, with limiting normal vector g(0). Then A is
asymptotic to a plane, a catenoid, a flat annulus, or a helicoidal-catenoid type end.
This means:

(1) If 6 # 0, then g(0) is parallel to the axis of translation of Sy (the x,-axis) and

there are real numbers a, f§ such that (we assume A parametrized by D*)

x3(z) =a ln R + B arg(z) + O(1), where R =——1——(c + 0(1)),

|Z|q+a
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q an integer =1, 2na =0, and c a real constant. If o = =0, this is a planer
end; if f =0 and a # 0, a catenoid type end; if f #0, o =0, a helicoidal type
end. And if « #0, B #0, we call this a helicoidal-catenoid type end.

(i1) If 8 =0 and g(0) is not orthogonal to the axis of Sy, then the same statement
for x5(z) as in (i) holds, where x5 is the coordinate parallel to g(0). If g(0) is
orthogonal to the axis of Sy, then A is a Scherk type end, asymptotic to a flat
annulus.

DEFINITION 4.1. An annular end as in Proposition 4.1 will be called a
standard end.

Proof of Proposition 4.1. Assume first, that 6 # 0, so that the limiting normal
vector to A at infinity is parallel to the axis of translation of Sy, i.e. the x;-axis.
Then we can assume g(0) = 0, 4 is parametrized by the punctured disk D*. Let T,
be the torus tubular neighborhood of radius R, the radius R cylinder centered at the
x;-axis modulo S,. For R large, A4 intersects 07 transversally in a simple closed
curve A(R). We have x; = Re [ n and Toubiana’s lemma (more precisely: the proof
of Toubiana’s lemma [26]) implies that # has at most a pole of order one at 0, since
A(R) is embedded.

First suppose 7 is holomorphic at 0. Then x;(z) tends to a constant as z — 0, x5
is a well defined function on A4, and A lifts to an embedded annular end in R>. 4
is then a planar end, asymptotic to a horizontal plane.

Now suppose # has a pole of order one. Then

xp4n=Jg+0UL
g

1

pe+a

R= (c + O(1)),

where c is a real constant, ¢ an integer greater than or equal to one and a = 6/(2n).
Thus,

x;=olog R + f arg (z) + O(1),

for some real constants a, f. For R large, A(R) is approximately the curve
o -log R+ B -arg(z). This is a horizontal circle for f =0 and helix for g #0.
When f =0, 4 is a catenoid type end, x;=a -log R+ O(1). When f#0 A is a
helicoid type end with a logarithmic growth rate term; a (rather clumsy) appropri-
ate name for these ends is helicoidal-catenoid type end.

When 6 =0, so S, is translation by a vector v, the asymptotic behavior of 4 was
analyzed in Section 2. We chose as x;-axis the limiting normal to the end and we
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found A4 was also a planar, catenoid or helicoidal-catenoid type end. We remark,
that one also had x;=a -log R+ f - arg (z) + O(1) except when the translation
vector v was orthogonal to g(0) (this was the case ¢ = 1, a Scherk type end). [

Now we return to our globally embedded M in R?/S,. We will now prove that
all the ends of M are of the same type, with the same coefficients o and |B| of In R
and arg (z). First assume that the translation vector v is vertical. If the a’s of two
ends of M were distinct, then the distance between the lifted trace curves A(R) to
R?, would tend to oo as R — o0. So for some value of R, they would intersect on the
torus 0T,. Hence M would not be embedded. If two |B|’s were not the same, then
one would have helices of different slope on 0T, and they would intersect. Notice
the B’s can be of opposite sign and equal (as for the standard helicoid). As 0
increases from 0 to 2z, f > 0 yields a helix with x;-coordinate increasing and f <0
a helix going down, i.e., x; decreasing. If v is not vertical, let T denote the torus
tubular neighborhood of radius R around a translation axis of M. Note that if
o #0, v is not horizontal. The above discussion shows that if the a’s of two ends
of M were distinct, then the trace curves A(R) on 0T, would intersect for some
large values of R. If two |B|'s were not the same, then the trace curves are not
homotopic on 0T, /S, and so must intersect.

PROPOSITION 4.2. Let A,, ..., A, be the ends of M and (a, B;) the coefficients
of log R and arg (z) at each end. Then £7_, B, =0 and a = 0. In particular, there are
an even number of ends when B, #0 for all i.

Proof. Let My=M — \J!_,Int(A4,); M, is a compact surface with one
boundary component dA4; coming from each A4;. Consider the holomorphic form 5
on M,. We have:

0=_[ dr1=j n= >y, n=2mi )y c,
Mo oM,

i=1Joa, i—1

where at the end 4;, 7(z) = (¢;/z + O(1)) dz. Since x; = Re | #, we have o« = Re ()
and ;= —Im(c;). Hence, « =0 and Z}_, ;, =0. O

E. Toubiana proved that an embedded minimal two punctured sphere in R*/T,
T a translation, is a helicoid, provided the total curvature is finite [26]. The question
naturally arises whether this remains true in screw motion spaces. The answer is
affirmative.

THEOREM 8 (Toubiana’s theorem in R*/S,.). Let M be a complete embedded
minimal annulus of finite, nonzero, total curvature in R*/S,. Then M is a helicoid.
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Proof. M is conformally C — {0} and of finite total curvature. We have the
meromorphic data (dg/g, n) on the Riemann sphere, that parametrizes M. We write

n=gw,

g(z2)z 4= 5(—22, w(z)z=c 0°()
(2) z"

dz,

where 0 <a < 1, P and Q polynomials, relatively prime. Parametrize M so that the
normal vectors are vertical at the punctures. We can assume g(0) = 0, so Q(0) #0,
(we know the limiting normal vectors are vertical).

By Corollary 1 in [9], a nontotally geodesic properly embedded orientable
surface in a flat orientable three-manifold N must separate N, so since g(0) =0, we
have g(o0) = oo. That is, M N 0T consists of two embedded curves that separate
0Ty into 2 components, and the normal vector to M in N always points into
the same component of N — M. Now Toubiana’s lemma [26] implies that if
P(z) =z"P\(z), m20,thenn <m+1<p+1, p=deg P.

Consider the end of M, where g( ) = co. We rotate R* by the matrix

-1 0 0
0 1 0
0 0 -1

so that the (g, @) at the rotated end satisfy:

™~ 1 ~ o
=Ll s g =g
w g
Then
P2
8(2)z¢ = %2, a(z)z 7 *=c (2) dz,
P(2) z"

and oo is a zero of order deg P — deg Q of g. Also (P%(z)/z") dz has a pole at oo of
order 2 - deg P + 2 —n, so by Toubiana’s lemma:

2-degP+2—n<degP —degQ +1.
Thus,

degP+degQ+1<n<m+1<degP +1.
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Hence deg Q =0 and P(z) =c¢,z”, m =n — 1, ¢, € C. This gives

dz
z7%((z)=2z""", o= o

which is a helicoid. ]

5. A multi-valued Picard’s Theorem

We now prove the Theorem 6 stated in Section 3. The length-area inequality will
be applied on the one hand to the circles of an annulus and also to the radial lines
of an annulus.

Let D’ be the punctured disk D*, slit along 8 = 0. Suppose g is meromorphic on
D’ and g(r, 0) = Ag(r, 2n) for 0 <r < 1. Let C(r) = {z € D" | |z| = r}, and I(r) = the
length of g(C(r)). Then

2n

) = j " |de(T,)| db =1 J J(g(2)) db,

0

where T, = r(cos 0, sin ), and J(g) is the Jacobian of g.
We have: I(r)?/r* < (3" J(g) dB) - (2n), so integrating with respect to rdr we
obtain:

r l(’.)Z r (2=
J’ dr <2n J‘ f J(g) rdrdf <2n(Area(g(D"))) < .

o F o Jo

Hence there exists a sequence r, =0 such that /(r,) = 0. Let B(n) be the curve
g(C(r,)). First consider the case A = 1 (this means g is single valued on D*) so each
B(n) 1s a closed curve, and /(B(n)) -0 as n — co.

We show that all the B(n) accumulate at the same point. This shows g extends
continuously to zero since by the open mapping property of g, the annulus between
C(r,) and C(r, . ) gets sent close to this accumulation point as well (otherwise the
image of this annulus would cover almost the whole sphere).

Assume, on the contrary, that B(n,;) accumulates at p and B(n,; , ,) accumulates
at g, with p # ¢. Then the annulus between C(r(n,,)) and C(r(n,;, ,)) gets sent to the
region of the sphere between B(n,;) and B(n,,, ,), by the open mapping property of
g. It follows that the spherical image of this annulus has area at least 2n. Since this
holds for an infinite sequence of annuli, tending to 0, the area of the image of g
would be infinite. Thus p = ¢ and the theorem is proved when 4 = 1.
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Now suppose 4 # 1. The endpoints of B(n) differ by multiplication by A and
since the lengths of the B(n) tend to zero, the only possible accumulation points of
the B(n) are 0 and oo.

First suppose the B(n) accumulate at both 0 and co. We will show this is
impossible by showing the image of D’ by g would have infinite area. So assume the
sequence r, >r,>"-:->r, >, satisfies: B(n,;) tends to 0, B(n,;, ) tends to o
and r; - 0. We will derive a contradiction by showing the image by g of the annular
region between C(r,;) and C(r,;, ;) has definite spherical area, thus the area of the
image of g would be infinite.

For notational convenience, let r, =ry, r,=ry ., C, = C(ry), C,=C(ry, ),
and let B, = g(C,) be a short curve near 0 and B, = g(C,) be a short curve near .
Let F be the annulus on the Riemann sphere S? bounded by the tropic of cancer
(=F,) and the tropic of capricorn (=F,). B, is in the disk on S? below F, and B,
in the disk above F,.

For each 6, 0<60 <2n, let r (0), r,(6) be chosen in [r,,r,] so that for
r@ <r <r,(0), g(r,0) e F, and g(r,(0), 6) € F,, g(ry(6),0) € F,. This is possible
since g(r,, 0) € B, and g(r,, 0) € B,.

Let ay(r) = r(cos 6, sin ) and L, = length(g(ay)) for r,(0) <r <r,(6). We have

> n/4 for each 0.

Now do a length-area calculation:

ry () r2(6) ry(6)
L9=f |dg(cx,’,)|dr=j J(g) dr = \/\/der

1(0) r1(60) r1(0)

r2(6) ro(6) dr ra(6)
L < (j J(g)r dr) (j —) o (J J(Q)r dr> x K,
r1(0) r@ T r1(6)
2@) (1o s snee n (275 ) <1 (2)
K =sup In the sup exists since In <In{-=]])
o (r,w) P 1.(0) r
Now integrate with respect to 0:

2n 2n (*ra(0)
j L2d0 <K j j J(g)r dr df
0 0 r

1(0)
< K Area(g(Dy)),

where Dy is the slit annulus between C(r,) and C(r,). Since L, = n/4, this yields

3

T
T < Area(g(Dy)).
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Now our previous length-area calculation for I, = length(g(|z| = r)) yielded:

l_ 2 2n
(_') < 2n J J(g) db.
r 0

Hence for 0 fixed:

r2(6) l 2 r>(0) 2n
j (1) rdr <2n J. J J(g)r dr di < 2m - Area(g(Dy)).

o) \F 1o Jo

Now, for r,(0) <r <r,(0), g(r,0) € F, so there exists a constant ¢ such that
I, 2 ¢ >0 (the endpoints of g(|z| =r) differ by multiplication by A, so in F their
distance is uniformly bounded from below). Thus the last integral inequality yields

c?In (—:—?%g%) < 21 - Area(g(Dy)).

This holds for all 6 so:
c’K <2n - Area(g(Dy)).
Multiply this with the inequality n*/8K < Area(g(Dy)), to get:

Area(g(D})) = ==
and this contradicts our finite area hypothesis and completes the proof of Theorem
6 in the case that the B(n) accumulate at both 0 and oo.

It remains to consider the case when all the B(n) accumulate at one of the
points, 0 say. If g is not continuous at 0, then there is a sequence x, —»0 with
g(x,) »¢q, and g #0. Each x, is in an annulus A4,, bounded by circles C(r,),
C(r, ), which get sent by g to short curves near 0. We can suppose g is on the
boundary of a disk E (which we take to be of radius one for convenience) centered
at 0, and all the circles in 04, get sent by g into the disk centered at 0 of radius 3.
Let F be the annulus in E bounded by the circle F,, of radius 3, and the circle F,
of radius 3.

Fix an annulus 4, and for notational convenience let r, be its inner radius and
r, its outer radius, C, = C(r,), C, = C(r,), B, = g(C,), B, =g(C,). Let g be defined
on A, slit along 6 = 6,. Notice that if g(|z| = r) is contained in a disk of radius R
centered at 0, then any other determination of the multi-valued g has the same
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property, since two determinations differ by multiplication by A", for some m, and
|A|=1.

Now x, € A, has polar coordinates (r(x,), 6(x,)). Recall that g(x,) converges to
g, so we can suppose g(x,) is not in the disk D(3), of radius 3, centered at 0.
Consider the image by g of the radial segment «(6(x,)) in A4, joining (r,, 6(x,)) to
(72, 6(x,)). Since the extremities of this segment get sent to points in D(3), and

g(x,) ¢ D(3), there are r,(6(x,)), r2(8(x,)), such that:
ri <ri(0(x,)) <ry(0(x,)) <rs,
g(r2(0,), 0(x,)) € F5,  g(ri(0(x,)), 0(x,)) € Fy,
and
g(r.0(x,)) e F,  for r\(0(x,)) <r <ry(6(x,)).

Observe now, that for any 6 between 6, and 6, + 2n, the same property holds,
i.e., there are r,(6), r,(0) such that:

ri<ri(0) <ry(0) <r,, g(ry(0),9) e F,, g(ry(0),0) € F,,
and
g(r,0) e F for r (0) <r < r,(6).

For if this failed to hold, then for some 6, the image by g of the radial segment
a(r) = r(cos 0, sin 0), r, <r <r,, would be contained entirely in D). Then let D,
be the disk obtained from A4, by cutting 4, along «,, and let g, be a single-valued
branch of g on D,. The boundary of D, gets sent into D(3) by hypothesis, so D, gets
sent into D(Z) or S2— D(3) is in the image of D, by the open mapping theorem. In
the latter case, the image has area at least 2n. In the former case, we conclude all
the determinations of g on A, get sent into D(3) and this contradicts g(x,) ¢ D().
So for each 0, we have r,(0), r,(0) as desired.

Now do the two length-area calculations, just as in the case when 0 and oo were
accumulation points of the B(n). The same reasoning shows there is a constant
C > 0 such that Area(g(A,)) = C for all n. This completes the proof of Theorem 6.

O

6. The trapping lemma for embedded minimal annuli

Before stating the Trapping Lemma, we prove a topological property for
properly embedded surfaces in N = R3/S,.
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LEMMA 6.1. Let M be a properly embedded surface in N that Eeparates N and
has at least one annular end. Then there is a finite covering p: N — N such that
p (M) has more than one end.

REMARK 6.1. If M is an orientable minimal surface, not a plane, then M
separates N (c.f. Corollary 1 in [9]).

Proof. Let A be an annular end of M. If n,(4) — n,(N) is not an isomorphism,
then one can clearly lift M to a covering space so that the lifted surface has more
than one end. So suppose it is an isomorphism. Choose R so that 0T intersects A
transversally; 07 is the torus in N which is all points a distance R from the x;-axis.
Also suppose 04 < Tg. Since 0A < T, and the end of A4 lies outside T, A N30T,
contains an odd number of simple closed curves, each a generator of n,(07T%), and
perhaps some null homotopic cycles. In particular, there is a cycle f on 0T whose
intersection number with A4 is odd. Since M separates N, the intersection number of
p and M is zero. Thus M must have other ends. O

LEMMA 6.2 (THE TRAPPING LEMMA). Let T, denote the image in
N =R3/S, of the solid vertical cylinder of radius R in R® around the x;-axis.

Suppose A is an annular end of a properly embedded minimal surface in N with
more than one end. Then for some R > 0, there exist two disjoint standard ends E,, E,
(hence of the same type, see Definition 4.1) that satisfy:

(1) (E\WE,)NTgr=0E,U0E, < 0Tg;

(2) E,VE, separates N — Ty into 2 components C,, C;

(3) A has an annular end A" < A with A"’ < C, or A" < C,.

Proof. If A has finite total curvature, we have shown in Proposition 4.1 that A4
is asymptotic to a standard end E. A vertical translation is well defined in N and so
E, and E, can be obtained by small vertical (up and down) translations of E. Assume
now that A4 has infinite total curvature. By Remark 6.1, M separates N into two
components whose closures we denote by C and C’. Since 04 is not homologous to
zero in M, it can not be homologous to zero (with Z,-coefficients) in both C and
C’ (since H,(N) =0). Assume that 04 represents a nontrivial class in C.

By [6], a stable minimal surface with compact boundary in a flat orientable
three-manifold has finite total curvature. In particular 4 contains a compact
subdomain that is unstable. After replacing 4 by a subend that is disjoint from this
unstable compact domain, we may assume that 04 disconnects JC into two
unstable minimal surfaces.

Choose an exhaustion F, < F,--- of A by smooth compact subannuli with
0A < 0F,. Since dC has nonnegative mean curvature, every smooth 1-cycle I' in C
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that bounds in C is the boundary of an embedded least-area surface in C (see
Theorem 1 in [18] and also [24]). In particular OF; is the boundary of a smooth
embedded surface X, in C that is least area and Z,-homologous to F; rel(0F;). Since
C is orientable and F,uZX, is a Z,-boundary in C, X, is orientable. The usual
compactness and regularity theorems for least-area surfaces (see [24]) imply that a
subsequence of the X, converge to a least-area orientable surface ¥ < C with
02 = 0A. Since X is stable and both components of 0C — 04 are unstable, all three
are different so the maximum principle implies that X ndC = 02.

The surface X separates C into two components; let C be the component
containing A. Let 4 be a proper annular subend of 4. As for 4 in C solve the
Plateau problem for 04 in C to obtain a stable minimal surface £ in € with
boundary d4. Clearly £ is disjoint from X. Since Z and £ are stable, they have finite
total curvature. Let E, E; be annular ends of X, £, respectively. Since E; and E,
are standard and disjoint, Proposition 4.1 implies that for R large,
E,=FE;n(N —Int(Ty)) for i =1, 2, are disjoint standard ends. It follows directly
from the asymptotic properties of standard ends in N that E, U E, separates N — T
into two components C, and C,. Since A4 is proper and disjoint from E, U E,, it has
an annular end representative A’ with 4" = C, or A’ = C,. This completes the proof
of the lemma. O

7. Trapped minimal annuli in a wedge

Throughout this section A4 will denote a properly embedded minimal annulus in
N = R*/T where T is a vertical translation. Let S be the flat vertical annulus with
boundary whose inverse image in R? is a vertical half plane with boundary the
x;-axis. Let y = 0§ be the quotient of the x;-axis in N. A wedge is a region between
two such vertical annuli and whose interior angle is less than =.

LEMMA 7.1. If A is contained in a wedge, then A has finite total curvature.

Proof. Let 4 denote a wedge and suppose 4 < 4. We will prove that the Gauss
map on a subend of 4 misses a curve of values.

Consider a family F,, 0 < t < oo of parallel vertical flat annuli of distance ¢ from
y (the image of the x;-axis in N) and whose intersection with 4 gives rise to a foliation
of 4 — y by parallel compact flat annuli. Let 2 : 4 - R* denote the level set function
of this foliation and note that / | 4 is a proper harmonic function on 4. It is known
(see for example Lemma 1 in [ 16]) that 4 contains an end 4’ that can be parametrized
by D*={zeC|0<|z|<1}andthath | D* = K In |z| + K’ for some constants K and
K’. In particular h | D* has no critical points, so the foliation F, is always transverse
to A’. Hence the normal vector field to F, is never normal to A4".
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Note that the Gauss map of A4’ and its stereographic projection to Cu{o0}
gives rise to a holomorphic map g : D* - Cu {oo} that misses the 2 normal vectors
of F,. Since the integral of the Gaussian curvature on 4’ equals the negative of the
area (counted with multiplicity) of the Gauss map of 4’, Picard’s theorem shows
that at most 2 values of g can be taken finitely often. However, by changing the
angle of F, slightly, the above argument shows that 4’ has an end 4" such that
g|A” omits 2 new values. As we already observed this possibility contradicts
Picard’s theorem and the infinite total curvature assumption on A. O

LEMMA 7.2. If S is a vertical annulus in N and AnS = J, then A has finite
total curvature.

Proof. Choose S, S, so that SUS,, SuUS,, S,US, are congruent wedges (cut
a pie in three equal pieces). Since 4 is disjoint from S, we can translate 4 away from
y in the direction parallel to S, until 04 is contained in the interior of the wedge W
whose boundary is S, U S,. We can also assume that A4 intersects 0 W transversally.

We will show that 4 S, or A S, has a noncompact component. If A4 is
disjoint from 0W, then 4 < W and Lemma 7.1 shows A4 has finite total curvature.
Hence 4 must intersect one of the vertical faces, S, or S,, of 0W. Suppose 4 N S,
is nonempty. If S, "4 has more than one component that is compact, there would
be a compact domain X = 4 with 02 < §,. But then there would be an interior
point on X of maximal distance from the complete vertical annulus containing S,.
The existence of such a point on X contradicts the maximum principle. Thus, S; " A4
consists of at most one closed curve and this curve does not bound a disk on 4. On
the other hand if S;~A4 consists of a single compact component that is a
homotopically nontrivial curve, then the end of A4 with boundary this curve is
contained in one of the convex wedges which is impossible by Lemma 7.1. Hence
we are left with the possibility that 4 1S, has a noncompact component.

Consider any noncompact proper curve in A nS,. This curve separates 4 into
two components, C,, C,, where C, is simply connected. Our earlier remarks show
that C,n(S,uS,) contains no compact components. We now check that C,
intersects W or one of the adjacent wedges W, in a component C that is simply
connected and has its entire boundary in S, or in S,. This statement is clear if
C,nS,= . Butif C;n S, # J, then C, intersects the other wedge W,. In this case
any component C of C,n W, suffices.

The following assertion proves that C can not exist; a contradiction from which
the lemma follows.

ASSERTION 7.1. Suppose X is a wedge in N. If C is a properly embedded simply
connected minimal surface in X with boundary in the interior of one of the faces of 0X,
then C is contained in 0X.
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REMARK 7.1. One should note that a properly embedded simply connected
minimal surface C in a wedge X in R® rather than in N whose boundary is in the
interior of one of the faces of 4., is not in general contained in 0X. For example,
an end of one of Scherk’s surfaces, asymptotic to a half plane, can be chosen in a
wedge with its boundary in the boundary of the wedge.

Proof of Assertion 7.1. Let F, and F, be the faces of X and assume F,nF, =y.
Suppose 0C < F, and C is not contained in F,. If F; is a vertical annulus in X with
0F;=v and F;nC = (J, then we can replace X by the smaller wedge with faces
F,, F,. This replacement shows that we may assume that X is minimal in the sense
that if F'is a flat annulus in X with 0F =y and FnC = ¢, then F = F,. If the angle
between F, and F, is greater than n/4, then choose an F; in X that is transverse to
C and that makes an angle at most n/4 with F,. In this case replace C by a simply
connected component in the subwedge of X bounded by F,u F;. Clearly to derive
a contradiction it suffices to prove that this component is contained in the flat
annulus Fj, since F; was chosen to be transverse to C. Thus we may assume that the
angle between F, and F, is less than n/4.

For visual convenience we now change coordinates so that y corresponds to the
image of the x,-axis, F, is horizontal with nonnegative x,-coordinate and F, is a
graph over F,. If C were a graph over F,, then it is not difficult to prove that C is
contained in F,. (When C is a graph we shall find a curve on C, which is a graph
over part of y of slope less than one and rising arbitrarily high. Since the length of
v is bounded, this is impossible.) We essentially reduce the general case to this graph
case. (See Figure 1.)

Figure 1



The geometry of periodic minimal surfaces 557

Arbitrarily choose a point p € dC. Let V, denote the compact vertical annulus in
X whose x,-coordinate is t. Suppose ¢ is large enough so that the x,-coordinate of
p is less than ¢ and suppose that V, is transverse to C. If V, n C contained a simple
closed curve, then this curve would bound a disk in C. Then this disk would be
contained in V, by the maximum principle, an impossibility. Hence V, n C consists
of arcs whose boundary points lie in F,. Let E, « C denote the compact disk
component of C — V, that contains p. E, separates the compact region of X
bounded by V, into two components where we denote by W, the closure of the
component containing F,. The Geometric Dehn’s Lemma in [18] implies that OF, is
the boundary of an embedded disk X, = W, of least area in W,. (If a Jordan curve
on the boundary of a mean-convex domain is homotopically trivial in the domain,
then it spans an embedded minimal disk.)

REMARK 7.2. The maximum principle implies that either X, equals E, or
2. NnoW,=0E, If X, # 0W,, then Z, U E, is an embedded sphere in W, which must
bound a ball in W,. In particular, any arc in W that joins a point of E, to F, must
intersect 2,. We will have further use of this remark.

Choose ¢, such that V,, is transverse to C and V, is transverse to X,, where ¢
is approximately ¢,. Let D, =2, n W, In this way, for most values of f, we
produce a collection of disks D, that are stable in W,.

Let 0 denote the angle between F, and F,. For , 0 <n < 0, let F, denote the flat
annulus in W with 0F, =y and such that the angle between F, and F, is . By our
earlier choice of F,, F, nC # J for n < 6. Let W(#n) denote the wedge between F,
and F,.

We now apply the curvature estimates of Schoen [22]: the Gaussian curvature
at a point on a stable orientable minimal surface 2 in a flat three-manifold is
bounded from above in absolute value by c/d? where ¢ is a constant independent of
2 and d is the intrinsic distance from the point to 2. We will now show that these
curvature estimates imply: For all 6 >0 there exists a positive &) such that if
n < &(0) and X is a stable orientable minimal surface in W with boundary in F,, then
the normal line L, to X at q € X N W(n) makes an angle less than é from the normal
line to F,. (This means that X n W(n) is almost parallel to F,.)

We now give the proof of the above implication. Suppose that the implication
were false. Then there exists a 6 >0, a positive sequence of numbers n; =0, and
sequence of stable orientable minimal surfaces 2, in W, 0%, < F, with points
g, € 2, W(n;) such that the angle L, makes with the normal to F, is always
greater than 6. Similar statements hold by lifting everything to R® so that the
inverse image of W is a wedge between two half planes. We will use the same
notation for the lifted surfaces and subsets in R?. Since we now consider W(#) to be
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contained in R?, it is invariant under homothety. After a homothety, we may
assume that g, X; has x,-coordinate equal to 1. Since #;, — 0, the distance between
g; and F, goes to zero as i —» oo and distance of ¢; to 0X, is greater than a fixed
constant. The second fundamental form of ZX; is uniformly bounded in geodesic
coordinate systems of some fixed radius by Schoen’s estimates, and we can choose
these coordinate systems to be graphs. Since g; is converging to F, and X, is disjoint
from F,, it is evident that the angle between L, and the normal vector to F, is
converging to zero. But the normal vector of F, is converging to the normal vector
of F,. This contradicts the assumption that the angle between L, and the normal
line of F, is greater than ¢ for all i. This contradiction proves the implication.
Henceforth, we will work in N instead of R>.

Since 0%,, = FyuV,, and 1t is approximately 7, these same curvature estimates
imply that for all 6 >0 there exists a positive &) such that if n <e(d) and
q € D,n W(n), then the angle between L, and the normal line to F, is less than .

Now choose ¢ =n/4 and fix 5, n <&(d). Recall CnF, # ¢ for all T <. If
C N W(n) stays a bounded distance from F,, then C n W(n/2) is compact which is
impossible by the maximum principle. Hence we can pick a point g € C n W(x) such
that the distance of g to F, is greater than the length of y. Choose ¢ large enough
so that g € E,. In particular g € E,,. Let / denote the line segment joining g to F,
and that is orthogonal to F,. By Remark 7.2, / must intersect D, in a point g, whose
distance from F, is greater than the length of 7.

Let H be the flat annulus in W(#n) containing / and whose boundary consists of”
a circle on F, parallel to y and a circle on F,. We can assume that H is transverse
to D,. Let a be the component of Hn D, that contains the point ¢,. Change
coordinates in W(n) (by rotation around y) so that F, is horizontal and H is
vertical. Since 0 < n/4, the normal line to D, along o makes an angle of less than
n/4 with the (new) vertical. Hence the slope of the tangent line along « is less than
one. If « were a closed curve, then it would bound a disk on D, and this disk would
be contained in H by the maximum principle, an impossibility. Hence, a is an arc
with two boundary points on F,. Since « is embedded, it is a graph over the circle
H N F,. Since the slope of « is less than I, its maximum height can be at most the
length of H n F, which equals the length of y. But g, € « has height greater than the
length of y. This contradiction completes the proof of Assertion 7.1. As remarked
before, the assertion proves Lemma 7.2. 0

LEMMA 7.3. If A is trapped between standard ends that are Scherk type ends,
then A has finite total curvature.

Proof. By Lemma 7.2 we need only show that A is disjoint from some vertical
flat annulus S. Suppose that A4 is trapped between standard ends that are Scherk
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type ends E,, E,. In this case E, is asymptotic to a flat vertical annulus S, and E,
is asymptotic to a flat vertical annulus S,. If S, and S, are disjoint, then we can
clearly find the desired annulus S, so we must show that S, and §, are disjoint.
Assume on the contrary that S, NS, # &J. Since vertical flat annuli in N intersect in
a compact set aor the intersection contains a noncompact subannulus, we can take
8y =8,

At this point, we could appeal to the maximum principle at infinity given in [17],
which implies £, and F, can not be asymptotic at infinity and be disjoint. However,
a direct proof is rather easy here so we proceed with the proof.

Since E,, E, are standard ends, we can choose them, by replacing them by
subends, so that they can be expressed as graphs over S, tending to zero. Without
loss of generality we may assume that S, is the flat vertical annulus whose inverse
image in R? is the half plane with boundary the x;-axis and containing the positive
x,-axis. Assume that the x,-coordinate of E, is greater than the x,-coordinate of
E,. Choose a small ¢ >0 and ¢ < dist(0E,, 0E,), and so that E{=E, +(—¢,0,0)
intersects E, transversely. By the classical maximum principle, E;n E, does not
contain a component that bounds a compact subdomain of E] or of E,. Hence
there are annular subends £, c E; — E, and E, c E, — E, with common boundary
curve y. Let 7, denote the inward pointing unit conormal vector field along the
boundary of the surface E,. Since the x,-coordinate of E, is less than the
x,-coordinate of E,, grad(x,|dE)) -7, <grad(x, |0E,) - fi,. Integrating this in-
equality, we obtain inequalities on the fluxes of grad(x,) across the common
boundary of E, and E,:

a, = JE grad(x, |E~l) “H, < a, =J grad(x, jE~2) Ay,
(‘} 1

oE,

Since the coordinate functions of a minimal surface in R*/T are harmonic, the
divergence theorem implies that the flux of a harmonic function is constant on
homologous cycles. Now by Proposition 4.1, grad(x, |El) converges uniformly to
zero as x, tends to infinity. The number a, equals the flux of x, across a cycle on
E, defined by x, equals constant, the constant arbitrarily large. Since these cycles
are of bounded length, it follows that a, (and a, by the same reasoning) is zero, a
contradiction. O

8. The proof of Theorem 1

Suppose M is a properly embedded minimal surface in a complete flat non-sim-
ply connected three-manifold N and suppose that M has finite topology. We shall
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prove that M has finite total curvature. Since N is finitely covered by a flat
three-torus, T x R, or by R?/S,, we may assume, after lifting M to a covering space,
that Nis T x R or R?/S,; where 8 = 0 or 0 is irrational (clearly M is compact if one
is in a flat three-torus). Now it suffices to prove each annular end A4 has finite total
curvature. The theorem in T x R can be reduced to the theorem in R3/S, since if 4
is an annular end in T x R, then 7,(A4) is contained in an infinite cyclic subgroup
of 7,(T). Hence, one can lift 4 to a covering space (S' x R) x R of T x R so that
the lifted 4 is an annular end of a properly embedded minimal surface M that
covers M.

By Remark 6.1, Lemma 6.1, and the Trapping Lemma, we can assume (after
passing to a finite covering) that each annular end of M (or M) is trapped between
two standard ends in N. The Trapping Lemma (Lemma 6.2) shows that we may
assume that A is trapped between 2 standard ends that are helicoidal, planar or are
Scherk type ends. Note that Scherk ends can only occur for 6 rational. Lemma 7.3
shows that Theorem 1 is true when A is trapped between Scherk type ends.

To complete the proof of Theorem 1, we must prove that an embedded annular
end A that is trapped between two helicoidal (perhaps with logarithmic growth) or
planar standard ends, E and D, is of finite total curvature.

Assume the limiting normal vector to E is vertical and FE is never vertical. We
will show that there exists an annular subend A’ of A that never has a vertical
tangent plane. Then a lifting of 4’ to R? has the same property so the lifting is
stable (its Gaussian image is contained in a hemisphere) Hence A is stable also and
thus has finite total curvature. The construction of 4’ will involve interesting
geometric constructions and occupy all of Section 8.

Let B = {(x,, x,) | x} + x3 2> 1} and i : B — E be a parametrization of E, sending
the circles of radius R in B to En 0Ty, i.e., the helices of E for large R. We work
in the manifold W =B x R with the flat metric induced by the submersion:
(X1, X3, 1) = i(x,, x;) +(0,0,¢) € N.

Observe that this metric on W is asymptotic to the product flat metric (a flat
metric on B with R) since the metric on the end E is asymptotically flat. Notice
that the region trapping A in N, i.e., the region bounded by E, D and a large
compact cylinder (parallel to the period vector v) lifts isometrically to W and A4 is
in this region as well. Clearly vertical lines in N correspond to vertical lines in W,
hence it suffices to find a never vertical subannulus in the lifting of 4 to W.
Henceforth, we shall work in W. For simplicity, assume that the trapping region
lifts to a subdomain of B x [0, 1] with E lifting to B x {0}. Let B, W be
B x {t}.

PROPOSITION 8.1. There exists a compact subset K, of W(1) = B x [0, 1] such
that for any other compact subset K, containing K,, the following statement holds:
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For every x e W(1), sufficiently far from K,, and for every vertical plane P, at x,
there is a foliation F of a neighborhood of W(1) — K,, such that:
(1) the leaves of F are compact minimal annuli F,, 0 < t < oo, with one boundary
component in By, and the other boundary component in Bj;
(2) x € F, and the tangent plane of F, at x is P_;
(3) FieW(l) — K;;
(4) F,<K,.

REMARK 8.1. In fact K, will be the compact region of W(1) bounded by a
stable minimal annulus whose boundary consists of a circle of radius R in B, and
its parallel translate to B,, for some large R. Outside of some larger compact set,
the leaves of # will be compact annuli with boundary; circles of larger radius, one
in B, and the other its parallel translate to B,.

Before proving Proposition 8.1, we show why it implies 4 contains a subannulus
that is never vertical.

Let & : W(1) —[0, c0) be a proper function. Let 7, be a regular value of 4 such
that K,uéd < h '[0, T,]. Choose T, > T, a regular value, such that the compo-
nent of A nh'[0, T,] that contains 04, also contains A nh~'[0, T}]. Let K,=
h~'[0, T,]. Note that any compact subdomain of 4 whose boundary is contained in
W(1) — K,, is disjoint from K.

Now apply Proposition 8.1 to K, and K,. If 4 were vertical at points
arbitrarily far from 0A, then there is an x € 4 sufficiently far from 04 to which
we apply the proposition. Let % be the foliation, F, the minimal annulus in
W(1l) — K, such that F, is tangent to 4 at x. Then A N F, is a compact singular one
cycle in A (a singularity at x) and 4 — F, contains a component 4 with compact
closure, with boundary in F, = W(1) — K,. By our choice of K, K,, we have 4
disjoint from K,. Now there is a largest (or smallest) value ¢ such that AN F, is
nonempty. At such a point 4 is on one side of F, and this contradicts the maximum
principle.

Hence it remains to prove Proposition 8.1. This will be carried out in a series of
lemmas.

Let C be a catenoid in R*® with waist circle at height ¢ =3 and let S,, S, be
the circles of C at heights 0 and 1 respectively; each of radius R,. Assume R,
is sufficiently large so that the angle that the normal vector to C, along
Sy S,, makes with the horizontal is less than n/8. We will work in regions of W
where the vertical cylinder of height three and radius 3R, isometrically embeds in
R3. Then the catenoid C isometrically embeds in this region of W as a vertical stable
catenoid.
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Let L, be a smooth simple closed curve in B, and L, the vertical translate of L,
to B,. For each x € L,, we consider the two catenoids C,, parallel translations of
C, which contain x and x + (0, 0, 1) in their boundary and whose tangent line y, to
0C, at x is the horizontal projection of the tangent line of L,, [cf. Figure 2].

Let /. be the horizontal line of length 2R,, centered at x and normal to y, at x.
Let W, be the vertical strip over /. of height one; W, is a rectangle of base /, and
side one.

Let B, = W.nC,; B, is a Jordan curve, smooth except at x and x + (0, 0, 1). B,
consists of two meridian curves on C, (one on each catenoid of C,) joining x to
x + (0,0, 1). Clearly . bounds a disk in W,.

Now define the torus barrier 7' = T(L,) to be U, ., B.. In general, T is neither
embedded nor a barrier, however, if it is, then we have the following lemma.

LEMMA 8.1. Suppose the torus barrier of L, is embedded and mean convex (i.e.
the mean curvature vector of T — (Lo L,) points into the solid torus S bounded by
T). Then Ly L, is the boundary of a stable embedded minimal annulus in S, and any
embedded minimal annulus in S with boundary Ly L, is stable.

REMARK 8.2. We will use this lemma to construct the foliation of Proposition
8.1. We will construct a foliation of B, by simple closed curves Ly(s), 1 <s < 00,
and the vertical translation L,(s) will foliate B,. Lemma 8.1 will be used to show
that Ly(s) uL,(s) bounds a unique stable minimal annulus and these annuli will
foliate a region of W. The difficulty in this construction is to appropriately
construct the foliation Ly(s) in order to obtain a vertical tangent plane of the
annulus 4 as defined in Proposition 8.1.

Proof. The angle of S — T along L,u L, is always less than © so by [18], 45 is
an appropriate barrier for solving the Plateau problem in S. Let X be a least-area

Figure 2
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annulus with 02 = L,u L, (L, is homotopic to L, in S and L, is not null homotopic
in S). By the Geometric Dehn’s Lemma [18], X is embedded.

[t remains now to show an embedded minimal annulus X in S with boundary
L,uU L, is stable. Since the vertical makes sense in W, the angle the normal vector
to X makes with (0,0, 1) is a well defined function on X, hence log |g| is a well
defined harmonic map on X (where 2 is not horizontal); g the Gauss map. Notice
that |g| is well defined even though g is multi-valued.

Now if 2 is never horizontal, then the angle between the normal lines to 2 and
the vertical vary between 37/8 and 57/8. To see this, notice that the normal lines
along 0% have this property because X is between two catenoids with normal lines
making angles with the horizontal at most n/8. Also log |g| is harmonic on X, hence
the maximum and minimum values are assumed on 02.

Let £ be a connected lifting of X to R? and let D = X be a compact domain. The
Gauss map of £ (hence of D as well) takes its values in a band about the equator
whose maximum angle with the equator is n/8. In particular, the area of the
spherical image of D (not counted with multiplicity) is less than 2n. By the theorem
of Barbosa—Do Carmo, D is stable, hence £ too [1]. Since £ covers X, X is stable
as well (see [4] or [7]).

It remains to show X is never horizontal. The proof will use a winding number
argument. Let S be the universal covering space of S and X c § the lifting of £. On
2 we have a well defined meromorphic Gauss map g. Let o be an embedded arc on
2 joining a point x € [, to x + (0,0, 1) € L, disjoint from the zeros and poles of
g. Let ¢ be a nontrivial covering transformation of X. Now consider the disk D
bounded by a, o(x), an arc [, on L, and its parallel arc /, on L,. We claim that for
any y € L,, g(y) and g(y + (0, 0, 1)) have arguments whose difference is less than =.
To see this, observe that £ separates S into two components and the normal vector
of £ points into the same component. Call this component B and let M = 0B — .
At y e I,, we have a horizontal unit vector v( p) that is normal to L, at y and the
scalar product of v(y) with the exterior normal (to B) of M at y is positive. Notice
that ¢(y + (0,0, 1)) is the parallel translation of v(y) to y + (0,0, 1).

The angle between £ and M at y is less than n/8 and g(y) and v(y) are both
orthogonal to I, so the scalar product of g(y) and v(y) is positive. Similarly
g(y+1(0,0,1)) and v(y) have a positive scalar product. Hence g(y) and
g(v +(0, 0, 1)) lie in the same open hemisphere so their arguments (thought of as
complex numbers after stereographic projection) differ by at most 7.

The Gauss map g is never 0 or oo on dD. Observe that g restricted to dD has
degree zero, thought of as a map into C* = C — {0}. To see this one calculates the
winding number. For z € a, g(z) and g(a(2)) differ by rotation by a fixed 6, (0, is a
multiple of the angle of the flat structure, R*/Sy, on W). So the total change of the
argument arising by traversing « and then —a(a) is zero. For y € [, the argument
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of g(y) and g(y + (0,0, 1)) differ by less than n. Hence the total change of
argument as one traverses /, and then —/, is less than n. Consequently the total
winding number (in absolute value) is less than 7, hence zero. Now g is conformal
so every value has positive degree. Hence g misses 0 and oo and X2 is never
horizontal. This completes the proof of Lemma 8.1. ]

In the following lemma we will give a natural condition on a curve L,c B,
which ensures that the torus barrier is, in fact, embedded.

Note that for each x € W sufficiently far from 0W, the vertical cylinder V, of
radius 3R,, centered at the vertical line through x, is embedded in W.

Let D. = V. be the horizontal disk of radius 3R, centered at x. (Note that D,
is not part of a B,.)

LEMMA 8.2. Let L, < B, be a smooth closed curve. For x € Ly, suppose the
vertical projection I' . of LoV, to D satisfies: the disks bounded by the circles in D,
of radius R, and tangent to I' . at x (one on each side of I'.), intersect I, at x only.
Then the torus barrier of L, is embedded.

Proof. For each x € L,, let [, denote the normal line to I', at x, centered at x
and of length 2R,. Observe that if x # y, x, y € L,, then the vertical strips W, and
W, over [, and /, are disjoint. For if they intersect, then /, = V', and the vertical
projection /, of /, onto D, must intersect /, at a point z. Let a and b be the points
of /., and l~, in Figure 3.

Let IT denote orthogonal projection onto D,. Assuming d(z, b) < d(z, a),
we have: d(a,z)+d(z, II(y)) =R, d(b,II(y)) <db,z)+d(z II(y)), hence
d(b, II(y)) < R,. But then II(y) is in the disk of radius R, centered at » and
II( y) e I'.. This contradicts our hypothesis and hence the vertical strips over the /,
are pairwise disjoint.

Now consider the construction of our torus barrier using the catenoids C,, for
x € L,. Each C, (recall there are two catenoids in C,) intersects the vertical strip

Figure 3



The geometry of periodic minimal surfaces 565

over [, in an embedded curve ., that bounds a disk in this strip. The union of these
curves is the embedded torus barrier. O

REMARK 8.3. We claim that if L, is close to a horizontal plane P and if the
injectivity radius of L, is large, then the hypotheses of lemma 8.2 are satisfied hence
the torus barrier of L, is embedded. More precisely there is a C > 0 and ¢ > 0 such
that if the injectivity radius of L, is greater than C and if L, is ¢ — C? close to P
(i.e. the distance of L, to P is less than ¢ and the curvature and torsion of L, are
less than ¢) then the hypotheses of lemma 8.2 are satisfied.

To see this, for x € L,, consider the solid vertical cylinders V., of radius R,,
tangent to I', at x (there are two of these cylinders). We choose ¢ small enough so
that the osculating plane of L, is always within /4 of the horizontal. L, does not
enter V. at x, otherwise the curvature of L, at x would be greater than the
curvature of the helix on dV,, making a constant angle n/4 with the horizontal.
Since the curvature of this helix only depends on R, ¢ can be chosen so this is
impossible.

Now choose C large enough so that the tubular neighborhood of L,, of radius
2R, along a fixed (small) arc on L,, centered at x, contains V.. We need work with
V. of height R, (since L, is within R, of P) so such a choice of C is possible. Then
the only point of L, in V' is x and the hypotheses of lemma 8.2 are satisfied.

Now when will the torus barrier T of L, be mean convex. We claim that if L,
is close to a plane curve (in the C*topology) and if the curvature of L, is small
enough then T is mean convex. Consider first, a plane curve L,. For x € L, 7, has
two smooth arcs, each joining x to x + (0, 0, 1). One is an outside arc a(x) and the
other an inside arc b(x); i.e., b(x) is on the side of L, to which L, is curving at x.
Clearly, along the outer arc a(x), the mean curvature vector is pointing inside T; T
is even locally convex along a(x). At a point y on b(x), T will be mean convex if one
can find two orthogonal directions such that the sum of the normal curvatures in
these directions has the right sign, the same sign as that of the normal curvature of
b(x) at y. Clearly if the curvature of L, at x is sufficiently smaller than the curvature
of b(x) at y (both in absolute value) then this will be satisfied. Also one can bound
the mean curvature away from zero by choosing the curvature of L, small.

Now if I, is C%close to a horizontal curve L, and if the curvature of L, is
sufficiently small, then T(L,) will be mean convex as well. We saw in the last
paragraph that bounding the mean curvature of T(L,) away from zero only
depended on the curvature of L, being small.

We shall say a curve L, is R,-admissible, if T(L,) is embedded and mean
convex. In the sequel we shall work in regions of W in the complement of the
tubular neighborhood of radius R about the period vector. As R — oo, the metric in
this exterior domain converges to the flat product metric on B x R. The curves L,
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we will work with will be in the exterior domain and contained in B, = B x (0). By
choosing the injectivity radius of L, large, and R large, we will have L, a
R,-admissible curve.

LEMMA 8.3. Let Ly(s) be a family of simple closed curves in By, 0 < s < 1, that
foliate an annulus of B,. Let L,(s) denote the foliation in B, obtained by vertical
translation of the curves Ly(s). For each s, assume the torus barrier T(s) of Lemma
8.1, defined by L,(s)u L,(s), is embedded and mean convex. Let S, be a stable
minimal annulus in T(0) with boundary Ly(0)u L,(0). Then there is a foliation S(s)
by stable minimal annuli satisfying:

(1) $(0) =S,

(2) 0S(s) = Lo(s) W L,(s),

(3) S(s) is in T(s).

Proof. Let s be between 0 and 1. First observe that if X is a minimal annulus in
T(s) with boundary L,(s)uL,(s), then along L,(s) uL,(s), £ makes a strictly
positive angle with T'(s), and the interior of X is in the interior of T'(s). This follows
from the boundary maximum principle and the maximum principle.

Now for s near 0, Ly(s) UL,(s) bounds a stable minimal annulus S(s), since a
stable minimal surface varies smoothly with a smooth change of boundary data.
This type of result can be found in [25] or [27]. By our previous paragraph and
since the T'(s) vary smoothly, S(s) is contained in T(s) for s near 0. Since the
variation vector field is a Jacobi field that is never zero on the boundary
(Ly(0) U L,(0)), by stability (the index theorem) it can not vanish inside. Hence, the
family of surfaces that one obtains by moving along the variation vector field at
time s is indeed a foliation for s near zero.

It remains to show the set of s for which the foliation exists is closed. So assume
the foliation exists and satisfies 1, 2 and 3 for s < 1. We know that 7(s) converges
to T(zr). A subsequence S(s,) converges to a minimal annulus S(zr) in 7(1). By
Lemma 8.1, S(1) is stable. By the openness property, S(t) is part of foliation near
S(t). Since S(s,) converges to S(t), the maximum principle implies S(s,) must be a
leaf of this foliation for » large. Hence S(s) converges to S(t) as s — t. This proves
Lemma 8.3. O

Before proving Proposition 8.1, we will describe the idea of the proof in the
special case when E is a flat horizontal annulus. The general situation is a metric
perturbation of this case near infinity but it will help the reader to consider the
special case of a flat annulus first.

So assume E ={(x,y,2z) |z=0,x>+y*21} and W =E x R. Suppose there
exists a sequence p, € E x [0, 1] diverging to oo, and a sequence of vertical planes
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Figure 4

P, at p,. Here is a resumé of what we shall do next. We construct an R, -admissible
curve L as follows. Let I be a planar convex curve as in Lemma 8.4. We take a long
arc on I', centered at ¢, and join it to a convex curve as in Figure 4.

We translate L in E; so that ¢ is near p,, and then rotate about the vertical line
through p,, so that the new curve L so obtained satisfies: L UL, bounds a stable
minimal annulus F, and F, is tangent to P(n) at p,. (In fact one will be obliged to
move F, vertically to realize this tangency, since p, is not necessarily at height
z=1)

Next construct a foliation in E, by R, -admissible Jordan curves Ly(s),
0 < s < o0, such that Ly(0) is the circle of radius 2 centered at the origin, Ly(1) is
the L we constructed above and L,(s) for large s is also a circle. Now apply Lemma
8.3 where S, is a catenoid. Observe that F, is necessarily a leaf of the foliation given
by Lemma 8.3. This follows from the maximum principle. This foliation contradicts
our assumption so Proposition 8.1 follows.

We remark that the boundary planes we worked with in the above argument
were E, and E,. In fact, when we prove Proposition 8.1, we will need to work at
heights, such as — 1 and 2, to acquire the tangency at p,. Also, our construction of
L must be done with great care since the metric on E is not flat in the general case.
Instead it is asymptotic to a flat metric which is why we will construct a sequence
of foliations & (n), working at p, when # is large. This is the end of the resumé.

Now we continue with the proof of the case E a flat annulus; i.e., we shall make
precise the previous resumeé!

We now need a technical lemma which is not difficult to prove but is necessary
for our proof.

LEMMA 8.4. There is a planar curve I' contained in the positive quadrant of the
(x, y) plane having the following properties:
(1) I' is convex, asymptotic to the x and y axes and invariant under (x, y)—
(¥, X);
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Figure 5

(2) T is R,-admissible, i.e., I' and its parallel translate I') to E, define an
embedded barrier &(I'). Topologically &) is S' x R, and &(I') is defined as
in Lemma 8.1 using the catenoids C.;

(3) I'u I’y bound a unique, area minimizing strip M(I'), contained in &(I');

(4) M(I') is invariant by reflection in E,;, and by reflection in the vertical plane
y = X.

Notice that Property 4 implies that M(I') is vertical along E,, (cf. Figure 5).

Proof. Let A be the infinite strip {0 <z <1,y = —x}. I' is constructed as a
graph over one of the boundary components of 4 so as to satisfy conditions |
and 2. Then I'; is the same graph over the other component of 0A4. It is known
that every continuous function on dA4 extends to a solution of the minimal surface
equation in A, so M(I') is the graph of this solution [5]. Using catenoids as
barriers above and below the graph of I'uTI', it’s easy to see that M(I') is
contained in the torus barrier 7(I'). To see that M(I') is unique in 7(I"), one
reasons as follows. Let M be any other minimal surface in T(I") with boundary
I' uI',. A straightforward application of the Alexandrov reflection principle, using
planes parallel to 4, shows M is also a graph over A (see [23] for this type of
argument). Now one has two minimal graphs over A, with the same boundary
values and whose difference is bounded. It is known that this implies they are
equal [5]. Since minimal graphs are area minimizing, we have proved Property 3.
Property 4 follows from unicity. O

We will need to fix a base point ¢ on I'. We take ¢ to be the intersection of I’
with y = x.
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REMARK 8.4. Lemma 8.4 also holds in a sector whose angle is almost IT; so
the curvature of I' can be as small as desired.

Replacing p, by a subsequence, we can assume the vertical cylinder V,,(p,),
of radius 3n and centered at the vertical line through p,, embeds in W(2)=
E x[-1,2].

Translate V;,(p,) horizontally and rotate so that the plane P, becomes the
plane y = —x and p, is on the z-axis. Let f, denote this rigid motion of V,,(p,) and
let V', be the vertical cylinder of radius R centered at the z-axis.

We construct a foliation 4 of the planes {z = —1} U {z =2} as follows. Foliate
z =0 by translating I' along the line y = x. ¢ is obtained by parallel translation
(vertically) of this foliation to the planes {z = —1} U{z =2}. Note that ¥ is the
boundary of a foliation of R* x [—1, 2] by minimal strips {M(I')}, parallel trans-
lates of a fixed M(I'). This M(I') is the same as in Lemma 8.4 except that the planes
z=0and z =1 have become z = —1 and z = 2, respectively.

We construct a foliation %(n) of part of {z = —1}U{z =2} by Jordan curves
as follows. In the top and bottom of V,,(p,), 9(n) is the foliation by arcs f}(G).
In the complement of the top and bottom of V,,(p,), ¥(n) is the foliation by
circles centered at the z-axis. In the top and bottom of V5,(p,), 4(n) is a foliation
by arcs so that the resulting foliation is a foliation by R,-admissible Jordan
curves; Figure 6. It is not hard to show %(n)) exists for n large. We choose the
innermost circle of %(n) to be of radius ten; this guarantees that the stable
catenoid, whose boundary is these circles of radius ten, has a waist circle of radius
greater than one.

) ) )T
- \ ((‘48‘\

Figure 6
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We need to choose the R, of the last paragraph so the stable vertical catenoid
bounded by two circles of radius R,, and of height 3, exists, and makes an angle
less than 7/8 with the horizontal along its boundary. Henceforth, we work with this
value of R,.

Now apply Lemma 8.3 to %(n); there is a foliation % (n) by stable minimal
annuli F,, 0 <t < oo, inducing %(n) on the boundary. Notice that each F, intersects
each horizontal plane in a simple closed curve, since the foliation of F, induced by
the horizontal planes can only have hyperbolic singularities (maximum principle),
so it has no singularities.

We will prove the following assertion:

ASSERTION 8.1. Let g, be the vertical projection of p, onto E,,. The trace of
& (n) on the intersection of the plane P, with the vertical cylinder V,(q,), has a unique
singularity, §,, that is near q,, for n large.

Before proving this we will explain how this assertion completes the proof of
Proposition 8.1 in the special case E is flat. First we arrange so that §, is on the
same vertical line as ¢,. To do this, one redoes the construction of the foliation ¥
starting with a curve I'(s) in z = 0 where I'(s) i1s the curve I' translated a distance s
along the tangent line to I' at ¢, —1 <s < 1. Then the foliation %,(s) so obtained
will yield a unique point §,(s), which is the singularity the trace foliation %,(s)
induces on P, n V,(p,). This point §,(s) is near gq,(s), for n large, where g,(s) is the
translation of ¢, a distance s along P, N E,,,. Since %,(s) varies continuously with
s, the points §,(s) vary continuously with s. So for an appropriate choice of s, §,(s)
and g, will be on the same vertical line. For convenience, assume s = 0, and the leaf
of g,(s) is labelled F,.

Once g, and g, are on the same vertical line, one does a vertical translation of
Z, to make ¢, coincide with p,. It’s easy to see the translated foliation has a trace
on W(1)=E x[0, 1] as desired. K, can be chosen to be the vertical cylinder of
radius ten, centered at the z-axis, intersected with W(1). The points p, diverge so
one constructs the foliation of Jordan curves 0%, so that the leaves passing through
the top of V,(p,) are outside K, and their torus barriers are also outside of K,. This
guarantees that F, « W(1) — K.

Proof of Assertion 8.1. Let R, be the rectangle P, V,,(p,). For points x on
R =P,nV,(p,), far enough from the vertical line through g,, the leaf F,(x) of x is
in the torus barrier T of its boundary curves. By construction 7T then intersects R,
in disks D,, D, each of whose boundary is smooth except along two points, one on
the top of R,, the other on the bottom. Clearly F,(x) intersects D, U D, transversally
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and joins the top of R, to the bottom of R,. This shows the trace of % (n) on R has
at least two nonsingular leaves as in Figure 7.

The trace foliation near the segments y, Uy, is as in Figure 7, since P, is
transverse to the foliation 0.%, except at ¢,/ and ¢, . This boundary data and the
fact that minimal surfaces must have hyperbolic contact with R guarantees that
there is exactly one singularity g, of the trace foliation. It remains to prove g, is
near g, for n large.

To show ¢, is near g, we will show the foliation H(n) N V,, converges to the
foliation {M(I')} NV, where H(n) is the image of #(n) by f,. Clearly, the torus
barriers of the upper and lower trace leaves of H(n) converge to the corresponding
torus barriers of the curves of 4. This will imply the leaves of H(n) converge to the
foliation, extending ¥, whose leaves are the parallel translates of M(I"). Since H(n)
induces a foliation of a convex compact region of R* by compact minimal leaves,
each leaf is area minimizing relative to its boundary. Hence, any subsequence of the
leaves of H(n) whose boundaries converge to a leaf L_, UL, of ¥ contains a
convergent subsequence, that converges to a minimal surface which is contained in
the torus barrier of L _, U L,. We showed earlier that there is a unique such surface
in this torus barrier (our graph argument and the Alexandrov reflection principle),
and it is a translate of M(I'). Hence, the leaves of H(n) converge to parallel
translates of M(I'). The Gauss map of M(I') is injective in a neighborhood of ¢, so
the same is true for nearby minimal surfaces. It is now clear that 4, is near g, as
n — oo. This proves Assertion 8.1 and completes the proof of Proposition 8.1 when
E is a flat annulus. O

Proof of Proposition 8.1. Now we work in W(2) =B x[—1, 2], with the flat
metric induced from the map (x, 1) — i(x) + (0, 0, 7). The torus dT, (the boundary
of an R-tubular neighborhood about the period vector v) intersects E in a simple
closed curve C(R), for R large, whose geodesic curvature tends to 0 as R - co. By
choosing a subend of E, we can assume E is foliated by the C(R), | < R < o0 (we
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work from R =1 for notational convenience). We can also assume that for R > 10,
the vertical translates C_,(R), C,(R) of C(R) to B_, and B, are R, -admissible.
Finally, assume C(10) has the property that the torus barrier of C_,(10) U C,(10)
is contained in T,,. Then define K, to be T, W(1). We will show that for every
divergent sequence of points p, € W(1) and vertical planes P, at p,, there is a
foliation %, for n large, satisfying the conclusion of 8.1.

Consider such a sequence of planes P, and points p,. Replacing p, by a
subsequence, we can assume the vertical cylinder V,,(p,) in W(2), of radius 3» and
centered at the vertical line through p,, embeds in W(2), and isometrically embeds
in R3.

Isometrically embeded V;,(p,) in R? so that the vertical line through p, goes to
the z-axis and the origin corresponds to a point g, on B,,, and P, goes to the
vertical plane through the line y = —x. Let V;, denote the image cylinder of radius
3n in R*. Consider the foliation of the (x, y)-plane by the parallel translates of I
along y = x. Notice that y = —Xx is tangent to a leaf of this foliation at (0, 0). Pull
back this foliation, to the top and bottom disks of V7, by vertical projection onto
the (x, y)-plane. Now consider the induced foliation of the top and bottom of
V,.(p,), back in W(2).

Let D, be the bottom disk of B_,nV,(p,) for r <3n. Now foliate B_, as
follows: in D,, we take the above induced foliation of the previous paragraph. In
B_, — D,, we take the foliation by the curves C_,(R), 10 < R < o0, and then fill in
the foliation in D,, — D,, so that each leaf L of this foliation, is a simple closed
curve, and L together with its vertical translation to B, is R, -admissible.

Then by Lemma 8.3, there is a foliation #(n) in W(2) by stable minimal annuli
F,, 0 <t < oo, inducing the previous foliation in B_, U B,. Notice that each F,
intersects each B, in a simple closed curve since the induced foliation of F, can have
only hyperbolic singularities.

Now the top and bottom of V,,(p,) converge, in the isometric embedding into
R?* to horizontal planes at heights 2 and —1 respectively, as n— oco. This is
because the geometry of a standard end E converges to the Euclidean metric
near infinity. Therefore the foliation #(n) in V(n), when viewed in R?® under
the isometric embedding, converges to the foliation given by parallel translates
by M(I'). The same argument as in our special case E flat, proves the above
assertion.

It now follows that there is a unique point g, € V,,(p,), near g,, such that the
leaf of & (n), through g,, is tangent to P,. Just as in the special case E flat, we can
modify & (n) in V,,(p,) to make §, move horizontally. So one can assume g, and
p,, are on the same vertical line and have distance less than one. Vertical translation
is well defined in W so one can vertically translate the foliation & (n), taking ¢, to
P., and this new foliation (intersected with W(1)) satisfies the conclusions of
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Proposition 8.1. We have now completed the proof of Proposition 8.1 and hence of
Theorem 1. 0

REMARK 8.5. In [20] Rosenberg and Toubiana constructed a properly im-
mersed minimal annulus 4 in R? with proper x,-coordinate function and infinite
total curvature. Projecting 4 into R’/S, yields a properly immersed minimal
annulus. Thus, the embeddedness assumption in Theorem 1 is a necessary one for
proving the finite total curvature property.

A second remark is that a properly embedded minimal annulus 4 with compact
boundary in R*/S, has finite total curvature. The proof of Theorem 1 shows that
this is the case if A is the end of a properly embedded minimal surface, since in this
case A can be trapped between standard ends. The trapping argument can be
generalized using the technical results in [17] to show that a general 4 can be
trapped, thereby proving A4 has finite total curvature.

9. Applications of Theorem 1

In this section we shall give the proofs of the remaining theorems. The proofs
of these theorems are based on Theorem 1 and the results of Sections 2—4 on the
geometry of properly embedded minimal surfaces of finite total curvature.

Proof of Theorem 2. Suppose M is a properly embedded simply connected
minimal surface in R? with infinite symmetry group Sym (M) < Sym (R%). If M is
not the helicoid, then its symmetry group is a discrete subgroup of Sym (R?). Every
discrete infinite subgroup of Sym (R?) contains a screw motion (which may be a
translation) and so, after a possible rigid motion of M, we may assume that M is
invariant under a screw motion S,. Since S, acts freely and properly discontinu-
ously on R?, M/S, is a properly embedded minimal annulus in R?/S,. By Theorem
1 M has finite total curvature and so Theorem 8 implies M is a helicoid or a flat
plane. O

Proof of Theorem 3. Let M < R3/S, be such a surface. By lifting to a 2-sheeted
cover of R*/S,, we may assume that M is orientable. Theorem 1 implies M has finite
total curvature and Propositions 4.1 and 4.2 show that an end of M must be
asymptotic to a plane, a vertical flat annulus, a helicoid or else 6§ =0 and the end
is a nonhorizontal helicoidal type end. We now prove that the last case can not occur.
For convenience rotate the surface so that the normal vector on a punctured disk
neighborhood D* of the end is vertical and let T denote the translation by the period
vector v of the lifted surface in R3. Note v has a nonzero horizontal component.
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Leg g : D> Cu{oo} be the extension of g | D* to the origin. We may assume
that g(0) = 0. In this case we have by the work in Section 2 that

¢ ¢
g(z) = z”, w(z)=<;€—i—:+j+"'>dz,

where ¢,, ,€R and ¢, €iR. It remains to prove that ¢, =0, i.e. the transla-
tion vector v is actually vertical, a contradiction. Consider the extended map
g: M —S*=Cu{ow} to the conformal compactification across the puncture points
P < M, corresponding to the ends of M. Since M is embedded with an even number
of helicoidal type ends, we see that g(P) = {0, co}. Since M has helicoidal ends and
it is embedded, the map g : C* - R’/T, defined by §(z) =%, ., 1., p, where the sum
is taken in the abelian group R*/T and taken with multiplicity, is a constant, or a
complete branched minimal immersion. (See [16, 21] for these properties of g.)

We claim that g is the helicoid. To see this, recall that the helicoidal type ends
of M, with the same limiting normal value, have the same coefficients ¢, . | in @
(Proposition 4.2). Notice that ¢,, , = —if #0, f given by Proposition 4.1. To
obtain the “sum surface” g, one adds all points with the same g values. Parametrize
the ends of M with the same limiting normal values by

8(a) = 27, w(z)=(z,,+,+o<z P))

Then the Weierstrass Representation of the sum of these ends is given by

gm=n oM =0, +: -+ a,n),

where @, (n) is the 1-form of the “sum surface” of the i’th end A4;; A4,,..., A4, the
ends with the same limiting normal.

We calculate &, (n): For fixed n let z be a p’th root of 5. So z, jz,...,j? 'z are
all the p’th roots of », where j is a nontrivial p’th root of unity. Then

p—1

031('7) p+l Z (( k)p+1+0(z_p))d(jkz)

C

(Z JP+o(z” ”))d(Z)

Z
( p+1 +0(Z_p)>dz
|:< ) +1) +0('7~])_J
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Since the ¢, , | are the same at 4,, ..., 4, this shows
. I(p =1 1 _
a(n) = (‘—p—fj—l> l:;’j + o(n l)jl dn.

Now to obtain the & of the sum surface, one must also add the w’s at the points
of M having n as normal value, which are not on the ends of M. These w’s
are holomorphic forms at these points hence their sum as well. It follows & =
(¢c/n*+ o(n~")) dn and the ends of g are helicoidal, ¢ some constant.

Now & is a meromorphic form on S? with a double pole at zero and regular at
infinity. Hence @(n) = ¢ dn/n?. Thus g is an associate surface of a genuine helicoid.
Since the coefficient of 1/#? in @& is purely imaginary, the surface is a genuine
helicoid. But the translation vector of the helicoid is vertical whereas the vector v
has a horizontal component. This contradiction completes the proof of the first part
of Theorem 3.

If 8 #0, it is clear that the planar ends are horizontal and when 6 is irrational
R?/S, does not contain vertical flat annuli. This completes the proof of the theorem.

O

REMARK 9.1. The above argument proves that if M is a properly embedded,
finite topology, minimal surface in R?*/T, and M has helicoidal ends, then the sum
surface M + M is a genuine helicoid. It’s not hard to see (by a similar argument)
that if the ends are planar, then M + M is a point. If M has four Scherk type ends,
then M + M is a Scherk surface.

THEOREM 9. A properly embedded orientable minimal surface of finite topology

in an orientable flat nonsimply connected three-manifold has an even number of ends
or it is a plane.

Proof. By Theorem 1, the minimal surface M < N has finite total curvature. If
the manifold N is isometric to T x R, then Theorem 3.1 in [16] states that M has
an even number of ends. If N is compact, then M is closed and has zero ends, an
even number. The only other possibility is that N is isometric to some R*/Sy. If M
has helicoidal type ends, then M has an even number of ends by Proposition 4.2.
If M is not a plane, it must separate N by Remark 6.1. If the ends of M are planar,
then the work in Section 2 shows that for large R the vertical torus 0T of radius
R centered along the x;-axis intersects M in a family of parallel simple closed
curves, one for each end of M. Since M separates N, the number of curves in
0Tk N M is even. The remaining case is when the ends of M are Scherk type ends.
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For large R, 0T, n M consists of parallel almost-vertical, simple, closed curves,
one for each end. As in the previous case, this implies M has an even number
of ends. O

Proof of Theorem 4. Suppose that M < N = R’/S, is a properly embedded
minimal surface of finite topology. By Theorem 1, M has finite total curvature and
by Theorem 3 the ends of M are asymptotic to parallel planes, vertical flat annuli
or to ends of parallel helicoids in N. We will implicity use the analytic results of
Sections 2—-4.

Let Mz = Tr " M and note that for R large Int (M) is homeomorphic to M,
and M — Int (My) consists of the annular ends of M. Hence y(My) = x(M).

By Gauss—Bonnet, the total curvature of M, is

g°

C(Mp) =j

Mg

K dA = 2ny(M) —j K

Mg

where K is the Gaussian curvature and «, is the geodesic curvature of dMy. Since
C(M) =limg_,, C(My), the theorem will follow by showing that the total geodesic
curvature of dM, converges to 2n - W(M) as R — oo, where W(M) is the total
winding number of M.

First consider the case when the ends of M are planar. In this case it is clear
that the geodesic curvature of a component d, of M converges to 2z. It is equally
clear that 8, is homotopically trivial in N since it lifts to R*. Recall the defini-
tion of the curves o and f used in defining the winding number of an end of M.
Define the related curves ap = 0T, "R? and B on 0T,. Since d is homotopically
trivial in N, 0z < 0T, is homotopic to ag + 0 - fz. Hence, the winding number of
the end associated to dx is 1 which proves the formula when the ends of M are
planar.

Suppose R is large and the ends of M are asymptotic to flat vertical annuli. Let
A be a component of M — M. Since Ay is proper, § must be a rational multiple
of 2n. Suppose 6 = 2n - (m/n) where m and n are relatively prime. As R — oo the
curve 0 approximates a geodesic of M, almost vertical in N. On the other hand
it is clear that the absolute value of the intersection number of dz with a, is » and
with iz is m. Since the sign of d; Nay is the negative of the sign of dz N fg, O is
homotopic to +(mag —nfz). By definition, the winding number of A, is
|2 - m —n - 2n - (m/n)| = 0. Thus, the total curvature formula holds when M has
Scherk type ends.

Now consider the case where the ends of M are helicoidal. Let A; be a
component of M — M. Note that 04, approximates a helix 4z on 0Tz when R is
large. Since the limiting normal vector to Ay is vertical, the geodesic curvature of
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0A R converges to the curvature of hz as R — oo. It remains to calculate the winding
number and the total curvature of hi as R — oo. The helix y, is homotopic to
nog + mPy for some relatively prime integers n, m. It is geometrically evident that

the total curvature of y, converges to [2nn + m - 0]. This observation completes the
proof of Theorem 4. O
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