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Morse index and Gauss maps of complete minimal surfaces
in Euclidean 3-space

SHIN NAYATANI*

Dedicated to Professor Tadashi Nagano on his 60th birthday

1. Introduction

The index of a complete noncompact minimal surface in a Riemannian manifold
is defined as the limit of indices of an increasing and exhausting sequence of
compact domains in the surface. Fischer—Colbrie [6] and Gulliver—Lawson [7], [8]
proved that a complete oriented minimal surface M in R? has finite index if and
only if it has finite total curvature. Fischer—Colbrie also observed that if M has
finite total curvature its index coincides with the index of an operator associated to
the extended Gauss map of M. The first quantitative study of this invariant was
done by Tysk [13], who proved that the index of a complete oriented minimal
surface in R® is bounded from above by an explicit constant times the total
curvature. Ejiri—Micallef [5] have also obtained an upper bound for the index. On
the other hand, Choe [1] and the present author [11] have studied the lower bound
for the index.

In this paper we shall study the index and the nullity of an operator Lg
associated to an arbitrary holomorphic map G : 2 —» S?, where X is a compact
Riemann surface. We first consider a certain deformation G, : ¥ —»S?, 0<t < o0,
with G, = G and study the behavior of eigenvalues of L as ¢ tends to zero or
infinity (Theorem 1). We then give lower and upper bounds for the index and the
nullity of L; when ¢ is sufficiently small or sufficiently large (Theorem 2). We point
out here the works of Ejiri—Kotani [4] and Montiel-Ros [10], who have proved,
among other things, that a function in the kernel of L is expressed as the support
function of a complete branched minimal surface with planer ends whose extended
Gauss map is G. Using this and our Theorem 2, we can give lower and upper

* Partially supported by the Japan Society for the Promotion of Science.
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bounds for the index and the nullity of L; (Theorems 3, 4). Finally we compute the
index and the nullity of Lg for all £ when the meromorphic function associated to
G is the derivative of the Weierstrass g-function for the unit square lattice (Theorem
5). In particular, we can determine the index of the Costa’s surface to be five.
The author wishes to thank Prof. H. Ozeki and Prof. A. Kasue for constant
encouragement. He also thanks Prof. N. Ejiri for many informative conversations.

2. Preliminaries

Let 2~ be a compact Riemann surface and G : X — S? a nonconstant holomor-
phic map, where S? is the unit sphere in R* endowed with the complex structure
induced by the stereographic projection from the north pole. We fix a conformal
metric ds” on X and consider the operator L = —4 — |dG|?, acting on functions on
X, where 4 is the Laplace—Beltrami operator with respect to ds?. We denote by Q
the quadratic form associated to L. Thus for a function u on ¥

O, 1) = j (duf? — |dG Pu?) d,

where dA is the area element with respect to ds2. We note that Q is independent of
the particular choice of metric on X.

We now define Ind (G), the index of G, as the number of negative eigenvalues
(counted with multiplicities) of L. It can also be defined as the dimension of a
maximal supspace of H'(Z) on which Q is negative definite. This latter definition
justifies our notation. The kernel of L, N(G) = {u € C*(Z) | Lu =0}, is also an
invariant of G. We define Nul (G), the nullity of G, as the dimension of N(G). We
note that L(G) = {a - G | a e R%} is a three dimensional subspace of N(G) and so
Nul (G) = 3.

We now consider on X the metric ds% induced by G from S2 Thus
ds% = 3|dG|* ds*. This metric is singular precisely at the ramification points of G.
For this choice of metric, the operator L becomes L; = —A4; — 2, where 4 is the
Laplace-Beltrami operator with respect to ds%. The eigenvalue problem for L; can
be solved via a standard variational approach. Hence if 4 is an eigenvalue of L, its
corresponding eigenspace is given by

Vi(G) = {u e H'(2) l Ou,v) = 4 J

z

uv dAg for all v e H‘(Z)},

where dA4; = 3|dG|* dA is the area element with respect to ds¢. By elliptic regularity,
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V,(G) c C*(2). We point out the following variational characterization of the
eigenvalues of L. For a function u # 0 on X we define

R;(u) = O(u, u)/ j u’dAg.

z

Then the k-th eigenvalue (counted with multiplicities) A4, (G) is characterized by
M(G) =inf sup {Rg(u) |u € V,, u # 0}, (H
Vi

where V, runs through k-dimensional subspaces of H'(X). We note that Ind (G)
coincides with the number of negative eigenvalues of L; and N(G) is nothing but
Vo(G).

We now let M be a complete oriented minimal surface in R? with finite total
curvature. By a theorem of Osserman [12], M is conformally equivalent to a
compact Riemann surface with finitely many punctures and the Gauss map
G : M - S? extends to the compactified surface as a holomorphic map. As men-
tioned in the introduction, Fischer—Colbrie [6] showed that the index of M
coincides with the index of the extended Gauss map.

3. Deformation of a holomorphic map and the index

Let 2 be a compact Riemann surface and G : £ —» S? a nonconstant holomor-
phic map of degree d. We define a one-parameter group of conformal diffeomor-
phism .oZ,, t € (0, o), of S? by

IIoof, o I (W) =tw, weC,

where C=Cu {0} and IT : S? - C is the stereographic projection from the north
pole. Let G, = ./, - G, t € (0, o). If g is the meromorphic function associated to G,
that is, g = IT - G, then we have II o G, = tg. Since the correspondence ¢ — G, is
continuous with respect to the usual C'-topology, it can be shown, using (1), that
4+(G,) is continuous in f. A naturally arising question here is:

How does A,(G,) behave as t tends to zero or infinity?

An answer to this question is given by Theorem 1 below.

Let P(G) =m,p,+ - -+ m,p, be the polar divisor of g, where p,, i=1,...,v,
are distinct. Note that m, +---+m, =d. For i =1, ..., v we define a holomorphic
map G, : C, - S2 by IT - G,(z) = z™, where C, is a copy of C. Let £ be the disjoint
union of C,, i=1,...,v, and G:X —S? the holomorphic map defined by
G(z) =G, (2) if z e C,.
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THEOREM 1. Let G,: X — 52, t € (0, ), and G : £ — S? be as above. Then for
k=1,2,...

t—0

REMARK 1. Let G*: X — S? be the holomorphic map defined by IT - G* =
1/g. It is then easy to verify that G* = PG, where

1 0 0
P={0 -1 0
0 0 —1

Since P € O(3), we have ds%. = ds%. Hence the eigenvalues of L. coincide with
those of L. In particular,

Ind (G*) =Ind (G) and Nul (G*) = Nul (G). (2)

This observation applied to G, enables one to deduce from Theorem 1 the behavior
of 4,(G,) as t tends to infinity, which we omit.

Proof of Theorem 1. Let w,, ..., w, be all the branching values of g other than
0 and co. Let I'=Ji_, {sw;|0<s <1}. Then Q =g '(C—T) has precisely v
components, each of which contains exactly one of the points p,, i=1,...,v. We

denote by Q, the component which contains p;. Let I', = g, '(I'), where g, =IT - G,.
Then we have a biholomorphic map ¥, from , onto C;, — I'; such that

G oV, =0G. (3)

Such ¥, is constructed by composing suitably the branches of m;-valued ana-
lytic function g; ' with g. By (3) ¥, gives an isometry between (Q,, dsZ) and
(C,—r,, dszG-l). We carry out the similar construction with g replaced by g and
obtain I',, I',; and ¥, : (Q;, dsg) -(C,—-r,,, dszgi) corresponding to I', I'; and Y,
respectively. Note that I', = ¢tI" and I',; = t'/"I';. Let £, (c £) be the disjoint union
of C;—T,;, i=1,...,v, and ¥,:(Q,ds%)—>(Z, dsk) the isometry defined by

Y.(p) =Y,.(p) if p € Q,. Thus we obtain the following diagram.
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Let A2(¢t) (resp. Ay (f)) denote the k-th eigenvalue of the Dirichlet (resp.
Neumann) eigenvalue problem for L; on Q. They are characterized variationally as
follows. For a function u #0 on Q we define

Rg, o(u) = J (|dul* — 2u?) dAG’/ j u’ dAg,.
Q Q
Then we have for x =D, N

¥(t) =inf sup {Rg, o) |u € V,, u #0}, (4)
Vi

where V), runs through k-dimensional subspaces of H(Q) (resp. H'(Q)) if x=D
(resp. N). It follows from (4) that A1}(¢), * = D, N, are continuous in ¢.
Theorem 1 follows from (a) and (c) of the following lemma.

LEMMA 1. With the above notations, we have for k =1,2, ...

(a) AZ() < 4(G,) < 22(1), t € (0, 00);

(b) A2(?) (resp. A¥ (1)) is monotonically non-decreasing (resp. non-increasing) in t;
(c) lim, o A¥(?) = A.(G) for x =D, N.

Proof of Lemma 1. Clearly H{(Q) =« H'(2) = H'(Q). This fact together with (1)
applied to G, and (4) proves (a). We next prove (b). Since (£, ds ) is isometric to
(£,, ds%), (4) can be rewritten as follows. For a function u #0 on Z, let

Ré 5. (w) =J (|du|* — 2u?) dAG~/ J u’dAc.
z, 3

2

Then for x=D, N
) = iBf sup {Rg5,(w) |u € Vi, u #0}, (5)
k

where V, runs through k-dimensional subspaces of H}(Z,) (resp. H'(£))) if * =D
(resp. N). Moreover, it is easy to see that for all ¢ € (0, c0)

HLE) = H'(), H'(Z) > H'(®), (6)
and if 1 < ¢’ then

H(l)(ft) > H(l)(fz)’ Hl(fr) < Hl(ft) (7)
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(b) now follows from (5) and (7). It also follows using (1) applied to G, (5) and (6)
that

AN <4 (G) < AP,  te(0, o). (8)

To prove (c¢) we first establish the following facts:

H'O) = | Hy2); %)
HE = () H'E) (10)
O<t<xx

In order to prove (9), it is sufficient to show

Hl(Ci) = U H(l)(Ci - Ft,i)

O<t<

fori=1,...,v. Foreache with0<e <1, let ¢, : C, >0, 1] be a Lipschitz cut off
function defined as follows:

0 if 0 <|w|<eé?
@, (w) =< (loge? —log [w|)/loge ife’<|w|<eg,
1 otherwise.

It is easy to verify that there is a constant C, independent of ¢, such that

J: |do,|> d4 < Clloge| ™', (11)

CI

where dA is the area element for an arbitrary metric on C;. Let u € H'(C;). Then
o.u € H)(C, —TI,,) for all sufficiently small z. Moreover, it follows from (11) that
@.u converges to u in H'(C,) as ¢ tends to zero. Hence u € Yy, o H)(C; —T,,).
This shows the inclusion H'(C,) = Uy <, < H)(C; — I',;). The reverse inclusion is
obvious and thus (9) is proved. The proof of (10) is similar.

Once (9) and (10) are established, the proof of (c) is standard. But we
give it for completeness. In view of (b) and (8), lim,_ , A¥(¢), * =D, N, exist and
lim,_ o AN (1) < 4,(G) <lim,_ , A2(f). Hence it suffices to prove

lim A2(r) < 4(G), (12)
t—0

and
lim AY (1) = 4,(G). (13)

t—0
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To prove (12) we take u,,...,u, € H'(X) so that u, is an eigenfunction of Lg
corresponding to 4,(G) and

Ju,u,dA5=5U, ij=1,... k.
bl

Let V be the linear span of wu,,...,u,. By (9), for any ¢ >0, there exist
Uty ooy Uk € Up<r < HY(Z)) such that

Hui_Ui”Hng, i=],...,k, (14)
where || - ||, is the H'-norm on H '(£) defined in terms of an arbitrary metric on
5. If ¢ is sufficiently small, v,,...,», are linearly independent. Moreover,
v,e HY(Z), i=1,...,k, for all sufficiently small +. For such 7, let ¥, be the

k-dimensional subspace of H}(Z,) spanned by v,, ..., v,. Then, by (5) and (14),

AR(1) <sup {Rgz (v) [veV,v#0}
< sup{Rg(u) |u e V,u #0} + C(e)
= 4(G) + C(e),

where C(e) is a constant depending only on & such that lim,_,, C(¢) = 0. Thus (12)
is proved.

To prove (13) we first note that, for each ¢, the H'-norm on H'(Z,) defined in
terms of the singular metric ds% is an admissible norm on H'(Z,). For each ¢ we
take u,,,...,u., € H'(Z,) so that u,, is a Neumann eigenfunction of Lz on 5
corresponding to 1) (#) and

J u; u;, dAg = 0;, ij=1,...,k
z

Let V, be the linear span of u,,, ..., u.,. By (8) {u;,}o<.< is bounded with
respect to the H'-norm. Hence we can find, using the diagonal argument, a
sequence {t,}y-, with lim, ¢, =0 such that u,6 converges to some
U; € Vo< (<o H'(E,) L-strongly and weakly in H'(Z,) for all ¢. By (10), u, € H'(%).
The L2-strong convergence implies that

J‘. uu; dAg = 90;.
P

Let ¥ be the k-dimensional subspace of H'(Y) spanned by u,,...,u,. For
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u==X{_,au eV, let u,=%f_, au;, . Then u, converges to u L*strongly and
weakly in H'(£)) for all . By the lower semicontinuity of the H'-norm with respect
to the weak convergence, we have

Rs(w) <lim inf Rg 5, (u,).

n-— 20

Hence by (1) applied to G

A(G) < sup {Rg(u) |u e V,u#0}
<lim infsup {Rgs, (w) |u eV, , u#0}

= lim AY(z,),

n— o0

which establishes (13). Thus Lemma 1 is proved and the proof of Theorem 1 is
complete.

We now recall that Ind (G,) =2m, — 1 and Nul (G,) =3, i=1,..., v (see [11]).
Hence we have

Ind (G) =2d —v and Nul (G) =3v. (15)
THEOREM 2. Let G : X —» S? be a nonconstant holomorphic map of degree d

and G, = o4, - G, t € (0, o0). Let v be the number of distinct poles of g = II - G. Then
the following estimates hold for all sufficiently small t:

Ind (G,) = 2d — v; (16)
Ind (G,) + Nul (G,) <2d +v + 1; (17)
Nul (G,) < 2v + 1. (18)

In particular, if v =1, then we have
Ind(G,)=2d -1 and Nul(G,) =3
for all sufficiently small t.

REMARK 2. It should be mentioned that the estimate (16) has been obtained
in [10].
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REMARK 3. Let v/ be the number of distinct zeros of g. Then, by (2), the
estimates in Theorem 2 with v replaced by v hold for all sufficiently large .

Proof of Theorem 2. (16) is an immediate consequence of (15) and Theorem 1.
(18) and the last assertion follow from (16) and (17). We now prove (17). We shall
use the notations in the proof of Theorem 1. Recall that u, = (0,0, 1)’ G, is an

element of N(G,). Let
J uu, ddg, = O}.
b

Let u,, =u,|o and denote by V{(G,) the eigenspace corresponding to the eigen-
value 4 of the Neumann eigenvalue problem for L; on ;. Let &; = (0,0, 1)*- G.
Then u,; =i, o ¥,,. Moreover, since #;(z) = (|z]*" — 1)/(|z" + 1), ze C,, &, is a
radial function on C; and hence satisfies the Neumann condition on I, for all ¢.

Therefore u,; € V{(G,). Let
J uu,,,- dAG’ — 0}.
gl

If ue H'(Q,) is orthogonal to W, in L¥;, dA;,), then

V,=® V,:(G,)@{u e N(G))

A<O

W.=® V9G) G-){u e V§AG)

A<0

J (|dul? —2u?) dAg, 20
Q’

and the equality holds if and only if u = au,; for some a € R. By (15) and Lemma
1 (b) (c), there exists #, > 0 such that £}_, dim W,; =2d + v for all 1 <t,. We now
show that dim V, < 2d + v for all t <t,, which clearly implies (17). Suppose that
dim V, 2 2d + v + 1 for some ¢ < t,. Then we can find u € ¥, — {0} such that u|, is
orthogonal to W, in L*(Q,, dAg,) for i=1,...,v. Thus

OZJ (|du? — 2u?) dag
z
=Y | (Jdu]? —2u?) ddg, = 0.
1=1JQ,

Hence we must have

J (|dul* —2u®) dA;, =0,
>
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and
J‘ (|dul> —2u*) dAg, =0, i=1,...,v.
Ql

Therefore u € N(G,) and uIQl =au,; for some aq;eR, i=1,...,v. By the unique
continuation principle, u = au, for some a € R, a contradiction. Thus (17) is proved
and the proof of Theorem 2 is complete.

4. Lower and upper bounds for the index

Let X be a compact Riemann surface and G : ¥ — S? a nonconstant holomor-
phic map. In this section we shall study lower and upper bounds for Ind (G) and
Nul (G).

We first review briefly a result of Ejiri—Kotani [4] and Montiel-Ros [10]. They
have proved that a nonlinear element of N(G) (that is, an element of N(G) which
does not lie in L(G)) is expressed as the support function of a complete branched
minimal surface with planar ends whose extended Gauss map is G. Using the
Weierstrass representation, their result can be stated as follows (see [10]): Let g be
the meromorphic function associated to G. Let P(G) and B(G) =e;p,+- - +e,p,
be the polar and ramification divisors of g respectively, where ¢, is the ramification
index of g at p;, that is, the multiplicity with which g takes its value at p,. We define
a divisor D(G) on X by D(G) = B(G) — 2P(G) and a vector space H(G) by

H(G) = {w e HY(K(Z) + D(G)) | Res, & =0, 1,. . ., 1,
Rej (1—g2i(1+g?,2¢)w =0 for all x € H,(Z, Z)},

where K(Z) is the canonical divisor of 2. For w € H(G) let X(w) : 2 — {py, ..., p,}
— R? be the conformal harmonic map defined by

X()(p) = Re J (1= g% i(1 + g7, 2)'o.

Then X(w) - G, the support function of X(w), extends over to p,, ..., p, smoothly
and thus gives an element of N(G). Conversely, every element of N(G) is obtained
in this way. In fact, the map 1 : H(G) —» N(G)/L(G) defined by 1(w) = [X(w) - G], the
class containing X(w) - G, is an isomorphism.
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We define a complex vector space H(G) by

A(G) = {w e HYK(Z) + D(G)) |Res, @ =0,i=1,...,u}.
If the genus of X is zero, then H(X,Z)={0} and so H(G) = H(G). Let
G, =4,G, t €(0,0). It is clear that H(G,) = H(G). Hence, if the genus of X is
zero, H(G,) = H(G) and therefore

Nul (G,) = Nul (G) for all 7 € (0, o0). (19)
Using this and Theorem 2, we can prove the following

THEOREM 3. Let G : C— S? be a nonconstant holomorphic map of degree d

and v = v(G) the minimal number of distinct points in G~ '(q) when q runs over S*.
Then we have

Ind (G) = 2d — v, (20)

Ind (G) + Nul (G) <2d +v + 1, (21)
and

Nul (G) <2v + 1. (22)

In particular, if v(G) =1 then

Ind (G) =2d -1 and Nul(G)=23.

Proof. Since the composition of a rotation of S? and G does not affect the
metric dsZ and hence Ind (G) and Nul(G), we may assume without loss of
generality that v is the number of distinct poles of g =11 -G. Let G, =, - G,
t € (0, o0). Then by Theorem 2 we have

Ind(G,) =22d —v for all sufficiently small z. (23)
By (19) and the continuity of 4,(G,),

Ind (G,) = Ind (G) for all ¢. (24)

(20) follows from (23) and (24). (21) follows in a similar way. (22) and the last
assertion follow from (20) and (21).
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REMARK 4. In [4] and [10], it has been proved that Ind (G) < 2d — 1 for any
nonconstant holomorphic map G : C — S? of degree d and the equality holds for a
generic G.

EXAMPLE. Let m and n be positive integers with m > 2. Let G : C —» S? be the
holomorphic map of degree d = m + n defined by

1
MoG(z) =z"+—.
zZ

The divisor D(G) is given by

22,4+ +2z;,—m-00—-2-0 ifn=1,

D(G)z{Zz,—i—---+2z,,—-m~oo—n-0 ifn=2,

where

noo ,
Zy = \‘/:e(z’”/")’, j=1,....d
m

It is easy to see that the meromorphic differential

Zn+l Zrln—l Zr;-l
w = o4 dz
(Z_Zl)"'(z"zd)<z"zl zZ—2zy

is an element of H°(K(C) + D(G)). Moreover, it can be shown, using the identity
X4+ 4+2zk=0, k=1,...,m—2, that Res, w =0, j=1,...,d. Hence
w € H(G). Since H(G) is a complex vector space, we obtain

Nul (G) = 3 + dimg H(G) = 5.

On the other hand, we have v(G) = 2. Therefore we can conclude from (20) and
(21) that

Ind(G)=2d—2 and Nul(G) =S5.

In the following theorem we give lower and upper bounds for Ind (G) and
Nul (G) in terms of the degree of G and the genus of Z.

THEOREM 4. Let G : X - S? be a holomorphic map of degree d =2 2. Then

Ind (G) 2d — 3y + 1, (25)
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and
Ind (G) + Nul (G) < 3d + 3y, (26)
where y is the genus of X.
In order to prove this theorem we need the following

LEMMA 2. Let G, =, G, t € (0, 0). There exists an integer ny ( = 3) such
that Nul (G,) = n, for all t and the equality holds except for a finite number of values
of t. Moreover, if we let n_ =2%,_, (Nul(G,) —ny), n, =Z,., (Nul(G,) —ny) and
n=min(n_,n, ), then

n < 3y, (27)
and
n =73y if and only if n_ =n_, = 3y. (28)

Proof of Theorem 4. Let v be the number of distinct poles of g =IT - G. We may
assume without loss of generality that oo is a branching value of gandsov <d — 1.
Let G, = o/, o G, t € (0, o0). By Theorem 2 and Remark 3, if ¢ _ is sufficiently small
and ¢, is sufficiently large then Ind (G, ) 2d + 1 and Ind (G, ) = d. It is easy to
see from the continuity of 4,(G,) that

Ind (G) 2 max (Ind (G, ) —n_,Ind (G, ) —n.).
By Lemma 2 the right-hand side can be estimated from below by d — (3y — 1) if
n <3y —1and by (d + 1) — 3y if n = 3y. Thus (25) is proved. The proof of (26) is

similar.

Proof of Lemma 2. We first note that, since H(G,) = HG), -

H@G,) = {w e HG)

Rej (1 —1%g2 i(1+t%g?), 2t19)w =0
for all a € H,(Z, Z)}

Let {w,,...,,} be a complex basis of H(G) and {o,,...,a,,} a basis of
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H,(Z,Z). Let

— — 2 —
s,-,-j w;, t,-j—J‘ g‘w; and u,-j—-J gw;.
a, a, x,

For a complex number z, we denote by z‘" and z® the real and imaginary parts of
z respectively. Take w € H(G). Then o € H(G,) if and only if

J‘w::tzj‘gzw and Rejgw=0, i=1,...,2. (29)

If we write w = XZ7_ | c;w;, ¢; € C, then

F
(l) (l) (2) (2) (l) (2) (2) )
w = Z {( S j )+ ( Sy C; Sy }9

J ji=1

M, (1) (DD @ @),
gw—Z{( ¢ty +i(e;j 'ty +¢, 1)},
v j=1

and

n
1) (1) 2) ()
%

j=1

Hence the condition (29) is expressed as the system of linear homogeneous
equations:

A(tHe=0

where ¢ =(c\", ¢®, ..., ¢, ), 0=(0,0,...,0,0) and A(x) is the 6y x 2n ma-

’1’

trix given by

Ap(x) o A, )
Ay (x) ... Apu(x)
A = ,
) By, B,
_ Bz | BZyn .
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M M ) 2
400 Sy — Xty —(s; —xt;)
.AX) =
1] ) 2) ) 1) ’

B, =@y, —uy), i=1,...,2,j=1,...,n
Note that

Nul (G,) = 3 + dimg H(G,)
=3+ 2n — rank A(¢?). (30)

For the moment we consider A(x) as a matrix whose entries are polynomials
with real coefficients. Let r be the rank of A(x) and J,(x), k=1,...,r, the
determinant divisors of A(x). J,(x) is, by definition, the greatest common divisor of
all the k£ x £ minor determinants of 4(x) and is a polynomial of degree at most
min (k, 4y). An elementary fact in linear algebra says there exist nonsingular square
matrices P(x) and Q(x) such that

e; (x) O

PEAWOW = | ’

b

e" ('x)

0 10

where e, (x) | e;(x), that is, e;(x) is divisible by e¢; _ (x), i =2, ..., r. We note that
Su(x) =e,(x) - e(x), k=1,...,r. Let A(x) be the 4y x 2n matrix obtained by
deleting the lower 2y rows of A(x):

All(-x) A]n(x)
Ax) = :
AZ'yl (X) vee A2yn (X)
Let # and §,(x), k =1,...,7 be the rank and the determinant divisor of A(x)

respectively. We note that r — 2y <7 < r. Moreover, it is easy to see that 5,(x) is an
even function of x,

§e(x) |6(x),  k=1,...,F, (31)

and

51(x) | 84 4 25(), k=1,...,r—2y. (32)



526 SHIN NAYATANI

From now on we consider A(x), x € (0, c0), as matrices whose entries are real
numbers which vary with x. Clearly rank A(x) < r and rank 4A(x) < r if and only if
0,(x) =0. Therefore rank 4(x) =r except for a finite number of values of x. This
together with (30) proves the first assertion of the lemma. To prove the second
assertion, it suffices to show

n_+n, <6y (33)

Let /(x) =r —rank A(x), x € (0, c0). Note that n_ =2, _ , I(x)and n, =2 ., I(x).
For a polynomial f we denote the degree of f by d(f). If /(a) >0, then
€ _i+1(@) =-=¢e(2) =0 and so (x —a)"®|§,(x). Therefore

n_+n,.= ) Ix)+11)

0<x<

< d(s,) + I(1).

Since d(d,) < 4y, (33) holds if /(1) < 2y. We now suppose /(1) =2y + s, s = 1. Let
m=2X,,,(x). Using (32) and the fact that §,(x) is an even function, we can
deduce

d(5, - ,) < 2(d(3,) — (1) +m))

<2(2y —s —m),
and therefore
d(5,‘2.l,_,.)Smax(2(2y—s—m—j),0), 0<j<r-2y—1.
By (31),
d©, 5, ;) <max(2(2y —s —m —j),0). (34)
If we choose j=s5—1, then r —2y —j=r —I(1) + 1, so that (34) becomes

d(ér ,(”4_ I) S maX (2(2')) - 2S + 1 ""m), 0).
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Since d(6, 41y4 1) >0, we must have m < 2y — 2s. Therefore

n_+n, =Y Ix)+2I(1)

<(2y —25) + 2(2y + 5) = 6y,

getting (33). This completes the proof of Lemma 2.

S. Example — Index of the Costa’s surface

Let L be the square lattice in C generated by 1 and i and P the Weierstrass
g-function for L. Let G : Z = C/L — S? be the holomorphic map of degree three
defined by

IT > G([z]) = P'(2),

where P’ is the derivative of P and [Z] is the point in 2 corresponding to z € C. In
this section we shall compute the index and the nullity of G, =/, - G for all
t € (0, o0).

In our computation essential is the fact that P and P’ are highly symmetric.
Consider the conformal maps 4, k and t of the complex plane defined by

Awy,+2) =w, + iz, K(w, +2) = w, + Z,
(W, + 2) = A2 (k(wy + 2)) = w, — Z,

where w, =(1+1i)/2. A is the rotation by n/2 about w, and k (resp. 1) is the
reflection through the horizontal (resp. vertical) line through w,. It is easy to see
that A, k and t induce conformal diffeomorphisms of X.

LEMMA 3. Let A, k and 1 be as above. Then we have
Po)l=—-P, Pok =P, Potr=P, (35)
and

P ol=iP’, Pok=P, Pot=—P. (36)
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Proof. (35) is observed in [9]. Taking derivative of (35), we get

A¥(P' dz) = — P’ dz, K*¥(P' dz) = P’ dz, t*(P’' dz) = P’ dz.
Since A*dz =idz, k* dz =dZ and t* dz = —dz, (36) follows.

REMARK 5. In terms of the holomorphic map G, (36) may be rewritten as

GoA=LG, G ok =KG, Got=T1G, (37)
where
0O —-1 0 1 00 -1 0 0
L=|[1 0 0}, K=[0 —1 0} and T = 01 0
0 0 1 0 0 1 0 0 1

Note that (37) holds with G replaced by G,, ¢t € (0, ).

We now examine the ramification locus of P’ and the values of P and P’ on it.
Let w,=1/2, w;=i/2 and e; = P(w;), j =1,2,3. Then P satisfies the differential
equation

(P)?=4(P — e )(P — e;))(P — e3).

In our case e;’s are real, e, = —e; >0 and e, = 0. Therefore

(P)*=4P(P —e,)(P + ¢)). (38)
We first note that P’ has poles of order three, hence ramifies with the ramification
index three, at the lattice points, where P also has poles of order two. The other
ramification points of P’ are exactly the zeros of P” and all with ramification index
two. Actually P” has four simple zeros in F={x +iy|0<x,y <1}, which we
denote by z;, j=1,...,4. They are located as in Figure 1, so that

z;=M"1z, j=2,3,4. (39)
By (38), it follows that

P" = 6P — 2¢?.
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W
W3l o .
24 292
[ Zl
0 wh 1
Figure 1. The line segments w,z,, j=1,..., 4, have the same length.
Letting 4 = el/ﬁ, this becomes
P" =6(P — A)(P + A) (40)

and thus P(z;) = +A. By (38) we also have P'(z;) = +B, +iB, where B =
(8e?/3ﬁ) 2. We point out here the fact that P is positive real and P’ is “positive”
pure imaginary in the interior of the vertical line segment w, w, (see [3]). Hence we
can conclude

P(zy))=A and P'(z,) =iB.
P(z;) and P’(z,), j =2, 3,4, can be determined using (39), (35) and (36).
In the following lemma we collect some formulas which are also needed in the

sequel.

LEMMA 4. (a) Let a, p :[0, 1] > C be the paths
a) =145 o) = +si
s) = 3 S, s) = 3 Si.

Then

Jsz=—n, dez=1ri.
a B
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(b)

1 1 1 1
55 Pz —wy) —e)), 53 (P(z —w3) —e3).
1

P—e, 2e?

P—e, 2e
For the proof see [2].

Since P’ has poles of order three at the lattice points, we have, from Theorem
2, that

Ind (G,)=5 and Nul(G,) =3 for all sufficiently small ¢. (41)

By Lemma 2, Nul (G,) =3 except for finitely many values of t. We shall now
compute Nul (G,) for all # and describe the spaces H(G,) explicitly. We first note
that, by (30), the space H(G) has complex dimension at most three.

Let p, be the point in X corresponding to the lattice points and p;, j =1, ..., 4,
the points in X corresponding to z,. Since D(G) = Z}_, 2p; — 3p,, an element of the
space HY(K(Z) + D(G)) is written as fdz, where f is a meromorphic function on X
with poles of order <2 at p,, j=1,...,4, and with zeros of order =3 at p,. It is
easy to check that

Pdz _(PP+ A% dz PP’ dz

wl:(Pz__Az)z’ oy (P2— A9 ° w3=(P2——A2)2

are C-linearly independent elements of H°(K(Z) + D(G)). Moreover, it can be
shown that the residues of w; at p;, j =1, ..., 4, all vanish. We shall carry out the
computation for w,. Since P(z,) = A, P'(z;) =iB and P"(z;) =0, we have

P=A+iB(z —z)+0(z —z;)?,
near z,. Using this we compute

P
(P2 = A%? —44B*z —z))?

+0(1)

and thus Res, w; =0. By (35) we have A*w, = —iw,. Hence

— _— j— 1y %
Res, w; =Res;, -1, ,w; =Res, (™) *w,

=(—iy~'Res, w, =0, j=2,34.
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Computations for w,, w, are more or less similar. Thus we have shown that
dime A(G) =3 and w,, w, and w, form a basis of H(G).

Let w and n be meromorphic differentials on X. We denote w ~ n if there exists

a meromorphic function f on X such that v =n + df.
Using (40) we compute

AP ~ 24P 6P%\
P/(PZ_AZ) - (Pz__Az)z p2 s

Hence

9 P? 9 | 1
~ = —
T apr® 8e3<p—el+p+e,>dz (by (38))
9

T (P(z —w,) + P(z —ws3))dz (by Lemma 4(b)).

Thus, by Lemma 4(a),

On Omi
_ - _ 42
L 0)1 86’?’ Lwl 86?, ( )

where o and f are the paths as in Lemma 4(a). Similar computations yield

P'w,, P'w,, w; and P?w; ~ 0, (43)
and

| P?w, = J P'w; =3, J Py, = j P’w, = 3i,

Ja 2 B B

- .

| o= J;w=zé~ (44)

[ P?w, = —6m, f Pw, = 6mi

Let w =%'_, ¢, ¢ € C. By the definition of H(G,), w € H(G,) if and only if

J‘wztzj P”?w and Rej P'w=0  fordea B}
1 [ 14
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By (42), (43) and (44), these conditions are equivalent to c; =0 together with the
system of equations:

97 3 )~
.@Cl +;1.?62 = [2(36'1 - 67[6‘2),
1 1
(45)
Omi 3i
—_ -é.e—4 C, + —4—;5 Ccy = t2(3icl + 67TiC2)-
1 1

Considered as equations with unknown ¢, and c,, (45) has a nontrivial solution
only when t?=3n/8¢}, 1/8ne?. When 1> = 3n/8e? (resp. 1/8me?), (¢, ;) =(1,0)
(resp. (0, i)) is the unique nontrivial solution of (45) up to a real multiple. We state
what we have proved as

LEMMA 5. Let t,=(3n/8¢%})"? and t, = (1/8me?)'%. Then

4 ift=1t,,1t,,
3  otherwise.

Nul (G,) = {

The vector spaces H(G,,) and H(G,,) have real dimension one and are spanned by w,
and iw, respectively, where

P dz (P? + A?) dz
w, = m and Wy = —-(;2—:22—)5— .
REMARK 6. Since e, =6.875---, it follows that ¢, =0.02296--- and

t, =0.02901 - - - . Thus we have ¢, < t,.

For simplicity we set V,;(¢) = V,(G,). Remark 5 implies, since K, T € O(3), that
x and t© are isometries with respect to the metric dsg, for all 7. Hence they act
L*(Z, dAg,)-orthogonally on V,(#). Since x and t are both involutive and commuta-
tive, V,(¢) splits L*(Z, dAg )-orthogonally as

V.=V, 0"V, eV, eV,(n",
where V(Y ={ue V() |uck =(—=1)u,uct=(—1)Yu}, i,j=0, 1.
Let Q={x+iy|0<x,y <3} and L,=w,_ w;, j=1,...,4, where wy=w,

= (. The boundary of Q, 02, is the union of L;, j =1, ...,4. We identify Q with
the corresponding domain in X and consider the eigenvalue problem

Leu=/ u inQ (46)
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with various boundary conditions:

(NN) Oou/ov =0 on 0Q;

(ND) Oou/ov=0 onL,UL,, u=0 onL,uUL,;
(DN) u=0 onL UL, ou/ov =0 on L,uLy,;
(DD) u=0 on 0Q,

where v is the unit outward normal to 0Q. Let AYN(¢) (resp. AYP(1), APN(¢), APP(1))
denote the k-th eigenvalue of this problem with the boundary condition (NN)
(resp. (ND), (DN), (DD)). We note that these are continuous in ¢. Let u € V;(1)%.
Then it is easy to see that ul, satisfies (46) together with the boundary condition
(NN). Conversely, if a function v satisfies (46) and (NN), then, by extending v so
that the resulting function is invariant by k and 7, we get a function belonging to
V(). Thus we have a natural bijective correspondence between V()% and the
space of solutions of (46) satisfying the boundary condition (NN). We can establish
the similar correspondence between V;(1)°' (resp. V,;(1)'°, V,()'") and the space of
solutions of (46) satisfying the boundary condition (ND) (resp. (DN), (DD)).

LEMMA 6. AY¥(t) (resp. APP(1)) is monotonically non-increasing (resp. non-de-
creasing) in t.

Proof. We first point out the following fact (see [3]): P’ maps the horizontal
line segment w,w, onto the nonpositive real axis and the vertical line segment w, w,
onto {iv |0<v < B}. This fact together with (36) implies that P’(0Q), which is
nothing but the stereographic projection of G(0Q2), is as in Figure 2. Observe that
G(0Q) divides S? into two components. Since G is an open map, Q is simply
connected, and S? — G(0Q) contains no branching values of G, we may conclude
that G maps Q biholomorphically onto either of these components. The fact that
the area of Q with respect to the metric dsZ is 3n determines G(2) to be the larger
one (see Figure 2). Thus G maps (Q, dsZ) isometrically onto an open three-quarter
of §? from which two geodesic segments, emanating from the south pole and
running toward the north pole, are deleted. Clearly the same statement holds with
G replaced by G,, and as ¢ increases, the length of the deleted geodesic segments
also increases. By the argument similar to that in the proof of Lemma 1 (b), the
assertions follow.

We now examine the symmetry of elements of N(G,) = V(). We have the
distinguished subspace L(G,) spanned by

G),=(1,0,00- G, (G),=(0,,O)"-G, (G);=(0,0,1)"-G,.
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Figure 2. P’(6Q) is shown as the thick lines and P’(Q2) as the shaded region.

It is easy to verify, using Remark S5,
(G e Vo), (Ge Vo', (G)se Vo()®. (47)

Moreover, Lemma 5 implies that if ¢t =¢,, ¢, N(G,) contains a nonlinear element,
unique up to a real multiple and addition of an element of L(G,). Tracing the
description of N(G,) in §4, we can write them down as follows: Let X;: 2 —
{Po, P1»---,Ps} =R i=1,2, be the conformal harmonic maps defined by

»

p
Xi(p)=Re | (1=6P2i(1+1t}P?),2t;P) w,,

vPo

(P
Xo(p) =Re | (1—13P72i(1+t5P%),2t,P") i,

JvPo

where w,, i = 1,2, are as in Lemma 5. Then, foreach i € {1, 2}, 4, = X, - G, extends
over to py, py, - - . , s Smoothly and gives an element of N(G,) — L(G,).

LEMMA 7. Let u, and u, be as above. Then

u, € Vo(t))® and u, e Vi)'
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Proof. 1t suffices to show

LllOK———ul, u10T=u1;
4
u20K=—~u2, u20‘5=—u2. ( 8)
Let @ =(1—13P2i(1+1t}P"?),2t,P) 'w,. It is easy to verify, using (35) and (36),
that k*® = K&. Therefore

Kk(p) p
Xlox(p)zReJ‘ ¢=RCJ K*@

Po Kk ~(po)

~re(k | &)= KX

Since G, ok = KG,, and K € O(3) (see Remark 5), we obtain
u ok =(X,°k) - (G, k) =KX, - KG,,
=X, G, =u,.
The similar computations show the other equalities in (48).

THEOREM 5. Let G:X —S? be as in the beginning of this section. Let
G, =, oG, te(0,x). Then

5 ift<t,,<t,
Ind (G,) =
nd (G/) {6 ift, <t<ty,
and
4 ift=t,t,,
Nul (G,) =
ul (G/) {3 otherwise,

where t, = (3n/8e})'? and t, = (1/8ne?) /.

Proof. We have only to compute Ind (G,). By (47) and Lemma 7, we have

2 ift=t
dim V, (1) = b
tm Vo (7) {l otherwise,
1 ift=t
dim V,(n'' = 2 49
s ¥ylo) {O otherwise, (49)

dim Vy(1)* = dim V,(1)'° =1 for all ¢.
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We fix t,€ (0, ;) and let n? =dim @, _, V,(¢,)" for i, j =0, 1. By (49), Lemma 6
and the observation preceding it, we obtain

{noo ifr<1,

di V(% =
im @ V(1) n® 41 ifr>1,

A< 0
11 g
: n ift<t,,
dim @ v,(n'" = . . 2
<0 n' —1 lftztz,

dim @ v,(n° =n", dim @ V,()"°=n" forall .

/<0 Ai<0

Since Ind (G,) =2, ,dim @, _, V;()” and thus X, ,n"=15 by (41), we get the
desired result.

COROLLARY 1. The index of the Costa’s surface (2] is five.

Proof. The Costa’s surface, which we call M, is a complete minimal surface of
total curvature — 12z, hence of finite total curvature. The compactified surface M
and the extended Gauss map G : M — S? are given by

M=C/L and IT:G(z) = P

respectively. Hence by (2) and Theorem 5 we have

Ind (M) = Ind (G) = Ind (G,,) = 5.
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