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Hyperbolic volume and mod p homology

MARC CULLER! AND PETER B. SHALEN!

Abstract. If M is a closed, orientable hyperbolic 3-manifold such that dimz, H,(M;Z,) > 5 for some
prime p, then M contains a hyperbolic ball of radius (log 5)/4. There is also a related result in higher
dimensions.

Introduction

In [8, Proposition 5.4] it was shown that if M is an orientable hyperbolic
3-manifold, and if for some prime p the Z,-vector space H,(M; Z,) has dimension
at least 4, then M contains a ball of radius (log 3)/4. This implies that the volume
of M is greater than 0.11. In this paper we shall prove:

THEOREM A. Let M be a closed, orientable hyperbolic 3-manifold. Suppose that
for some prime p, the dimension of the Z,-vector space H,(M; Z,) is at least 5. Then
M contains a hyperbolic ball of radius (log 5)/4. In particular, the volume of M is
greater than 0.35.

By a hyperbolic ball in a hyperbolic n-manifold M we mean an open subset of
M which is path-isometric to an open ball in hyperbolic n-space H”. The volume
estimate in the theorem can be deduced from the existence of a hyperbolic ball of
radius (log 5)/4 by using density estimates for sphere-packings as in [7] (see also [3]).

Theorem 6.1 of this paper asserts that the conclusion of Theorem A remains true
under the hypothesis that any three elements of n,(M) generate an infinite-index
subgroup of n,(M). The latter hypothesis is actually weaker than that of Theorem
A,; this is because, according to [8, Proposition 1.1], if k is a positive integer and M
is a closed, orientable 3-manifold such that dim,, H,(M; Z,) 2 k + 2 for some prime
p, then any k elements of n,(M) generate an infinite-index subgroup of =, (). Thus
Theorem A is in fact a special case of Theorem 6.1.

! Supported by an NSF grant
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We will also prove a related result in higher dimensions. Recall that the rank of
a finitely generated group F is defined to be the minimal cardinality of a generating
set for F. A group I is said to be k-free, where k is a non-negative integer, if every
subgroup of I' with rank at most k is free. We have:

THEOREM B. Let M be a closed hyperbolic manifold of dimension n 2 3.
Suppose that ©,(M) is 3-free. Then M contains a hyperbolic ball of radius

log 5
2n—1)

The first five sections of the paper are devoted to the proof of Theorem B. One
regards the hyperbolic n-manifold M as a quotient H”/I", where I" is a discrete,
torsion-free group of isometries of H”. For each maximal cyclic subgroup X of I
and each 4 > 0 one considers the set Z,(X) consisting of all points of H* that are
moved a distance less than A by some non-trivial element of X. It is an elementary
observation (Proposition 3.2) that if M contains no hyperbolic ball of radius 4/2
then the non-empty sets of the form Z,(X) constitute an open covering of H”. The
nerve of this covering is a simplicial complex K. The geometric properties of the sets
in the covering — which are fairly well-behaved neighborhoods of the axes of the
corresponding cyclic subgroups — impose topological restrictions on K: it is con-
nected, and the link of every vertex is connected.

As the sets in the covering are determined by certain maximal cyclic subgroups
of I', the vertices of K have a natural labeling by maximal cyclic subgroups. As I'
is 3-free, the vertices of any 2-simplex of K generate a free group. However, if
A = (log 5)/(n — 1), the discreteness of I' can be used to show that this free group
is never of rank 3: this depends on Proposition 3.5, which is an elementary
geometric argument based on ideas that appeared in [4] and [8]. Thus in the
labeling of the vertices of K by cyclic groups, the three cyclic groups labeling the
vertices of any given 2-simplex generate a free group of rank 2. Using the
topological properties of K and elementary facts about free groups, one can
conclude that the group generated by all the labeling cyclic groups — i.e. by all
cyclic groups X for which Z,(X) # J —is locally a free group of rank 2. By
pushing the group theory a bit further one can then deduce that I' is itself a free
group of rank 2, and this is impossible as I" is the fundamental group of a closed
aspherical manifold.

In Section 1 we prove some elementary properties of the sets Z,(X), for X any
cyclic group of loxodromic isometries of H”. In Section 2 we prove a purely
topological result about nerves of coverings of topological spaces. In Section 3 the
results of the two preceding sections are combined to establish the relevant
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topological properties of the complex K. The proof of the geometric result
alluded to above, Proposition 3.5, is also given. In Section 4 we establish
the relevant facts about free groups and labeled complexes of groups. In
Section 5 the results of Sections 3 and 4 are combined to give the proof of
Theorem B.

Actually this is all done in a somewhat more refined setting, and gives a
result, Theorem 5.1, which is more technical than Theorem B but includes it as a
special case. In Section 6 we will combine Theorem 5.1 with the specifically
3-dimensional results of [3] to deduce Theorem 6.1 and hence Theorem A.

The following conventions will be used throughout the paper. The hyperbolic
distance in H” will be denoted dist. If S is a subset of H” and r is a positive
number, nbhd, (P) will denote the open r-neighborhood of S, i.e. the set of all
points whose minimum distance from S is strictly less than r.

If ¢ is a simplex in the simplicial complex K, the link of ¢ in K, denoted by
link . (), consists of all simplices T such that (i) 6 "t = & and (ii) ¢ and t span
a simplex of K. The support of a simplex ¢ in K is the subcomplex of K
consisting of ¢ and all its faces; it will be denoted by |o]|.

If S is a subset of a group I', we denote by {S) the subgroup of I' gener-
ated by S. (If S ={x,,...,x,}, we may also write {x;,...,x,» for (S).)

Let z,,...,z be elements of a group I'. We shall say that z,,...,z, are
independent if they freely generate a (free, rank-r) subgroup of I'. (Here we
regard {z,,...,z} as an indexed r-tuple; in particular, if two of the z; coincide,
then z,, ..., z, are not independent.)

We are very grateful to Sa’ar Hersonsky for helping us with our 3-dimen-
sional hyperbolic trigonometry.

Section 1. Loxodromic isometries and displacement cylinders

1.1. Recall that an isometry x of H” is loxodromic if there is an x-invariant
line A(x) in H?, and x acts on A(x) as a translation through some distance
length x > 0. The line A(x) is unique, and is called the axis of x.

If x is an isometry of H” we define a continuous non-negative-valued func-
tion D, on H" by D,(P) =dist (P, x - P). Note that D, =D, _,.

1.2. Suppose that x is loxodromic with length /. Let P be any point of
H" — A(x), and let Q denote the point of A(x) closest to P. Set P'=x - P and
Q' =x-Q. We have L PQQ’'=/ P'Q'Q=mn/2, dist(Q, Q') =1, and dist (P, Q) =
dist (P’, Q') =r, where r =r (P) denotes the perpendicular distance from P to
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A(x). Let 0 = 0,(P) denote the dihedral angle between the planes PQQ’ and P'Q’Q.
Setting D = D, (P) = dist (P, P’), one sees by elementary hyperbolic geometry that

cosh dist (P, P’) = cosh [ + (sinh? r)(cosh [ — cos ),
ie.
cosh D, (P) = cosh [ + (sinh? r (P))(cosh | — cos 0,.(P)). (1.2.1)

This formula is clearly valid for P € A(x) if we assign an arbitrary value to
0.(P). In particular we recover the familiar fact that dist (P, x - P) =/ for every
point P € H", with equality if and only if P € A(x).

1.3. Note that 6, is constant on every ray which is perpendicular to 4(x) and has
its endpoint in 4. If p is such a ray, the function r, | p maps p homeomorphically
onto [0, co0) and thus defines a coordinate r on p. It follows from (1.2.1) that D, | p
is a strictly monotonically increasing function of r and goes to infinity with r.

(In the case where n = 3 and x preserves orientation, 6, is constant on all of H>.
This fact will not be used in the present paper.)

1.4. Now for any loxodromic isometry x of H” we define a non-negative-valued
function E, on H” by setting E (P) = min,. ; D,.(P) for every P € H".

PROPOSITION. Let x be a loxodromic isometry of H". Then E, is continuous,
and minp _ y. E (P) = length x. Furthermore, for every C > 0 there exists R > 0 such
that E (P) > C for every point P such that r.(P) > R.

Proof. Set | =length x. Then length x¢ = dl for every integer d > 0. Hence for
each d we have minp_y» D, «(P) =dl, and so

min E (P) =mindl =l

Pe H” d>0

To show that E, is continuous on H” it suffices to show that it is continuous on
the set H,=D_;'([0,a)) for each a>0. For any integer d > a// we have
D, i«(P)2dl >a for every PeH" It follows that for any p e H, we have
E.(P) =min, . 4« oy Da(P); since each of the functions D,.(P) is continuous on
H”, it follows that E, is continuous on H,.

Now let C be any positive constant, and let R be a constant such that
(sinh? R)(cosh I — 1) > cosh C. Since x“ has translational length dl, it follows from
(1.2.1) that D,.(P) > C for every positive integer d >0 and for every P with
r.(P) =2 R. Hence E,.(P) > C whenever r,(P) = R. O
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1.5. PROPOSITION. Let x be a loxodromic isometry of H". Let p be any ray in
H" which has its endpoint in A(x) and is perpendicular to A(x); let us identify p
isometrically with [0, o). Then f = E, | p is monotonically increasing, and f(P) tends
to infinity with P.

Proof. According to 1.3, the function D, | p is strictly monotonically increasing
for every d >0. Hence f=E, |p =min,,, D,«|p is also strictly monotonically
increasing. The final assertion of Proposition 1.4 implies that f(P) tends to co with
P. O

For any loxodromic x and any A >0 we set Z,(x) = E;'[0, ).

1.6. PROPOSITION. Let x be a loxodromic isometry of H". For any
A <length x we have Z,(x) = (J. For any A >length x the set Z,(x) is an open
contractible neighborhood of A(x) and is contained in nbhdg A(x) for some constant
R > 0. Furthermore, the frontier of Z,(x) in H" is the set Q,(x) = E;'({1}), and
Q,(x) is homeomorphic to S"~? x R.

Proof. Set [ =length x. Since min,y_y» E,(P) =1 by Proposition 1.4, we have
Z,(x) = @ for any A < /. On the other hand, since D, is identically equal to / on
A(x), we have A(x) =« Z,(x) for any A > [; in view of the continuity of E, it follows
that Z,(x) is an open neighborhood of A(x). To show that Z,(x) is contractible in
this case, we consider any ray p < H” which has its endpoint in A(x) and is
perpendicular to A(x). It follows from Proposition 1.5 that Z,(x) np is a half-open
line segment with the same endpoint as p; since this holds for every such ray p, the
contractibility of Z,(x) is clear.

It follows immediately from Proposition 1.4 that Z,;(x) < nbhd, A(x) for some
constant R > 0.

The continuity of E, implies that the frontier of Z,;(x) in H” is contained in the
set Q,(x) =E;'({1}). To prove the reverse inclusion, we consider any point
P € Q,(x), and we let p, denote the unique ray in H” which has its endpoint in 4,
is perpendicular to A(x) and contains P. According to 1.5, the function f=E, | p,
is strictly monotonically increasing. Since f(P) = 4, the monotonicity of f implies
that P lies in the frontier relative to p, of the set f~'[0,1) = Z,(x) npp. In
particular, P lies in the frontier of Z,;(x) in H".

It remains to show that Q,(x) is homeomorphic to S” 2 x R. For this purpose
we consider the set Q*(x) « H" consisting of all points whose perpendicular
distance from A(x) is 1. If P is any point Q,(x), and pp is defined as above, then
pp N Q*(x) consists of a single point which we denote Ah(P). This defines a
continuous map A& : Q;(x) » Q*(x). It follows immediately from Proposition 1.5
that /4 is a bijection. On the other hand, since we have shown that Z;(x) <
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nbhd, A(x) for some constant R > 0, it is clear that every compact subset of Q*(x)
has bounded pre-image under A. But Q,(x) is closed in H” since it is the frontier of
Z,(x). Thus Q,(x) is locally compact and A is a proper map. It follows that A is a
homeomorphism. Since Q *(x) is clearly homeomorphic to $”~2 x R, this completes
the proof. O

We remark that in the case that n =3 and x preserves orientation we have
Z,(x) =nbhdg A(x) for some R >0. This fact will not be used in the present
paper.

1.7. For any loxodromic isometry x of H”, it follows from 1.1 that D _,= D, _,
for every d > 0. This implies that E, = E, _,, and hence tht Z,(x) = Z,(x ") for
every A >0. Hence if X is any infinite cyclic subgroup of I' with a loxodromic
generator x we may unambiguously write Z,(X) = Z,(x) for any positive number A.
This notation will be used extensively in the next two sections.

Section 2. Nerves and connectedness

2.1. By an open covering of a topological space H we shall mean an indexed
family (U;),.,; of non-empty open sets in H such that |J,., U, = H. Note that we
may have U, = U, for distinct indices i and j. The nerve of the covering (U,),., is an
abstract simplicial complex with an indexed vertex set (v;),,, where v; = v; if and
only if i =j. A collection {v,,...,v; } of vertices, where i, ..., are distinct
indices in /, spans a k-simplex if and only if U; n---nU, # .

If H is connected, any open covering of H has connected nerve. (This depends
on our requirement that the sets in an open covering be non-empty.)

2.2. PROPOSITION. Let (U;);c; be a covering of a topological space H.
Suppose that

(1) for every i €I the set U, is connected and has connected frontier, and

(ii) for any two distinct indices i, j € I we have U; & U,.
Then the link of every vertex in the nerve of (U;); ., is connected.

Proof. Let K denote the nerve of (U,),.,. Suppose that we are given a vertex of
K, say v, for some s € I. Set C = link, v,. We are required to show that C is a
connected simplicial complex. Let us write the set of vertices of C as an indexed set
(vi)ic s, where J is a subset of I. We have jeJ if and only if v, and v, span a
1-simplex of K; by the definition of the nerve, this is equivalent to saying that j # s
and U,nU, # .
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We denote by Q the frontier of U, in H. By hypothesis (i), Q is a connected
space. Consider the indexed family (U; N Q), . ; of open sets in Q. We claim that this
family is an open covering of Q.

First we must show that U,nQ # (¥ for any j € J. Since for j € I we have j # s,
hypothesis (ii) implies that U; ¢ U;. Since U, is connected by hypothesis (i), and
since U;nU, # J when jeJ, it follows that U; meets the frontier @ of U, as
required. Next we must show that Q = |J;.,(@nU,), ie. that Q = UJ;.,(U)).
Given any point g € Q, we have g € U, for some j € I; since g ¢ U, we have s # .
But since ¢ € U, we must have U;n U, # . This shows that j € J, and completes
the proof that (U;nQ),., is an open covering of Q.

Let E denote the nerve of the covering (U;nQ);.,. Let w; denote the vertex of
E corresponding to the index jeJ. If w; ,...,w; span a k-simplex of E then
@nU)n---n(@nU,) # J; hence in particular, (U; - -nU;,)n U # &, so
that v; ,...,v;, v, span a (k + 1)-simplex of K. This means that v; ,...,v, spana
k-simplex of C. This shows that E is simplicially isomorphic to a subcomplex of C
containing all the vertices of C.

Since Q is connected, the nerve E of the covering (U; N Q); . , is connected. Thus
there is a connected subcomplex of C containing all the vertices of C. It follows that

C 1s itself connected. O

Section 3. Discrete groups and coverings of hyperbolic space

3.1. In this section, M will denote a closed hyperbolic manifold of some
dimension n = 2. We may regard M as the quotient of H” by a co-compact, discrete,
torsion-free group I' of isometries. We recall some elementary properties of I'. Since
I’ is co-compact, each non-trivial element x of I' is loxodromic. The centralizer C(x)
of x is cyclic and consists of all elements having the same axis as x. In particular
C(x) is the unique maximal cyclic subgroup containing x. For two non-trivial
elements x and y of I' we have C(x) = C(y) if and only if x and y commute, or
equivalently if and only if A(x) = A(y). Thus there is a natural one-one correspon-
dence between maximal cyclic subgroups of I' and axes of elements of I.

3.2. PROPOSITION. Suppose that A is a positive number such that M contains
no hyperbolic ball of radius 1/2. Then we have

H" = 9 Z,(X),

where X ranges over all maximal cyclic subgroups of T.
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Proof. Let P be any point of H”. The hypothesis that M contains no hyperbolic
ball of radius 4/2 implies that dist (P, x, - P) < A for some x,e I' — 1. (Indeed, if
dist(P,x - P) 24 for every x eI’ — {1} then by the triangle inequality B =
nbhd;, (P) is disjoint from x - B = nbhd,, (x - P) for every x e I' — {1}; hence the
covering projection maps B injectively into M, and its image is a hyperbolic ball
of radius 4/2.) Now by 3.1, X, = C(x,) is a maximal cyclic subgroup of I', and x,
is a positive power of some generator x; of X,. By the definitions we have
E . (P) <D, (P)=dist (P, x, - P) <4, so that Pe Z, (P) = Zy (P). Since P ¢ H"
was arbitrary, the conclusion of the lemma follows. O

3.3. PROPOSITION. Suppose that X and X' are maximal cyclic subgroups of T,
and suppose that for some 1 >0 we have & # Z,(X) =« Z,(X"). Then X = X'

Proof. Let x and x’ be generators of X and X’ respectively, and set
A=A.,A = A,. By Proposition 1.6 we have Z,(X’) < nbhd; 4" for some R > 0.
Hence Z,(X) = nbhdg 4’. Now let H” denote the union of H" with the sphere at
infinity S”,~'. We give H" the natural topology, in which it is homeomorphic to a
closed n-ball. Let Z denote the closure of Z;(X) in H". Since Z,(X) < nbhd, 4’, we
have ZnS% '« A'nS" '={P, Q}, where P and Q are the fixed points of x’ in
S7-!'. Thus {P, Q} is invariant under x. Hence x? fixes P and Q. Since x? is
loxodromic with axis A4 it follows that P and Q are the endpoints of 4 and hence
that 4 = A’. By 3.1 this implies X = X". O

3.4. Suppose that 4 is a positive number such that M contains no hyperbolic
ball of radius 4/2. Let & = % ;(M) denote the set of all maximal cyclic subgroups
X of I' such that Z;(X) # &. Proposition 3.2 implies that the indexed family
(Z,(X))x <4 is an open covering of H” (see 2.1). We will denote the nerve of this
covering by K;(M).

PROPOSITION. Let 4 be a positive number such that M contains no hyperbolic
ball of radius A[2. Then K = K,(M) is a connected complex with more than one
vertex, and the link of every vertex of K is connected.

Proof. Since H" is connected, the nerve of any open covering of H” is connected.
Set £ =%,(M) and K=K,(M). If K had only one vertex, we would have
H" = Z,(X) for some X € Z. This is impossible since by Proposition 1.6 we have
Z,(X) = nbhdg (4) where A is the axis of a generator of X and R is some positive
number. To show that the link of every vertex of K is connected we apply
Proposition 2.2. According to Proposition 1.6, for each X € & the set Z,(X) is
contractible and hence connected, and its frontier is homeomorphic to $”"~2 x R
and is therefore connected since n = 3. Thus hypothesis (i) of Proposition 2.2 holds.
That hypothesis (ii) holds is precisely the content of Proposition 3.3. O
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3.5. As we explained in the introduction, the following result is the basic
geometric fact underlying the proofs of Theorems A and B. The proof is a slight
variant of the proof of [8, Proposition 5.2 and Corollary 5.3]; see also [4].

PROPOSITION. Let x,, ..., x, be independent elements of I'. Set

_log (2r — 1)
T n—1

A

Then Z,(x,) - nZ,(x,) = .

Proof. Suppose that P is a point of Z;(x,) n---NnZ,(x,). Foreachie{l,...,r}
we have E, (P) < 4, and hence D, (P) < 4 for some positive power y;, = x¢ of x,.
Clearly y,,...,y, are independent. We fix a number A</ such that
dist (P,y; - P)=D,(P) <A’ fori=1,...,r. It then follows by induction on m = 1,
using the triangle inequality and the fact that the y, are isometries, that if y € I' is
given by a word of length m in y,, ..., y, then dist (P,y - P) <ml’.

For each m = 1, let §,, denote the set of all elements of I" that are expressible
as reduced words of length m in y,, ..., y,. Since y,, . . ., y, are independent, S, has
cardinality exactly (2r)(2r — 1)~ '. Let b be an open ball about P such that
y-bnb=F forevery y e I' — {1}. Let p denote the radius of b, and v its volume.
Then the balls y-b for y €S, are pairwise disjoint and are contained in
nbhd,,; , , (P). Hence

(2r)(2r — 1)™~'v < vol nbhd,; . , (P) < C exp (n — 1)(mi’ + p),
where C is a constant depending only on the dimension n. Hence
Q2r—-1)"<C'exp(n — 1)mi’,

where C’ is a constant depending on n and p but independent of m. If in the last
inequality we take logarithms of both sides, divide by m and take limits as m — oo,
we obtain log (2r — 1) < (n — 1)A’, which is impossible since

1<) olog@r—1) -
n—1

Section 4. Structure of 3-free groups

4.1. Let W be a subgroup of a group I', and let k be positive integer. We shall
say that I' is k-free over W if every subgroup of I' which contains W and has rank



Hyperbolic volume and mod p homology 503

<k is free (of some rank <k). Note that a group is k-free if and only if it is k-free
over the trivial subgroup; and that a k-free group is k-free over every subgroup.

A group I' will be said to have local rank <k, where k is a positive integer, if
every finitely generated subgroup of I' is contained in a subgroup of rank <k. The
local rank is the smallest integer k with this property, and is defined to be oo if no
such integer exists. Note that for a finitely generated group, the local rank is equal
to the rank.

The following result plays the role of an induction step in the proofs of the two
main results of this section, Propositions 4.3 and 4.4.

4.2. LEMMA. Let x, y and z be elements of a group I'. Suppose that x and y do
not commute, and that x, y and z are not independent. Let A be a subgroup of I' which
contains x and y and has local rank 2. Suppose that I is 3-free over some finitely
generated subgroup J of A. Then the group (A v{z}) is also of local rank 2.

Proof. Since (A4 u{z}) contains the non-commuting elements x and y, it must
have local rank >1. We must show that it has local rank <2.

Set B ={A4Au{z}). Let B, be any finitely generated subgroup of B. Then there
is a finitely generated subgroup A, of A4 such that B, is contained in the subgroup
B, = {{z}UA,). After possibly replacing 4, by a larger finitely generated subgroup
we may assume that x, y € 4, and that J < 4,. Since A4 has local rank <2, we may
assume after further enlarging 4, that 4, has rank <2. Hence B, has rank at most
3. Since J < B,, and since I' is 3-free over J, it follows that B, is free of some rank
at most 3. We claim that B, cannot have rank 3. This will imply that B, = B, has
rank <2, and will complete the proof that B has local rank <2.

Assume that B, is free of rank 3. Since A4, has rank <2 it is generated by two
elements u and v. Then u, v and z generate the rank-3 free group B,. Hence by [6,
p. 59], B, is freely generated by these three elements. Thus we may regard B, as a
free product 4, * {z). Now T =<x, y» < B, is free by the Nielsen—Schreier theo-
rem, and has rank <2; since x and y do not commute, T must be free of rank
exactly 2, and must therefore be free on x and y. But since B, has been identified
with a free product 4, * {(z), the subgroup {x, y, z) = (T u{z}) is identified with
a free product T * (z), and is therefore freely generated by x, y and z. This is a
contradiction since x, y and z are not independent. O

4.3. Let I be a group. By a I'-labeled complex we shall mean an ordered pair
(K, (X,),), where K is a simplicial complex and (X,), is a family of cyclic subgroups
of I' indexed by the vertices of K. If (K, (X,),) is a I'-labeled complex then for any
subcomplex L of K we shall denote by @(L) the subgroup of I' generated by all the
groups X,, where v ranges over the vertices of L.



504 MARC CULLER AND PETER B. SHALEN

PROPOSITION. Let (K, (X,),) be a I'-labeled complex. Suppose that K is
connected and has more than one vertex, and that the link of every vertex of K is
connected. Suppose that for every 1-simplex e of K the group ©(le|) is non-abelian and
I is 3-free over ©(|e|). Suppose also that there is no 2-simplex o of K such that ©(|e|)
is free of rank 3. Then ©(K) has local rank 2.

Proof. We shall say that a subcomplex L of K is good if (i) L is connected and
contains more than one vertex, (ii) @(L) has local rank 2, and (iii) I" is 3-free over
some finitely generated subgroup of @(L).

If e is any 1-simplex of K, then @(|e|) is by definition generated by two elements,
and the hypothesis of the lemma implies that @( |e|) is non-abelian; in particular O( |e|)
has local rank 2. The hypothesis also implies that I' is 3-free over @(|e|). Thus |e|
is a good subcomplex of K. It now follows from Zorn’s Lemma that there exists a
maximal good subcomplex L, of K. We shall complete the proof by showing that
L,=K.

4.3.1. CLAIM. The complex L, is a full subcomplex of K. (This means that any
simplex whose vertices lie in L, is itself a simplex of L,.)

To prove this claim, suppose that ¢ is a simplex whose vertices lie in L,. Set
L = Lyu|o|. Itis clear that L satisfies condition (i) of the definition of a good complex,
since L, does, and that ©(L) = ©(L,). Hence L is good; by the maximality of L, we
have L, = L, so that ¢ € L,. This proves Claim 4.3.1.

4.3.2. CLAIM. If e is any 1-simplex of L,, then linkg (e) < L,.

To prove this claim, let ¥ and v denote the vertices of e, and let w be any vertex
in the link of e. Let x,, x, and x,, be generators of X, X, and X,, respectively. The
vertices u, v and w span a 2-simplex o. We set L = L,u|o|. We shall show that L
is good; by the maximality of L, this means that L = L, so that w € L,. Since L,
is full in K, the claim will then follow.

Condition (i) of the definition of a good complex is clear. Condition (ii1)
is also clear since @(L) = @(L,). To verify condition (ii), note that O(L) =
{O(Ly) u{x, }>. We shall apply Lemma 4.2, with 4 = ©(L,) and withx =x,, y = x,,
z =x,, to show that @(L) has local rank 2.

By the hypothesis of the proposition, the group @(|e|) = {x,, x, ) is non-abelian;
that is, x, and x, do not commute. Since L, is good, I is 3-free over some finitely
generated subgroup J of ©(L,). Finally, since u, v and w span a 2-simplex o, the
hypothesis of the proposition implies that @(o) = {x,, x,, x,, > is not free of rank 3,
and so x,, x, and x,, are not independent. It now follows from Lemma 4.2 that @(L) =
{@(Ly) u{x, }) has local rank at most 2, and the proof of Claim 4.3.2 is complete.
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We now proceed to the proof that L, = K, which will complete the proof of the
proposition. Note that since K is connected by the hypothesis of the proposition,
and since L, is full and non-empty(!), we need only prove that for any vertex v, of
L, we have linkg (vy) = L,. Set C =linkg (v,) and D = C n L,; we must show that
D = C. Since L, is connected and contains more than one vertex, we must have
D # . Note also that D is a full subcomplex of K. But C is also connected by the
hypothesis of the proposition. Hence in order to prove that D = C we need only
prove that for any vertex v € D we have link. (v) = D. If e denotes the 1-simplex
joining v, to v, we have link. (v) =linkg (¢) = L, by Claim 4.3.2, and hence
link. (v) = D as required. O

4.4. PROPOSITION. Let © be a normal subgroup of a finitely generated group
I'. Suppose that @ has local rank 2, and that I is 3-free over some finitely generated
subgroup of ©. Suppose also that © contains an element x, with the property that for
every element y € I' which is not a power of x,, the element yx,y ~' does not commute
with x,. Then I' is a free group of rank 2.

Proof. Let y,,...,y, be a finite generating set for I, and set O, =
O U{y,...,%}> for k=0,...,r. (In particular @, = 6.)

4.4.1. CLAIM. The group O, has local rank 2 for k =0,...,r.

By hypothesis, this claim holds for £ =0. We proceed by induction on k.
Suppose that 0 <k <r and @, _, has local rank 2. Since © is normal in I' and
contains x,, the elements x, and y, x,y, ' belong to @ and hence to @,_,. We now
wish to apply Lemma 4.2, taking x = x,, ¥ = YxXoVx '» 2 =Y and 4 =60, _,. By
hypothesis I' is 3-free over some finitely generated subgroup J of ©. It is obvious
that x, y and z are not independent. Thus if x and y do not commute, Lemma 4.2
guarantees that @, = (@, _,u{y.}> has local rank <2, and the induction is
complete in this case.

There remains the case in which x = x, and y = 7, x,7, ' commute. In this case,
the property of x, given in the hypothesis of the theorem implies that y, is a power
of x,. But in this case we have y, € ® <©,_,, so that &, =6, _,, and the
induction step is trivial. The proof of Claim 4.4.1 is therefore complete.

It is clear from the definition of the @, that @, = I'. Applying Claim 4.4.1 with
k = r we conclude that I" has local rank at most 2. Since I' is finitely generated this
means rank I' < 2 < 3. But by hypothesis I' is 3-free over some finitely generated
subgroup of @. Hence I is a free group. Since its local rank is 2, it is in fact free
of rank 2. O
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Section 5. The proof of Theorem B
5.1. The goal of this section is to prove the following theorem.

THEOREM. Let M be a closed hyperbolic manifold of dimension n = 3. Let us
write M = H"/I", where I is a co-compact, discrete, torsion-free group of isometries
of H". Set

_logs

A
n—1

b

and suppose that the following condition holds:
(*) If x and y are non-commuting elements of I' such that Z,(x) " Z,(y) # &,
then I is 3-free over {x, y).
Then M contains a hyperbolic ball of radius 1./2.

5.2. As we observed in 4.1, a group which is k-free is k-free over any subgroup.
Hence condition (*) of Theorem 5.1 always holds if I' ~ n,(M) is 3-free. Thus
Theorem B of the Introduction is a special case of Theorem 5.1. In Section 6 we will
show how to deduce Theorem A of the Introduction from Theorem 5.1.

Proof of Theorem 5.1. Suppose that M satisfies the hypotheses of Theorem 5.1
but contains no ball of radius 4/2, where

log S
)=k

n—1"

Then in the notation of 3.4 we have a covering (Z,(X))y. 4 of H” with index set
Z =% ,(M) and nerve K = K;(M). By definition the vertices of K are in natural
one-one correspondence with the maximal cyclic subgroups in the set Z. If we
denote by X, € Z the maximal cyclic subgroup corresponding to a vertex v, then
(K, (X,),) is a I'-labeled complex in the sense of 4.3.

We shall show that (K, (X,),) satisfies the hypotheses of Proposition 4.3. By
Proposition 3.4, K is a connected simplicial complex with more than one vertex, and
the link of every vertex of K is connected. Now let e be any 1-simplex of K, and let
v and w denote its vertices. Let x, and x, be generators of X, and X,,. We have
v #w and hence X, # X, ; hence by 3.1 the elements x, and x,, do not commute,
and the group O(|e|) =<x,,x,) is non-abelian. On the other hand, by the
definition of the nerve K we have Z,(X,) nZ,(X,) # &, and so the hypothesis of
the Theorem implies that I" is 3-free over {x,, x,, ). Finally, let ¢ be any 2-simplex
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of K, and let u, v and w denote its vertices. Let x,, x, and x,, be generators of X,
X, and X,,. By the definition of the nerve K we have Z,(X,)nZ,(X,) nZ,(X,)
# . Hence by Proposition 3.5, the elements x,, x, and x,, are not independent. By
[6, p. 59] this means that @(|o|) = (x,, x,, x,,) is not a free group of rank 3.

Thus Proposition 4.3 applies and we conclude that @(K) has local rank 2. We
claim that ® = ©(K) in fact satisfies all the hypotheses of Proposition 4.4. To show
that @ is normal, observe that by definition @ is generated by all the maximal
subgroups in Z. If a maximal cyclic subgroup X belongs to &, i.e. if Z,(X) # J,
then for any y e I' we have Z,(yXy )=y Z,(X) # &. Thus @ is a normal
subgroup of I

We saw above that for any edge |e| of K the group I' is 3-free over the
2-generator subgroup O(e|) of @(K). The only hypothesis of Proposition 4.4 left
to check is the existence of the element x,. We take x, to be a generator of any
group X, € Z. If y is an element of I' such that x = x, and y = y,x,75x ' commute,
then by 3.1, the elements x, and 7y,x,yx' generate the same maximal cyclic
subgroup of I', s0 y,xo7x ! = x5'. Hence y? commutes with x,. Thus y, and x,
belong to C(y2), which by 3.1 is a maximal cyclic subgroup containing x, and is
therefore generated by x,. Hence y, is a power of x,.

It now follows from Lemma 4.4 that I' is a free group of rank 2. However, this
is impossible, because I', as the fundamental group of a closed hyperbolic #n-mani-
fold, must have cohomological dimension » = 3, whereas a free group has cohomo-
logical dimension 1. This contradiction completes the proof of Theorem 5.1. O

Section 6. The proof of Theorem A
6.1. We shall prove the following result.

THEOREM. Let M be a closed orientable hyperbolic 3-manifold. Suppose that
every subgroup of n,(M) whose rank is at most 3 is of infinite index in n,(M). Then
M contains a hyperbolic ball of radius (log 5)/4.

6.2. Now recall the statement of [8, Proposition 1.1]. Let M be a closed 3-manifold,
let p be a prime number, and let k be a positive integer. Suppose that either M is
orientable or p = 2. Suppose that the Z,-vector space H,(M; Z,) has dimension at
least k + 2. Then every subgroup of n,(M) having rank <k is of infinite index.

In particular, if M is a closed, orientable, hyperbolic 3-manifold, and if H,(M; Z,)
has dimension at least 5 for some prime p, then every subgroup of =, (M) having rank
<3 is of infinite index. Combining this with Theorem 6.1 we obtain Theorem A of
the Introduction.
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6.3. It remains to give the

Proof of Theorem 6.1. We can write M =H?/I', where I' is a co-compact,
discrete, torsion-free group of orientation-preserving isometries of H>. Recall that
since I" is co-compact, every non-trivial element of I' is loxodromic. In particular I
contains no parabolic elements. Set

log 5
A=—,
2

We wish to apply Theorem 5.1 to conclude that M contains a hyperbolic ball of
radius 4/2. It suffices to show that condition (*) of 5.1 holds.

Suppose that x and y are non-commuting elements of I’ such that
Z,(x)nZ,(y) # J. We must show that I' is 3-free over {(x,y). Let ® be a
subgroup of rank <3 containing x and y. We are required to prove that @ is free.

The hypothesis of the theorem guarantees that @ has infinite index in
I' @ n,(M). Thus @ is not co-compact.

Let us choose a point P, € Z,;(x) nZ,(y). By the definition of Z,(x) and Z,(y)
there exist positive integers a and b such that D .(P,) < 4 and D,»(P,) < 4; that is,

max (dist (Py, x%(Py)), dist (Py, y°(Py))) < A.

We observe that x¢ and y? do not commute. Indeed, it follows from 3.1 that
C(x?) = C(x) and that C(y% = C(y). Hence if x* and y® were to commute then x
and y would also commute, which they do not.

Before showing that @ is free we will show that it is freely decomposable, i.e.
that it is a free product of two non-trivial subgroups. Assume to the contrary that
O is freely indecomposable. According to [1], if @ is any freely indecomposable,
discrete, torsion-free group of orientation-preserving isometries of H?, then @ is
topologically tame, that is, the quotient hyperbolic 3-manifold H?*/@ is homeomor-
phic to the interior of a compact 3-manifold with boundary. Furthermore, accord-
ing to [2, Proposition 3.2], if @ is any non-co-compact, topologically tame, discrete,
torsion-free group of orientation-preserving isometries of H>, then any finitely
generated subgroup of @ is topologically tame.

In particular, {x%, y®> is topologically tame. Of course, since @ is non-co-com-
pact, {(x? y®) is also non-co-compact. We now recall the statement of the main
theorem of [3]. Let ¢ and n be non-commuting orientation-preserving isometries of
H’. Suppose that (&, n) is discrete, torsion-free, topologically tame and non-co-
compact, and contains no parabolic elements. Then for any point P € H®> we have

max (dist (P, &(P)), dist (P, n(P))) = log 3.
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As we have checked the hypotheses of this statement for ¢ = x¢ and n = y® we now
have

max (dist (Py, x%(P,)), dist (P,, y°(P,))) = log 3.

Since

we have a contradiction. This proves that @ is freely decomposable.

Thus we may write @ = @, * @,, where the @, are non-trivial. By Grushko’s
theorem [9] we have rank @, + rank @, =rank @ < 3, and hence each O, has rank
at most 2. But each @, has infinite index in I’ = n, (M), since @ does; and it follows
from [5, Theorem VI.4.1] that any infinite-index subgroup of rank <2 in the
fundamental group of the closed, orientable hyperbolic 3-manifold M is free. It
follows that @, and 0, are free, and hence that @ is free also. This completes the
proof. O
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