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Density of states in spectral geometry

TosHIAKI ADACHI and TOSHIKAZU SUNADA

Introduction

Recent studies on spectal geometry threw a light on the relationships be-
tween a discontinuous action of a group and the spectrum of the Laplacian
(or more generally the spectra of elliptic operators) on a non-compact Rieman-
nian manifold. The first result in this direction is the observation by R. Brooks
[B] that the bottom of the LZ2-spectrum of the Laplacian is related to the
amenability of discontinuous transformation groups (see also [KOS] and [Sl1]).
The purpose of this paper is to investigate the integrated density of states of a
periodic Schrédinger operator on a manifold with compact quotient from the same
point of view.

The integrated density of states, which is the concept introduced first by
physicists in quantum theory of solids, is a non-decreasing function ¢(4) on the
real line defined roughly as the number of possible energy levels in the interval
(—o0, A) divided by the volume of a sufficiently large domain. To justify this
physical definition, we must impose a suitable boundary condition on eigenfunc-
tions and specify the way how to blow up the domain filling the whole space. For
the Schrodinger operator with a periodic potential on the Euclidean space, a
classical observation (cf. [Sh]) says that ¢(4) is well-defined as far as the domain
blows up in a sufficiently regular way and does not depend on the choice of the
boundary conditions; say, Dirichlet, Neumann, and periodic boundary conditions.
It is also a fact that the spectrum of the Schrodinger operator on the whole space
is characterized as the set of increasing points of @(4). One of the results in this
paper gives a partial generalization of those facts to the case of a Riemannian
manifold with compact quotient. In the discussion, we shall see a prominent role
of amenability of discontinuous groups acting on manifolds, together with the role
of spectral distribution functions defined by means of the concept of the von
Neumann trace. See [SN], [S3], and [KOS] for the general background for the
spectral theory of periodic Schrodinger operators on a manifold, also [ES] which
gives us the stimulus for writing this paper.
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§1. Definitions and results

Let X be a complete, connected, noncompact Riemannian manifold of dimen-
sion n, and 2 = {D,};2, be a family of bounded connected open sets in X with
piecewise smooth boundaries satisfying

ﬁjCDj+1, UD:—X.

7=1

Let ¢ be a smooth real-valued function on X. Consider the Schrodinger operator
Hp = —4, +q on each D, acting on L*(D;) with Dirichlet boundary conditions.
We denote by ¢ Dj(/l) the number of eigenvalues of H p, not exceeding 4, where each
eigenvalue is repeated according to its multiplicity. We now define the function ¢,
by the limit (if it exists)

¢, (h) = ,-11"30 vol (D)) ~'¢p (4),
and call ¢, the integrand density of states for the Schrodinger operator
Hy, = — A, + q associated with the family 2. The qeustions with which we are
concerned are: (1) Under what condition does the limit exist? (2) When it exists, is
¢, independent of the choice of the expanding family 2?

Given a manifold with compact quotient, we may introduce the integrated
density of states associated with periodic boudary conditions. Here a complet
Riemannian manifold X is said to have compact quotient if there is a discrete
subgroup I' in the isometry group of X acting discontinuously on X such that the
quotient space M = I'\ X is compact. We assume that ¢ is I'-invariant so that g may
be regarded as a function on M. Let

H, = J L dE(3)

denote the spectral resolution of H,. We define the spectral distribution function @
by

®r(4) =Trp E(4),

where Tr, is the standard von Neumann trace on the von Neumann algebra of
I'-equivariant bounded operators of L*(X) (see [At], [ES], [S3]).

From the definition, it follows easily that the quantity vol (I'\X) ~'®.(1)
depends only on the commensurability class of I'; that is, if I} and I', are
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discontinuous transformation groups of X such that ¢ is invariant under I, and I',,
and I'yn T, is of finite index in both I', and I',, then one has

VOl (FI\X)_-1¢F1 = VOl (rz\X)_l¢r2.

In the special case that ¢ =0 and X is a homogeneous Riemannian manifold, the
quantity vol (I'\X) ~'®,(4) does not depend on I'. For example, if X = R?, one has

vol (M\X) ~'®,.(4) = (4n) "4, A=0,

and if X = H?, the hyperbolic 2-plane, one has

A—1/4
vol (I'\X) '@, (1) = (4m) " J tanthn./Adi, A =1/4.

0

To see that the function @, may be regarded as the integrated density of states
associated with periodic boundary value conditions, we suppose that I" acts freely
on X and has a family of normal subgroup {I';};2, such that I'; is of finite index
in I', T';,, is contained in I';, and (2, I;={1}. We then have a tower of
finite-fold covering maps of closed manifolds

..__.)Mi+l——)Mi=Fi\X > PM] 'M.

Let @,,(4) denote the number of eigenvalues of H,,, on the closed manifold M; not
exceeding A. In [SN], it was observed that

vol ('\X) ~'®(2) = lim vol (M) ~'®,, (4)

at all points of continuity of @,. It should be noted ([ES], [SN]) that the set of
increasing points of @, coincides with the spectrum of H,.

It is natural to compare ¢, (4) with @,(1). In the case that X is the Euclidean
space R” and 2 is a family of concentric balls, it is known that ¢, exists and
coincides with vol (F'\X) ~'®,. On the other hand, if X = H", the n-dimensional
hyperbolic space, and 2 is a family of concentric geodesic balls in H”, we observe
that ¢4 is not equal to vol (I'\X) ~'®, (see Section 3). This is due to different
geometric features of geodesic balls in R” and H” which may be clarified if one
looks at the ratio

vol (,D,)/vol (D;),  h >0,
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where 0, D denotes the “thick” boundary {x € D; dist (x, dD) < h}. In fact, for R",
this goes to zero as j— oo for every h, while, for H", this goes to the positive
number 1 —e """~ 1In terms of discrete transformation groups, this corresponds
to the fact that a group I' acting discontinuously on R” is amenable, and a group
I' acting on H" is non-amenable. Indeed, we may prove the following general
criterion of amenability.

PROPOSITION 1.1. The transformation group I is amenable if and only if there
exists an expanding family 2@ = {D;} of bounded domains with piecewise smooth
boundaries satisfying the following property:

lim vol (8,D,)/vol (D,) =0 (P)

Jj— o

for every h > 0.

In light of this criterion, we now state the main theorem of this paper, a
generalization of the classical result for X = R".

THEOREM 1.1. If an expanding family & = {D,} satisfies the property (P) in
the above proposition, then ¢, exists and equals vol ('\X) '@, at all points of
continuity of ®,.

An immediate consequence of this theorem is that, if I’ is amenable, the
integrated density of states ¢, does not depend on the expanding family 2 with the
property (P). We also conclude that vol (I'\X) ~'®, does not depend on I', which
is by no means trivial from the definition of @, since X is not supposed to be
homogeneous.

It is interesting to consider the density of states associated with Neumann
boundary conditions. We conjecture that the same statements as in Theorem 1 hold.
Sznitman [Sz2] shows that, for the hyperbolic space, the integrated density of states
associated wity Dirichlet boundary conditions is different from that associated with
Neumann boundary conditions.

§2. Families of expanding domains and limit relations for the heat kernels
Henceforth we assume that X is a Riemannian manifold with compact quotient

I'\X. We choose a fundamental domain & for the action of I' with compact
closure. The distance function on X will be denoted by d(x, y).
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Let k(¢, x, y) denote the heat kernel function for the semi-group exp ( —tH, ), and
kp(t, x, y) the heat kernel function on a domain D associated with Dirichlet
boundary conditions. We readily get

J‘e“’“ dop(A) = j kp(t, x, x) dx.

The following lemma on the spectral distribution function @, is immediate from
the definition of I'-trace.

F

LEMMA 2.1. J e =M dP () = J k(t, x, x) dx.

The idea of proof of Theorem 1.1 is based on a uniform estimate of the difference
between the diagonal of the heat kernel and that of the Dirichlet heat kernel.

LEMMA 2.2. Given a positive T, we have positive constants C, and C, such that

0 <k(t, x,y) < Cyt "2 exp (—Cyd(x, y)*/t) (D
for t € (0, T], and

0<k(t,x,y)—kp(t, x,y) <Cit "2exp(—C,d(y, dD)?*/t) (2)

for 0 <t <min (T, 2C, d(y, 0D)?/n).

Proof. The first inequality (1) is due to [Do] (see also [BS]). The second
inequality is a consequence of the maximum principle (see [C] and [D]).

PROPOSITION 2.1. If the family 2 satisfies the property (P) then

lim vol (D;) ! j (k(t, x, x) — kD](t, x, x)) dx =0.
D]

J— oo

Proof. Let t >0, and take constants C, and C, in (1) for T =t¢. We have
vol (D;) ! f (k(t, x, x) — kp (1, x, x)) dx
Dl

=vol (D;) ! f (k(t, x, x) — kp (1, x, X)) dx

onD,

+ vol(D,) ™! J (k(t, x, x) —kp (1, x, x)) dx.

D\ouD,
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In view of Lemma 2.2, (1), the first term is estimated from above by
C,t~"?vol (8,D;)/vol (D;),

which tends to zero as j 1 co. Take h with ¢ < 2C,h?*/n. Then, for x € D;\d,D;, one
has t <2C, d(x, aD,.)z/n, so that, by Lemma 2.2, (2) the second term is estimated
from above by

C,t~"?exp (—C,h?%/1).

By letting 4 go to infinity, we get the assertion.

PROPOSITION 2.2. If 9@ satisfies the property (P), then one has, for every
I'-periodic continuous function f, that

lim vol (D;) ! f
Jj— D,

f(x) dx = vol (F) ! j f(x) dx.
Proof. Put E; = {6 € I'; (D;\0,D;) noF # &}, and

D;= ) ¢Z.

J
aeEJ

It is clear that (D;\0,D;) < D;. We show that, if & > diam (¥), then D; = D;. Let
x € (D;\0,D;) noF. since d(x,0D;) 2h, we find 0D;nB,(x) =, where
B,(x) ={z € X;d(x,z) <h}. From the connectedness of B,(x), it follows that
B, (x) < D;. Since h = diam (¥#), we have 6% < B, (x) = D,.

We now find

vol (D;) ! J f(x)dx =vol (D;)~" j f(x) dx +vol (D;) ! J f(x) dx
Dj Dj' DI\DJ’
_vol(D)) 1
~ Vol (D,) vol (D)) Lff ) o

vol (D,\D}) 1
vol (D;) vol (D,\D}) Lj\fo (x) dx.
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Since D\D;c<d,D;,, we have lim;, vol(D;\D;)/vol(D;)=0 and

J

lim, , , vol (D;)/vol (D;) = 1. In view of the I'-periodicity of f, we find

lim vol (D;) ! J f(x) d(x) = lim vol (D}) ! J‘ f(x) dx

= vol (#) ! j f(x) dx.

We shall make use of the following genral lemma to complete the proof of
Theorem 1.1.

LEMMA 2.3 (cf. [Sh]). Let {¢;(1)} be a sequence of non-decreasing functions
with @;(4) =0 for A < ¢, where c is a constant not depending on j. Suppose that there
exists a function C(t), not depending on j such that

(1) ==‘[e”’" do,(1) < C(1),

and

J— o

lim @, (1) = j e = do(J),

where ¢ is a non-decreasing function. Then lim;_, ., ¢;(4) = @(4) at all points of
continuity of @(A).

We apply this lemma to

@,;(4) = vol (D)) -1 ‘PDJ(A),
o(A) = vol ('\X) ~'&(A).

Since the first eigenvalue of H p, s not less than min g(x), we observe that ¢;(4) =0
for A <min g(x). We also find that

@,(A) =vol(D;) ! J kp (t, x, x) dx

D,

k(t, x, x) dx
D;

J

<vol(D;) ! J

< sup k(¢, x, x) =: C(¢),
xe X
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where we should note that the function k(z, x, x) is I'-periodic with respect to the
variable x. By Proposition 2.1,

Jo®© J— oo

lim @,(f) = lim vol (D,) ! j kp (t, x, x) dx
Dl

= lim vol (D,) ! J k(t, x, x) dx.
DJ

J—o

Using again I'-periodicity of k(¢, x, x), together with Proposition 2.2, we have

r

lim @;(r) =vol (#) ' | k(, x, x) dx
j— oo

JF

-
=vol(F) ! | e *dd,(A)

o

= _[ e~ do(4)

as desired.

§3. Manifolds with amenable group actions
In this section, we shall prove Proposition 1.1 in a slightly strong form. For this,

we recall the Folner’s characterization of amenability. Let I' be a finitely generated
group with a fixed finite set 4 of generators.

PROPOSITION 3.1 (Folner [F] and [Ad]). I' is amenable if and only if, for
every positive ¢, there exists a non-empty finite set E such that

|EA\E| < ¢|E|,
where |E| denotes the cardinality of the set E.

We first assume that a manifold X with compact quotient I'\X has a family
{D;} satisfying the property (P). Fixing a fundamental domain &, we put

A={ael:a¥ nF # J}.
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The finite set 4 generates I'. Taking a number h > 2 - diam (¥), we set
E ={y e I';y# n(D;\0,D;) # &}.

Let 0 =y-aeEA (y € E;, ae A). We shall prove that 6% < D,. For this, let
z € yZ N(D;\0,D;). We then have B,(z) = D, as before. Since

6F "VF =yaF nF) # &,
there exists an element y € 6% Ny#, and hence, for every x € 6%, one has
d(x,z) <d(x,y) +d(y,z) <2 -diam (%) < h,

which implies that 6% < B,(z), and hence 6% < D,.
We now observe

|E;A| vol (#) 1= vol (D)

IEJA\EJME}I: lEj|V01(9’~) ~ vol (Dj\ahDj)h
_ vol (8,D;) 1 vol (0,D;)\ "
~ vol (D)) ( ~vol(D) )

which goes to zero as j 1 co. Hence I' is amenable by Felner’s criterion.

Next we suppose that I' is amenable. Using a smooth triangulation of the
orbifold I'\ X, we may lift up n-simplices one by one to X to obtain a connected
polyhedral fundamental domain & . The finite set A ={c e€l; 6F NF # J} is
symmetric and contains the unit element. We associate the Cayley graph €(I', A);
the set of vertices being I" and the set of edges being {(y,0) e I' xI'; y 'o € A}. We
denote by d, the distance function on I" associated with the graph €(I", 4). A subset
E in I' will be called connected if, for any two vertices in E, there exists a path in
%(I', A) joining those vertices and consisting of vertices in E. By use of Theorem 4
in [Ad], there is a family {E;};2, of connected subsets of I' such that

\| EE=I, EcE-AcE,, and
|E; - A\E,| < |E;|[j|A}  for every j.
We put F; = U, g, ¥ and F} = U, g, 4 vF, which are connected by the choice of

A and the connectedness of E;. It should be noted that there exists a positive ¢ such
that the e-neighborhood of F; is contained in F;. Thus we may make a uniform
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regularization D; of F; satisfying F;c D,c D, c F; (see [B]). It is clear that
U2 D;=Xand D; = D, ,. Our goal is to show that {D;}> , satisfies the property
(P). Let x,e %. Since the map f: I - X, f(y) = yx,, is a rough isometry (Kanai
[K]), we have

dy(y, 1) < cid(yx,, uxe) + ¢,

with suitable constants ¢, >0 and ¢, = 0.

LEMMA 3.1. If h < (j —c;)/c; — 2 - diam (F), then the thick boundary 0,D; is
contained in the set

0'F,=\){uoF ;0 € A, u € E,, and there is y € A’ with py ¢ E;}.

Proof. Suppose x is contained in 0, D; " uZ for some u € E,. Since F; = D; there
is y € X\F; with d(x, y) <h. Choose p ¢ E; so that y € p#. Then d(ux,, px,) <
h + 2 - diam (&), hence d,(u, p) <j and 9, D, " F; c ¢’F;, where

'F, = ) {uF | u € E; and there is y € A’ with uy ¢ E;}.
If y € E;A\E,, it is clear that y# < 0’F; (since A = A’), therefore
8,D, < (8,D; " F,) U(F)\F,) < &'F,.

We now show that the family {D;}2, satisfies the property (P). By the
definition of ¢’F; and 0/F; we have

vol (0/F}) < |A| - vol (0/F;)
=|A| - vol (¥) - |{u € E; | there is y € A/ with uy ¢ E; }|

<|A4|-vol(F) Y. |E\Ey |

ye AJ

=|4] - vol (F) ¥ |EN\E)|

ye A
<|A|-vol (F) - |4 - |E;A'\E}|
<vol(#) - |E|lj

= vol (F})/j.
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Therefore we get, for every & > 0, that
vol (0,D;)/vol (D;) < vol (0/F;)/vol (F;) < 1/j —»0.
Summarizing up, we obtain

PROPOSITION 3.2. If I' is amenable, then there exists an expanding family
2 = {D,} of bounded open domains with smooth boundaries satisfying the following
conditions:
(1) 2 has the property (P),
(2) the boundary 0D; has a uniformly bounded second fundamental form h;.
More precisely, there exists positive constant c¢ not depending on j with
—cg < h; < cg, where g denotes the Riemannian metric on X.

A group of subexponential growth is amenable (see [B]). In this case, we may
construct a family 9 = {D;} satisfying the conditions in the above proposition by
using the following property on concentric geodesic balls.

LEMMA 3.2. Suppose that I is of subexponential growth. For an arbitrary point
x in X, there is a sequences of positive numbers {R;};2 | such that

(1) R; 1T oo,

(2) limjd,oo vol (BRj(x))/vol (BRjA,,(x)) =1 for every h > 0.

(cf. [Ad)).

§4. Hyperoblic spaces
We now consider the density of states associated with the Laplacian on the

hyperbolic space X = H". The manifold H” is a typical example of a manifold with
a non-amenable discontinuous transformation group.

THEOREM 4.1. Let 2 ={D;} be a family of concentric geodesic balls in H".
Then one has

J—*+®©

vol (%)~ J e~ dd.(3) > lim sup vol (D,) ! f e~ dgp (4).

In particular, vol (F'\X) ~'®, # ¢4.
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Proof. Since H" is a homogeneous Riemannian manifold, k(z, x, x) does not
depend on the variable x, so that we write

k(t) = k(t, x, x).
We then find

vol (#) ! Je“’” d®,. (1) —vol (D;) ‘j kp (, x, x) dx
D

]

= k(1) —vol (D;) ! J le(t, x, x) dx
D

]

=vol(D,) ! f (k(t) — kp (2, x, x)) dx
D/

> vol(D;) ! J k(1) — kp (1, x, x)) dx,
4D,

where we have used the fact that k, (¢, x, y) < k(?).
To complete the proof, we need the following lemma.

LEMMA 4.1. For a fixed t > 0, there exists a positive h such that
kp(t, x, x) < k(1)/2

for every geodesic ball D and every x € 0,D.

Proof. Choose a unit speed geodesic C : R— X, and consider the horoball
H =), ¢ B.(c(7)). Let ky(t, x, y) denote the Dirichlet heat kernel function for the
horoball. Since lim, _, 5, k4 (¢, x, x) = 0, it follows that there exists a positive /4 such
that, for a positive 6 with dist (¢(8), 0H) =9d < h.

ky (2, c(6), c(d)) < k(2)/2.

Let x € 0,D. Since one can find an isometry f on H”" such that f(D) = B.(c(1)),
7 >0, and f(x) = ¢(d) for some 6 < h. Hence we have, by the domain monotonicity
of the Dirichlet heat kernel,

kp(t, x, X) = kg () (t, c(9), c(9))
< ky(t, c(d), c(0)) < k(1)/2,

as desired.
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Applying the above lemma, we get

vol (#) ! Je“’ d®(A) —vol(D;) ™! J' kp (1, x, x) dx

D,

> '—‘%’l vol (8,D;) /vol (D).

If r; denotes the radius of D;, one has vol (D;) =e®~ "%, so that the last term is
written as

k(1)
2

(1—e—®—Dh) 50,

This completes the proof of Theorem 4.1.
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