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Density of states in spectral geometry

Toshiaki Adachi and Toshikazu Sunada

Introduction

Récent studies on spectal geometry threw a light on the relationships be-

tween a discontinuous action of a group and the spectrum of the Laplacian
(or more generally the spectra of elliptic operators) on a non-compact Rieman-
nian manifold. The first resuit in this direction is the observation by R. Brooks

[B] that the bottom of the L2-spectrum of the Laplacian is related to the

amenability of discontinuous transformation groups (see also [KOS] and [SI]).
The purpose of this paper is to investigate the integrated density of states of a

periodic Schrôdinger operator on a manifold with compact quotient from the same

point of view.
The integrated density of states, which is the concept introduced first by

physicists in quantum theory of solids, is a non-decreasing function (p(À) on the

real Une defined roughly as the number of possible energy levels in the interval
— oo, k) divided by the volume of a sufficiently large domain. To justify this

physical définition, we must impose a suitable boundary condition on eigenfunc-
tions and specify the way how to blow up the domain filling the whole space. For
the Schrôdinger operator with a periodic potential on the Euclidean space, a

classical observation (cf. [Sh]) says that cp{X) is well-defined as far as the domain
blows up in a sufficiently regular way and does not dépend on the choice of the

boundary conditions; say, Dirichlet, Neumann, and periodic boundary conditions.

It is also a fact that the spectrum of the Schrôdinger operator on the whole space
is characterized as the set of increasing points of (p(X). One of the results in this

paper gives a partial generalization of those facts to the case of a Riemannian
manifold with compact quotient. In the discussion, we shall see a prominent rôle
of amenability of discontinuous groups acting on manifolds, together with the rôle

of spectral distribution functions defined by means of the concept of the von

Neumann trace. See [SN], [S3], and [KOS] for the gênerai background for the

spectral theory of periodic Schrôdinger operators on a manifold, also [ES] which

gives us the stimulus for writing this paper.
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§1. Définitions and results

Let X be a complète, connectée!, noncompact Riemannian manifold of dimension

«, and Q) {Dj }^L ] be a family of bounded connected open sets in X with
pieeewise smooth boundaries satisfying

Let q be a smooth real-valued function on X. Consider the Schrôdinger operator
HD — AD + q on each D} acting on L2(Dj) with Dirichlet boundary conditions.
We dénote by cpD (À) the number of eigenvalues of HD not exceeding À, where each

eigenvalue is repeated according to its multipliaty. We now define the function cp^

by the limit (if it exists)

cp^(À)= lim wol(Dj)-l(pD(X)9
/

and call (pQ the integrand density of states for the Schrôdinger operator
Hx= — Ax + q associated with the family @. The qeustions with which we are
concerned are: (1) Under what condition does the limit exist? (2) When it exists, is

cp&amp; independent of the choice of the expanding family ®?
Given a manifold with compact quotient, we may introduce the integrated

density of states associated with periodic boudary conditions. Hère a complet
Riemannian manifold X is said to hâve compact quotient if there is a discrète

subgroup F in the isometry group of X acting discontinuously on X such that the

quotient space M F\X is compact. We assume that q is r-invariant so that q may
be regarded as a function on M. Let

Hx=\k dE(k)

dénote the spectral resolution of Hx. We define the spectral distribution function
by

where Tr7 is the standard von Neumann trace on the von Neumann algebra of
T-equivariant bounded operators of L2(X) (see [At], [ES], [S3]).

From the définition, it follows easily that the quantity \o\(r\X)~l&lt;Pr(X)
dépends only on the commensurability class of T; that is, if Fx and F2 are
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discontinuous transformation groups of X such that q is invariant under Fx and F2,
and FxnF2 is of finite index in both Fx and F2, then one has

vol (rx\X)-x*rx vol (r2\X)-l*r2.

In the spécial case that q 0 and X is a homogeneous Riemannian manifold, the

quantity vol (F\X) ~l&lt;Pr(X) does not dépend on F. For example, if X IR2, one has

vol(r\JT)-1^r(A)=(4Tr)~1/l, A £0,

and if X H2, the hyperbolic 2-plane, one has

^rW =(4tc)-1
Jo

To see that the function &lt;Pr may be regarded as the integrated density of states
associated with periodic boundary value conditions, we suppose that F acts freely
on X and has a family of normal subgroup {Ft}fL x such that Ft is of finite index
in T, ri+1 is contained in Fn and Ç\^LxFt {\). We then hâve a tower of
finite-fold covering maps of closed manifolds

M, + x
&gt; M, Ft \X &gt; - • • Mx &gt; M.

Let &lt;&amp;Mi(X) dénote the number of eigenvalues of HM on the closed manifold Mt not
exceeding A. In [SN], it was observed that

vo\(r\X)-x*r(X) lim vol(Mt)-l*Mt(X)
I-* OO

at ail points of continuity of $r. It should be noted ([ES], [SN]) that the set of
increasing points of &lt;Pr coïncides with the spectrum of Hx.

It is natural to compare (p®(û) with &lt;Pr(X). In the case that X is the Euclidean

space Un and 3&gt; is a family of concentric balls, it is known that cp® exists and
coincides with vol (F\X)~l&lt;Pr. On the other hand, if X H&quot;, the rt-dimensional

hyperbolic space, and 3) is a family of concentric géodésie balls in Hw, we observe

that q&gt;g is not equal to vol(F\X)~l4&gt;r (see Section 3). This is due to différent
géométrie features of géodésie balls in Un and H&quot; which may be clarified if one
looks at the ratio

vol(3AZ
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where dhD dénotes the &quot;thick&quot; boundary {x e D; dist (x, dD) &lt; h}. In fact, for Rn9

this goes to zéro as j -&gt; oo for every /z, while, for 0-0&quot;, this goes to the positive
number 1 — e~hin~l\ In terms of discrète transformation groups, this corresponds
to the fact that a group F acting discontinuously on U&quot; is amenable, and a group
F acting on H&quot; is non-amenable. Indeed, we may prove the following gênerai
criterion of amenability.

PROPOSITION 1.1. The transformation group F is amenable ifand only if thère

exists an expanding family 2 {Dj} of bounded domains with piecewise smooth
boundaries satisfying the following property :

lim vol (ôhDj )/vol (/),)= 0 (P)
y-* oo

for every h &gt; 0.

In light of this criterion, we now state the main theorem of this paper, a

generalization of the classical resuit for X Mn.

THEOREM 1.1. If an expanding family &amp; {Dj} satisfies the property (P) in
the above proposition, then (p@ exists and equals \o\(F\X)~x&lt;Pr at ail points of
continuity of &lt;Pr.

An immédiate conséquence of this theorem is that, if F is amenable, the

integrated density of states (p@ does not dépend on the expanding family Q) with the

property (P). We also conclude that vol (F\X)~l&lt;Pr does not dépend on T, which
is by no means trivial from the définition of &lt;Pr since X is not supposed to be

homogeneous.
It is interesting to consider the density of states associated with Neumann

boundary conditions. We conjecture that the same statements as in Theorem 1 hold.
Sznitman [Sz2] shows that, for the hyperbolic space, the integrated density of states
associated wity Dirichlet boundary conditions is différent from that associated with
Neumann boundary conditions.

§2. Families of expanding domains and limit relations for the heat kernels

Henceforth we assume that X is a Riemannian manifold with compact quotient
F\X. We choose a fundamental domain 3F for the action of F with compact
closure. The distance function on X will be denoted by d(x, y).
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Let k(t, x, y) dénote the heat kernel function for the semi-group exp — tHx), and

kD(t, x, y) the heat kernel function on a domain D associated with Dirichlet
boundary conditions. We readily get

[e-Xtdq&gt;D(X)= f kD(t9x9x)dx.

The following lemma on the spectral distribution function &lt;Pr is immédiate from
the définition of F -trace.

.1. f é?-A&apos;&lt;/&lt;f&gt;rO*)= FLEMMA 2.1. I e ~Àt d&lt;Pr(À) k(t, x, x) dx.

The idea of proof of Theorem 1.1 is based on a uniform estimate of the différence
between the diagonal of the heat kernel and that of the Dirichlet heat kernel.

LEMMA 2.2. Given a positive T, we hâve positive constants Cx and C2 such that

0 &lt; k(u x, y) &lt; Cx t -n&apos;2

exp - C2d(x, y)2/t) 1)

for t g (0, T], and

0 &lt; k(t, x, y) - kD(t, x, y) &lt; Cx t ~&quot;/2

exp - C2 d(y9 ôD)2/t) (2)

for 0 &lt; / &lt; min (T, 2C2 d{y, dD)2/n).

Proof The first inequality (1) is due to [Do] (see also [BS]). The second

inequality is a conséquence of the maximum principle (see [C] and [D]).

PROPOSITION 2.1. Ifthefamily 9 satisfies the property (P) then

lim vol (Dj ~l (k(t, x, x) - kD (t, x9 x)) dx 0.
./-«&gt; Jz&gt;,

Proof Let t &gt; 0, and take constants Cx and C2 in (1) for T t. We hâve

vol(i),)-1 f (k(t,x,x)-kD(t,x,x))dx

vol (Dj ~l (k(t, x, x) - kD(t9 x, x)) dx

vol (Dj)-1 (k(t9 x, x) - kD(t9 x, x)) dx.
jD,\ÔhDj

-h
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In view of Lemma 2.2, (1), the first term is estimated from above by

C,^2 vol (d,,/),)/vol (/),),

which tends to zéro as y | oo. Take h with / &lt; 2C2h2/n. Then, for x e Dj\dhDJ9 one
has t &lt; 2C2d(x, dD;)2/n, so that, by Lemma 2.2, (2) the second term is estimated
from above by

By letting h go to infinity, we get the assertion.

PROPOSITION 2.2. If 9 satisfies the property (P), then one has, for every
F-periodic continuous function /, that

lim vol (Dj -l I f(x) dx vol (JF)
&quot;l

\ f(x) dx.
J-*™ JDj )&amp;

Proof Put Ej {a e T; (Dj\dhDj) n&lt;r# ^ 0}, and

D&apos;j= [^
a e Ej

It is clear that (Dj\dhDj) c D]. We show that, if h &gt; diam (J^), then D] c D}. Let
jc e (Dj \dhDj) n (x#\ since (i(x, 5/)^) ^ h, we find 3D, n Bh(x) 0, where

^(x) {ze J;rf(x,z)&lt;/i}. From the connectedness of Bh(x), it follows that

Bh(x) a Dj. Since h &gt; diam (^), we hâve &lt;j^ c Bh(x) a Dj.
We now find

vol(Z),)-1 f f(x)dx= vol (Dj)-1 f /W^+volCZ),)-1 f
JDj Jd; JDj\dj

vol (D,\D&apos;)
-h J J

-

vol I
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Since D}\D] ^dhDJ9 we hâve lim,_ ^ vol (Dj \Dj )/vol (Z)y 0 and

lim^^ vol (Dj)/vol (/&gt;7) 1. In view of the F-periodicity of /, we find

9/)&quot;1 f(x)d(x)= lim vol(Z);)-1lim vol (Dj)~l I /(x) ^f(jc) lim vol (Dj )&apos;l \ f(x) dx
J-&gt;CC

1
We shall make use of the following genral lemma to complète the proof of

Theorem 1.1.

LEMMA 2.3 (cf. [Sh]). Let {(Pj(k)}^L be a séquence of non-decreasing functions
with fy (À) 0 for À &lt; c, where c is a constant not depending on j. Suppose that there

exists a function C(t), not depending on j such that

and

lim *,(/)= [e-*&apos;d&lt;p(X),

where ç is a non-decreasing function. Then lim^^ (pj(X) &lt;p(X) at ail points of
continuity of cp(X).

We apply this lemma to

cpJ(X)= vol (D^-&apos;cp^),

Since the first eigenvalue of HD is not less than min q(x), we observe that (pj (X) 0

for X &lt; min q(x). We also find that

f

h

kDj(t,x,x)dx

k(t,x,x)dx

&lt; sup k(t, x, x) =: C(0,
xe X
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where we should note that the function k(t, x, x) is T-periodic with respect to the
variable x. By Proposition 2.1,

lim &lt;Pj (0 lim vol (/), ~ M kD (t, x, x) dx
J-+CO J -&gt;QO JDJ

J

lim vol (Dj)~l k{t, x, x) dx.

Using again T-periodicity of k(t, x, x), together with Proposition 2.2, we hâve

x) dxlim 0j (t) vol (&amp;) ~l k(t, xy

vo\(^)~l \e-Àtd0r(

!e-Àtdcp(X)

as desired.

§3. Manifolds with amenable group actions

In this section, we shall prove Proposition 1.1 in a slightly strong form. For this,
we recall the F0lner&apos;s characterization of amenability. Let F be a finitely generated

group with a fixed finite set A of generators.

PROPOSITION 3.1 (F0lner [F] and [Ad]). F is amenable if and only if9 for
every positive 8, there exists a non-empty finite set E such that

\EA\E\£b\E\9

where \E\ dénotes the cardinality of the set E.

We first assume that a manifold X with compact quotient F\X has a family
{Dj} satisfying the property (P). Fixing a fundamental domain #\ we put

A ={aeF:a^n^ #0}.
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The finite set A générâtes F. Taking a number h &gt; 2 • diam (^), we set

Let a =y -a e EjA (y eEJ9ae A). We shall prove that &lt;j#ci)r For this, let

z 6 y# n(Dj\ehDj). We then hâve 5A(z) c £&gt;, as before. Since

(j# ny# y(a# n#) # 0,

there exists an élément y e g!F ny^F, and hence, for every x e a^, one has

d(x, z) &lt; d{x, y)+d(y,z) &lt;2- diam {&amp;) &lt; h,

5^(z), and hence owhich implies that
We now observe

Dr

\Ej\ vol vol

voi(/&gt;7)

which goes to zéro as y&apos; î oo. Hence F is amenable by F0lner&apos;s criterion.

Next we suppose that F is amenable. Using a smooth triangulation of the

orbifold F\X, we may lift up n-simplices one by one to X to obtain a connected

polyhedral fundamental domain $F. The finite set A {a e F; &lt;r# n# # 0} is

symmetric and contains the unit élément. We associate the Cayley graph ^(F,A);
the set of vertices being F and the set of edges being {(y, a) e F x F\ y ~xo e A). We
dénote by dA the distance function on F associated with the graph #(f, A). A subset

E in F will be called connected if, for any two vertices in E, there exists a path in

^(F, A) joining those vertices and consisting of vertices in E. By use of Theorem 4

in [Ad], there is a family {Ej }fL x of connected subsets of F such that

oo

and

for every/

We put Fj— [jyeE 1^ and Fj (Jy e E A yF, which are connected by the choice of
A and the connectedness of Er It should be noted that there exists a positive e such

that the e-neighborhood of F} is contained in F). Thus we may make a uniform
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regularization D} of F} satisfying F} c D} c D3 c F] (see [B]). It is clear that
U/L i Dj X and Dj c D} +,. Our goal is to show that {Dj }y°°= x satisfies the property
(P). Let x0 g #\ Since the map f:F-+X, f(y) yx0, is a rough isometry (Kanai
[K]), we hâve

0, fix0) -h c2

with suitable constants c, &gt; 0 and c2 ^ 0.

LEMMA 3.1. Ifh^(j- c2)jcx - 2 • diam (J^), /Ae/t rAe thick boundary dhD} is

contained in the set

dJFj 1J {\ia^\ g g A, fi g EJ9 and there is y g Aj with m $ Ej).

Proof. Suppose x is contained in dhDjC\\i!F for some \i g E}. Since FjCi D; there
is y g ^\F7 with i/(x, y) &lt; h. Choose p $ E} so that &gt;&gt; g p#. Then d(fix0, px0) ^
/z -f 2 • diam (#&quot;), hence dA(fi, p) &lt;j and dhDjnFj a dJFj, where

cKF, (J {\x$F \fi e Ej and there is y g ^ with /xy $ E}}.

If y g EjA\Ej, it is clear that y^ c 57F; (since ^ c v47 therefore

We now show that the family {Z)y}70i1 satisfies the property (P). By the

définition of dJFj and d3F] we hâve

vol (#&quot;) • |{/x g £, | there is y g ^y with /iy £ £&quot;

vol ^ Il
y e AJ

vol
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Therefore we get, for every h &gt; 0, that

vol (dhDj)/vo\ (Dj) &lt; vol (^F;)/vol (Fj) &lt; 1//-0.

Summarizing up, we obtain

PROPOSITION 3.2. If F is amenable, then there exists an expanding family
Q) — {Dj} of bounded open domains with smooth boundaries satisfying the following
conditions :

(1) Q) has the property (P),
(2) the boundary dDj has a uniformly bounded second fundamental form h3.

More precisely, there exists positive constant c not depending on j with
— cg&lt;hj&lt;&gt; cg, where g dénotes the Riemannian metric on X.

A group of subexponential growth is amenable (see [B]). In this case, we may
construct a family 3f {D,} satisfying the conditions in the above proposition by
using the following property on concentric géodésie balls.

LEMMA 3.2. Suppose that F is of subexponential growth. For an arbitrary point
x in X, there is a séquences of positive numbers {Rj}fLx such that

(1) i?;foo,
(2) lim,_ œ vol (BRj(x))/vo\ (BRj _ h(x)) 1 for every h&gt;0.

(cf. [Ad]).

§4. Hyperoblic spaces

We now consider the density of states associated with the Laplacian on the

hyperbolic space X Hw. The manifold H&quot; is a typical example of a manifold with
a non-amenable discontinuous transformation group.

THEOREM 4.1. Let 9 {Dj} be a family of concentric géodésie balls in M&quot;.

Fhen one has

vol («F)&quot;1 \e-Àtd0r(À)&gt; lim sup vol (/) )-l \ e~Àt d&lt;pD(Â).
J ^°° J J

In particular, vol (F\X) ~l&lt;Pr # &lt;p&amp;.
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Proof. Since H&quot; is a homogeneous Riemannian manifold, k{t, x, x) does not
dépend on the variable x, so that we write

k(t) k(t, x, x).

We then find

vol(J^)1 \e~?td&lt;Pr(X)-vol (Dj)-l\ kDj(t,x,x)dx

k(t)- vol (D,)&quot;1 f kD(t,x,x)dx

vol (DJ - &apos; f (k(t) - kD(t, x, x)) dx

(k(t)-kD(t,x,x))dx,f
Jfih

where we hâve used the fact that kD(t, x, y) &lt; k(t).
To complète the proof, we need the following lemma.

LEMMA 4.1. For a fixed t &gt; 0, there exists a positive h such that

kD(t,x,x)&lt;k(t)l2

for every géodésie bail D and every x e dhD.

Proof. Choose a unit speed géodésie C : U -» X, and consider the horoball
H Ut &gt; o Bt(c(t))- Let kH(t, x, y) dénote the Dirichlet heat kernel function for the

horoball. Since lim^^// kH(t, x, x) 0, it follows that there exists a positive h such

that, for a positive S with dist (c(ô), ÔH) ô &lt; h.

kH(t, c(ô), c(ô)) &lt; k(t)/2.

Let x e dhD. Since one can find an isometry / on M&quot; such that f(D) Bx{c{x)),

t &gt; 0, and/(jc) c(ô) for some è &lt;h. Hence we hâve, by the domain monotonicity
of the Dirichlet heat kernel,

D(u ^ x) kBr(c(x))(t, c((5), c(ô))

&lt; kH(t, e(ô), c(ô)) £ k(t)/2,

as desired.
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Applying the above lemma, we get

vol(J^)-1 l e&apos;**Mr(X) -vol(Dj)-1 \ kDj(t,x9x)dx

If Tj dénotes the radius of DJ9 one has vol (/),) ein~l)rJ, so that the last term is

written as

This complètes the proof of Theorem 4.1.
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