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Coverings of 1-convex manifolds with 1-dimensional exceptional set

MIHNEA COLTOIU

To the memory of C. Banica

§0. Introduction

By a classical result of K. Stein [15] it is known that every covering X of a Stein
manifold X is itself Stein. The aim of this paper is to consider the case when X is
a l1-convex manifold with 1-dimensional exceptional set and to study the convexity
properties of X.

In [4] Grauert and Docquier have introduced several notions of convexity. For
example a complex manifold Y is said to be p;-convex if it can be exhausted by a
sequence {Y, }, . of relatively compact strongly pseudoconvex domains. Our main
result is Theorem 2 which says that every covering X of a 1-convex manifold X with
1-dimensional exceptional set is p;-convex.

We recall also [4] that a complex manifold Y is said to be p,-convex if there
exists a smooth plurisubharmonic exhaustion function ¢ : ¥ - R. Obviously every
holomorphically convex manifold is p,-convex. In §3 we exhibit an example of a
strongly pseudoconvex surface X whose universal covering X fails to be p,-convex,
in particular X is not holomorphically convex. So, if we study the convexity
properties of the coverings of 1-convex manifolds with 1-dimensional exceptional
set, a natural condition is the p,-convexity.

For embeddable 1-convex manifolds X (e.g. strongly pseudoconvex surfaces)
Napier [11] has shown that their coverings X have good meromorphic convexity
properties: if {a,},.n is a discrete sequence of points in X then there exists a
meromorphic function f on X which is holomorphic near {a,},.n and unbounded
on {av }v eN"

§1. Preliminaries

We assume all complex manifolds Hausdorff and countable at infinity. In [2] the
following result is proved:
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THEOREM 1. Let X be a 1-convex manifold and S < X its exceptional set. Then
there is a strongly plurisubharmonic exhaustion function ¢ : X - [ — oo, 00) such that
S ={p = —0}. Moreover ¢ can be chosen such that exp ¢ is smooth.

Using the above result and a method of LeBarz [8] (see also ([13], p. 494)) we
prove:

PROPOSITION 1. Let X be a 1-convex manifold with exceptional set S and
p:X—>X any covering. Then there is a strongly plurisubharmonic function
@ : X - [—o0, 00) such that p~'(S) = {¢ = — w0}, exp @ is smooth and, for any open
neighbourhood U of S, the restriction $|g. , — 1 is an exhaustion function on \p-'(0).

Proof. We may assume that X and X are connected. Let {U, }, . be a locally finite
open covering of X such that U, < < X and each U, is biholomorphic to a ball (so
U; is evenly covered). We get a decomposition p ~'(U;) = {J, W, into disjoint open
sets with W, biholomorphic to U, via the projection map p. Let {¢, },.n be a partition
of unity corresponding to {U,},.n and define f: ¥ - R as follows: fix some Wi, ko
and define 4, as the length of the shortest chain W; .., W, « ..., W, . such that
Wik, VWi ik, . 7D and (i, k) = (i, k). If we set f =X, (¢; ° p)4,;, then one has
([13], p. 494):

(a) fis a smooth exhaustion function on X.

(b) The levi form L(f)|,- 1y, is bounded from below.

Let ¢ : X ->[— 00, o0) be a strongly plurisubharmonic exhaustion function having
the properties stated in Theorem 1. By the conditions (a) and (b) we easily see that
there exists a smooth convex strictly increasing function 8 : R— R, 6(¢) = At (4 > 0)
near — oo, lim,_, ., 0 (f) =00 such that ¢$ =60 ¢ o p + f is strongly plurisubhar-
monic on X. From the definition of & it follows that it has all the required
properties. Thus the proof of Proposition 1 is complete.

Another important ingredient for the proof of Theorem 2 is the following result
due to Siu ([12], Corollary 1):

PROPOSITION 2. Let A be a closed complex submanifold of a complex mani-
fold Y. If A is Stein, then there exists a biholomorphic map from a neighbourhood W
of A in Y onto an open neighbourhood of the zero cross section of the normal bundle
of A in Y such that its restriction to A agrees with the canonical map from A onto the
zero cross section. As a consequence, there is a holomorphic retract from W onto A.

In fact we shall need this result in the case when A is a connected non-compact
complex curve, which, by Behnke—Stein theorem, is Stein. The curve A will be
obtained by removing finitely many points from the exceptional curve S of X.



Coverings of 1-convex manifolds with 1-dimensional exceptional set 471

§2. Proof of the main result

We begin by recalling the following definiton [4]: a complex manifold Y is said
to be p;-convex if there exists an increasing sequence {Y, }, . of relatively compact
strongly pseudoconvex domains such that Y = {J,.n ¥, .

The aim of this paragraph is to prove the following:

THEOREM 2. Let X be a 1-convex manifold with 1-dimensional exceptional set
S and p : X - X any covering. Then X is p,-convex.

The following lemma shows that it suffices to prove the above theorem for a
suitable small neighbourhood of the exceptional set S.

LEMMA 1. Let X be a 1-convex manifold, S its exceptional set and p : X - X
any covering. Assume that there exists an open neighbourhood U of S in X such that
U =p'(U) is py-convex. Then X is p,-convex.

Proof. Let K = X be any compact subset of X. We prove the existence of a
strongly pseudoconvex neighbourhood D c ¢ X of K. Let ¢ : X »[— 00, ) be a
strongly plurisubharmonic function on X having the properties stated in Proposition
1 and let « >0 be such that K = {¢ <a}. Choose also strongly pseudoconvex
neighbourhoods U, < < U, of S such that U, =p~'(U,) and U, =p '(U,) are
ps-convex. Since @ |z g, is an exhaustion function there is a compact set L containing
Kwith {¢ <a}n(L < U, and because U, is p,-convex there is a strongly pseudocon-
vex domain M < < X, M < U, such that L n U, = M. If we define D by

(¢ <a} in (T,
{6 <a}nM in U,

then obviously D is a strongly pseudoconvex neighbourhood of K, so the proof of
Lemma 1 is complete.

LEMMA 2. Let W be a Stein manifold and A ¢ W a closed complex submani-
fold. Then there exists a smooth plurisubharmonic function ¢ : W — [0, c0) such that
A ={p =0}, ¢ is strongly plurisubharmonic on W\A and

() if U< W is any open subset, y € C*(U) is plurisubharmonic and its restric-
tion |4~y is strongly plurisubharmonic, then for any & >0 the function Y + e is
strongly plurisubharmonic on U.

Proof. Let #be the ideal sheaf of 4 and let g,,..., g, e (W, #) be a set of
generators of # on W. If we set h =ZXf_,|g;|? then A is plurisubharmonic, & = 0
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and A ={h=0}. Also if ze A then the Levi form L(k)(¢) >0 for any vector
teT,W\T,A. f g, ,...,8,€ (W, #) give an immersion at any point z € W\ 4
then ¢ =X7_, |g;* has all the required properties.

Let us recall now some elementary results of algebraic topology which we shall
need in the proof of Theorem 2.

If V is a complex manifold and 4 = V' is a closed analytic subset (or, more
generally, a semi-analytic subset), by the triangulation theorem [9] and the results
in [14], the following conditions are equivalent:

(a) the inclusion 4 ¢ V is a weak homotopic equivalence,
(b) the inclusion 4 ¢, ¥V is a homotopic equivalence,

(c) A is a deformation retract of V,

(d) A is a strong deformation retract of V.

In order to lift some holomorphic retracts from the base space to the covering
space we shall need also the following topological results (see for instance [6]):

PROPOSITION 2 (Covering homotopy theorem ([6], p. 18)). Let (E, ¢,), (X, x;)
be topological spaces with base points and p : (E, ey) = (X, x,) a covering map.
Let (Y,y,) be arbitrary and f:(Y,y,) —=(X,x,) a map which has a lifting
f (Y, y,) = (E, ey). Then every homotopy F : Y x I - X with F(y, 0) =f(y) for all
y € Y can be lifted to a homotopy F': Y x I - E with F'(y,0) =f'(y) for all ye Y
(here I denotes the interval [0,1)]).

PROPOSITION 3 (Lifting criterion ([6], p. 22)). Assume that the topological
spaces E, X, Y are connected and locally pathwise connected. Consider the diagram

7| (Ea eO)
/{’/ l p
(Y’ yO) _;_) (X7 x())
where p is a covering map and [ is arbitrary. Then there exists a lifting [ of [
(pof =1) iff fomi(Y, po) = p, 7 (E, e).
One application of these two results is described in the following:
REMARK 1. Let ¥ be a complex manifold, A < V a closed complex submani-

fold, p : ¥ —» V a covering map and 4 = p ~'(A). If 4 is a deformation retract of V'
then 4 is also a deformation retract of V.
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This follows easily from the Covering homotopy theorem and the equivalence of
the conditions (a), (b), (c), (d). Moreover every connected component A, of 4 is
contained in precisely one connected component ¥, of ¥ and every connected
component of ¥ contains precisely one connected component of 4. For every i the
set A, is a deformation retract of V..

REMARK 2. Let V, V, A, A be as above and assume that 4 is a deformation
retract of V. Let r : V' — A be any continuous retract (not necessarily a deformation
retract). Then there is a continuous retract 7 : ¥ —» 4 such that the diagram

F
_
¥
—_—

A~
Te—=U
;‘-.\*——-Dkl

he}

*

is commutative. In particular, if r is a holomorphic retract then so is 7.

This can easily be seen in the following way:

First we may assume that all the spaces V, V,A, A are connected. From the
Lifting criterion, one can conclude that an 7 making the above diagram commuta-
tive exists, noting that the induced map n,(4) = n,(¥) is an isomorphism (by
Remark 1). Indeed, let i : 4 o V,7: A o V be the inclusions maps and consider the
commutative diagram

Veis4

11 =

Vs A4

If aen (V) then there is a unique Ben,(4) with i (B) =a. It follows that
re(Pye(@) = r*(p*(i;(ﬂ))) =r,({,(pP)) =p,.(B) where the last equality holds
because r is a retract. Hence the conditions of the Lifting criterion are satisfied and
the map 7 making (*) commutative exists. Restricting the diagram (*) to A, the
uniqueness theorem for liftings ([6], p. 17) shows that the restriction 7|7 =id so F is
a retract. Clearly 7 is holomorphic if r has this property.

LEMMA 3. Let X be a 1-convex manifold with 1-dimensional exceptional set S
and p : X » X any covering. Then there is an open neighbourhood U of S such that
U =p—'(U) is p;-convex.

Proof. We may assume that X, X, S are connected and that the covering
p: X - X has infinite fibers. Let M = {s1,...,8}<S be a finite set such that
A = S\M is non-singular and Stein. Since A4 is a closed Stein submanifold of X\ M
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it follows from Proposition 2 that there exists an open neighbourhood W of 4 in
X\M and a biholomorphic map from W onto a neighbourhood of the zero cross
section of the normal bundle N, x s such that its restriction to A4 agrees with the
canonical map from A onto the zero cross section. So we have an induced
holomorphic retract r : W — 4 and we also may assume that W is Stein [12].

We set S =p~'(S), 4 =p~'(4) and let ¥ be an open neighbourhood of 4 in
X\M, V =« W (adherence with respect to X\M), such that A4 is a deformation
retract of V. If we denote ¥ = p—!(V) and we consider r as a map ¥ — A then r can
be lifted (by Remark 2) to a holomorphic retract 7 : ¥ — A4 such that the diagram

g (%)

f
—_—
14

r
—_—

RNe—=0
A )

is commutative. We may also assume that W and V are small enough such that if
K c < A then 7~ (K) < c X (condition (C)). We choose balls T},..., T, cc X

centered at s,, ..., s, with T,nT; = ¥ if i #j such that some neighbourhoods of
T,,...,T, are evenly covered and T,nS,..., T, NS are connected. Let also
L ccT,...,L, cc T, be sufficiently small concentric balls such that:

(1) xeS\T; implies r '(x)nL,; =, i=1,...,k,

Q) r 'LinA) T, i=1,...,k.

Clearly these conditions may easily be satisfied if W is chosen from the beginning
small enough.

We now consider an exhaustion {D;},.n of S by relatively compact domains
with smooth boundary, D, c = D, ,, such that 4D, nSing (S) = & and 4D, does
not intersect p ~ (S~ T), where T =T, u- - -u T,. Since S is 1-dimensional each D,
is strongly pseudoconvex. We set U, = VUL, u---UL, and U, = p~'(U,). We first
describe an exhaustion of U, by relatively compact domains in X whose boundaries
(relative to U,) are pseudoconvex (not necessarily strongly pseudoconvex). Then,
by a simple perturbation argument and Lemma 2, we may achieve that their
boundaries (relative to 7,) become strongly pseudoconvex. Finally, replacing U, by
a sufficiently small strongly pseudoconvex neighbourhood U of the exceptional set
S, we get the desired exhaustion of I by domains whose boundaries (relative to X)
are strongly pseudoconvex.

In order to obtain the exhaustion of U, we define the open sets D, = U,, 1 e N,
as follows:

Let {b,,...,b,}, where m =m(1), be the subset of p~'(M) consisting of
those points in p~!'(M) contained in D;. Consider the decomposition into
connected components p L) = UjenLi, i=1,...,k and denote by

B,,..., B, those connected components L/ containing b,,...,b,. We set
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D, =F"'(D,\{by,...,b,})UB,U---UB,, Clearly {D,},.n is an increasing se-
quence of open subsets of U, and |J,.n D, = U,. To see that D, = = X it suffces
to verify that 7~ '(D,\{b,, ..., b,,}) = = X and by the condition (C) it is enough
to show that 7~ '(B,n8\b,) cc X, t =1,..., m. But this follows immediately
from the commutativity of the diagram (%) and the condition (2). Now we study
the pseudoconvexity of the boundary of D, (relative to U,). First we remark that
by the condition (1) and the commutativity of the diagram (%) it follows that

B,nV c# '(D,\{by,...,b,}) and if E is another component L/, different from
B,,...,B,, then EnF~'(D,\{b,,...,b,,}) = . Hence the boundary of D, (rel-
ative to U,) is precisely the boundary #~Y(D,\{b,,...,b,}) (relative to V). To

describe this boundary we choose an open neighbourhood M, of 0D, in S,
M,np=(SNnT) =, and a smooth strongly subharmonic function ¢, defining
D, in M;. Then ¢, o7 is a plurisubharmonic defining function for D, in U, so
each D, has a pseudoconvex boundary (relative to U,). To obtain the desired
exhaustion by strongly pseudoconvex domains we need Lemma 2. By this lemma
there is a smooth plurisubharmonic function ¢ : W —[0, 0c0) such that:
A ={p =0}, ¢ is strongly plurisubharmonic on W\A4 and ¢ has the property ().
If we set ¢ =¢ op|; then for any ¢ >0 the function ¢, o7 +¢@ is strongly
plurisubharmonic on 7~ '(M;) and its restriction to M, is ¢,. The functions
@, °F +¢;¢ with ¢ > 0 sufficiently small define in an obvious way the exhaustion
of U, by domains D’ having strongly pseudoconvex boundaries relative to U,
(after replacing V if necessary by a smaller open subset V'’ with 4 < V' and
V'’ < V, where the adherence is taken with respect to X\M). If we choose now a
strongly pseudoconvex neighbourhood U of S, U = < U,, it follows then immedi-
ately, from our previous remarks, that U =p~—!'(U) is p;-convex. The proof of
Lemma 3 is complete.

Proof of Theorem 2. Theorem 2 is a direct consequence of Lemma 1 and
Lemma 3.

If X is a 1-convex manifold of dimension 2 we shall call it a 1-convex surface (or
strongly pseudoconvex surface). From Theorem 2 we get:

COROLLARY 1. Let X be a 1-convex surface. Then every covering X of X is
D;-convex.

Let now D < C” be the half-open unit polydisc, i.e.

D=A{(z,...,z,) €C"||z| s L, |z,| < L,v=2,...,n}
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and set
5D ={(Z],. ..,Z,,)ED HZ]!=1}.

According to [4] a complex manifold Y is called ps-convex if there is no biholomor-
phic map ¢ from an open neighbourhood of D onto an open subset of Y satisfying
the following two conditions:

(a) p(OD) == ¥,
(b) (D) £ = Y.

In [4] it is proved that every p;-convex manifold is ps-convex. From Theorem 2 it
follows:

COROLLARY 2. Let X be a 1-convex manifold with 1-dimensional exceptional
set. Then every covering X of X is pe-convex.

We also obtain easily from Theorem 2:

COROLLARY 3. Let X be a 1-convex manifold with 1-dimensional exceptional
set and X any covering of X. The X is holomorphically convex iff X is a proper
modification of a Stein space at a discrete set.

§3. Some counterexamples

In this paragraph we show that in general the covering spaces (even the
universal covering spaces) of 1-convex surfaces are not holomorphically convex.

We recall [4] that a complex manifold Y is said to be p,-convex if there exists
a smooth plurisubharmonic exhaustion function ¢ : Y - R. Clearly any holomor-
phically convex manifold is p,-convex. We shall exhibit an example of a 1-convex
surface X whose universal covering X fails to be p,-convex, in particular X is not
holomorphically convex. To construct X we shall need the following two results:

GRAUERT’S CRITERION [5]. Let X be a 2-dimensional complex manifold and
S < X a 1-dimensional connected compact analytic subset with irreducible components

Sis...,S8,. Then S is exceptional iff the intersection matrix (S;S;) is negative
definite.

LEMMA 4. Let X be a complex manifold and S = X an exceptional set. Then
there exists a strongly pseudoconvex neighbourhood V of S such that S is a
deformation retract of V.
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Proof. Let ¢ =0 be a real-analytic plurisubharmonic function in a neighbour-
hood of S such that S ={¢p =0} and ¢ is strongly plurisubharmonic outside S.
Such a function exists because S is exceptional. Since ¢ is real-analytic it follows
from the “Curve selection lemma” [7] that for ¢, > 0 small enough ¢ has no critical
points in {¢ <& }\S. So, for any 0 <¢ <¢y, {¢ <&} is a deformation retract of
V ={p <¢g}. Choose an open neighbourhood V; of S, ¥V, =« c {¢ <¢,} such that
S is a deformation retract of V|, and let 0 <¢, <¢, be such that {¢p <¢}cV,.
Because S is a deformation retract of ¥, and {¢ <¢,} is a deformation retract of
V it follows that the inclusion S ¢ V is a weak homotopic equivalence. But (S, V)
is a polyhedral pair so we deduce [14] that S is a deformation retract of V. The
proof of Lemma 4 is complete.

We now begin constructing our example. First we make some remarks:

(i) Let X,, X, be complex manifolds (Hausdorff), U, < X; and U, c X, open
subsets and ¢ : U, —» U, a biholomorphic map. Let X be obtained by glueing X, and
X, via the map ¢. In general X is not Hausdorff but one can easily verify that the
necessary and sufficient condition on X to be Hausdorff is the following: for every
x, € 0U, (boundary relative to X,) and every x, e dU, (boundary relative to X5)
there exist open neighbourhoods V, < X, of x, and V,c X, of x, such that
oUinV)n(UnV,) =.

(ii)) We construct a complex manifold X of dimension 2 (complex surface)
containing an exceptional curve S such that S has two irreducible components
S=5uS,, S, =P S,~P! the intersection S; N S, consists of two points and at
these points S, and S, meet transversally. Let S, = P! be the zero cross section of
O(—3) =Y, and S, =P' the zero cross section of O( —3) = Y,. We glue suitable
neighbourhoods of S, in Y, and of §, in Y, such that S, and S, meet transversally
at two points. The precise construction is as follows: Let B? be the unit ball in C?
and f: B?>— B? the automorphism given by f(z,,z,) =(z,, z;). Choose p, # q,,
p1g. €S, and p, #q,, P2, 42 €S,. Let E, cc Y,,F,cc Y, E,.nF, = be open
neighbourhoods of p, and of g, respectively, such that there exist biholomorphic
maps 1, : E, » B%, y, : F;, - B>. We also assume that, via the maps 7,, {, the set S,
corresponds to z, =0 and the points p;, q, to the origin O € C2. Similarly we
consider open neighbourhoods E, cc Y,,F, cc Y,, E,nF,= & of p, and of ¢,
respectively, and biholomorphic maps 1, : E, — B?, §, : F, —» B? such that via these
maps S, corresponds to z; = 0 and the points p,, ¢, to the origin O € C>. We have
induced isomorphisms ¢,, ¢, where ¢, : E, > E, is defined by ¢, =15'0fo1, and
@, F,>F, by ¢,=¢5"'ofoy,; so we get an isomorphism ¢ =(@;,®,):
E,0F,—»E,UF,. Let V be an open neighbourhood of the zero cross section in
O(—-3) and set X, =VUE,UF,, X,=VUE,uF,, U =EUF,, Uy=E,UF,.
From the previous remark it follows that for sufficiently small ¥ we can glue X, and
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X, via the map ¢ and we get a complex manifold X containing a compact analytic
curve S with two irreducible components S = S, U S,, S, = P!, S, = P!, which meet

transversally at two points. The intersection matrix is which is negative

2 =3
definite. By Grauert’s criterion S is exceptional and our construction is finished.

(iii) Let X be a l-convex surface such that its exceptional curve S has two
irreducible components S =S,US,, S, =P', S, P! and the intersection S,N S,
consists of two points where the intersection is transversal. Replacing X by a
smaller strongly pseudoconvex neighbourhood of S we may assume (by Lemma 4)
that S is a deformation retract of X. Let p : ¥ —» X be the universal covering of X.
We assert that X is not p,-convex (hence it is not holomorphically convex). To see
this it is enough to verify that § = p ~!(S) is not p,-convex. Since S is a deformation
retract of X, it follows (from Remark 1 which clearly extends to singular A) that §
is a deformation retract of X, hence S is the universal covering of S. But § has a
very simple description: its decompositoin into irreducible components can be
written § = (J,.; S, §; @ P!, §; meets S, _, in one point, §; meets S, , , in one point
and S, does not meet any other component (so S is an infinite necklace [10];
topologically S is an infinite union of spheres each having one point in common
with the next). Obviously S is not p,-convex because, by the maximum principle,
any plurisubharmonic function on § must be constant.

So we have shown:

THEOREM 3. There exists a 1-convex surface X such that its universal covering
X is not holomorphically convex.

REMARK 3. In our example the exceptional curve is not irreducible, so it is
natural to ask if one can produce an example having the properties in Theorem 3
and with irreducible exceptional curve. Such an example can be obtained as follows:
We glue suitable neighbourhoods of the zero cross sections in O( —1) and O(—Y5)
exactly as before and we get a complex surface Z containing a compact analytic curve
C with two irreducible components C = C,u C,, C, = P!, C, =~ P' such that the inter-
section C, N C, consists of two points where the intersection is transversal. The inter-

. .. (=1 2 C . . o .
section matrix is ( ) 5> which is negative definite, hence by Grauert’s criterion,

C is exceptional. Because the autointersection C# = —1 it follows that C, is a curve
of the first kind, so it can be contracted to a point in the complex (non-singular) surface
Xvia the contractionmaph : Z - X. Then S = h(C)is anirreducible exceptional curve
(rational with one singular point). If we replace X by a smaller strongly pseudoconvex
neighbourhood of S such that S is a deformation retract of this neighbourhood we
get the desired example. The proof is exactly as in (iii) and so it is omitted.
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REMARK 4. In ([11], Theorem 6.2) Napier has proved the following result:
Let X be a l-convex surface with exceptional set S and p : X - X any covering.
Then X is holomorphically convex iff § = p~'(S) is holomorphically convex. This
last result explains why the exceptional curves in our previous examples are singular
(for smooth S it follows that § is holomorphically convex).
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