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Sharp borderline Sobolev inequalities on compact
Riemannian manifolds

LuiGlt FONTANA

1. Introduction and main results
In a 1971 paper [22], J. Moser proved the following theorem:

THEOREM 1.1 (Moser). Let Q be an open domain in R", n > 2. There exists a
constant C which depends only on n such that if u is smooth, has compact support
contained in Q and its gradient Vu satisfies (q|Vu|" dx <1, then

J exp {A(n)|u]""~ P} dx < C|Q| (1)

where A(n) = nw )"V and w, _, is the surface measure of the unit sphere in R". If
A(n) is replaced by any A > A(n), the integral on the left hand side of (1) is still finite,
but can be made arbitrarily large by an appropriate choice of u.

And, with a modification of the same argument,

THEOREM 1.2 (Moser). There exists an absolute constant c, such that if u is a
smooth function on S? with [s.|Vul*dS <1 and [s2u dS =0, then

J e*™ dS < ¢,. (2)
S2

The constant 4n is the best possible in the same sense as A(n) in Theorem 1.1.

Moser applied Theorem 1.2 in his work on the problem of prescribing the
curvature on S? (see [23]).

Recall that Sobolev’s theorems, see e.g. [29], assert existence of imbeddings
WiP(Q) - LYQ) for 1 <p <n and W P(Q) —» Co(RQ) for n < p, where 1/g =1/p —
1/n. Thus, Theorem 1.1 represents a sharp way to fill in the gap at the critical
exponent p = n. Theorem 1.2 plays the same role for the Sobolev Theorems on S2.
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In 1988 D. R. Adams proved a generalized version of Moser’s Theorem 1.1, in
which it is assumed control on the L” norm of a higher order gradient of f.

THEOREM 1.3 (Adams). Let Q be a domain in R" and m be a positive integer
strictly smaller than n. There is a constant C, depending only on m and n, with the
following property:

If u € C™(R") has compact support contained in Q and |V"™u| ., < 1, then

j exp {A(m, n)|u(x) """ =™} dx < C|Q| 3)
Q
where
( — nj(n — m)
n"22mr (m____;— 1)
L if mis odd
W, _ n—m+1
(=3)
Mm, n) = < - (4)
n —nn/22mr(m/2) n/(n —m) ) )
" T —m if m is even
n—1 -
(3
q

and V™ denotes the iterated Laplacian A™? if m is even and VA™ ~ Y2y if m is odd.
If A(m, n) is replaced by any larger number, the integral in (3) cannot be bounded
uniformly by any constant.

Adams’ approach to the problem is to express u as the Riesz Potential of its
gradient of order m and then apply the following theorem

THEOREM 1.4 (Adams). Let | < p < o0. There is a constant ¢, = co(p, n) such
that for all f € LP(R") with support contained in €,

f exp fno,
Q

where a =n/p, 1/p + 1/p’ =1, and 1,f(x) = | |x — y|*~"f(x) dy. The constant n|w, _
cannot be replaced by any larger number without forcing c, to depend on f as well as
on p and n.

Lf(x)
1£1,

p} dx < ¢,|Q| (5)
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To prove Theorem 1.4, Adams applied a result of R. O’Neil [24] about
“convolution type’” operators.

LEMMA 1.5 (O'Neil). If h =f * g then
A1) < (P* (g4 (1) + J " PH)SH) d.

(By f* we mean the usual non increasing rearrangement of |f| and f** is defined by

LX) =1/t [5 f*(s) ds.)
Then, a change of variables reduces the problem to the following technical lemma.

LEMMA 1.6 (Adams). Let a(s, t) be a non negative measurable function defined
on the set (— 00, 00) % [0, 00) such that a(s, t) < la.e. when 0 < s < t, and suppose that

0 el
sup (f +J a(s, t)"’ds)=b”'< 0.
£= — o0 t

Then there is a constant c,= cy(p, b) such that, for all ¢ =0 satisfying
[*. ¢(s)? ds < 1, the following inequality is true:

o o]
-[ e FOdt < ¢,
0

where F(1) =t — ([*, a(s, ))¢(s) ds)”".

There have been attempts to prove Moser—Adams type theorems for spheres of
dimension # > 3 and for more general manifolds. For example, contributions have
been made by Cherrier [14], [15], [16]. However, the arguments employed in the
past failed to yield the largest coefficient A(m, n) in the exponential, even in the first
order case m = 1.

In this paper we will show that the complete analogues of the Adams and Moser
theorems are valid for every compact (smooth) Riemannian manifold M. In fact,
the optimal A’s turn out to be the same for every such M as they are for domains
in R".

Our main result is the following

THEOREM 1.7. Let M be a compact Riemannian manifold of dimension n and
m a positive integer strictly smaller than n. There exists a constant C = C(m, M) such
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that for all ue C"(M) with (,,udV =0 and [, |V"™ul""dV <1, the following
uniform inequality holds

J‘ exp {A(m, n)|u(x)|"" =™} dV(x) < C (6)

where the constant A(m, n) is the one given in (4) and is sharp in the same sense. V and
A represent the gradient and the Laplace — Beltrami operator relative to the metric of
M, so that, in a coordinate neighborhood,

" 1 N
Vf=Y (70,/)0; and Af = ~ 7L 0:(8"\/2 9.f)

where gV are the coefficients of G~', g =det G and G = (g;) is the metric tensor of
M.

We observe that, in the theorem above, as well as in Theorems 1.1, 1.2
and 1.3, the condition u € C™(M) can be replaced by the slightly weaker condition
u € Wmnm(M), where, as customary, W™"™(M) is the Sobolev space obtained by
completion of C™(M) with respect to the norm | f|,mnm = (far Zi= o [V¥/™)™" or
any of its equivalents. The proof is straightforward.

Theorem 1.7 was originally stated and proved for m even. While generalizing the
proof to the case of m odd, the author was informed by Professor S-Y. A. Chang
that, at about the same time, she, T. Branson and P. C. Yang had independently
proved the special case corresponding to n =4 and m = 2 by similar methods (see
[9D.

Our outline for proving Theorem 1.7 is the same as that of Adams for his
Theorem 1.3. Firstly, we formulate an appropriately modified version of O’Neil’s
lemma and an extended version of Lemma 1.6. These are Lemmas 3.1 and 3.2 in
Section 3. They enable us to prove Theorem 1.9, which is an analogue on M of
Adams’ sharp fractional integral result Theorem 1.4, and is perhaps of independent
interest. Theorem 1.7 follows from Theorem 1.9, a convolution type representation
of u in terms of its gradients, and a precise estimate of the kernels given in Theorem
1.8.

The representation formulas we need are in terms of the Green’s function G of
M.

Let M be a compact Riemannian manifold of dimension »n having volume V.
The Green’s function G(P, Q) of M is a function which, as a distribution on M,
satisfies the equation
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1
40G(P, Q) =0,(Q) —

where 4, is the distributional Laplacian of M with respect to the variable Q, J, is
the Dirac measure at P and V is the volume of M.

It can be proved (see [3]) that the Green’s function of M exists, can be
normalized so that {,, G(P, Q) dV(Q) =0 for every P € M, and enjoys the standard
properties of Green’s functions.

In particular, the following formula

u(P) = L G(P, Q) 4u(Q) dV(Q) = L VoG(P, Q) - Vu(Q) dV(Q)

is valid for u regular on M and satisfying |, udV =0.
Now define functions G,, for m even and vector fields G,, for m odd by

sz(P, Q) =J GZ(k - 1)(R, Q)G(P, R) dV(R)

for k = 2, with G,(P, Q) = G(P, Q), and

szﬁ 1(P, Q) = VQGZk(P’ Q)

for kK = 1. Observe that

AQGZk(P’ Q) = sz—-z(P’ Q) = APG2k(Pa Q)

and, by Fubini’s theorem,

Gy (P, Q) =Gu(Q, P) and J Gy (P, Q) dV(Q) =0.

If u is a smooth function on M and {,, u dV =0, then by Green’s formulas we
have

u(P) = J Gy (P, Q) 4*u(Q) dV(Q) (7
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and

u(P) = f Go (P, Q) -V~ 'u(Q) dV(Q). (8)

These are the representation formulas. We need the estimates of the kernels
G,.(P, Q) given by the following theorem

THEOREM 1.8. There are constants B,, . .., B, _, depending only on M, such
that for every P,Qe M and 1 <m <n —1

|Gn(P, Q)] < ¢, (md(P, Q)" ~"(1 + B, d(P, 0)"?)

where
( r(n—m)
2 .
- p if mis even
2m—l <E—— 1)'F(§) W, _
em(m) = 4 r(n—m-i—l)
2
p— , if mis odd.
S (___2 )!r(—2-> Baes

The cases m = 1 and m = 2 of this theorem follow from Aubin’s basic analysis
of the Green’s function of a compact Riemannian manifold (see Theorem 2.5 and
[2]). The cases m >2 are deduced from the previous ones by using Rauch’s
comparison theorem (see Theorem 2.3 and [13]).

The above estimates reduce the proof of Theorem 1.7 to the proof of the
following result which perhaps is of independent interest.

THEOREM 1.9. Let M be a n-dimensional compact Riemannian manifold,
n=>1. Let T be the operator defined by

Tf(P) = L K(P, Q)f(Q) dV(Q)
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where

K(P, Q) =d(P, Q)*~"(1 + ad(P, Q)"),

a is a non negative constant, § >0, 0 <a <n and d is the Riemannian distance. Then
there exists a constant ¢ = c(a, B, a, M) such that, for every function fe L"*(M)
satisfying [, |f|"* dV < 1, the following inequality holds

ﬁfmtflan“ﬁﬂ@ma )

n-—1

The number njw, _ | is the largest possible constant for which the integral on the left
hand side of inequality (9) is bounded by a constant independent of f.

Clearly Theorem 1.8 and Theorem 1.9 imply Theorem 1.7.

We shall prove Theorem 1.8 in Section 2 and Theorem 1.9 in Section 3. In
Section 4 we prove analogue exponential integrability for fractional integrals of
periodic functions and mention a few open problems.

2. The estimates for G,

The crucial point in the proof of Theorem 1.8 is to reduce a certain integral on
M involving Riemannian distances to an analogous integral on R” involving
ordinary Euclidean distances.

It is well known from potential theory and harmonic analysis, that, in R”, the
following formula holds:

_penpylpon gy = YOVB) ) aip 10
[ pe=st by 2B (10

where «, f# >0, a + f <n and

Wo) = 22"

P (11)
(7)

See [26}], page 118.
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To prove Theorem 1.8, we need a version of this formula valid on compact
manifolds M.

Recall that d(P, Q) denotes the Riemannian distance on the compact manifold
M.

LEMMA 2.1. Suppose that a, B >0 and that o + B <n. Then

amn g Bn _ Y@)(B) 2t fon
L d(P, R) (R, Q)F~"dV(R) o d(P, Q) (1+E/P, Q) (12)

where |E(P, Q)| < Bd(P, Q)", with B constant depending only on o, B, and M.
To prove this lemma we need to recall some results from Riemannian geometry.
PROPOSITION 2.2 (Volume form). Let B,(t) be the geodesic ball of center P

and radius t in M, i.e. the set of points in M at a distance from the point P smaller
than t. Then:

Vol (By(1)) = “’—n—i % (1

1 2 2
— 601 1 2) s(P)t* + o(t ))

where s(P) is the scalar curvature at P.
Moreover, in normal geodesic coordinates around P, the volume form of M is

dv(Q) ="~ (1 - % r(x)t% + o(zZ)) dx dt

where Q = expp tx, x € S" ! and dx is the standard surface measure of S" . r(x) is
the Ricci curvature (viewed as a quadratic form) evaluated on the vector x.

For references and proofs see [7] pages 15—-16 and [19].
All we really need, however, is

wn—l

dV(Q) =t"~'(1+ O(t)) dxdt and Vol (Bp(1) = t"(1 + O(1))

which, for M compact, follows at once from Proposition 2.2.
The next result is the basic tool which allows us to estimate the quantity d(R, Q)
in terms of Euclidean distances.
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THEOREM 2.3 (Rauch Comparison Theorem). Let M, M, be Riemannian
manifolds with dim M, > dim M, and let P(P,) € M(M,).

Assume that for all plane sections a(a,) of M(M,), the sectional curvatures satisfy
K(oy) = K(0). Let r be chosen such that the exponential map of M with center at P,
expp restricted to the ball B(r) with radius r and center at the origin in TpoM is an
embedding and the exponential map of M, with center at Py, expp , is not singular on
the corresponding ball B(r) in Tp M,. Let I.TpM —Tp M, be a linear injection
preserving inner products. Then for any curve c :[0, 1] »>expp (B(r)), defining the
corresponding curve c, in M, by

co(f) = expp, o I o expp '(c)(1)
we have L[c] = L{c,] where by L[y] we denote the length of the curve 7.

For references and proofs, see [13], pages 30-31.

As an immediate consequence of this theorem, we see that if

Qo =expy, oI oexp;'(Q) and Ry=expp,o o exp;s'(R)
with Q, R points in the ball of radius r in M, Q,, R, points in M, then the geodesic
joining Q, to R, in M, is not shorter than the geodesic joining Q to R in M.

We also need the following easy lemma which will take care of most of the error
terms we will be producing throughout the paper.

LEMMA 24. If 0 <a, B <n, the integral
I(P, Q) =J d(P, R)*~"d(R, Q)P ~"dV(R)
M

is bounded if a + B >n, Od(P,Q)** #~") if n>a+ p and O(log (1/d(P,Q))) if
n=o+p.

The proof uses Proposition 2.2 and is straightforward.
We are now ready to prove Lemma 2.1.
Proof of Lemma 2.1. Since M is compact, certainly its sectional curvature is

bounded above by a positive constant k, and below by a negative constant k,, i.e.
at each point P € M, for every plane section g, we have
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k, < K(o) < k,.

Consider the n-dimensional sphere S of curvature k, and the n-dimensional
hyperbolic space H of curvature k,. Let dg and d, be their respective Riemannian
distances. Denote by exp, exp’, and exp” the exponential maps of M, S, and H
respectively.

Let 6 be 1/2 of the smallest of the radii of injectivity of M, S and H (since M
and S are compact their radii of injectivity are strictly positive, while H’s one is
infinite). Then, if P, P’, P" are points respectively in M, S, H, the exponential map
of each of our manifolds is a diffeomorphism from the ball with center at the origin
of the tangent space at P (res. P’, P”) and radius J, to the ball of the same radius
around the point P (res. P’, P”) in the manifold.

Consider normal geodesic coordinates on By(d), Bp.(d) and Bp.(d) in M, S and
H respectively. It is a feature of these coordinates that the tangent space at the
center is isometric to the standard n-dimensional Euclidean space. So, by choosing
orthonormal basis in T, M, T, S and Tp. H, we can identify all these spaces with the
standard R".

If R and Q are two points in Bp(d) = M, consider their normal geodesic
coordinates y and x (points in T, M ~ R”), uniquely determined by R =exp, ()
and Q = expp (x). Construct the points R’ = expp (y) and Q' = expp (x) in S, and
their analogues R” =expp (y) and Q” =expp in H.

The Rauch Comparison Theorem 2.3 implies that

ds(R’, Q') <d(R, Q) <dy(R", Q). (13)

In other words, we have geodesic triangles POR in M, P’"Q’R’ in S and P"Q"R" in
H, which, by the properties of the exponential map, satisfy

d(P, Q) =ds(P’, Q") =dy(P", Q") = |x|
d(P,R) =ds(P,R) =dy(P",R") = |y|

and

0 = RPQ = R'P’Q’ = R"P"Q"
where 0 is the Euclidean angle between the vectors y and x. Then, the “third sides”
of the triangles satisfy (13).

We want to estimate d(R, Q) in terms of |y — x|, the Euclidean distance between
their normal geodesic coordinates. Inequality (13) reduces the problem to an
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estimate of distances on a sphere or a hyperbolic space, where we can use
trigonometry.

We use spherical trigonometry on the triangle P’R’Q’, obtaining
cos uds(R’, Q') = cos p|x| cos p|y| +cos 6 sin p|x| sin u|y|

where u is a scaling constant depending only on k.
Standard algebra and trigonometry show that the above equation implies

ds(R’, Q') =|x — y|(1 + O(|x| + [y?. (14)

In the same way, using hyperbolic trigonometry on the triangle R"P"Q", we
have

cosh vdy, (R", Q") = cosh v|y| cosh v|x| — cos @ sinh v|y| sinh v|x|

where v is a scaling factor depending only on the curvature of H k,.
Again, after some algebra, we get

dy(R", Q") = |x — y|(1+ O(|x| + |y ])?). (15)
As a consequence of (13), (14) and (15) we have
d(R, Q) =|x —y|(1 4+ O(|x| + |y)? (16)

where the quantity O(|x|+ |y|)?/(|x|+ |y])? is bounded by a constant depending
only on M.
We can now estimate

j d(P, R)*~"d(R, Q)P ~" dV(Q)

and conclude the proof of Lemma 2.1.

Decompose the integral over M into j Bp(6) +IM-BP(6)- Since d(R, Q)% " is
integrable on M, the second integral is bounded by a constant, depending only on
M and B, times 6%~ ".
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To estimate

J d(P, R)*~"d(R, Q) ~" dV(Q)
Bp(d)

we write it in normal geodesic coordinates around P, and using the notations
introduced above, we obtain the following integral in R”

j [~ "(x, »)5~"(1 + O(|y]) dy
B(d)

where ¢(x, y) is the coordinate expression of d(R, Q). By (16), we get:

j e = 2P O]+ D+ O
B(9)

Now, using the R” version of Lemma 2.4, the fact that

j e =yl dy
R — B(&)

is a bounded function of |x| with the bound depending only on a, B and the
geometric quantity d, by recalling that |x| = d(P, Q) and using formula (10), we get
equality (12). Therefore Lemma 2.1 is completely proved.

Now we are ready to prove Theorem 1.8.
The first step was essentially done by T. Aubin in a 1974 paper [2]. He proved
the following series representation for the Green’s function of M:

THEOREM 2.5 (Aubin). If M is a compact Riemannian manifold of dimension
n > 2, its Green’s function is given by:

G(P,Q)=H(P,Q)+ | H(P,R) i K:(Q, R) dV(R) (17)

i=1

where H(P, Q) =[(n — 2w, _,]~'t(d(P, 0))>~" and t(s) is a C* non decreasing
function defined on (0, o0) such that lim,_, ;. (t(s)/s) =1 and t is constant for s 2 6,
with & smaller than the radius of injectivity of M. K; is defined inductively:
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K.(P,Q) = J K; (P, R)K,(R, Q) dV(R)
M

where K,(P, Q) = —4,H(P, Q) — 1.

If f(Q) =¢(d(P, Q)) is a function of the distance from P alone, then it is well
known that:

d’¢ d
4@ = 55~ | 5 tor Aot gy + " |

where r is the Riemannian distance from P to Q, and the g, are the coefficients of
the metric (see [6] for instance).

By Aubin’s Theorem 1 in the same paper, there exists r, depending only on the
geometry of M such that for every P € M in B,(r), the ball of radius r and center
P,r <r,, we have

0
ar log \/det (g;) | < Cr

the constant C depending only on M and not on P and r.

The quantity |(0/r) log \/det (g,)| is also globally bounded on M.
Using these facts we can easily estimate

1 —n —_ 2—n
H(P, Q) = H(r) =02, £ "(r) == " (1+0)

and

—4H(P, Q)

n—

_ t;; n(r) |:t"(r) +t (r) + log \/a_e—t_(g_tj-}

n—1

AL PR [t ") — 5@]

Since #(r) is C®, for small r, we have t(r) =t'(0)r +O(r? and t'(r)=1+
t"(0)r + O(r?) and thus

t="(r)'(r) [z ) — —(—2] =0(r' 7).
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Hence —AH(p, Q) and K, are O(d(P, Q)' ~") and therefore, for all m, K, (P, Q) is
at least O(d(P, Q)' ") (much better, in fact).

Since Aubin proved that the series 2 ; K, (P, Q) is absolutely convergent and
bounded for 4 suitable (depending only on M), we can conclude that

1

Gx(P, ) =G(P, Q) = (-5

d(P, 0)*~"[1+ 0Wd(P, Q). (18)

Moreover, since

VeG(P, Q) =V H(P, Q) +J VeH(P, R) OZO: Ki(R, Q) dV(R)
M

i=1
and

1 1
|1t ="e(n)| =

Wy, _ W,

\VoH(P, Q)| = |VoH(P, Q)| = r' =1+ 0(r))

we have

1

wn—l

1G\(P, Q)| =[VoG(P, Q)| < d(P, Q)' ~"[1 + O@d(P, Q). (19)

In the above discussion, we assumed dim M > 2. If dim M =2, G can still be
represented by the series

H(P, Q) +J H(P, R) i K (R, Q) dV(R)

i=1

where, this time, H(P, Q) = (1/2x) log (1/t(d(P, Q))).
The same kind of estimates as before, yields

1
Vo G(P, Q)] <5-d(P, Q)" '[1+ 0W(P, Q))] (20)

which is the only kernel estimate we need when n = 2.
From now on, n =dim M > 2.

We shall now prove the “even” part of Theorem 1.8.
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LEMMA 26. If 1 <2k <n

F(—Z—-—k)
” d(P, Q) ~"(1+ O(d(P, Q)'%).
2% — 1 n
2%~ 1(k _ 1)!F<2)w,,_1

Proof. By definition, when 2 < 2k <n,

sz(P, Q) =

sz(P, Q) = J\ G(P, R)sz~ 2(R, Q) dV(R)-

M

Since we already have the right estimate for G,, we can proceed by induction and
assume that

Go2(P, Q) =, (md(P, Q)* ~*~"[1 + O(d(P, Q))]

so that
Gox (P, Q) = cy—2(n) ————L——J d(P, R)>~"d(R, Q)* 2~ "dV(R)
(n—=2)w,_, Ju
+ f d(P, R)>2~"O(d(R, @)%~ '~ ") dV(R).

By Lemma 2.4, the last integral is no worse than O(d(P, Q)**'2~"). Lemma 2.1
now implies

1 1(2)y(2k —2)
(n—=2w,_,  (2k)

Gu(P, Q) = o —2(n) d(P, Q)*~"(1+ O(d(P, Q)'?)).

Recalling the definition of y (see (11)), we find

Co —2(n) _ 1
2k =1y M e = (21

cu(n) =
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By induction, this implies

1
(k=D Yn—=2k)n -2k +2)-- - (n—-2o,_,

()

22 lre)(k “ Do, _,

Cu(n) =

and the lemma is proved.

Now we prove:

LEMMA 2.7. If 1 <2k < n then

r(—;—- k + 1)
d(P, Q)* ~'~"(1+ Od(P, 0)'?)).

G\ (P, Q)] < -
2%k =2k — 1)!1“(5) W, _ |
(22)
Proof. By definition, for 1 <2k <n
Gu(P, Q) = j- G(P, R)Go _2(R, Q) dV(R). (23)
M

Taking the gradient with respect to the variable P we get

VeGu(P, Q) = j VrG(P, R)Gy (R, Q) dV(R).

M

Now recall that

VpG(P, R) = Ve(d(P, R)>~") + O(d(P, R)*~").

(n - 2)(1),,__ 1
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By estimate (19) and Lemma 2.4 we are reduced to estimate the following integral
f Vr(d(P, R)>~")d(R, Q)* =2~ " dV(R) (24)
Bp(d)

where Bp(d) is the ball of radius é around P in M.

As in the proof of Lemma 2.1, we rewrite our integral using normal geodesic
coordinates around P. We already have the expression of the volume form and of
d(R, Q) in these coordinates. All we need is the expression of V,(d(P, R)2~") =
(2—n)d(P, R)' ~"V,d(P, R).

Vpd(P, R) 1s nothing else than the unit vector tangent, in P, to the geodesic from
R to P. Let y=(y,...,p,) =|ylo with 6e€S"~' and R=expy. Then
Vpd(P,R)=—0 = —y/ly|and d(P, R)> "= |y|* "= (pi+ -+ y2)@ "2 50 that
the i-th component of its gradient is

—n ‘ e Y i
(Vpd(P,R)2™7), =Y (n—=2)0(y3+---+y2)t—mn = J ng
j=i yl+...+yn

where the g7 are the coefficients of (g;) ', the inverse of the matrix of the
coefficients of the metric.

Since in a normal geodesic coordinates neighborhood of P, g% = 6%+ O(r), (r

being the distance from P and 67 Kronecker’s delta), the i-th component of integral
(24), by (16) and Lemma 2.4 becomes

(n _2) Iyll~nl"~ Ix _y|2k~2*n dy 4 0(‘x|2k—n— 1/2) (25)

B() |y |

which, within an error that we can estimate as O(|x|* ~"~'/2), is nothing else than
(n—2) J yily| 7 = pPE2mm dy.
R"

Since in the ball B(d) around the point P, g7 = §Y + O(r), this means that, within an
error not worse than O(|x|** ~"~ '), the length of the vector VG (P, Q) in the
Riemannian metric of M is estimated by the Euclidean modulus of the vector

J V(IJ’Iz‘")lx_}"Zk_2°"dy=V(J |y|2—n|x_y|2k-—2—ndy>‘
R” -



432 LUIGI FONTANA
Since

w,_(n —2)
2n — 2k)(k — 1

Jv lyl2—n|x__yi2k—2—ndy= )|x12k~n
R7

its gradient has modulus equal to w, _,(n —2)/2(k — 1)|x]|** "~ '. Hence, recalling
that |x| = d(P, ),

!GZk—l(Pa Q)l =

Cok—2 —n -2-n
m V [JM d(P,R)* " "d(R, Q)* 2 dV(R)]-FE‘

Cop — 2 2% —1—n
< —
2k l)d(P,Q) + E

where E represents an error (not necessarily the same in different lines) not worse
than O(d(P, Q)% —"~'?). The value of ¢,, _, is given by Lemma 2.6 so the proof of
Lemma 2.7 (and therefore of Theorem 1.8), is complete.

3. Proof of Theorem 1.9

The proof of Theorem 1.9 follows closely Adams’ original proof. The point is
that, because of the very local nature of the problem, perturbations of higher order
of the kernel in our integral operators are negligible.

The main tool is O’Neil’s Lemma. We already mentioned the version of this
Lemma used by Adams in his paper (see Lemma 1.5). O’Neil’s Theorem 1.7 in [24]
actually covers operations more general than convolutions f * g on R”. However, it
does not apply, as stated, to integral operators on general manifolds M of the form
T discussed below. This is because, when M is non homogeneous, balls with the
same radii but different centers can have different volumes. Consequently, the
kernels K(P, Q) differ too much from those of the form K(P — Q) on R” for the
hypotheses of O’Neil’s Theorem 1.7 to be satisfied. There is, though, an asymtotic
homogeneity in the manifold case when the radii tend to zero which enables us to
prove the following lemma, which serves as suitable substitute.

LEMMA 3.1. Let M be a compact Riemannian manifold of dimension n, and
define the operator T, acting on functions defined on M, by

Tf(P) = L K(P, 0)f(Q) dV(Q)



Sharp borderline Sobolev inequalities on compact Riemannian manifolds 433
where
K(P, Q) =d(P, Q)*~"(1 + Cd(P, Q)”)

with 0 <a <n, f >0 and C a non negative constant. Then, for every t >0 and for
every function f =20 on M we have

(Tf)**() < == (w”’ )“/" (1+ B f*(0)
n—1
+ Jmf*(S) (w’“ )‘“ (1 B

where the constant B is independent of f.

Of course in this result, only ¢ < Vol (M) is of interest.
O’Neil’s original argument can be adapted to our situation by using the volume
estimate of Proposition 2.2. We omit the proof.

Remark. Observe that, with suitable (and natural) conventions, Lemma 3.1 is
true in the one-dimensional case too. In that case the small balls are just intervals
on the one dimensional manifold, their volumes are twice the length of their radius
(so that the volume estimate of Proposition 2.2 is trivially true), the boundary of
such a ball is a set of two points and its zero-dimensional measure is w, = 2. With
these conventions, Theorem 1.9 also is true for n = 1.

Proof of Theorem 1.9. Let t, = Vol (M). Then, using f* < f**,

J exXp {wn |Tf(P)|n/(n—a)} dV(P) _ JW oxp {wn I(Tf)*(t)ln/(n—a)} dt

n—1

< J " exp {w” |(Tf)**(t)|""”‘°"} d.

0 n—1

By Lemma 3.1, for 0 <t <1¢,,
t w,_ (n— a)/n
(TN < Cre=m ) fMs)ds +|— =
0

X j ]j*(s)s(“_ min(1 + CsP") ds. (26)
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C denotes constants independent of f which can vary from line to line. Hence

n nj(n — ) 5 @y | @, \" O
exp |Tf| =25 dV < | exp<]| Ct o) ds + | ——
M w, _ 0 0 n

t n/(n — )
X f lf*(s)s(" —min(1 + CsPi) ds:| } dt.
t

Let x =log 1/s, y =log 1/t, y,=log 1/t, and

B(x) =f*(e ") e .

The right hand side of the estimate above is equal to

J exp {[C j e ~ln=nlx =N dy(x) dx
Vi y

¥y n/(n — a)
+ J‘ (1 + C(e ~P*yp(x) dx] —y} dy. (27)

Define

1+Ce M ify, <x<y
g(x,y) = —n—/nlx—yp)
Ce D ify,<y<x<ow

and define, for y €[y,, o),

o n/(n — a)
F(y)=y— [ J g(x, y)o(x) dXJ - (28)

‘1

The integral (27) becomes [ e~ dy. Since

1ZJ Vil dV=L1 (f*)"*(s) ds =r d(»)"* dy

Y1
the proof of the theorem is reduced to the proof of the following lemma.

LEMMA 3.2. Suppose that ¢ :[y,, ) > R* satisfies (7 ¢(x)"*dx < 1. Let g
and F be as above with ¢, > 0,0 <a <n. Then
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J e fWdy <C <o (29)
y

1

where C, depends on y,, a, B, C, but not on ¢.

This lemma differs from Adams’ Lemma 1.6 only by the perturbation C e —*¢/™
for x <y in the kernel g(x, y).

Unfortunately, this modified lemma does not seem to be deducible in any
obvious way from the statement of the original one, so we must check that Adams’
proof can be successfully adapted to this case.

Proof of Lemma 3.2. First of all observe that

o (n— a)/n
su;a (J g(x, y)rer == dx) =b < o0. (30)
12y \ Jy
Now
j e fO dy =j- |E;| e ~*dA (31)
Vi — o0

where E; is the set {y >y, : F(y) < i}. By |E;| we denote its Lebesgue measure.
We prove the lemma in two steps

LEMMA 3.3 (Step 1). There exists a constant ¢ = 0 independent of ¢ such that

if E;#0Q then A 2 —c, ie. inf, -, ., F(y) 2 —c > . Furthermore, if y € E; then

(d + y)*in ( J " b dx)a/n < Al + B (32)

where d, A and B are suitable constants independent of ¢ and A.

LEMMA 3.4 (Step 2). There exist constants C and D independent of ¢ and A,
such that for every A

|E;| < C|A| + D. (33)
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Lemmas 3.3 and 3.4 immediately imply Lemma 3.2 since

J e"”-"’dy=f E; e“’"'dlSJ‘ (ClA|+ D)e*di

A -

and the last integral is just a finite constant independent of ¢.

Proof of Step 1. If y € E;, then by definition and Holder inequality we have

(*

n/(n — a)
y—4A= g(x, y)¢(x)]

BRVA

|| d(x)(1 + Ce "y dx

L JV |

e n/(n — x)
+ J d(x)C ety = In—a)n dx]

v a/n v (n- a)/n
< [( J $(x)"" dX) ( J glx, y)"e =2 dx)
M ¥
* a/n o (n— a)/n |n/(n — x)
+ < J P(x)""* dx) (f Ce'—~ dx) :| .

Now

¥ (n—2)/n ¥ (n — wyin
(j glx, y)m = dx) < U (1+Ce M dx]
Vv v

|
<[y —y, + Cle "1bIn — g =vBinyjin =)

= ()

and

o (n — 2)/n
[J Cer™ =~ dx:l < b.
)

The constant C in the above lines is not necessarily the same in different lines,
the only important thing being that it is independent of ¢ and A.
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By letting

[o¢] a/n
L(y) = U P(x)"" dXJ

and observing that L(y) <1 for every y, we get
y =4 <[(1=L(y)")*™(y +d)" ="+ bL(y)]"" =%, (34)

Adams gets this estimates too, so the conclusions of Step 1 lemma follow from the
same argument as in his paper [1].

Proof of Lemma 3.4. Let R be a positive arbitrary real number and suppose that
E, Nn[R, ) #0. Take t,, t,€ E; "[R, ), t; < t,. Then:

(' 5] n/(n— a
L,— A< f g(s, t,)o(s) ds + J g(s, t,)P(s) ds + bL(t,)] "

1 1

[~ 0 (n—a)/n 15 a/n
([} s} ™ ([ o)
L \JV1 0

t (n—a)/n
+ (j i g(s, )" = ds) L(t) + bL(t,)]

IA

nj(n — a)

Now note that

1 f
.[ g(s, )" =2 ds =J g(s, t,)"" 2 ds
y

Vi 1

which we already showed to be smaller than (¢, + d). Moreover

15) 15)
j g(s, tz)"/("““)ds=j (14 Ce~sFimnln=o gs < ) — 1 +d.
t 1

1

Since [ ¢"/*ds < 1, we get
L—A<{(ti+ )"+t~ t; + dy) "D+ BIL(2)) } P, (35)

At this point everything is as in Adams’ paper and thus the proof is complete.
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We shall show that the coefficients in the exponents of Theorems 1.7 and 1.9 are
the largest possible.
We start with Theorem 1.9 and we prove the following

PROPOSITION 3.5. If the operator T is defined as in Theorem 1.9, then n/w
is the maximum value of the constant y for which the integral

n—1

J exp {7|TY(P)[" =} dV(P) (36)

is bounded by a constant c,, independent of f whenever {,, |f|"* dV < 1.

Observe that the local nature of the problem makes possible a complete
reduction to the R”" case. Essentially the same extremizing sequence of radial
functions works for R” and for any n-dimensional Riemannian manifold, even non
compact. Thus on any Riemannian manifold we expect the best constant to be not
larger than n/w

n—1-
Proof of Proposition 3.5. Fix P € M and consider the ball B,(6) where o is

smaller than 1/2 of the radius of injectivity of M at P. We want to evaluate the
operator T on the extremizing family of functions f, defined by

1(Q) =

S\ !
(log }‘) d(P, Q) ~1,(Q) (37)

n—1
where y, denotes the characteristic function of the set

{Q € M such that r <d(P, Q) <d}.

Computations similar to the ones in the analogous case in R” (see [1]) lead to
the following estimate

TF(Q) = 1 + 0<log g)_l . (38)

Thus, for every fixed ¢ >0, there exists r, such that r <r, implies that
T1.(Q) = 1 — ¢ for every Q € Bp(r).
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For the L"*-norm of f,, we have

/n

5 —1 a,
1 e = (w 1 log ;) { J d((P, Q) =" dV(Q)}
Bp(3) — Bp(r)

5 a/n
[wn——l 10%; + 0(1)]

wn-—l log;

5 —(n— a)/n 5 —oa/n
= (w,,_ , log ;) (1 + 0<log ;) )

and thus the inequality

[ ool

implies that y must be less than or equal to n/w, _,. Proposition 3.5 is thus proved.

(ALY
J

nftn — o)
} dv(Q) < ¢ (39)

nja

We will now show that Theorem 1.7 is sharp.

PROPOSITION 3.6. With the same hypothesis of Theorem 1.7, the largest
constant n for which the exponential integral

L exp {n|f(P)["" =™} dV(P) (40)

is bounded by a constant c, independent of f is A(m, n) of formula (4).

Proof. As customary we work in the ball B,() with § small enough so that the
exponential map is a difftfomorphism and the volume and surface estimates for
small balls are fairly precise. To avoid unnecessary notational complications we
suppose 6 = 1. Everything works, with proper obvious modifications, for arbitrary
0. The construction is essentially the same as in the R” case, see [1], but it has to
be adapted to the new situation (different ambient space and different conditions on
1)

The case m =1 is easy.
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We consider the family of radial functions

(1 if d(P,Q) <r

i 1\ 1 )

£(Q) = (log;) log — 7.0 if r<d(P,Q) <1
Y if d(P, Q) > 1.

These functions belong to W'"(M). We normalize them in order to have zero mean,
and define

1

1@ =7©@ ~oran

Lﬁ(k) dV(R).

Now

1 ~ 1\!
Vol (M) JMﬂ(R) dV(R) = 0<log ;)

and thus

~

1 —1
constant =1 — 0(log ;) if0<d(P,Q)<r

£(Q) =< (log ;)ﬁ [—logd(P,Q)+0(1)] if r<d(P,Q) =<1

1 -1
constant = 0(log ;) if d(P, Q) 2 1.

-

The modulus of the gradient of these functions is easily calculated, and

1\~ —1yn 1\-!
]|Vf,",,=(log—r—) w,‘/ﬁ,(l-{—O(log;) )

The exponential integral (40) has to be bounded by ¢, for all admissible
functions. Evaluating it for f, /| V', |, we see that 5 cannot be larger than nw,/” .

The case m > 1 requires some regularizations. Let @ be a C* function defined
on [0, 1] for which the following is true
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P0)=d'(0)=---=0"="D(0)=0, &(1)=d'(1)=1
and, if m > 2,
P'(1)=--=d™=Y(1)=0.

For 0 < e < 1/2 we define

(ab(é) if0<tr<ec

) t ife<t<l-—c¢
ﬁ 1—ap(16_’> ifl—c<r<I
L1 if 1 <1

Now define, for 0<r<1,0<t <1,

Y(t) = H((log %)‘l log %)

and note that the functions

Q) =y(d(P, Q)

are defined in the unit ball around P in M, m times differentiable there and
identically equal to 1 on B(r).

We need to compute [, [V™f,(Q)|["™ dV(Q), and begin with

d? 1\! 1

Af,(Q) = I (H((log ;) log ;))
d 1\! 1 0 n—1

i (H((log ;> - ;)) t = d(P.Q) (5; log /lg] + d(p, Q))

1=d(P,Q)
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= —[H’((log l>—l log l) (log 1)—1 diP,Q)?
r t r
—(n—-1) (logl) d(P, Q) ’H’ <<log ) log )]
+0<<log-})— d(P, Q)" ') 0<<log ) d(P, Q)—2>
—n—2(10g2) a0 -2a((1 1
== (1og7) 2.0 ((10g; ) tog 755 )

<
() a0 o) a0 )

where d/0p denotes the derivative in the radial direction from P and we used the
fact that log \/|g| is C* and bounded in our ball around P. At this point it is not
difficult to see by induction that

A k—1 = ¢ AN l
A5F.(0) =(n —2) (log ;) (4~ 'd(P, Q) )H (<1og;> log d(P, Q))

+ O((log %)_2 d(P, Q) —2k> + 0(<log %)4 d(P, Q)%+ *)

and, by an iterative computation of 4% ~!d(P, Q) ~2 and (0/dp)(4* ~'d(P, Q) ~%) we
get

1\! 1 1%~
77(Q)] = c(m, n)H'((log ;) log 55 Q)) <1og ;) d(P, Q)"

—1 -2
+ 0(log %) d(P,Q)' ~™" + 0(log %) d(P,Q)~ " (41)
where

-
m —2)/2 r(_’;l) m—-—mm-m+2)---(n-2) for m even,

c(m, n) = <

2m — l)/2r(m;—1)(n—m+l)(n—m+3)---(n—2) for m odd.
~
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Observe, now, that

( t
CD’(-) if0<t<ec
€
1 fe<t<1l—c¢
HO=9
<1>’<-;’> ifloe<r<l
€
0 if 1 <t

Thus, with some computations, we find

m/n
{ L e dV(Q)}

1\! 1 1 N R
< ¢(m, n) (log —) {w,,ﬂ ; log =+ Ce log — + O(log —) }
r r r r
l m/n 1 —mjn
+ c(m, n)o?" (1 + Ce)™" (log ;) + 0(log ;) .

Now we need to estimate the average of f, over M:

1
Vol (M) fo,(Q) d V(Q)l

@,

1 1\! 1 i
W 0H((log;> log;>s (14 0(s)) ds

Since H(7) < Ct (with C = ||®’

« for instance), we have

JMfr(Q) av(Q)

—1 1 1
< C(log ;) J log;—s"‘ (1 4+ O(s)) ds
0

1 —1
= C’(log ;) .

Thus, the average of f, over M is O(log 1/r)~' and it is not large enough to
influence the final result. In particular on Bp(r) we have

Vol (M)
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1 _
an Lf, dV =1-0(log 1/r) .

JAEER

We define our extremizing family of functions f., as

1
Vol (M) L/’ av
“ mer ”n/m

f

£(Q) =

The functions f, satisfy the hypothesis of Proposition 3.6, and if the exponential
inequality is to hold, the coefficient # must satisfy the following condition

n (1 .y 0<log %>~1)
(42)

<
LA

w, _r"(1 + O(r)) exp

where, as usual, ¢, doesn’t depend on r. Inequality (42) and the above computation
Of |V™f; | imply

1< neo i e(m, e =

which, remembering the expression of c(m, n), says that n < A(m, n). Proposition 3.6
is completely proved.

4. Some further results and remarks

The techniques described in the previous sections are quite general and can be
successfully adapted to other situations in which exponential integrability is in-
volved.

We start by examining the case of Weyl fractional integration for periodic
functions. Following the presentation in Zygmund’s classical work [30], Chapter
XII, let f be an integrable 2x periodic function. Suppose its integral over the interval
(0, 2n) is zero so that the constant term of its Fourier series S[f] is zero. This
condition guarantees that the integral f; of fis a 2n periodic function itself and,
upon choosing the constant of integration in such a way that [3"f; =0, we can
construct a periodic f, such that f; =f; and so on.

In terms of Fourier series, if S[f]=Xc,e™ with ¢,=0 then S[f]=
X (¢, /in) e™ and in general, for k positive integer
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S =Y % G )k e™ . (43)

The formula (43) can be taken as a definition of f, and extended to any positive
real value of k, provided that we define

1
yP = (in) * =|n|7* exp(—i nik sign n)

for n #0 and y§ =0.

For every positive real number « and every integrable 27 periodic function with
zero integral mean over (0, 2n) and Fourier series X ¢, e™, we define the Weyl
fractional integral of order « as that 2z periodic function f, whose Fourier series is

Z Y Sx) mt

It can be shown (see [30]) that f, can be obtained from f by convolution with a
periodic function ¥, (f) whose Fourier series is X y® e™,
If we define the operator I, by I, f =f,, it turns out that, for every positive « and

B,
Ia+ﬂ =Ialﬁ

and since I, for a positive integer is just an iteration of ordinary integrations, the
case 0 <a < 1 is the most interesting one to study.
We recall, again from Zygmund’s Chapter XII, that

PROPOSITION 4.1. If l<r<s<o and a=1/r —1/s, then fe L" implies
f. €L’ and

2n 1/s
(L |fa|s) R (44)

where s’ and r’ are the conjugate exponents of s and r respectively.

From this result, it is not difficult to deduce that if fe L", r > 1, and j%" f=0

then I,, f is integrable in every power. Moreover there are positive constants 4 and
A such that if ||f|, <1, then
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2n )
f exp [A|1,,, f(x)"] dx < A (45)
0

(see Zygmund [30}], vol 2, page 142 and page 158). Our aim is to find the largest
constant A for which (45) is true.

The first step in this program is the following estimate of the kernel ¥, (¢) (see
Zygmund [30], vol 1, pages 69—70).

PROPOSITION 4.2. With an error uniformly O(1), the 2n periodic function
¥,(x) can be represented on the interval —m < x <7 as

2n .
—Xx*7 for0<x<m
¥ (x) =< ')
0 for —n <x <.

This kernel is not exactly of the same type as the one we studied in the previous
sections, but it is close enough to allow us to modify suitably the argument and
obtain the result we are aiming for.

THEOREM 4.3. If fis a 2n periodic function with zero integral mean on (0, 2r)
and (5" | f(x)]P dx <1 (1 <p < ©) then, letting o = 1/p, I, f satisfies the exponential
inequality

J‘Zn exp {(f%)l/(l — ) IIaf(x)lp/(p_ ])} dx < A (46)

where A is a constant independent of f. For no coefficient larger than
(I(«)/2m) "' = can inequality (46) be true with any A independent of f.

Proof. Let
K(x) = X(O,,t)(x)x“ '+ B(x)

for x € (—n, n), where B € L. Extend K to be a 2n periodic function. Define the
operator

T

T, f(x) =f K(x —0)f(1) dt.

—7

For integrable periodic functions f with [* . fdx =0, Proposition 4.2 says that
(I'()/2m)1, is an operator of the form T,.
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Now, for every integrable 2z periodic f, by O’Neil’s lemma (in its simpler form,
Lemma 1.5) we have

(TL/)**(1) < (P*OK*(1) + f " PHOKAs) d.

Choose a constant 4 > 0 such that, on (—=, n)
IK(x)| £ #0.9(X)x* "'+ 4 = K, (x).

Thus
K*(1) < K¥(t) = xpo1* '+ 4

and

n{l

1
K**(0) S K30 = (7 +ad) +— 1s20()

for 0 <t < 2n. Therefore, for 0 <t <2n

N HO R el
420! Jw [X[O‘n)(s) (%>a N + B]f*(s) ds. (47)

We compare this estimate with (26) and recall that for n =1 the value of w,_, is
2. Then we see that the only important difference lies in the coefficient 2*~! which
can be factored out of the right hand side of (47).

If we assume |f], <1 and carry through, step by step, the analysis done in
proving Theorem 1.9, we get an exponential inequality in which the coefficient 1/2
given by the one dimensional case of Theorem 1.9 is replaced by 1:

f " exp [|T. £~ dx < A

with A independent of f.
To show that 1 is the sharp coefficient consider the following family of 2z
periodic functions defined on (—m=, ) as
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] —1
S (%) = X nm g ()| (log ;)

with 0 <r <m.
Since Weyl fractional integration is defined for functions with integral mean
zero, we consider

~ 1 n
fr(x) =1,(x) ~5 f_ f(y) dy.

Observe that

~ 1\!
1 (x) =fr(x)+0(10g;) :

Now, for 0 < x <r, r small, we see, after come computations, that
~ 1\ !
T,f.(x)=1+ O(log —) .
r

In particular, for every ¢ > 0 there exists r, such that for r € (0,r)), T, f,(x) =21 —c
Now

151, = (log %)_ | [1 + 0(log %)"] |

Thus, if

J‘ exp [l

we must have

l 1 —a\ 1/(1 — @)
rexp[i log;(H—O(Iog;) ) ]SA

which implies 4 < 1. We have shown that 1 is the best coefficient for the exponential
integrability of T, f. Since the Weyl fractional integral operator I, has the form
(2n/T(0))T, we see that (I'(x)/2m)"' —* is the sharp constant for it, and the
Theorem is proved.

T, [, (x)

171,

/(1 — a)
]dx <A
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There is also a notion of fractional integration for periodic functions in higher
dimension. The definition, given by Wainger in [28], is suggested by fractional
integration in R” (the classical Riesz potentials).

Following Wainger [28], let f be in L'(T") where T" is the n-dimensional torus,
that is [0, 1]” with the usual topological identifications.

Let ¢, k € Z" be the Fourier coefficients of f. Define I, f, 0 < o < n as the unique
function defined on T” with Fourier coefficients d, given by d, =0 (O = zero vector
of Z") and by d;, = ¢;(2nlk|) = if O #k =(k,,...,k,). |k|=(Z k})"~

Wainger proved the following result

THEOREM 4.4 (Wainger). For every f € L'(T)", I.f is well defined and is given
by

L f(x) = J

T

"ga(x —»f(y)dy

where g, is periodic of period 1 in all its n variables and
£.(x) = c(n, @) |x|[* " + E,(x)

where E, (x) is bounded (actually C*), and

o
n/22a -
1 s r ( 2)

c(n, o) - (n - oz) '
r
2

Exponential integrability for I, f is an immediate consequence of Theorem 1.9.
We can therefore state the following:

PROPOSITION 4.5. There is a constant C,, such that if fe L"(T") and
satisfies ||f]|,x <1 then

J exp {y, (M| f(x)["" 2} dx < C,,
T
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where the constant y,(n), given by

o n/(n — a)
n/22ar -
. |7r(y)

Valt) =— — :
n—1 F( )
2

is sharp.

Observe that y,(n), for « an even integer smaller than n, is the same critical
exponent as in Theorem 1.7, as it should be, considering the meaning of fractional
integration and the fact that the sharp exponential coefficient is the same in most
situations (in particular for compact manifolds).

To conclude, we indicate two open problems. Firstly, we observe that for
general non compact manifolds only very partial results about exponential inte-
grability are known, see [14] and [15]. The argument in Section 3, shows that the
coefficient A cannot be larger than A(m, n), but we do not have yet complete results
for exponential integrability over domains on non compact manifolds analogous to
Moser and Adams’ theorems for domains in R”.

The second problem concerns the possibility of higher dimensional extensions of
a recent result of A. Chang and C. Yang (see [12]).

THEOREM 4.6 (Chang and Yang). Suppose D is a piecewise C?, bounded,
finitely connected domain in the plane with a finite number of vertices. let 0, be the

minimum interior angle at the vertices of D. There exists a constant cp, such that for
all u € C\(D) with

J Vul* dx <1 fudsz
D D

we have

2
J e¥r¥ dx < ¢,.
D

If we replace 20, with any positive B, the integral is still finite, but if f > 20, it
can be made arbitrarily large by appropriate choice of u.

Chang and Yang’s proof of this theorem depends on an isoperimetric inequality
and represents a different approach to the problem of exponential integrability.



Sharp borderline Sobolev inequalities on compact Riemannian manifolds 451

The presence of the boundary of D seems to pose difficult problems to an
approach based on the techniques of the previous chapters. It might be possible,
however, to find (after some sort of symmetrization) a suitable and workable
representation formula which could allow the extension of Chang and Yang’s
theorem to R” with n > 2.

We should expect something like the following:

Let D be a domain in R” with compact closure. Some regularity on 0D has to
be assumed. In particular, suppose that the limit

o(P) = li

r—0

0B, (r) N D|
m T

1 b4

where the numerator denotes the n — 1 surface measure of dBp(r) N D, exists for
every P e dD. O(P) can also be defined for P € D in which case 0(P) =w,_,.
Assume 6(P) has a positive minimum 6, on D.

Then there must be a constant C such that for all C' functions f satisfying

Jf(x)dx=0 and j IVf(x)| dx <1

the following is true for o« =n6 )"~ "

j exp [o| f(x)["*~ D] dx < C. (48)

If o > 10"~ no constant C can bound the integral uniformly with respect to f.
It is easy to see why o cannot be larger than n6,/" ",
Let P € 0D be a point for which 6(P) = 6,. We can suppose P is the origin of
R”. Consider, now, the functions f, such that:

! if |Q] <
£(0) = <log %)4 logl—é—| if r<|Q|<1
0 if |0 > 1.
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Then

£(Q) =1.(Q) —

Vol (D) Lf'(R) R

is given by

e

1\-!
constant = 1 — 0<log 7) ifo<|Q|<r

! 1
fr(Q)=<<log;) [log@+0(l)] if r<|Q|=<1

1 —1
constant = O(log ;) if |Q| <1

.

and

| AL
7| = (log;> 0] if r<|Q|<1

0 otherwise.

Now, let D, =D n{Q :r <|Q| < 1}. Fix ¢ small, in particular smaller than 6, /2,
and let r, be so small that for r <s <r,

<e¢ (49)

D, 3B(s)

so that

j]Vf(x)} dx—( ) J %daa’s
( ) {j 0,,+E(s))s“‘ds+f s“dads}
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where, by (49), |E(s)| < s for r <s < r,. Therefore, for small r

s (ul) ool )

So if (48) is true, for small r we must have

9 l 0 l 1 —1 l ] —(n—1)/nn/(n—1)
————( —or exXpa ( + (og;) )(og;) <C

4 @ +e)'m

and therefore

a<nl@ 4",
Since ¢ is arbitrary,

a <ngl/e-b,

What happens is that, since our functions need not be zero outside D, only part
of the L” norm of |Vf] in a neighborhood of a boundary point P is controlled by
our hypothesis on f. The rest (the part outside D) contributes to the values of f
around P for free. Of course this circumstance cannot occur if we impose on f the
condition of being compactly supported in D. In this case, as we know, the best
integrability exponent is nw!“; Y, and this is consistent with the equation
0(P) = w,, _, which holds when P is an interior point of D.

This paper is part of the author’s doctoral dissertation written under the
direction of Professor Albert Baernstein II at Washington University in St. Louis
(December 1991). 1T wish to thank Professor Albert Baernstein II for his advice,
encouragement and all the mathematics he taught me. I also thank Professor D.
Adams for his kind interest in my work.
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