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A maximum principle for biharmonic functions in Lipschitz and C*
domains

J. PIPHER* AND G. VERCHOTA**

§1. Introduction

Our aim in this paper is to prove a maximum principle for functions biharmonic
in a domain D whose boundary is Lipschitz or C'. This result will be valid for
Lipschitz domains D =« R”, n =2 or 3, but fails if D <« R", n = 4. The dimension
dependent aspect of this theorem is a new phenomenon in the theory of elliptic
partial differential equations and stands in sharp contrast to well-known results
both for solutions to second order equations and for solutions of higher order
equations in domains whose boundary is smooth. We then extend the method
employed for three dimensional Lipschitz domains to show that the maximum
principle holds for functions biharmonic in a C! domain D = R", for any n. We
begin with some background and the explicit statements of the results.

A function is biharmonic in D if it satisfies 4°u = 0 in D. A bounded domain D
is Lipschitz if there exist finitely many doubly truncated, right circular cylinders
Z, (with pZ denoting a dilation by p of Z) such that (i) D = |, (3Z; ndD), (ii)
there is a change of coordinates and a Lipschitz function ¢, : R"~'— R such that
2Z,n0D ={(x,y) e dD:y = ¢;(x)}, and (iii) 2Z,n D is starlike with respect to
some P,eZ,NnD.

Let do denote the surface measure of dD. A function f defined on 0D is said to
belong to L{(0D) if for every cylinder Z with associated Lipschitz function ¢ there
are L?(Z n oD, do) functions g,, ..., g,_; such that

[ ooty = = | - b o) s
Re— 1 Rrr—1 0X;

whenever h e C¥(R""'nZ). Thus to every function f e L%(0D) is associated a
unique vector Vf, called the tangential derivative of f, which in local coordinates

* Partially supported by an Alfred Sloan Foundation fellowship and by the N.S.F.
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may be realized as

(&:1(x, (X)), . .., 8, 1(x, 9(x)), 0) —
(g1 (x, (%)), - . ., 8n—1 (X, @(x)), 0), N(x, ¢(x)) )N(x, ¢(x))

where N(x, ¢(x)) = N(Q) is the unit exterior normal to Q = (x, ¢(x)) on dD.

If D is Lipschitz then to every point Q € dD there is a nontangential “cone”
Q) ={XeD:dist(X,dD) <(1+a)|X —Q|} for « >0 contained in D (see [J—
K]). If v is a function in D, we may define Nv(Q), the nontangential maximal
function of v at Q € 6D, by Nv(Q) = supy r) (v(X)). The Dirichlet problem for
the operator 4> may be formulated as follows. Given f e LZ(dD) and g € LP(0D),
we seek a unique function u satisfying

(i) 424=0 inD
G) Jlim u(X)=/(Q) ac.do(Q)

X-0Q0,XelI(

. : (L.1)
(i) lim " Fu(X), N(Q)) =g(Q) a.e. do(Q)

X->0.Xerl(

(1v) HN(Vu) "LP(da) <+

such that, for C depending only on the dimension and the Lipschitz character
of D,

INVW) || Looy < CLIf || ooy + 18 | Locaor }-

In Dahlberg—Kenig—Verchota [D-K-V], the Dirichlet problem with data in
(L%, L?) was solved in every Lipschitz domain D € R", for any », and in analogy
with the corresponding theory for the Laplacian, was shown to fail to be solvable
with L? data for p < 2. (As usual in this theory, once the L? result is known, a
real variable argument gives an automatic improvement. Namely, there exists an
¢ = ¢&(D) such that the Dirichlet problem, together with the appropriate L? esti-
mates on N(Fu), is solvable with data in (L%, L?) for 2—¢ <p <2+¢.) These
results were extended in [V2] to show that the Dirichlet problem with data in
(L%, LP), for all 1 <p < oo is solvable if the domain D = R* (any n) has C!
boundary. For Lipschitz domains D, the solvability of the Dirichlet problem in
(L%, L"), p > 2, was shown in Pipher—Verchota [PV1] to hold for D = R", n =2
or 3, and to fail for p = p(n) sufficiently large where D < R”, n = 4. This failure of
solvability for large p is in fact a failure of the following maximum principle and
the example will be recalled in §2. Our (weak) version of the maximum principle is
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just the case p = oo of the Dirichlet problem:

(M.P.) If |Vu| e L*(éD, do) and |N(Vu)| .24 < 0, then the (unique) solution
to the Dirichlet problem with data in (L3, L?) satisfies ||Vu|,wp) <

C||Vul|L=@py for some C depending only on the Lipschitz character
of D.

A more classical version of the maximum principle may be phrased as follows.

(M.P)* If A’ =0 in D, a bounded Lipschitz domain in R”, and |Vu| is
continuous in D, then there is a constant C that depends only on the
Lipschitz character of D such that

sup [Vu(X)| < C max |Fu(Q)|.
XeD QedD

A consequence of standard elliptic theory ([A], [A—D~-N]) and specialization to the
biLaplacian of results on higher order operators due to Agmon and Miranda is that
the maximum principle (M.P.) holds for C* domains in R", for all n. Moreover,
Miranda [M] has proven related maximum principle results (with sharp constants)
relating max,, u to max,, |Vu| for very general domains in R?, including Lipschitz
domains. Our results show that Lipschitz domains are the sharp class of domains
for which (M.P.) may fail.

THEOREM 1.2. If D is a Lipschitz domain in R", then (M.P.) is valid.
Moreover, there exist Lipschitz domains in R", n > 4, for which (M.P.) fails.

THEOREM 1.3. If D is a C'-domain in R", then (M.P.) is valid.

In addition we obtain solutions to the Dirichlet problem (for D = R?) with data
in BMO and appropriate Carleson measure estimates on the solution in virtue of
the validity of (M.P.) and estimates on the Green’s function. These estimates also
give Holder continuity of |Fu| in dimension n =3 and of the solution u itself in
dimension n =4 and n = 5. These will be discussed in §4, and indeed we shall rely
on such estimates to prove (M.P.) for general Lipschitz domains, once it has been
verified for special (starlike) Lipschitz domains.

§2. The maximum principle on starlike domains

The failure of the maximum principle on Lipschitz domains D c R", n >4,
follows from the existence of a biharmonic function u(x) in the exterior of a cone
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I'(0), with vertex at the origin satisfying

(a) u(x) = |x|*¢(x/|x|) where ¢ is a smooth function on the sphere,

(b) u =0 and Ju/0N =0 on the lateral sides of the cone I'(0),

(c) If the aperture of the cone is small enough (i.e., the Lipschitz constant is
large) then a may be chosen to be less than 1.

The existence of such a u was established in [MPN] in dimensions n > § and shown
in [PV1] in dimension #» =4 where the limiting value « = 1/2 was computed.

A bounded domain D may be constructed so that dD is smooth except at the
origin, and if B(0, r) denotes the ball of radius r centered at the origin, we may
require that

B(0,3)\I'(0) =« D = B(0, H\I'(0), with 0D N oI (0) = ar(0) n B(0, 3).

By the smoothness of D away from the origin and interior estimates, the solution
u given above will satisfy |Vu|e L=(0D), yet near the origin, |Fu(x)|=O(|x|* ")
which fails to be bounded when o < 1.

Consider now a bounded starlike domain Lipschitz domain D < R*. Then the
fundamental solution of the biLaplacian is I'(X, Y) = |X — Y|. The Green’s func-
tion G(X,Y) for 4?2 satisfies 43G(X, Y) =8(X — Y) and both G(X, )|, and
(0G/ONy)(X, - ) vanish on dD. An integration by parts gives the following represen-
tation of a biharmonic function u in D for which N(Vu) € L*(do):

0
u(X) = LD u(Q) N, 4oG(X, Q) do(Q)

Ju
+ LD—éN;AQG(X, Q) da(Q). (2.1)

To establish Theorem (1.2) for starlike domains, we first recall the regularity
problem for 42 and the known results on its solvability. A Whitney array ([V3]) in
WAP(0D) is a sequence of functions {fy, f;, /2, /3> = f with f; € L{(0D) such that f
belongs to the completion, in L£(dD) norm, of the sequence space {{F|,p, D, Flsp,
D,Flsp, D3F|;p Y Fe CP(R™)}. In a starlike bounded Lipschitz domain D, this is
equivalent to the statement that a compatibility condition holds:

Let 0D ={p(6)0 :0 € S"~'} for p:S""'>R, and assume dist (éD, 0) = 1.
Given f|;p and a boundary point Q = p(X)X/|X|,f denotes the homogeneous
degree zero extension of f defined by X) = f(p(X)X /|X]). The vectors ¢;, j =1, 2,
or 3 denote the standard basis for R>. Then f = {f, € L4(dD) : |x| < 1} belongs to
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WAP(@D) iff

- N, 2

D,f(o,o,())(Q) =.fe/(Q) - TQj%:kgl Qkﬂk(Q),
1 <j <3 holds a.e. on dD.

The regularity problem for D is, roughly speaking, the assertion that a biharmonic
function whose second “tangential” derivatives on 0D are in L?(0D) possesses an L”
estimate on N(FVu). In particular, the next theorem was shown for p € (2 —¢, 2 + ¢)
in Verchota [V3] and for 1 <p <2 —¢ in R? in Pipher—Verchota [P-V1].

THEOREM (9.3 of [P-V1]). Let D = R? be a bounded Lipschitz domain with
connected boundary. Then, given f € WAP(OD) there exists a unique function u in D
such that

(i) 4224 =0 inD
(i) =~ lim o ux)=f(Q) ae.

X->0Xel(

(111) lim Vu(X) = {f1, f2, 1)(Q)  ae.

X—-0.Xel(Q)

(2.2)

(iv) |[N(VVu)| ., < o0
and in addition, if = {(f,, >, /+>,

(v) ||N(l7l7u) “Lp(au) = C“Vrﬂlz,p(ap)'

The duality between the regularity problem with data in L” and the Dirichlet
problem with data in L”(1/p + 1/p’ = 1) (see [V3]), established the solvability of
the Dirichlet problem for 2 <p < oo as a consequence of the above theorem.
Theorem (9.3) above was proven by establishing the correct “p =1 analog and
interpolating between this endpoint result and the known p = 2 result ((D-K-V]).
The endpoint result which gave this interpolation is formulated, as is typical in this
theory (see Dahlberg—Kenig [D-K] for example), in terms of a Hardy space H.
estimate. We recall some definitions from [D-K] and [V3].

If A denotes the graph of a Lipschitz function, a compactly supported function
fis an H}, — L? atom if |V .f| € LYA, do) and f and hence each (9/0T;)f (which
automatically has mean value zero) is a (1, g) atom, i.e., ach (9/0T;)f is supported
on a ball B € A and satisfies the estimate

< Ca(B)"4— 1.

0
oT,

L4(A)
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Then ([D-K]) f€ H|,, if there are H} ,(A) — L9 atoms a, so that

0 & 0
o) = 2 Mot Lid<o *)

j k=1

and H},(A) is a Banach space modulo constants if |f]| wy = inf {Z A : A as in
(*)}. More generally, f is an H},(0D) — L% atom, for D a bounded Lipschitz
domain, if f is supported in a cylinder Z and Z ndD = A, the graph of a lipschitz
function and f is in fact an H|,(A) — L7 atom. A Whitney array f belongs to
H},.(@D) if f = fo. fi,....f,> and the f; are in H}, (0D).

THEOREM (9.6 of [P—-Vl]). Let D = R® be a bounded Lipschitz domain with
connected boundary. Given f € H) ,,(0D) there exists a unique function u in D such
that

(i) 424u=0 inD
(i1) lim uX) =£(0Q) ae.

X Q,X e '(Q) (2.3)

(iii) lim v vuQ) =f={fi. . > ae.

X—Q.X e I(

(IV) “N(VVU) “Ll(ap) < 0

and in addition,

(v) ”N(VVu) ”Ll(aD) = Ckzo kal

1.
Hat

Fix a starlike domain D = R?® and X € D with dist (X) = 1. Consider now the
Whitney array f with fo(Q) = |X — Q| and £,(Q) = D,(|X — - [)(Q). Observe that
|Vrf;| =~ |X — Q]! and hence belongs to L?** for any & > 0. Let (X, Y) be the
biharmonic solution to this L?*¢ regularity problem guaranteed by [V3]. Then if
G(X, Y) is the Green’s function for 4% in D we have G(X,Y)=I'(X —Y) —
(X, Y). Moreover (since dist (X) = 1), there is a constant C such that

”N(VV')’) “L2+5(6D) <C (2.4)

where C depends only on the Lipschitz character of D. Therefore “two tangential
derivatives” of G are in L?*40D). The next lemma is the main estimate needed for
the maximum principle and asserts that this L?*¢ estimate can be improved to an
L' estimate. The next lemma will be shown on an arbitrary bounded Lipschitz
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domain D. However, to prove (M.P.) in general Lipschitz domains it will be
convenient to specialize first to the situation of starlike domains. It will be
important to keep in mind the situation where D is starlike and the X (named
below) is at a distance much smaller than diam (D). In this case, the domain D’
defined in this argument can also be assumed to be starlike.

LEMMA 2.5. Let D be a bounded Lipschitz domain with Lipschitz constant M
and let X € D with dist (X') = 1. Then there exists a constant C such that

ﬁ |40G(X, Q)| do(Q) < C (2.6)

where C is independent of diam (D).

Proof. Cover 0D by cylinders Z;, and assume that there exists a Lipschitz
function ¢ and a cylinder Z such that ZnadD = {(x, o(x)) : (x, ¢(x)) € 0D},
X = (x0, ¢(xo) + 1) and for some r=r(M)>1, 4" ={(x,0(x)) :|x —xo|<r} <
ZnoD. Let X' =(x,, @(xy) + B) and I'" be the cone with vertex at X’ such that
I''ndéD =4'. Let D’ be the (Lipschitz) domain defined by D’ = D\I'". Then
0D’ ndD = 0D\A’ and by suitable choice of 8, the Lipschitz constant of D’ will be
a bounded multiple of that of D.

The integral in (2.6) will be estimated in two parts. First,

12 +¢)
J [40G(X, Q)] do(Q) < C{ j 14,G(X, Q)+ do(q)}

and since 4,G(X, Q) =4,I'(X — Q) —4,y(X, Q) and both I' and y have two
derivatives in L?*°¢, that part of the integral over 4’ is bounded by an absolute
constant which depends only on dimension and the Lipschitz constant of D. It
remains to estimate that part of the integral over dD\4’ and to this end we will
show that

L [N(7oP o G(X, Q)] do(Q) < C. (2.7)

(In proving (M.P.), it will be important that the estimate in (2.7) is obtained for the
nontangential maximum function on 0D’.) The inequality (2.7) will follow from
(2.3)(v) if we show that the f; (i.e. the D;G(X, - X(Q)) are in fact H], — L*** atoms
in D’. Observe that G(X, Y) is biharmonic for Y e D’ and that G(X,-) and
D,G(X, - ) are supported on the unit size surface ball dD’NTI"" on the boundary of
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D. To obtain a size estimate on the tangential derivative of D;G(X,-) on dD NI
observe that

1/(2+¢)
J V+D,G(X, P)| do(P) < { J |V -D,I (X, P)]2+ do(P)}
oD NI’ oD’
1/(2 + ¢)
; { j 7, Dy(X, P+ dam}
oD’ nr’

1/(2 + &)
<C+ C{LD lN(VQ Vo)X, - )(Q)|2+£ dG(P)}
<C by (2.4).

The tangential derivatives automatically have the cancellation since D,G(X, -) is
compactly supported and together with the size estimates, an application of
theorem 9.6 [P-V1] yields (2.7).

THEOREM (2.8) (The (M.P.) for biharmonic functions). Let D be a bounded
starlike Lipschitz domain in R® and let u be the L? solution of the Dirichlet problem
in D with |Vu| e L*(0D). Then there is a constant (depending only on the Lipschitz
character) of D, and independent of diam (D) such that

Pu(X)| + |u(X) — u(X*)|/d(X) < C||Vul|,=@p), (2.9)

where d(X) =dist (X, dD) and X* is the radial projection of X onto dD.

Proof. We will assume that X is near 0D, i.e., that d(X) < diam (D) so that the
ratio d(X)/diam (D) is smaller than some fixed constant which depends only on the
Lipschitz constant of D. Once (2.9) is proved for all points X in this band near the
boundary we shall use the dilation invariance both of the estimate and of the class
of Lipschitz domains to rescale so that diam (D) = 1. In this situation, the Mi-
randa— Agmon maximum principle for smooth domains will yield (2.9) for all
interior X. In this way, it is assured that all constants are independent of diam (D).

There is a number a sufficiently small so that when d(X) < a diam (D), the
domain D’ defined in the proof of Lemma 2.5 is also starlike. Recall the represen-
tation (2.1) of biharmonic functions. Two cases will be considered. In the first case,
assume u|,p =0. Then u(x) = (,, (0u/0N) AG(X, - )(Q) do and, by interior esti-
mates, it suffices to show that |u(X)| < Cd(X). This is equivalent to the estimate

L ] |4,G(X, Q)| do(Q) < Cd(X). (2.10)
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The estimate (2.10) rescales. That is, it suffices to prove (2.10) for every starlike
Lipschitz domain under the assumption that d(X) =1. For if d(X)=r, let
D’ ={X':rX eD}, adilation of D by the factor r. Let X € D’ denote the point X/r.
Then dist (X, dD’) = (1/r) dist (X, 0D) = 1. By Lemma (2.5),

j !AQ,G’(X’, Q)| de(Q) < C (%)
Q'edD’

where G'( -, -) denotes the Green’s function for 4% in D’. But G'(X, Q') is just
(1/nG(rX, rQ") =(1/nG(X, Q), Q € D, where G( -, -) is the Green’s function for
the original domain D. A change of variables in (%) yields (2.10). Then (2.10)
together with the fact that |0u/dN|e L=(0D) prove (2.9).

In the second case, assume that du/0N, = 0 so that the representation (2.1) has
the form

2

N, 4oG(X, Q) do(Q). (2.11)

u(X) = L u(Q)

We will show that for any X in D,

() — u(x*)|
d(X) B

C (2.12)

where X* is the projection of X onto dD. Fix now X, € D and, arguing as before,
we assume that d(X,) = 1. With X, fixed, assume also that (X&) =0. Define I'’
and 4’ as in Lemmas 2.5, with 4" =I'"ndD. The strategy is to use the representa-
tion (2.11), convert normal derivatives to tangential derivatives and integrate by
parts. In order to replace the normal derivative by tangentials, we need the Riesz
transforms.

Suppose h is a harmonic function (with nontangential limits in L*@D)) in a
Lipschitz domain Q, starlike with respect to the origin. Suppose further that
h(0) = 0. Define the harmonic function H(x) by

H(x) =Jl h(tX) 51;, XeQ. (2.13)

=0

Then A(X) = X - VH(X) and the vector VH restricted to the boundary of @ is the
vector of Riesz transforms of the function A. An easy calculation using the
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harmonicity of H shows that

Q) o .,
N~ VHlx-o

0H
_ZNijD DkHIX Q + aN
. 0H

J.k

Observe that, for any function F and fixed j and k (N/D, — N*D,)F is a
tangential derivative of F. If é, denotes the unit vector in the x,-direction, an
application of the divergence theorem yields, for any function ¥ on dD:

j‘ u(Q)N'Dw — N*Dv) do(Q) = | div [uD,vé; — uD,vé,] dX

aD Jo

(l

= | div[vDué, —vD,ué;] DX
Jp

= | W(Q)IN*“Du — N'D,u)(Q) do(Q).

Jop

Hence, if 4 is harmonic in D and H is defined by (2.13), we have

L u(Q) (Q) do(Q) =(1—n) j u(Q) (Q) do(Q)

+2

Jjk JoD

—_ 1 — do‘

(-—1)2

D;H)(Q) da(Q) (2.14)

where 0/0T;, is the operator (N’D, — N*D;). Furthermore, by area integral esti-
mates for harmonic functions ([D]) together with a lemma of Stein ([S], p. 213) it
can be shown that |N(X;D, H)| »@apy < C|N() || Lrep) for 0 <p < oo. The estimate
above, with N(D, H) in place of N(X,D, H) appears in [V2] and the presence of the
term X; eliminates the dependence of the constants on the diameter of the domain.
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We shall use these observations to convert normal derivatives of AG(X, - )(Q)

or 4,7) into tangential derivatives as follows. Let ¢, ¥ be defined in R" so that for
Q g ®

B = B(X¥, M) for some M with BNndD = A’, then ¢ =1 0on B, ¢ =0 on “(2B) and
Yy =1o0n<%2B), y =0on Band ¢ + ¢y =1. Then (2.11) may be written

u(x)=J;Du ((p+q//)57v—éd 0G(X, Q) do.

Consider one term in the sum:

0 0 0
J GNA G(X, Q)do(Q) = f urp-aTVA I'do — J uq)aNAdea

Because w(X§) =0, our explicit knowledge of (9/0N)A4,I" shows that
| fop up(0/ON) A,T do| < C||Vu|. Now 4,y(X, ) is harmonic so let H, denote the
harmonic function associated to 4,y as in (2.13). Then

0
— L U = 4,7(X, Q) do(Q)

=2

ik 6D

D;H,)(Q) do(Q) — (1 —n) J qou(Q) (Q) do(Q).

For each j and k,

6T 0D, H,(Q)| do(Q)

D,H,)(Q) dG(Q)‘ J

oD N24’

0T

0
+ j u(©)| ‘ - I (0 D,H,)| da(Q).
oD~ 24" 7.k
Since  |u(Q)| = [u(Q) — u(X})| < |Vu| o |Q — X&| and |NX,D,H.)| 2. <
C|dgy| L2+ < C, both terms above are dominated by a constant multiple of

|Vu| L w@p)- A similar estimate holds for {,,., |u||0H/ON|ds and it remains to
bound the integral taken over ‘4’. We have,

0 0
L N )Q) 7 40 G(X, Q) do(Q) = Ly up - 4G do
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by definition of ¥, and in D’, 4,G(X, -) is harmonic. Thus we apply (2.14) with
h=4,G in D’ to obtain

0
L Wby AeGde@ =3 | aT (04D, Ho(Q)) do
+(1—n) J ut// (HG)(Q) do (2.15)

where H; is defined by (2.13) for h = 4,G. Fix a j and k and consider

|, 7
—LDN(A)a

Recall that (2.7) implies that

(D;H)(Q) do(Q)

Q«D;H(Q) do(Q).
(2.16)

D;H(Q) do(Q) + f i

oD N (24 \4") aT

|N(X, D;H) || L1op) < C.

Hence,

0
f 57— VOWD,H(Q) do(Q)| < C|Vul|,xion-
oD NneA’ j Kk

Js
A similar estimate holds for the second term in the sum (2.16). The lower order

term in (2.15) is handled the same way using |N(X, D;H)| 12+ @op ~24nay < C. This
last estimate follows from the L2*¢ improvement on D’, see p. 400.

§3. The Dirichlet problem for BMO data and Holder continuity of the gradient
of solutions.

A function f on dD is said to be in BMO(do) if there is a constant C such that

1
sup (2‘—(2‘—)L [f—fdlda]SC 3.1
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where f, = (1/a(4)) [, fdo is the average of f on the surface ball 4. The definition
(3.1) leads to an improvement of itself, by the John—Nirenberg Theorem, namely

1 l/p
sup(a—(A—)L lf—fd‘pdd] $Cp

for any p > 0. In particular a BMO function belongs to L?(0D). We shall put a
norm, | |, on BMO(dD) by defining ||f|, =inf {C: (3.1) holds} + |[,p fdo| We
shall prove in this section two natural extensions of the maximum principle for
starlike domains. In the first place, the Dirichlet problem for 42 will be shown to
be solvable when the data is BMO(do) and the appropriate Carleson measure
estimate on solutions is obtained. Secondly, solutions with data vanishing on a
surface ball on 0D will have a Holder continuous gradient at points in the domain
near the surface ball. We begin with the theory for BMO data. As usual, d(X)
denotes dist (X, dD) and |VVu|*=Z,, |D,D,u|’. For a biharmonic function u define
the square function of its gradient by

SAVu)(Q) = J d(X)2 " [PPu(X)? dX.
rQ

We shall need the following theorem, but only in the special case p = 2.

THEOREM 3.2 ([P-V2]). For u biharmonic in a Lipschitz domain D < R" with
\Vu(P)| =0 for some Pe D and 0 <p < 0.

”S(Vu) “Ll’(da) ~ ”N(Vu) ”Lp(da)

with a comparability constant depending only on dimension and the Lipschitz charac-
ter of D.

Given a surface ball 4(Q, r) = dD, define the Carleson region associated to
A(Q, r) by T(4) = B(Q, r) nD. For a Lipschitz domain D < R”", if 4 is the solution
to the Dirichlet problem for the Laplacian in D with boundary values f € BMO (do)
then the Carleson estimate

dX \'?
As‘ggl’ (JL(A) d(X)|Vh|2 ;(—A—j) ) Cnf“*

is valid (see [F-K—N]). The analog of this result for biharmonic functions is the
following theorem for starlike Lipschitz domain D < R’.
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THEOREM 3.3. Let f = {fy, [, />, f+> € WA, and let u be the solution to the L?
biharmonic Dirichlet problem in D = R® which satisfies

uIaD =fo

ou .
- = "N/
oN Zf'N ’

J

nontangentially. If f, € BMO(OD) for j=1,2,3 then there exists a constant C
depending only on the Lipschitz character of D and the norms |f; |, such that

sup {L ﬂ d(X) |[PVu(X)|? dX} <cC, (3.4)
A) T(A)

A< oD (O
where T(A) is the Carleson region associated to A.

It may seem at first more natural to ask for Carleson measure results on |V'Vu|
merely under the assumption that oJu/0N € BMO. In fact, the hypotheses of
Theorem 3.3 state that all derivatives of u (restricted to dD) belong to BMO(dD),
a condition which is certainly implied by (3.4) but does not necessarily follow from
the assumption that du/0N € BMO(0D).

Proof of Theorem 3.3. Fix a surface ball 4 < dD with center Q, and radius r,.
From the compatibility conditions, we have |V.fo| <c Z, |f;|. If 44 = A(Q,, 4r,)
and (f;)as = (1/0(44)) 44 £,(Q) do(Q), let ¢; =(f;)ss and define v(X)=EX,cX,.
Then VVv =0 and (0/0N)(u —v) =X, (f; — ¢;)N; and hence, by subtracting v from
u, we may assume that ¢; =0, j =1, 2, 3. We may also assume that j4 1Jodo =0 by
subtracting a constant from u.

Now let Yy e CP(R?* be such that y =1 on 24 and ¢y =0 on ‘44, and
|Vy| ~ 1/r, on 44\24. Define

8’ =/fo, and
& =f(1=y).

Then there are functions g, h,i=1,2,3 such that both {f{", g, g,, ;> and
P, hy, hy, hy> are Whitney arrays. For simplicity, we calculate this in local
coordinates. Thus if the boundary of D is locally defined by the graph of the
Lipschitz function ¢, we see that

g 0 o Yo
550 (% 0(x) = <f,~ +/ —%:_)w + fo(x, @(x)) (—‘/’ i _"’>

Ox;  0x; 0x;
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for j=1,2 and so

¢ =+ (fo v )
and
e=fv+(he| )
X3 |oD

We shall set u" to be the biharmonic solution to the Dirichlet problem with data
Y, Z;g;N; > and similarly define u® so that u =u® +u®. By Theorem 3.2, the
quantity (3.4) for u‘" may be estimated using L? norms:

1 2 1 2 1
o0 f Lm d(X) [PPuf dX <~ 7 | SATutNQ) do(Q)
< ;—(—5 jNZ(Vu“)) do <= J‘|l7u(‘)|2 do.

We return to local coordinates to calculate the L2 norms of the derivatives if u("
on the boundary

< f VA"ZE d")m < ( J Ui = (faal? d6>1/2 < |I; | x(4), by assumption.
oD 44

And, by Poincaré’s inequality,

Ui o) =il odrl )

S(LM ‘VTf"lzd(’) (J de") <X luotd),

It remains to estimate (3.4) when u® is substituted for u. The solution u® has the
representation ’

u@(X) = thN’(Q)A 0G(X, Q) do(Q) + j ’(Q)%,—QA 0 G(X, Q) do(Q),

where G(X, Y) is the biharmonic Green’s function for D. We consider first the term
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h(X) = [op =, K N(Q)4,G(X, Q) do(Q), ie., 4% =0, h=0 on oD and 9h/oN =
T, h;N’, where {f§, hy, h,, hy) is the Whitney array associated to u®. To estimate
(1/6(4)) [{7y d(X)|VVh(X)[]> dX, we begin by obtaining a pointwise estimate on
K(X). Fix X € T(4). Set A, = A(Q,, 2*r,) and R, = 4, — 4, _,, so that

[AXO)] =

Py j X hN(Q)4,G(X, 0) do(Q)

<L | LI(O]l4,6(X. 9] do(Q).

Ry J

Fix a h and k. We have

B < 1+ Vol P9

The basic estimate on atoms used to prove Theorem 9.6 (see Lemma 5.7 of [P-V1])
when specialized to G(X, -) is the following, for d(X) =1 and r,=1

j ' |4,G(X, Q)P do(Q) < C(2¥)~2~¢ (3.5
Q| = 2k

for some ¢ depending only on the Lipschitz character of D. Rescaling this estimate
yields

(3.6)

f |[4,G(X, Q) do(Q) < C(2F) 2= (E’_(;Y)_)z” .

ro

Recall that ¢;=(f)syy =0 and a standard BMO estimate shows that
(/) — il < Ck|fi] 4 Thus

L 5(Q)] [40G(X, Q)| do(Q)
= L 140G X, QNI — ()a |+ 1) a, — ¢} do(Q).
The term [, |4,G(X, Q)| |(f;)4, — ¢;| do(Q) has the bound

Chlf]y - 2 { j |40G(X Q)Izda(Q)}mSCkllf u z*e(i‘-‘f—’)s-dm
* 0 % Q ’ nr o A

by (3.6).
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The other term has a better estimate:

f (@) = (£)a | 140G (X, Q)] da(Q)
1/2 d 1+¢
S(f IJG(Q)—u;)Ade«;) -(2k)~:—e.( (X>>

ro

< C¥n|lfi ||y - (29 7' T Hd(X) [ro) '+
d(X)\¢
sl () o,

Finally, to bound |h|, we need an estimate for [, |fo||V¥]|]|4o,G(X, Q)| do(Q).
Again, we use Poincaré’s inequality, and the fact that |V ,.fy| < Z; |f;],
the term k& =2 does not vanish in the sum.

Altogether, interior estimates will give a bound on (f,. d(X) |VVh(X)|? dX
where [ is a dyadic subcube of D and It = {(xX, y) : x € I and /(I)/2 < dist (y, 0D)
</(I)}. We have '

H d(X)|PVh(X)|? dX < £(I) ” [PVh(X) ]2 dX

_ ,
<70y J f Ih(X)|? dX (3.7)

(here T =231).
For Xel™,

f(1)1+£

d(X
0] = T2kl (0 -den =l

and so (3.7) is bounded by

/11+£2 {12+e
cll, /m—ﬂ (“ ) ax =l A2

Then,
fI 2+¢
Y &) < Co(4)
lcda rO

as desired.
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To complete the Carleson measure estimate, we have only to show that

L 2 <

o) JLW dX)|PVF(X)|?dX < C

where F(X) = [5p f$(Q)(0/0Ny) 4,G(X, Q) do(Q). Because f§ is supported on ‘4
we may form a new domain D’ relative to D and convert normal derivatives to
tangential derivatives as in the proof of Theorem 2.8. Our basic estimate (3.5) is
valid for N(4,G(X, Q)) replacing 4,G(X, Q) and consequently all estimates are the
same, so the details are omitted.

We turn now to results on Hoélder continuity of the gradient of solutions when
the data is sufficiently smooth. Recall that g € 4, if

C.

|g(Q1) - g(Qz)‘
oo 00

THEOREM 3.8. Let u be the solution to the L? biharmonic Dirichlet problem in
the starlike domain D with data

u|aD =fo

Ju ) .
-7 " NJ
ON Z LN

J=1

where {fy, f1,f2» fs> € WA,, and N’ is the j™ component of the normal vector. Assume
that f; € A, where o <g¢, for ¢ defined by (3.5). Then Vu € A,(D); in fact

Ay(0D)>

3
V] 4,00 + sup dX)' = Pru(X)| < C _; I

where C depends only on the Lipschitz constant of D.

Proof. The theorem is a consequence of the basic estimate (3.5) and the L*
bound on the gradient. We mimic the simple argument of [DK2]. It suffices to
show, after rescaling and invoking the dilation invariance of the constants in the
estimate, that

Ay

3
VPu(X)| < C .Z I

j=1
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when d(X) = 1. We have, as always, the representation

0
u(X) =J fo(Q)a,“AQG(X, Q) do(Q) +J LHQIN(Q)4,G(X, Q) da(Q).
oD Q

ap j

After subtracting a constant (namely f,(Q,) where Q, is the radial projection of X
onto dD) and substracting the linear function X;_, f;(Q,)X; we may assume that
fo(Qy) =0 and that (du/dN)(Q,) =0. We shall treat each term in the sum above
separately. The argument for the term j@,) Jo(O)@/ON)A,G(X, Q). 1s similar to that
of Theorem 2.8 — normal derivatives are converted to tangential derivatives and
Riesz potentials are introduced. All estimates are the same as those for the second
term so we shall give these estimates only. We have

L LHQN(Q)4oG(X, Q) da(Q)

D j

<Y1l [ 10 - 0 14G(x. 01l do

and the basic estimate (3.5) immediately shows, when a < ¢, that

ﬁ 10 - i [406(X, 0)] do(@) = .

Interior estimates give the desired bound on |FVu(X)|, since d(X) = 1.

REMARK 3.9. We now observe (following a suggestion of C. Kenig) that an
analog of the above theorem with continuous data follows from the Holder
continuous case and yields a “classical” solution, i.e., a solution with Vu continuous
up to the boundary. To see this, approximate the continuous data by C* functions
and use the L™ bound to estimate the difference between the solutions to the
approximating data and the continuous data.

§4. The maximum principle for C' domains

The essential reason that the maximum principle for the gradient of biharmonic
functions is valid on C' domains in all dimensions is that the Dirichlet problem for
47 is solvable in every p, 1 < p < oo ([V2]). This fact allows us to obtain an atom’s
estimate in every dimension by using solvability of the Dirichlet problem for p near
1. Indeed, by the remarks following the proof of Lemma 2 of [V2], we know that
the Dirichlet problem (1.1) is solvable for all 1 < p < co when D is a Lipschitz domain
whose Lipschitz constant is smaller than some ¢, > 0. We shall state and prove the
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following results for Lipschitz graphs with small constant in order to have available
the rescaling and dilation invariance techniques which simplify the arguments.

An L* bound on |Vu| follows, as in §2, from the atom’s estimate. For arbitrary
Lipschitz domains, this estimate was only valid in R*® but we shall prove it for
Lipschitz domains with small constant in R”, all » > 2. From the L* estimate and
the basic estimate on the Green’s function, one can obtain Holder estimates on
gradients of solutions as well as Carleson estimates for BMO data. All of this will
follow from the appropriate analog of Lemma 5.7 of [P-V1].

Let D be the domain above the graph of a compactly supported Lipschitz
function ¢ : R” > R with Lipschitz constant smaller than ¢, > 0. We will need the
following Cacciopoli type inequality, which is in fact valid for any Lipschitz constant.

LEMMA 4.1 (Lemma 5.6 of [P-V1]). Let Q, = Q, be bounded Lipschitz do-
mains with Q, < D. Let A%u =0 in D with NWVu) € L*(0D). Let 1/p + 1/p’ = 1 and
0 <d=dist(Q,, D\Q,). Then there is a constant that depends only on 1 <p < o©
and the Lipschitz constant so that

j WPu(X)|? dX < C(|Vu| Lr@pnsan INVVW | Loony
2,

+ d«l”“”u’(aonagz) HN(VVu) HLp(aD)
+d [ Vul Lo, 1PV L2e,
+d 2 u| L2y |V VU] L2,

Proof. The proof uses the equation together with several integrations by parts,
and is given in [P-VI].

The following lemma gives the atomic estimate for which a Hardy space
regularity result follows. This was Lemma 5.7 of [P-V1] which was valid on an
arbitrary Lipschitz domain only in R* (and R?). Recall that a (1, q) atom a is a
function supported in a surface ball A(Q,r) ={Pe€dD :|P —Q|<r} such that
la|l ey < 0(4)"*~" and [ ado =0.

THEOREM 4.2. Let a be a (1, q) atom, ¢ =2 — & on 0D and let u be a solution
to the following regularity problem

(i) 4u=0
(1) lim D,u(X)=0 a.e.
X—-0,Xel(Q)
n—1

(i)~ lim Y (T,(Q), VDu(X)) =a(Q) a.e.

xer’=!
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Then,
J N(VVu) do < C, (4.3)
oD

where C depends on ¢ but not on the support of the function ¢ for D = {(x,y):
y > o(x)}.

(Cf. Theorem 4.6 of [P-V1] for this formulation of the regularity problem above a
graph.)

The following lemma is a special case of a more general theorem due to J. L.
Lions. Since the argument is brief and shows the dependence of the constants, we
shall give it here. This estimate will be used in the proof of Theorem 4.2.

LEMMA 4.4. Let u be a C? function in a bounded Lipschitz domain Q < R".
Then there exists a constant C such that for any ¢ < 1,

1/2
(j |Vu(x)|? 'Q|> < C(e) J |Vu(x)| 0] X 1 eR (J [V Vu(x)|? |Ql> (4.5)

where R = diam Q, and C(g) ~ 1/e™ for some M = M(n).

Proof. Without loss of generality, assume that diam Q@ =1. Let v = D;u for
some 1<i<n. We may assume that [,vdx =0. We then claim that for some
0 = 6(n),

()= (o) ([ o) 49

The estimate (4.6) gives (4.5) with constants ¢ and 1/¢", where M = (1 — 0)/6.
To prove (4.6), let o, =4/(n+2) and choose p, so that p,a, =1, where

Prn="0./(pn—1). Then
,)l/p'n
anpn .

Lo (Lo =) (1

Then (2 — a,)p, = 2n/(n — 2) and by Sobolev’s Theorem, since [, v =0,

nj(in — 2
(f ‘UIZn/(n z)> < (J\ |Vv|2) I ).
Q Q
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Thus,

12 (1 — 2)) - (/2P ) 12py)
v? < Vol . lv|
Q Q Q

and if 6=(2p,) '=(p,—1)/2p,, then 1 -0 =(p,+ 1)/2p, and p,+1=2n/
(n —2).

Proof of Theorem 4.2. By translation and dilation invariance, we may fix
¢©(0) =0 and assume that the atom a is supported in the unit size surface ball

centered at the origin with |a|| pu, < C, for 1 <p <gq.

Define, for x e R"~! (n > 3), as in [P-V1],

i#(x) = J . ‘Ix —yP "a(y, o(y)) dy,

so that
4.u(x) = a(x, p(x)) a.e.
The support and cancellation properties of a(x, ¢(x)) yield the following estimates:

|i#(x)| < C|x? "

[Vi(x)| < Clx|' " (4.7)

VVi(x)| < Cl|x| ="
for all |x|>2. By Weyl’s Lemma and the Liouville Theorem, i(x) differs from
u(x, @(x)) by a linear function of x; by subtracting this linear function we may
assume #(x) = u(x, @(x)) a.e.

The estimate (4.3) follows from the L? regularity theory via Schwarz’s in-
equality when the domain of integration is restricted to {(x, ¢(x) : |x| <2}. For

0 = (x, ¢(x)), define
Q) =rQ) n{x :dist (X, oD) > |x|}

r,(Q) =I'(Q) n{X :dist (X, D) < |x|}
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and

N,(VPu)(Q) = sup |VVu(x)|, N,(VVu)(Q) = sup |[FVu(x)|.
Xel (@) XeIQ)

Then N(VVu) < N,(VVu) + N,(VVu) and each term will be handled separately. We
first observe that for |x| large, |V, u| < C|x|' ~" and since D,ul;p = 0, u has Dirichlet
data in L”(do) for any p > 1, In [S—S], the Dirichlet problem for the biharmonic
equation above a graph with small Lipschitz constant was solved for L” data,
1 < p < o0. This fact could also be proved from the results of [V2] for bounded C'
domains. In any case we have, for this u, |N(Vu)|, w0 < C,, where C, depends
only on p and the dimension.

For n >3 fixed, we fix a p <(n —1)/(n —2) so that |N(Vu) | .pue < Co, Where
C, depends only on n.

Thus for X € D,

Vu(X)| < Cd(X) "~ P
and by interior estimates,
Vru(X)| < C'd(X)' " °

if ¢ is defined by p =(n — 1)/(n — 2 + ¢). Consequently the estimate (4.3) holds if
N(VVu) is replaced by N,(VVu).

We now proceed as in [P-VI1] to estimate |N,(VVu)| .14, applying the
Cacciopoli estimate of Lemma 4.1.

Let Az = {(x, ¢(x)) : R <|x| < 2r}, and for 1 <t <4 define

Q. ={XeD:X=(x,0(x)+5), 7 'R<|x|<2tR,0<5 <4R}

so that 0Q,ndD = A,. Then

J N,(VVu)(Q) do(Q) < R~ V2. (J

AR

1/2
N3(PVu)(Q) dG(Q)) : (4.8)

By the L? regularity theory for bounded starlike Lipschitz domains,

ﬁ T deQ)

0
—Vu

<C VVu(P)? do (P 5
< (j\n u(P)P do.(P)+ ) B

Jj=1 JoDnéR,

dG(Q))
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for all 1 <t <2 and C is independent of t and R. By (4.7), the last term is of order
R~"~' Averaging in 1 yields

f N,(VVu)?do < C(R“ j |PVu(X)|?dX + R "~ '). (4.9)
Q| naD Q;

The Cacciopoli estimate of Lemma 4.1 will be used to bound the solid integral of
|V Vu| over Q,. We first observe that for any 1 < g < oo, the regularity problem with
data in (L9 L{) is solvable on Lipschitz graphs with Lipschitz norm <g,, by the
duality between this problem and the Dirichlet problem. (This duality was shown
in [P—V1] where it was used in dimension 3 for the Dirichlet problem above any
Lipschitz graph.) Thus, for a fixed ¢, namely 1/g =1 —(n —2+¢)/(n — 1), and the
assumption that a is a unit (1, g) atom, we have |N(VVu|,q4zsp, < C. For this fixed
g, C depends only on the dimension (and ¢y). In addition, we have the following
estimates from (4.7):

Hu”LZ(QZ) < C{R" Vu “L2({22) + R(~n-+—4)/2}>
“ Vu ”LP(aﬂznaD) < CRGnr—Dir (4.10)

“uHLP(ﬁfzzmaD) <R '-R-@n-Dip

These easy estimates follow from the definition of nontangential maximal function
and calculus. For example, if X* = (x, ¢(x)) when X = (x, ¢(x) + ),

Jl3aay = j () dX < f

Q

ju(X) —u(X*)|* Dx + J

Q

< sél—l(x o(x) +y) dy 2dX+ ! 2-R"
e \Jo Oy R"?

[T (. peamanef osars -
Qedg Jp=0\Jy=0

< sz UG dX + R+
02

lu(X*) DX
2

A

2
From (4.10), Lemma 4.1 with d = R becomes

J,, 0P < R 4 R Pl 1P,
2

+ R ||ul| L2, |V Vu ”LZ(%)}- (4.11)



A maximum principle for biharmonic functions 409

By Lemma 4.4, and a to be determined later,

IVulL2@, < C.R™R=T=VP|NWVU)| Loopy + 2R |V VU |20,

SCRM-COTIP 4 aR|VVu|| L2,

Because |u|.2q,) < C{R™"|Vu|L2q, + R"**2}, inequality (4.11) becomes

J PPu < C{R-0~ D 4 C, RO~ D2R~0= 0| P Wi a0
Q5
o[ PPulluxay + RV ) “.12)

Now,
1/2
”VVu”LZ(Q3) .<_. C(R‘[ (NZ(VVu))sz') .
0Q3n0D
With this estimate, (4.12) becomes

j |V|7u(x)(2 dX < C{R”("“ D/p 4 CaR(n~2)/2R~(n— l)/pRl/Z
Q;

1/2
. (I N2(VVu)2da) + aR j N,(VVu)?do
Q30D Q310D

1/2
+ R+ ”/Z(I N,(PVu)? da) }
6Q3n6D

Observe now that C, ~ 1/a™ for the M of Lemma 4.4 and thus we choose
o = R~¢? and recall that p = (n — 1)/(n — 2 + ¢). Hence,

12
J [PPu(x) 2 dX < C{R“(”““"’ + R+ HWG NZ(VVu)2d0>
Q, Q313D

+ R'-S/WJ NZ(VVu)zdo}.
Q310D
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By (4.8) and (4.9), the above estimate yields
1/2
j N,(VVu)ds < R"~ ‘)/Z(J N,(VVu)? do)
4R QoD
1/4
< C{R"‘a/2 + R~ W“R“"‘/“(J. N2(VVu)2da>
Q5
1/2
+ R~ "”R"”“(J NZ(VVu)zda) } (4.13)
02,4

Let

{27<iol=s2s+ 1}

and

1/2
ﬂj:(J. NZ(VVH)Z da) foer N’
{27<|Ql <27+ 1}

where N will be determined later. In this notation, and with R =2/,

J N,(VVu) do = ;
AR

and

1/2
(J‘ Nz(Vvu)zda) Sﬁj_l+ﬁj+ﬂj+]'
0R23(R)

Therefore (4.17) becomes

Y o< Z (2/)n-Drg,

j2 N jz N

<C Z z—ej/2+C Z (zj)(n‘l)“z‘gj/z(ﬁj—l+ﬂj+ﬁj+l)l/2

jzN j2N

+C Z (2/)- 1)/22%"/4(@'— 1+ B+ Bt 1) (4.14)

jz N
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This inequality shows that X, yo; < C’, and since X, . y o, < C,, this completes the
proof. To see this, observe that each f; is bounded from above by an absolute
constant and that N may be chosen sufficiently large so that the last term in (4.18)
is less than 3(Z,. 5 (2/)”~"2B,). The second term in (4.18) is estimated using
Cauchy-Schwarz.

At this point, the passage from solvability in H|,, above a graph to solvability
on bounded C! is achieved in the same way it was achieved in dimension 3 for
Lipschitz domains in [P-V1]. Here the main fact we are using about C' domains
is that a covering by cylinders of the domain may be chosen with the cylinders small
enough so that the Lipschitz constant of each local graph is as small as we wish.
The localization arguments needed to conclude the weak maximum principle from

the H| ,, regularity result (and its implications thereby for the Green’s function) are
discussed in the following section.

§5. The maximum principle on arbitrary Lipschitz domains

In this section we give the localization arguments which prove, from the
corresponding results on starlike domains, that (M.P.) is valid for Lipschitz
domains in R3. These same arguments can be used to show that (M.P.) is valid for
any C' domain in R”, so we confine ourselves to proving the following.

THEOREM 5.1. Let D be a Lipschitz domain in R® and u be the solution to the
L? Dirichlet problem for A* in D satisfying \Vu| e L*(0D). Then there is a constant
C, which depends only on the Lipschitz character of D, such that

f,li% lV“(X)I < C“ Vu HLOO(aD)' (5.2)

Proof of 5.1. It suffices to prove (5.2) when the supremum is taken over all
X € D with dist (X, 0D) <e&. (We may also assume that diam (D) = 1.) In this case
a C* surface C contained entirely in D n{X : dist (X, dD) < ¢} may be constructed
with |Vu|e L*(C) and u biharmonic in the domain determined by C. By the
Miranda—Agmon maximum principle for smooth domains we could conclude that
\Vu| e L*(D). So, for some & > 0, it must be shown that

sup VU] < ClVul ooy, (5.3)

dist (X,0D) < ¢

We now observe that (5.3) follows from estimate (2.6) of Lemma 2.5 when u =0 on
0D and so we further assume that our biharmonic function satisfies ou/0N =0 on
oD, u = f on dD with |V f| e L*(0D).
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Let {Z,}_, be finitely many double truncated right circular cylinders such that
oD < Js_,(GZ,ndD) and such that, for all i, 4Z, "D is a starlike Lipschitz
domain. Fix a cylinder Z;. For 1 <a <4, let 4, denote aZ,ndD and Q, denote
aZ;nD. Let r =rad (4), let B be a ball centered at the center of the surface disk 4,
of radius r and let ¢ be a C* function satisfying ¢ =1 on B and ¥ =0 on “(2B).
We now define two biharmonic functions u, and u, in D by specifying
Ou,[ON = 0u,/ON =0 and u,|,p =Y(f—¢;) and wu,|op =(1 —yY)(f—c,) where
co=[a,ldo|o(4,)). Then, in D, u =u, +u, + ¢, and so 4u = Au, + Au,. We want
to show that », and u, have bounded gradients at points in Q, within ¢ of the
boundary of D.

First observe that u, has (L?, L?) Dirichlet data in Q, since

f |Vu,|2da£J‘ N(Vu,)zdasf qu,[zdozj |V ru,|* do
a2, 4, oD oD

and Vyuy =VyY)f— Co) +yVf
Now |[Vy| < Cr~' and

L —cpde<c| Woffde <cvaflzo)
r- Jaa 24

so that |Vu,| e L*(0%,).

We turn now to the L™ estimates on |Vu,|. If X € 0Q, and dist (X, dD) = C,r
then |Vu,(X)| < C(f,, (N(u,)* do)'? < |V f]|.. by the L? estimate above. To
bound [Fu,(X)| when X is near dD requires the Holder continuity of the gradient.
That is, consider u, in the (starlike) domain @, where (L3, L?) Dirichlet data
satisfies the same estimates obtained when we consider u, as a function in €2,. On
4,\4;, both u,|,, and du, /0N vanish. Let G,(X, Y) be the Green’s function for the
operator 4% in Q, and write

~

0 0
n(X) = J T (Q) 45G4(X, 0) dQ + J u(Q) 37
R, d

4,G.(X, Q) dQ
s ON, 27

=I+1I

Fix X € dQ, with dist (X, D) < ¢,r. Then
ou 12
L2082 4) 0Q4\44

I<
ON
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since du,/ON =0 on 4,. By the basic estimate,

(J‘ IAQG4(X, Q'Z dQ>|/2 < C(é(;\z)y +n,
0Q4\ A4

and [0u, /0N |2 < |V 1f]|0(4) "2 = r ||V ;r| ». Therefore,

1<COX)|\Vrf llm(é(f()>

Because the domain €2, is starlike, term I/ has the same estimates. (Observe that u,
vanishes on 4,\4, and the Holder estimates will be applied here. So even though

u, does not vanish 4,, we are in a position to apply the Holder estimate away from
4,.) Hence,

o
Py (X)] < c( (X)) 172l < CI7 oS

for dist (X, dD) < ¢;r.
Consider now the function u, in the domain Q,. We have

j Vi, (P) dP < J N(Vuy)? do(P) < CJ Vur(P) do(P)
321, 4 oD
< ||V 1f|% (D).

In addition, both u, and 0u,/0N vanish on 4,. For any X € 2,, we may write

ou
2 (X 4,G (X, Q) d 2
1w (X) = Ln,\a.aN (X. ) Q+f 1(Q) 57

4,G,(X, Q) dQ.
00 \4, aNQ e

Thus if ¢ is sufficiently small (¢ < min {¢(dD), r}) and X € Q,, with dist (X, dD) <e,
these L? estimates on the starlike domain Q, together with the basic estimate will
show that |Vu,(X)| < C||V1f] -

Thus |[Vu(X)| < C|V1f|. for X € 5Z n D when dist (X, dD) <¢ and the argu-
ment may be repeated in each of the finitely many cylinders.
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