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Gluing Cohen—Macaulay modules with applications to
quasihomogeneous complete intersections with isolated singularities

JURGEN HERZOG* AND ALEX MARTSINKOVSKY

Introduction

This paper deals with the problem of characterizing quasihomogeneous isolated
singularities. The history begins in 1971 with the beautiful result of Saito [22]: an
isolated complex hypersurface singularity with defining equation f is quasihomoge-
neous (i.e., after a change of coordinates f can be made into a quasihomogeneous
polynomial) if and only if f € j(f), where j( f) is the ideal generated by the partial
derivatives of f (this ideal is also called the jacobian ideal of f).

In the subseqeunt years this result was extended to other fields and significantly
generalized in papers by Scheja and Wiebe, see [24], [25] and [26]. Among other
powerful results they showed that a complete intersection (R, m, k) with isolated
singularity is quasihomogeneous if and only if there exists a k-derivation 6 of R which
induces an isomorphism on the Zariski tangent space m/m?. If dim R = 2, then the
assumption that R is a complete intersection can be discarded and the requirement
on the derivation é can be weakened: it suffices that ¢ induces a nonnilpotent transfor-
mation of m/m?. A concise account of their work can be found in Platte’s paper [21].

In 1985, Wahl [29] characterized quasihomogeneous Gorenstein surface singu-
larities in terms of certain invariants associated with the resolution of singularities.
There the aforementioned criterion of Scheja and Wiebe was used.

In 1984, Kunz and Waldi [15] characterized quasihomogeneous reduced Goren-
stein algebroid curves over an algebraically closed field k£ of characteristic 0 by the
condition that the cokernel R/J of the canonical homomorphism from the (univer-
sally finite) module of Kéhler differentials to the module of regular differentials of
R/k 1s Gorenstein. If R is a complete intersection then J is the Kdhler different of
R/k, i.e., the ideal generated by the maximal minors of the jacobian matrix.

In 1987 the second author noticed in his thesis [16] the relevance of maximal
Cohen—Macaulay modules for the problem of quasihomogeneity. He conjectured that

* Supported in part by DFG
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a two-dimensional complete normal analytic algebra R is quasihomogeneous if and
only if the module D, (R)** of Zariski differentials is isomorphic to the Cohen—
Macaulay approximation of the maximal ideal of R. This conjecture was proved for
certain cases in [ 17] and by Behnke in [5]. In [18] a similar conjecture was formulated
for higher dimensions, and the easier implication was proved for hypersurfaces.

In this paper we further explore the properties of quasihomogeneous isolated
singularities via module-theoretic techniques. Our main tool is what we call the
gluing construction for Cohen—Macaulay modules which produces minimal
Cohen—Macaulay approximations (and, if the ring is Gorenstein, hulls of finite
injective dimension) for (nonmaximal) Cohen—Macaulay modules and their syzygy
modules. As we recently learned, the gluing construction is a particular case of the
so-called complete resolution of a module introduced by Buchweitz in his unpub-
lished preprint [8]. The latter is constructed within the framework of complexes
rather than modules. We should remark however that if the module under consid-
eration is Cohen—Macaulay then, as the gluing construction shows, the approxima-
tions of the module and its syzygy modules can be obtained in a simple and direct
way (i.e., without the pushout operations necessary in the general case, see [3]).

Using the gluing construction for the residue field k of a complete intersection
R with isolated singularity we prove in Section 3 that, if R is quasihomogeneous,
then some sufficiently high syzygy modules of k and the transpose Tr D, (R) of the
module of Kahler differentials coincide. This leads us to the following question: Let
R be a complete Cohen—Macaulay analytic algebra over an algebraically closed
field k of characteristic 0. Is it true that R is quasihomogeneous if and only if some
sufficiently high syzygy modules of k and Tr D,(R) are isomorphic?

We also show in Section 3 that the truncated symmetric (R/J)-algebra
G=(D,SATY/(S.(T") is Gorenstein, where J is the Kédhler different of R/k,
T' = Tr D,(R) is the space of infinitesimal deformations of the quasihomogeneous
complete intersection R with isolated singularity, and r = dim R. In the hypersur-
face case this follows from Zariski’s result on derivations of isolated singularities,
Kunz’ result stating that almost complete intersections are never Gorenstein, and
the aforementioned result of Saito (see [17]).

We also give a new proof of the just mentioned result of Kunz based on the
simplest form of the gluing construction and the nontrivial result of Eisenbud about
the behaviour of the Eisenbud operators of a complete intersection.

1. The gluing construction for Cohen—Macaulay modules

We begin by recalling some basic facts about Cohen—Macaulay approximations
and the dual construction of hulls of finite injective dimension. For a detailed
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account see [3]. Let (R, m) be a local Cohen—Macaulay ring with canonical module
wg, and let N be a finitely generated R-module. A short exact sequence
0-Yy Lx ~ = N —0 is called a Cohen— Macaulay approximation of N if Xy is a
maximal Cohen—Macaulay module and Y, is a module of finite injective dimen-
sion. (Sometimes, by abuse of language, X, is also called a Cohen—Macaulay
approximation of N.) It is called minimal if X, and Y, do not have a common
(under f) direct wg-summand. Minimal approximations always exist and are, in
the obvious sense, uniquely defined. .

Dually, a short exact sequence 0 >N - YV > XV -0 is called a hull of finite
injective dimension for N if X" is a maximal Cohen—Macaulay module and YV is a
module of finite injective dimension. It is called minimal if YV and X" have no
common (under g) direct wg-summands. Minimal hulls always exist and are again
uniquely defined.

In this section we shall describe a construct which yields minimal Cohen—
Macaulay approximations for a (non-maximal) Cohen—Macaulay module and its
syzygy modules.

From now on the ring R will be assumed to be local Cohen—Macaulay with
maximal ideal m and canonical module wy.

Let M be a Cohen—Macaulay R-module of codepth n. The local dual
Ext” (M, wg) of M will be denoted M V. Let F,. be a minimal free resolution of M,
and G, a minimal free resolution of M Y. We define a complex L, by setting
Li=Gy ;and df =(d;.,_)".

Since Ext’' (M, wg) vanishes for i # n and is isomorphic to M for i =n, one
has H,(L) =0 for i #0 and Hy(L)) =~ M. Thus the complexes F, and L, are
quasi-isomorphic. Let «_: F, — L_ be a quasi-isomorphism, and let C, = Con (a,) be
its mapping cone. We obtain an exact sequence of complexes

0 > L, > C, »F[—1]—0.

Since «, is a quasi-isomorphism, this sequence implies that C, is exact.
Truncating the exact sequence of complexes and observing that Coker df =
Q'~ (M), one obtains for all i >0 exact sequences
0 — Coker df, | — Cokerdf, , — Q""" Y{(M) — 0. (1)

Here we set Q%(M) = M.

Similarly one attaches to «, a complex Z, = Cyl («,), called the cylinder of «, (see
[6], §2 no. 6) and an exact sequence of complexes

0—sF —>Z —>C,—0,
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which yields for all i > 0 exact sequences
0— Q' (M) — Coker d? — Coker d¢ — 0. (2)

PROPOSITION 1.1. For i >0, (1) is a minimal Cohen—Macaulay approxima-
tion of Q'~ (M), and if R is Gorenstein, (2) a hull of finite injective dimension for
Q- \(M).

Proof. Since C, is exact, all its syzygy modules are maximal Cohen—Macaulay
modules, and so is Coker d<, ;. Next observe that for all i >0 we have an exact
sequence

0 > L, >0 ;Li+]—————>L,-————>COkCI'd,-L+|*—'—+O.

Since each L; 1s a finite direct sum of copies of wg, and since wy has finite injective
dimension, we conclude that Coker dF, | has finite injective dimension. This proves
that (1) is a Cohen—Macaulay approximation of Q' '(M).

Suppose the approximation is not minimal, then Coker d¥, , = N @ wg, and we
obtain a commutative diagram

L, — Coker d*, |

,\ln

WDpg,

where 7 is the projection onto the second summand and where p is an epimorphism.
Since L; ~ w’y and since End (wg) = R, p can be described by a column vector
(ay,...,a,)", a; € R. Since p is surjective we have R = ¥ Ra;. Dualizing into wg we
obtain the exact sequence

(CA

0—‘)(C0kerd,l”+|)v ‘LV ’Liv+l

4

which is isomorphic to

n —1i

0— Kerdy ,— G, ,— G,_,_,,

where Ker d¢_, = N¥ @ R, and where R is mapped to a generator of G,_; since
XaR=R.

If i < n, this contradicts the minimality of the resolution G,. For i = n, the exact
sequence (1) is

0— Gy » Coker d$, , — Q" (M) — 0,
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and as we assume it is not minimal there is a common wg-summand of Gy and
Coker d$, | which we may cancel. Thus we obtain an exact sequence

0— R ' —X— Q" (M) —0,

where n, is the rank of G, that is, the minimal number of generators of M ¥. Again
dualizing with respect to wy gives the exact sequence

XY — R '— Ext' (Q"~ (M), w,) — Ext' (X, wg).

This is a contradiction since Ext' (X, wz) =0 and Ext! ("~ '(M), wg) = M ".
The statement concerning the cylinder of o, and the hull is proved similarly.

Here however we have to require that R be Gorenstein since otherwise Coker d¢

will not be of finite injective dimension. O

2. First applications of the gluing construction

In this section we draw a few quite straightforward consequences from the
existence of the gluing construction for Cohen—Macaulay modules. The reader who
is only interested in applications to quasihomogeneous complete intersections may
skip this section.

Let (R, m, k) be a local Cohen—Macaulay ring with canonical module wg, and
let M be an R-module. Recall that (M), as defined by Auslander, is the rank of
the largest free direct summand in the minimal Cohen—Macaulay approximation of
the i-th syzygy module Q/(M). As was remarked in the lecture notes of Auslander
[2], 6°(M) =0 if and only if M is a homomorphic image of a maximal Cohen—
Macaulay module without free summands. Correspondingly, we let (M) be the
rank of the largest wg-summand in the minimal Cohen—Macaulay approximation
of QY(M).

Clearly, if R is Gorenstein then 6'(M) = y‘(M) for all i. Moreover we have
(M) =y(M) =0 for i > codepth M. Indeed, for these i the syzygy module Qi(M)
is Cohen—Macaulay, so that /(M) is simply the number of R-summands and y‘(M)
the number of wg-summands of Q‘(M). The conclusion follows since Q‘(M) may
have R- or wg-summands only for i =codepth M. Thus, the alternating sums

AM)= 3 (=1)6(M) and I'(M)= 3 (—D%(M)

i20 iz0

are well-defined. The importance of the invariants 6'(M) and A(M) have been
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shown in papers by Martsinkovsky [18], Ding [9] and Auslander—Ding—Solberg
[4]. In particular, A(M) turned out to be an obstruction for weak lifting of modules
defined over Gorenstein rings. If one wants to extend these results to non-Goren-
stein rings, the invariant I'(M) comes into play.

PROPOSITION 2.1. If M is a Cohen—Macaulay module of codepth n, then
0(M) =y"~{(MV). In particular, if R is Gorenstein, then 6 (M) = 06" (M ").

Proof. Let a, be a gluing map for M. Then («,) ¥ is a gluing map for M V. But,
as is easily seen, Con (o ) is identical, up to the sign of the differential, to
Con (a.Y)[ —n] and the desired result follows from 1.1. O

The following simple example illustrates this result: let M be the Cohen-—
Macaulay module of codepth 1 defined by the short exact sequence

0 Wg > R >M — 0

This sequence is both the beginning of a minimal projective resolution and a
minimal Cohen—Macaulay approximation of M. Thus 6°(M) =1, §'(M) =0,
Y% (M) =0, y!(M) = 1. Dualizing this sequence into w, and using the fact that
Ann M =Ann MY we conclude that MY =M. Thus 6°(M)=y'(M") =
y' (M) =1 and (M) =y°(M ") =y°(M) =0, as was expected.

COROLLARY 2.2. Let M be a Cohen—Macaulay R-module of codepth n. Then

(a) AM) =(—-1D)"T'(M");

(b) If R is Gorenstein, then A(M) = (—1)"A(M ). In particular, if M is self-dual
and n is odd, we have that A(M) = 0. In any case, A(M) vanishes if and only
if A(MY) does.

For a Gorenstein ring R the numbers (M) can be directly read off the gluing
map:

LEMMA 2.3. Suppose that R is Gorenstein and let o, be a gluing map for the
R-module M. Then 6'(M) =rankg,, (a; ® R/m) for all i > 0.

Proof. The assertion follows from the fact that Con («,) is an exact complex of
free modules and the fact that unit entries in the differential of Con (x ) may only
come from «, itself. O

In the case of a hypersurface ring the 6’ are completely determined by the Betti
numbers of M and M.
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COROLLARY 2.4. Let R be a hypersurface ring, M a Cohen—Macaulay module
of codepth n, a; the Betti numbers of M, b; the Betti numbers of M, and set
6'=0'(M) for i=0,1,.... Thena;+b,_, ,—86'—6'*"=a,,, and

O'M)=(a, 1—a, ,+ +(=1)"""a))+ b, ,—b,_; 1+ +(=1b,)

1 .
— 3+ (=Da, .,

foralli=0,...,n.

Proof. Since R is a hypersurface ring, the Betti numbers of M and M v stabilize
at the (n + 1)-th step: a,, , =a,,.,=---and b, ,=b, . ,="--;see [10]. If a_ is a
gluing map for M then Con («,) can be written as follows

I’I

ty 1 I, _2
i 5 R+l 5 Rén ,R”n—--l@Rbo_"___,R“n—z@Rbln_,..-

n o
_._._QRGOG_)Rbn~2___)Rbn___)Rbn+l__)---

By 2.3, rank (1, ® R/m) = rank (a, ® R/m) = 6'(M). “Peeling off” the non-minimal
part of this infinite exact complex we must obtain a periodic complex all of whose
Betti numbers are equal to a,, ,. In particular, a,, ,=b,,,, and

i r+ 1 __
at+bn~1Al_5—5 =d, 4

for i=—1,0,1,...,n where we set a ,=b ,=06"'=0. The assertions fol-
low. O

REMARKS 2.5. (a) Since 6'(M) = 0 for all i, we have, in view of the 2.4, that
a+b,_ ,_ ,=a,,, forall i

(b) Due to the fact that Con («,), after cancellation of its nonminimal part, is
periodic of period 2, we obtain the following isomorphisms

Q"+ M)V ifnis odd
Qn + 1 M \ ~ ) i ?
M) {Q”* (M) if nis even.
(c) Suppose M is self dual and » is even. Summing up the equations in 2.4 and
taking into account that g, = b, for all i and rank Q"*'(M)=a, —a, _,+ -, we
have that

AM) = (n + 1) rank Q"+ (M) —a, , ,("—?)
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As a last application we reprove and slightly generalize a result of Kunz [14].
The essential tool is a theorem of Eisenbud [10] concerning the nature of free
resolutions over complete intersections. Our gluing construction comes into play

only in the subsequent corollary, and actually could be avoided, but nevertheless let
us do this proof.

PROPOSITION 2.6. Let R be a complete intersection, that is, R =~ S/I where S
is a regular local ring and I is generated by a regular sequence X =Xx,,...,X,,.
Suppose further that M is an R-module with periodic minimal free R-resolution

a B o
» R" > R"” > R”" > R" » M > 0.

Let 4 be an n x n matrix with coefficients in S which, modulo I, gives o. Then
w(I", det &) < u(I"). (Here, i(J) denotes the minimal number of generators of an ideal
J)

Proof. Let & and f be liftings of o and f to S. Since af = 0 it follows that

m
&B = Z XiT;
i=1
where the 71, are certain n x n matrices with coefficients in S. Eisenbud’s theorem
[10, Theorem 3.1] tells us that at least one t,, say t,, is invertible, provided « and
f represent high enough sysygies of M (which is satisfied in our case since the
resolution is periodic). Modulo x,,...,x,,, the above matrix equation yields
det & det § = det (x,1,) = x7 det 7,. Now our assertion follows easily from the fact
that det 7, i1s a unit and x§ a minimal generator of I". O

COROLLARY 2.7 (Kunz). An almost complete intersection is not Gorenstein.

Proof. Let R be an almost complete intersection. Then R is Cohen—Macaulay,
and can be written as R = S/I where S is a regular local ring and I is minimally
generated by m + 1 =codim R + 1 elements x,,..., x,,, ;. By standard general
position arguments (if necessary extend the residue class field), we may assume that
Xy, ...,X, form a regular sequence. Let R denote the complete intersection
R/(x;,...,x,). Then R is a maximal Cohen—Macaulay R-module, and, if we
assume that R is a Gorenstein ring, R is a self-dual R-module. Hence if we dualize
the R-resolution -+ s RS5R->R—-0, a=x,,,,mod(x,,...,Xx,), then we get
the exact sequence 0 > R - R 5 R —---. Thus our gluing construction gives the
exact sequence

_ o« o

--R s R > R > R
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It is now clear that the infinite complex must be periodic. But then, 2.6 implies that
w(xy, .oy X)) < u(xy, ..., X,,), a contradiction. O

3. The gluing construction for the residue field of a complete intersection

Suppose (R, m, k) is a local Gorenstein ring of dimension r. Let -+ - > T, —
T,— k —0 be a minimal free R-resolution of k. Since R is Gorenstein, we have

. k ifi=r,
Exte (k, R) = {0 if i 7.
Thus the dual complex 0> T¢ —>T¥—>---—>T* —--- has homology only at T*
(namely H,(T*) = k), and there exists gluing map v, : T_.—» T*[ —r]. Here we denote
by M* the R-dual of an R-module M. (Note that for all maximal Cohen—
Macaulay R-modules, M* =~ M " since R is Gorenstein.)

In this section we will explicitly describe a specific gluing map for k in case R is
a complete intersection: so let R = S/(h,, ..., h,) where S is a regular local ring
whose maximal ideal is minimally generated by x,, ..., x,, and where h,, ..., A, is
a regular sequence.

There is a general procedure to construct a minimal free resolution (with
algebra structure) of the residue class field. One starts with the Koszul complex
K (x; R) which, in case R is regular, provides already a resolution. Otherwise the
first homology of the Koszul complex does not vanish, and one adjoints variables
in degree 2 in order to kill the homology in degree 1. The new complex has
non-vanishing homology at worst in degree 2. If so, one adjoins variables in degree
3, etc. This process leads to the co-called Tate resolution; see [27] for details. In his
paper [27], Tate also shows that this process of adjoining variables terminates
already in the second step if R is a complete intersection. As a consequence, the
Tate resolution of the residue class field of a complete intersection may be viewed
as the total complex of a certain double complex. We shall now describe this
complex in a way which is appropriate for our purposes.

The maps in this complex are homotheties and their duals: let 4 be an arbitrary
commutative ring, F a free A-module with basis e,,...,e, and z;,...,z, a
sequence of elements of 4. We set z=X_, z;¢;; then z may be viewed as degree 1
element in the (graded) exterior algebra /\'E. Multiplication y, by z makes this
algebra into a complex

0

1
0- /\E ﬂzr/\E

since z A z=0. Upon dualizing the above complex and using the natural isomor-

u

z 2 22
AE



374 JURGEN HERZOG AND ALEX MARTSINKOVSKY
phisms (/\' E)* =~ /\' E* we obtain the complex

2 2,

1 0
--——-—>/\E*-—fz—>/\E*———>/\E*—-—-—>O

with 0, = u¥, and this is exactly the Koszul complex on the sequence z,, ..., z,.

We return to our situation, and let F be a free R-module with basis f;, ..., f,
and G a free R-module with basis g,, ..., g,. The symmetric algebra of F will be
denoted by S F. Notice that S F is just a polynomial ring in m indeterminates over
R, and we may view G ® S, F a free module over S, F. Since /\ commutes with ring
extensions, we have the natural isomorphism

AH®S.F=\(H®S.F) (1)

for any R-module H.

Now we write h; = X7_ h;x; for j =1, ..., m with certain h; € S, and define the
elements x=X7_, X8, ®1 e G®S,F and y=X]_,(g¥®Z", h,f})) e G*® S| F,
where overbar denotes the canonical surjection S — R. We also introduce the
R-linear map ¢ : F*— G* with

o) = 3 hye?

forj=1,...,m.
Then, in view of (1) (with H = G or H = G*) and the above considerations, we
obtain complexes

i+ 1

A GRSFLS N\ GRSF s -

and

i+1
2 a,

y ‘ 0
s NGRS F— \NG®S;, F = -
where, in the explicit form,
0,(8, Aong) = (=Y loXg)g, A NG A A gL

J=1

These complexes fit together to build the rows and columns of a double complex
C.. since the following diagrams anti-commute
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. [ .
NGR®SF—5 N-'G®S,, F

b 1 i l

N“G@@Fj»NG®$HR

Now the Tate resolution 7', of k is just the total complex of the double complex
T  =C* with

i *
Q=(AG®&ﬂ

Following [7, pp. 17-18] we can now define a gluing map v : T, —» T*[—r].
First we choose orientations (i.e. isomorphisms) y: A” F*—>R of F* and
0:/\"G*—> R of G*, and define v;: \'G* > (/\" "' G*)*

(v (@)©) = ed(u A v A ((/\" 9)(2)))

for all ue \'G*, ve /\"'G* where z=7"'(1), and ¢ =1 when i =0, 3 mod 4
and ¢ = —1 when i = 1, 2 mod 4. The factor ¢ is only introduced to make the cone
of v, a double complex.

The map v; gives rise to the homomorphism

i * i v, fri * r—i
(AG@&J);AG*—H(AGg;gAG®&E

We now extend this map by 0 outside of (/\' G ® S,F)* to the whole of T} and call
it, without the danger of confusion, again v,. Thus we have the family of maps

vo: T, > T —r]

The following diagram illustrates the situation for r =2 (Henceforth the symbol
/N\'® S; stands for \'G ® S,F):

L

vo 9,
0 — (N ®S)* — N’®S, — N'®S,—> -

4\#: T#X Aux
* v P
O——)(/\O®Sl)* o3 (/\1®S0)*‘_l—’/\l®S0 ""y—>/\0®S1—> 0
ue ux Tux

y

F v
s (NS (N2® S)* — \°® Sy — 0
Au: Au: T

0
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THEOREM 3.1. The just defined map
v.:T,— TH -]

is a gluing map for k.

Proof. First we show that v_is a chain map. Since the compositions of v, with
both J¥ and 0, are zero (see [7], page 17), we only have to show that the following
diagram

/\541 G*_v_‘;; (/\\r~i+l G*)*

T ut Tu‘:‘

/\iG* _v'__, (/\r—iG*)*

anti-commutes for all i =1, ..., r. To this end we choose arbitrary u € /\i G* and
ve /\ "1 G*. Then v,_,(u¥u)(v) =ed(u*w) rv A ((/\" ¢)(2)). On the other
hand, [u¥*(v;(@))(©) = [v;() o p¥]@®) = v;@(p¥©)) = ed(u A p¥(@®) A (/\" 0)(2))).
Since & is an isomorphism, we therefore must show that u*(u) A v A ((/\" ¢)(2))
= (=D A pt@®) AN\ 0(2))).

To do this we note that u A v A ((/\" ¢(2))) belongs to A\"*' G*, and hence is
zero. Therefore, since u¥ is a derivation, it suffices to show that p*((/\" ¢)(2)) =0.
The element z is a scalar multiple of f¥ A - - - A f¥%. We now have that

EECAN" QSEA AR =pX(@(fT) A A o(f})

and, since @(f})=2X;_, h,g¥, the just computed element equals

i

ui‘(Z hagt A A Y ’img;“)

i=1 i=1
-3 <~1)k~'(z Fng? A---Au:(z ﬁ,.kgr)A---A $ h:,,,g:.*).
= | i=1 i=1 i=1

But
ut(( 3 Fuet J0 = % a0 = ( £ At )( £ 50 )= 5 Rt =0

Next we want to show that v,(1) generates the homology of the complex
T*[ —r] (concentrated in degree 0). This means that v,(1) should not be in the
image of the differential of T*[ —r], which, in turn, means that v,(1) is not in the
image of the map p, : (/\" "' G*)* - (/\” G*)*. Thus it suffices to show that v,(1)
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generates the homology of the co-Koszul complex K'(x; R) = ((/\" G*)*, u,) =
(/\" G, ). Consider the corresponding Koszul complex K (x, R). Its homology
H . (x; R) is the exterior algebra of H,(x; R) since R is a complete intersection; see
[1] and [27]. The homology classes [z;] of the cycles z;, where z; = X7_, h;g;, j =
l,...,m, form a k-basis of H,(x; R), and therefore H,(x; R) ~k([z,]J A" "
A [z,,]) = k[z], where

Z=Z,A " AZ,= Y det A, ., g A—-Ag = Y (detd,)g,.

.....

l<ij<<iysn I<{l,..,n}

1 =m
In the last expression, for I ={i,...,i,}, 1<i,<---<i,<n, we set G, =
g A" ng;,, and

Eill e Eilm

- Hm

i

i1

Now we consider the isomorphism of complexes
«, : K(x; R) — K'(x; R)

which is defined as follows: for each i =0, ..., n, the isomorphism a; : /\" G >
Hom(/\"~'G, /\"G) sends a € /\'G to the map b+ (—1)'a A b, wherebe \"~'G.

The map «, gives rise to an isomorphism f : H,,(x; R) = H'(x; R). Thus B([z])
generates H'(x; R). Computing this generator explicitly we have f([z]) =
[Z/c 1 (—1)7D det 4,g¥,], where CI denotes the complement of Iin {1, ..., n}

and O’EI) is given by the equation g; A gc; =(—1)"Dg, A -+~ A g,. A straightfor-
ward computation for v, shows that vy(1) = B([z]). This finishes the proof of the
theorem. O

4. Quasihomogeneous complete intersection with isolated singularity

In this section we shall produce a minimal resolution for the module of
derivations of a quasihomogeneous complete intersection with isolated singularity.
More precisely, we let S =k[X,, ..., X, ], where k is a field of characteristic zero,
and assign the variables X, positive degrees: deg X, =a;, a,e N, i=1,...,n. Also
let h,,...,h,, where m <n, be homogeneous polynomials (with respect to the
grading) of degree b, >0, i =1,...,m, respectively, and assume the Ah; form a
regular sequence. We then call R = S/(h,, ..., h,) =k[x,,...,x,] a quasihomo-
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geneous complete intersection. We will further assume that R has an isolated
singularity, i.e., R, is regular for all prime ideals different from the maximal ideal
m=(x,,...,x,) of R. We set r =dim R. Note that r =n — m.

By the Euler formula, we have that

n oh;
for j=1,...,m. Because the characteristic of k£ equals 0, the ideals (4, ..., hA,,)
and (b,h,, ..., b,h,) are the same. Hence the elements bh,, i =1,...,m, can be

viewed as defining equations for R and therefore, as the Euler formula shows, we
may take x =X7_, a;x;g;® 1 and y =XZ}_, (gF ® /L, (0h;/0x;)f;) in the construc-
tion of the Tate resolution of the residue class field (see Section 3). Here we denote
the image of 0h;/0X; in R by 0Oh;/0x;. It is clear that the cokernel of the map
@*:G—F, 9*(g;) =ZJL,(0h;/0x,)f;, as defined in Section 3, is just the transpose
of the (universally finite) module D,(R) of Kéihler differentials. Since we assume
that R is a complete intersection, the latter module is isomorphic to the module of
infinitesimal deformations T' = Ext} (D,(R), R).

We now form the cone Con (v,) of v, : T, —» T*[ —r] as defined in Section 3. Note
that, since Con (v,) has the structure of a double complex, there are two natural
filtrations defined on Con (v,). We consider one of them — the horizontal filtration
in regard to the diagram preceding 3.1. Thus we let L, be the subcomplex of
Con (v,) containing the modules A*® S, with s + ¢ > i, and the modules (/\’® S,)*
with s + ¢t <r —i. We then have the chain of subcomplexes

wrcl,cLicLycL_c---<Con(v,)

whose successive quotients L;/L; . , are isomorphic to the rows of the underlying
double complex of Con (v,).

For all i € Z we consider the quotient complexes K; = Con (v,)/L;. As Con (v,)
is self-dual, it is easily seen that for all i, up to a shift, the complex L, and the
dualized complex (K, _,_;)* are isomorphic, a fact that will be used later.

The complex K; begins with

1 ay 0
--——-————»/\@Si_]—» /\®Sz_”0
if i >0, and with
r * vo 0
~-—--»(/\®so) % A ®Sy—s 0

if i = 0. In the first case, Coker d, is isomorphic to the i-th symmetric power S, (T
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of T' which, as we remarked already, is isomorphic to the cokernel of
¢:G*>F*=03,: \'®S,— /\°®3S,. In the second case, Coker v, = R/J where J
is the Kdihler different, i.e. the ideal of m x m-minors of the Jacobian matrix
(Oh;/0x;). As T' is annihilated by J we may view T' an R/J-module, and therefore
set So(T") = R/J.

THEOREM 4.1. For alli =0, ...,r, the complexes K, are acyclic. In particular,
for those i the complex K; is a minimal free resolution of S;(T").

Proof. The filtration {L;} on Con (v,) induces a filtration F; on K; with F; =
L;nK; and the following properties:
(1) F;=0forj<i
(i) F;/F;,,=L,/L;,, is a row in the double complex Con (v,).
(i) For all / and j large enough, the module of /-chains P, of K; is a submodule
of F,.

Since R is an isolated singularity the map ¢ in the construction of Con (v,) is
split surjective on the punctured spectrum of R, and this implies that all rows of
Con (v,) are exact on the punctured spectrum of R. That this is the case for the
rows containing the maps v, follows from [7, Proposition 2.7], and for the other
rows this is immediate since these are the homogeneous parts of a Koszul complex
or its dual. It now follows that all rows have finite length homology, and thus (ii)
and (iii) imply that this is true for the homology of K; as well.

To simplify notation we denote the complex K, by (P.,a). Consider the
beginning of K,

0—B— P, _, > Py — 0. (nH

where B = Im «, _,. Since, for the i in the specified range, K, coincides with Con (v,)
from P, on, it follows that the homology of the complex

+++—P,,,—>P, —>B—0

may be nonzero only at P,. Since Coker «, is an infinite syzygy module of Con (v,)
this cokernel is a maximal Cohen—Macaulay module. It is clear that we have the
following short exact sequence

0— H,(P,) — Cokera, — B — 0.
As we remarked already, H,(P,) has finite length, and therefore, as a submodule of

a maximal Cohen—Macaulay module of positive dimension, is zero. We now
conclude that B is maximal Cohen—Macaulay.
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To finish the proof it suffices to show that (1) is acyclic. But all modules in this
complex are maximal Cohen—Macaulay and its homology is of finite length. Thus
the acyclicity follows from [20]. O

As a first application of the theorem we generalize one direction of a result in
[16].

COROLLARY 4.2. For all i and j we have that 6/(S;(T")) = 0.

Proof. All the modules S;(T") as well as their syzygy modules are homomorphic
images of certain syzygy modules of Con (v,), which are all maximal Cohen-
Macaulay modules without free summands. According to the comment at the
beginning of Section 2, this proves the assertion. O

COROLLARY 4.3. K, truncated at degree 2 is a minimal free resolution of the
module D, (R)* of derivations of R over k. In particular, the module of derivations is
minimally generated by the (,” ) elements in the image of v, _,, the so-called trivial
derivations, and one extra generator, the Euler derivation.

Proof. We write down the beginning of the complex K;:
r—1 * ] vy | 0
. -_4(/\ ®s0) BN ®So— A®Sy— \®So—0.

The complex K, is a minimal free resolution of T'. Therefore, 7,K, resolves the
second syzygy module Im  of T which is just D,(R)*. The image of y restricted
to the first summand of (/\""'®S,)*® A\’°® S, gives the trivial derivations, the
restriction to the second summand the Euler derivation. O

REMARK 4.4. The fact that the trivial derivations and the Euler derivation
generate D, (R)* has been observed by Kunz and Waldi [15] in dimension one, even
when R is a quasihomogeneous Gorenstein ring, and by Kersken [13] in all
dimensions. Corollary 4.3 shows that those are minimal generators.

DEFINITION 4.5. We call two modules M an N syzygetically equivalent if
there exist natural numbers i and j such that Q/(M) = Q/(N).

Thus we can paraphrase Corollary 4.3 by saying that if R is a quashihomoge-
neous complete intersection with isolated singularity over a field £ of characteristic
0, then the residue field of R is syzygetically equivalent to T'. We see that the
integers i =2r — 3 and j =r given in Corollary 4.3 are the smallest possible with
respect to the property in Definition 4.5. This does not however mean that for some



Gluing Cohen-Macaulay modules 381

particular rings they cannot be improved; for example, if R is a hypersurface of odd
dimension =3 then, as was shown in [18, Prop 2.2], Q'(k) = Q"(T"). In particular,
Conjecture 2.1 from [18] that gave a smaller number i for the residue field is not
true. But taking now 4.5 into account we can reintroduce that conjecture in the
following modified form:

Let R be a complete local analytic algebra of dimension >1 with an isolated
singularity over a field k of characteristic zero. Is it true that R is quasihomoge-
neous if and only if the residue field k of R is syzygetically equivalent to the
transpose Tr D,(R) of the module of Kdhler differentials of R over k?

Note that 7'~ Tr D,(R) only when R is a complete intersection. The results
known so far indicate however that if R is not a complete intersection, T should
be replaced by Tr D,(R). See the papers [19] and [11] for the state of this problem
in dimension 2.

By the definition of the complexes K; and L;, we have an exact sequence

00— L,— Con(v,)— K, — 0. (D)

But, as we mentioned already, L, =(K,_,_,)* so that for all i the long exact
sequence derived from (1) gives us the isomorphisms

Ho(K) = H, (K, -, _)*-r—1D=H_.(K,_,_)%.
Notice that

H_ (K, )% ZExt" (Hy(K, ), R)=Hy(K,_,_))".
Combining these observations with 4.1 we get

COROLLARY 4.6. (S(T"Y) Y =S, _,_(T") foralli=0,...,r—1.

Note that 4.6 in particular implies that S, _,(T") is the canonical module of R/J
where J, as before, is the Kahler different (also called the jacobian ideal of R).

If r=2 and i =1 we deduce from 4.6 that 7'~ (R/J)", and when r =3 and
i =2 we have that T is self-dual. Thus 4.6 may be viewed as an extension, although
in the more restrictive case of complete intersections, to higher dimensions and
arbitrary fields of characteristic zero of the results of J. Wahl [28, Th. 2.2, Th. 2.3].
If r =1, ie., Ris a complete intersection curve, we have that (R/J)" = R/J, which
means that R/J is a Gorenstein ring. Thus we recover (the easier part) of a theorem
of Kunz and Waldi [15]. They actually prove that R is quasihomogeneous if and
only if R/J is Gorenstein.
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Quasihomogeneity in higher dimensions is also reflected by the Gorenstein
property of a certain algebra. Indeed, the next statement follows immediately from
4.6.

COROLLARY 4.7. The truncate symmetric algebra G = (@D 2 ,S,(T")/
(S.(T")) is Gorenstein.

Note that this statement once again contains the aforementioned result of Kunz
and Waldi (when r = 1), and when R is a hypersurface ring the algebra G is simply
(R/N[1]/(t") where J is the Kaéhler different. It is clear that in this case, G is
Gorenstein if and only if R/J is Gorenstein. On the other hand, the second author
noticed in his paper [18] that Saito’s theorem [22] can be rephrased by saying that
an isolated hypersurface singularity R is quasihomogeneous if and only if R/J is
Gorenstein. Thus in view of these results there is some evidence that for an isolated
complete intersection R the algebra G is Gorenstein if and only if R is quasihomo-
geneous.

We close this paper with a few observations concerning the module structure of
the symmetric powers of T'.

COROLLARY 4.8. Let J be the Kdhler different of R. Then fori=0,...,r —1
the symmetric powers S;(T') are faithful R|J-modules of type ("} 7279 if r > 1,
and ("3Y if r=1.

Proof. By 4.6, the (r — 1)-th symmetric power S, _,(T") of T"' is the canonical
module of R/J, and hence is a faithful R/J-module. Then, clearly all the lower
powers S;(T"), i =0,...,r — 1, are faithful R/J-modules as well.

Next observe that the type of a module M is the minimal number of generators
of its dual M Y. Thus the formula for the type follows for r > 1 from 4.6, and for
r =1 notice that Hy(K,) ¥ = Hy(K_,); see the arguments preceding 4.6. Since K_,
ends with (/\’® S,)* we obtain the desired result. ]

Let I = S denote the ideal of maximal minors of the matrix Y = (0h;/0X;). Note
that the extension ideal IR of I in R equals the Kdhler different, and hence, since
we assume that R is an isolated singularity, has height r. It follows that the ideal 1
in S has height at least r =n — m. On the other hand, the generic height of this
determinantal ideal is at most n —m + 1. So that we have

n—m+12=height 2 n —m.

We are grateful to Ulrich who told us the following argument showing that the
upper bound is always attained: we let X be the column vector (¢, X, ..., a,X,)"
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Then, because of the Euler equations, I,(YX) = (h,, ..., h,), and thus, since R is an
isolated singularity, height (Z,(YX), 1,,(Y)) = n. (Here we denote as usual by /,(C)
the ideal of all /-minors of a matrix C.)

Let T be the column vector (T,,...,T,)" in the new variables T;,, and set
J=,(YT), I,(Y)). Then height J > n, and hence dim B < n where B = S[T]/J.
Set A =S/1,(Y); then B may be interpreted as the symmetric algebra of the
A-module M which is defined as the cokernel of the homomorphism 4™ — A" given
by the matrix ¥ (modulo /7, (Y)). Assume the height of 1,,(Y) is n —m. Then there
exists a minimal prime ideal p of A with dim 4/p =m. By the Huneke-Rossi
dimension formula [12] for symmetric algebras we have

n=dim B 2dim 4/p + u(M,) = m + u(M,).

But u(M,) >n —m since 1,(Y) cp.
By different arguments, communicated to us by Kunz and Waldi, this result can
be shown even when the h; are not quasihomogeneous.

PROPOSITION 4.9. The symmetric powers S;(T"), i =0,...,r — 1, all have the
same length.

Proof. Let us denote by C; the row of the double complex Con (v,) with last
non-zero term /\°® S, on the right. Then we get the exact sequence of complexes
0-C,»K,—» K, ,—0. Since both complexes, K, , and K;, are acyclic the corre-
sponding long exact homology sequence yields fori =1, ..., r — 1 the isomorphisms

Hy(C;)) = S(T") and H(C) =S, (T. (D

There are complexes D, of free S-modules with D; ® R =~ C;, and these complexes
are acyclic since height I=n—m + 1; see [7, Theorem 2.16]. It follows that
H;(C,) = Tor} (Hy(D;), S) = H;(h,, ..., h,; Hy(D,)), the Koszul homology of
Hy(D,) with respect to the sequence A,, ..., h,,. The last isomorphism is valid since
the A, form a regular S-sequence. Now we use the fact, due to Serre [23, Chapitre
IV], that the Euler characteristic of the Koszul homology is non-negative. In our

case this implies that /(H,(C,)) = £(H,(C,)) for all i. Therefore it follows from (1)
that

£(So(TY) < £(S,(TH) <--- <4(S, _(TY).

On the other hand, £(S, _,(T") = £(S,(T")) since the module is the canonical
module of R/J = S,(T'). Thus all lengths under consideration must be the
same. 0
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