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Homotopy and isotopy in dimension three

Joël Hass1 and Peter Scott2

Let M be a closed P2-irreducible 3-manifold It îs a long standing problem to décide

if homotopic homeomorphisms of M must be isotopic The answer îs now known
to be affirmative if M îs Haken, [Wal], see also [L], or if M îs a Seifert fiber space

[Ho-R] [Bon] [B-R] [A] [R] [Sel] [B-O], and for a few other spécial mamfolds

[B-R] Thus îs now seems reasonable to conjecture that the answer îs always
affirmative Howéver, if one considers reducible mamfolds, there îs a counter example

[F-W] In this paper, we further enlarge the class of 3-mamfolds for which the above

conjecture can be proved If a closed P2-irreducible 3-manifold îs non-orientable, it
must be Haken, so we consider only orientable 3-mamfolds in the rest of this paper

Let M be an orientable 3-manifold, let F be a closed orientable surface not S2

and let/ F-+M be an immersion which injects nx{F) Let MF dénote the cover of
M such that nx(MF) equals/J|t(7r1(F)) and let M dénote the universai cover of M
We will suppose that the lift of/into Mh îs an embedding (Note that this îs

automatic îf/is least area in the smooth or PL sensé Thus the pre-image in M of
f(F) consists of an embedded plane 77 which covers F in MF and the translates of
TJ by 7r,(M) We will say that / has the k-plane property if, given k distinct
translates of 77, some pair îs disjoint In this paper we will consider the case when
k equals 3 A map with the 3-plane property has no transverse triple points We will
say that / has the \-hne-intersection property if two distinct translates of 77 are

disjoint or intersect transversely in a single hne The main resuit of this paper îs

THEOREM 1 1 Let M be a closed orientable irreducible 3-manifold which is

neither Haken nor a Seifert fiber space If there is a closed orientable surface F, not
S2, and an immersion f F-+M which injects nx{F) and has the 3-plane and
1 -hne -intersection properties, then homotopic homeomorphisms of M are isotopic

In [H-S], we show that if M satisfies the hypothèses of this theorem, and M is

homotopy équivalent to an irreducible 3-manifold N, then M and N are homeomor-
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phic. In fact we prove a more gênerai resuit in which the 3-plane hypothesis is

replacée by the assumption that / has the 4-plane property.
Note that as in [H-S], the hypothèses of Theorem 1.1 do not require that M

hâve any finite cover which is Haken. But if M is double covered by a Haken
manifold Mx which admits an embedding of Finjecting nx(F), then the immersion

f \ F-+M obtained by projecting into M will hâve the 3-plane property. For the

planes in M above /(F) will split into two families, each family consisting of
mutually disjoint planes. Two out of any three planes in M must belong to the same

family and thus not intersect. If the embedding of Fin M, also has the 1-line-inter-
section property then M will satisfy the hypothèses of the theorem unless it is

Haken or a Seifert fiber space. This will happen, for example, if M, is hyperbolic
and F is totally géodésie.

There is a gênerai construction of manifolds which satisfy the hypothèses of
Theorem 1.1 which we hâve discussed with Aitchison and Rubinstein and which
will appear in future work of theirs. It is also discussed in [Sk]. One starts with a

closed orientable surface F of genus at least two, chooses an even number of
disjoint essential simple closed curves on F and chooses an identification of thèse

curves in pairs. Then one thickens the resulting 2-complex to an orientable
3-manifold so that the two sheets of F cross where the curves are identified and one
adds 2-handles and 3-handles to obtain a closed 3-manifold M which clearly has an
immersion of F without triple points. If one chooses the 2-handles to be attached
in a fairly complicated way, then one can show that M is irreducible, that the map
of F into M injects nx(F) and that F has the 3-plane and the 1-line intersection

properties. Presumably most of the manifolds obtained in this way will be non-
Haken, though we cannot prove this. It follows from [HRS] that any non-Haken
irreducible 3-manifold which admits such an immersion of F is obtained in this way.

The resuit of Theorem 1.1 and its proof are very closely related to those of [Sel].
In [Sel], Scott showed that homotopic homeomorphisms were isotopic for certain
Seifert fiber spaces. Any irreducible Seifert fiber space M with infinité fundamental

group admits an immersion of the torus T into M which injects nx(T), and such a

map always has the 1-line-intersection property [FHS]. Scott&apos;s resuit in [Sel]
applied to exactly those non-Haken Seifert fiber spaces for which f:T-&gt;M could
be found with the 3-plane property. Thus Theorem 1.1 is a natural extension of the

main resuit of [Sel]. The outline of the argument in this paper follows closely that
of [Sel], but our arguments differ in some important détails. Note that, in Theorem
1.1, F cannot be the torus. For, as/has no triple points, this would imply that M
was a Seifert fiber space. The reason for our assumption, in Theorem 1.1, that M
is not a Seifert fiber space is that our arguments do not work well when F is the

torus. In [Sel], the map/was very spécial because it had only one double curve,
and this allowed the arguments to work.
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The idea of our proof of Theorem 1 1 îs as follows Let X dénote the 2-complex

f(F) in M, and let h be a homeomorphism of M which is homotopic to the îdentity
Note that, as M îs not Haken,/cannot be an embedding As in [Sel], we consider
hX n X This intersection cannot be empty The key step îs to isotop h until hXnX
contains no triple points We do this in §1 In [Sel], this almost completed the

argument, but hère we need to work a great deal harder Let A dénote the union of
ail the double curves of X Our aim îs to isotop h to the îdentity in stages, working
first with h \ A, then with h \ Xand finally with h îtself However this raises some tncky
points which did not need to be considered in [Sel] We discuss thèse fully in §2

There îs an alternative approach which we discuss fully in §3 The first step îs

still to isotop h to be the îdentity on A, but the next step îs to show that A isfree
in a sensé which we define Then we show that if h fixes a free hnk in M, then h îs

isotopic to the îdentity This last resuit uses Thurston&apos;s hyperbolization theorem,
whereas the arguments in §2 are more elementary and direct However the
arguments in §3 are hkely to lead to other applications We would hke to acknowledge
a helpful conversation with Francis Bonahon on this section of the paper

§1. Removing triple points

We will use notation as close to that of [Sel] as possible, as several results we
need are proved in [Sel] Our main resuit îs

THEOREM 1 1 Let M be a closed orientable irreducible 3-manifold which is

neither Haken nor a Seifert fiber space If there is a closed orientable surface F, not
S2, and an immersion f F^M which injects nx{F) and has the 3-plane and

\-hne-intersection properties, then homotopic homeomorphisms of M are isotopic

We will arrange that / does not factor through a covenng map of some surface
F&apos; by F, by replacing/if necessary If/factors through a covenng of an orientable
surface F&apos; by F and an immersion/&apos; Ff -? M, we simply replace /by/&apos;, which will
still hâve the 3-plane and 1-hne-intersection properties Thus we can assume that/
does not factor through a covenng of an orientable surface by F If / factors

through a covenng of a non-orientable surface F&quot; by F, the degree of this covenng
must be two In this case, we can perturb/so that ît no longer factors through such

a covenng and still has the required properties To do this, consider the cover M&quot;

of M corresponding to nx{F&quot;) The lift/&quot; of/to this cover must double cover an
embedded copy of F&quot; We now replace/&quot; by an embedding with image equal to the

boundary of a regular neighborhood of F&quot;, and replace / by the composite of this

embedding with the covenng projection from M&quot; to M
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Let X dénote the 2-complex f(F) in M, and let h be a homeomorphism of M
which is homotopic to the identity. Let Y dénote h{X). Let A dénote the union of
the double curves of X. A point of A n Y or of h{A) n X will be called a triple point
oflnK We can always isotop h so that X and Y are in gênerai position i.e. A and

/z(J) are disjoint, A meets 7 transversely and h{A) meets A&quot; transversely at any triple
points and X meets Y transversely in the usual sensé at ail other points. In this
section, we prove

THEOREM 1.2. Under the hypothèses of Theorem 1.1, let h be a homeomorphism

of M which is homotopic to the identity. Let X and Y be as above. Then h is

isotopic to a homeomorphism hx such that X and hx{X) are in gênerai position and
intersect without triple points and without nullhomotopic double curves.

Proof We first isotop h so that X and Y h(X) are in gênerai position. Thus

XnY has only fînitely many triple points. As in [Sel], the basic idea is to give a

séquence of isotopies of Ar or Y in M, each of which reduces the number of triple
points of XnY. Any isotopy of Y can, of course, be extended to an isotopy of h,

and any isotopy of X can be replaced by an isotopy of F, and hence of h, which has

the same effect on XnY. However, we will need a measure of the complexity of
XnY which is more subtle than just the number of triple points. Having defined
this complexity, we will describe five types of isotopy each of which reduces our
complexity. Finally, we will show that if XnY has least possible complexity, then
it has no triple points. Taken together, thèse results will complète the proof of
Theorem 1.2.

The points of X n Y will be called AT-points, the points of A will be called

AX-points and the points of h(A) will be called FF-points. A point of A n F will be

called an XX triple point and a point of h(A) n X will be called a YY triple point.
A point in a covering space of M which projects to a AT-point in M will also be

called a AT-point, and we use similar définitions for the other types of point.
In order to define the complexity of h, we need to consider the covering space

MF of M whose fundamental group isf*(n\(F)). Recall that/lifts to an embedding
of F in MF whose image we still dénote by F. Let XF dénote the full pre-image in
MF of X, let AF dénote the full pre-image in MF of A, and let hF dénote the lift of
h to MF obtained by lifting the homotopy of h to the identity. Note that the

surfaces in XF need not ail be embedded. The points of F n hF(XF) are AT-points,
and the points of FnAF are AT-points. We define the complexity of h to be the

triple (s, t, d), where s is the number of XX triple points on F in MF, t is the total
number of triple points on F, and d is the number of null-homotopic curves of
Appoints on F. Thèse complexities are to be lexicographically ordered.

For the rest of our proof of Theorem 1.2, it will be more convenient to consider
the universal covering space M of M in place of MF, as ail surfaces and double
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curves in M will be automatically embedded Recall that the pre-image of/(F) m
M consists of a family of embedded planes with the 3-plane property We call thèse

planes X-planes The corresponding planes in the pre-image of F will be called

F-planes Two X-planes intersect in a AX-hne or are disjoint, two F-planes
mtersect m a FF-lme or are disjoint, and the intersection of a X-plane and a

F-plane îs a 1-manifold each component of which îs called a AT-curve In ail
diagrams, XX-hnes and FF-hnes will be drawn sohd and XF-curves will be dotted

Now we restrict attention to a single X-plane 77 and the double curves which lie

on 77 Thèse consist of a family of disjoint XX-hnes and a fairly arbitrary collection
of XF-curves The intersection of any two of thèse curves îs a triple point Similar
comments apply to a F-plane with the rôles of X and F reversed

An XF-circle C in 77 will be called innermost if the dise D in 77 which îs

bounded by C has no double points in îts interior We let p dénote the projection
map M -+M

LEMMA 13 If 77 is an X-plane or Y-plane which contains an innermost
XY-circle, there is an isotopy of h which reduces its complexity

Proof This resuit is the same as Lemma 2 2 of [Sel], and the proof in [Sel]
apphes unchanged to the présent situation The isotopy defined in [Sel] reduces d
by at least one and cannot increase s or t

For our next results, we need some more définitions A 2-gon in an X-plane or
a F-plane 77 is a 2-disc D in 77 such that dD is the union of two arcs, each of which
is a sub-arc of a double curve in 77 If both arcs lie on XF-curves, we will say that
D is of type XY Otherwise, we say D is of mixed type A 2-gon D is innermost if
its interior contains no double points

LEMMA 14 If 77 is an X-plane or Y-plane which contains an innermost 2-gon
D of mixed type, there is an isotopy of h which reduces its complexity

Proof This resuit is the same as Lemma 2 3 of [Sel] The proof in [Sel] needs

the following shght modification
As m [Sel], assume that 77 is an X-plane, and let dD consist of two arcs k and

ju, where k is a sub-arc of an XX-curve L and \i is a sub-arc of an XF-curve The

isotopy required is defined as in [Sel] The proof that D projects mjectively to M
is also as in [Sel] except for the following point Let g be an élément of nx(M) such

that gD meets D If gL L, then ît follows that g77 77 In [Sel], this is proved by

using the fact that nx{M) has center In the présent case, we note that the

alternative is that g mterchanges the two X-planes through L Thus, in a neighbor-
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hood of L, g must act as a screw motion, so that g2 must préserve 77 and reverse
its orientation, contradicting our hypothesis that F is orientable.

The isotopy defined in [Sel] reduces t by at least two. If 77 is an A&apos;-plane, then
it also reduces s by at least two. If 77 is a F-plane, then s is unchanged. In either
case the complexity of h is reduced.

LEMMA 1.5. If 77 is an X-plane or Y-plane which conîains an innermost 2-gon

of type AT, there is an isotopy of h which reduces its complexity.

Proof This resuit is the same as Lemma 2.4 of [Sel]. The isotopy is constructed
as in [Sel], and the proof in [Sel] only needs modifying as in Lemma 1.4. Namely,
we need to point out that if g préserves an AT-line L, then it must préserve each

of the two A&apos;-planes which contain L.
As for Lemma 1.4, the isotopy defined in [Sel] reduces t by at least two and

reduces s by at least two or zéro according as 77 is a 7-plane or X-plane
respectively.

Our next move can only be used in a situation where the three preceding lemmas

are not applicable.

LEMMA 1.6. Suppose that no X-plane or Y-plane contains an innermost circle or
an innermost 2-gon, but that some plane 77 contains a 2-gon of type XY. Then there

is an isotopy of h which reduces its complexity.

Proof. This resuit is the same as Lemma 2.5 of [Sel]. However, the proof needs

substantial changes. We start by reproducing the first three paragraphs of the proof
of Lemma 2.5 of [Sel]. We will first suppose that 77 is an X-plane.

We hâve a 2-disc D in 77 whose boundary consists of two arcs ^ and \i2, each

being a sub-arc of an AT-curve. We can assume that no sub-disc of D has the same

property, by replacing D if necessary. As we are assuming that D is not innermost,
the interior of D must contain some AT-points or AT-points. As D contains no
sub-disc which is a 2-gon of type XY, we see that there cannot be an AT-arc in D
with both ends on \xx, or both on fi2, and that any two AT-curves in D meet in at
most one point. Also there cannot be an AT-arc joining /*, to \i2 as this would
contradict the 3-plane property for the F-planes. It follows that any AT-curve in D,
other than /i, and \i2, must be a circle in the interior of D, and that any two such

circles must be disjoint.
Suppose that D contains an AT-circle C. As no plane contains an innermost

circle, some AT-line must meet C. As ail AT-lines in 77 are disjoint, this implies
that D contains an innermost 2-gon of mixed type. As no plane contains an
innermost 2-gon, we deduce that the interior of D contains no AT-points. Hence
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Figure 1 7

the interior of D must contain some .Mf-points. Let À be an arc of AX-points in D.

If dk lies on //,, then A together with a sub-arc of jUj détermines a 2-gon of mixed

type. This 2-gon may contain other JfX-arcs, but it follows that D contains an
innermost 2-gon of mixed type. As we are assuming that 77 has no innermost
2-gons, we deduce that ail the AT-arcs in D join fix to \i2.

Let 77, dénote the 7-plane containing fin for / 1,2, let L dénote the line

n^Ilj and let À dénote the segment of L with the vertices of D as end points.
Then lu/i, bounds a 2-disc D, in 77,, and D uDxkjD2 forms a 2-sphere in M which
must bound a 3-ball B. See Figure 1.7.

In [Sel], Scott was able to show that B projects injectively into M. Then he

defined an isotopy of F in M which isotoped p{Dx\jD2) across p(B) and just past
p(D). The présent situation may be more complicated as B may not inject into M.
However, we will show how to define a similar isotopy of Y in M.

Suppose now that gB meets B. Exactly as in [Sel], it follows that gL L. Thus,
as in our proof of Lemma 1.4, g must préserve each of TIX and 772. If g also préserves
77, then either g is the identity or gx y, or gy x. But the last two cases imply that
gB is on the opposite side of 77 from B which contradicts the fact that II projects
to a 2-sided surface in M. Thus, if g préserves 77, then g must be the identity. Hence

if g is a non-trivial élément of n{(M) such that gB meets B, then g does not préserve
77. Also g&quot;1 does not préserve 77. Now g acts on L as a non-trivial translation, so

that g2 acts on L as a non-trivial translation. It follows that g2 also cannot préserve
77, so that g77 and g~lFI are distinct. Now the 3-plane property applied to 77, g77,

and g~ln shows that g77 and g-177 are disjoint. Hence 77 and g277 are disjoint.
Let a dénote a generator of the stabiliser of L. We deduce from the above that

if gB meets B then g must be one of 1, a or a&quot;1. If B does not meet ai?, we can
define the required isotopy of F in M exactly as in [Sel]. If B does meet al?, the

picture must be as in Figure 1.8. We choose an isotopy of DxkjD2 across B such

that the isotopy restricted to (Dx uD2)r\cx.B is obtained from the isotopy restricted

to {Dx u D2) n a ~ XB by applying a. This can be done precisely because &lt;xB and a ~ lB
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M M \

Figure 1.8

are disjoint. This isotopy extends to an isotopy of the union of ail the a&quot;(Z), u/)2)
which is equivariant under the action of the group generated by a. Finally, this extends

to an isotopy of ail the translates of D{ u/)2 by it\(M) which is nx(M)-equivariant.
This isotopy extends equivariantly to the union of ail the F-planes by the identity.
Such an isotopy must descend to an isotopy of Fin M, as required. As in the preceding
two lemmas, this isotopy reduces t by at least two and does not increase s as 77 is

an Jf-plane. If 77 is a F-plane, we can apply the same arguments reversing the rôles

of X and Y to obtain an isotopy of X which reduces s and / by at least two. This
complètes the proof of Lemma 1.6.

Our final move can only be used in a situation where none of the preceding lemmas
is applicable. Unlike the previous moves, this move may increase the total number
t of triple points of XnY, but it does reduce the number s of XX triple points.

LEMMA 1.9. Suppose that no X-plane or Y-plane contains an innermost circle or
an innermost 2-gon, and thaï no plane contains a 2-gon of type XY. If an X-plane FI

contains a 2-gon, there is an isotopy of h which reduces its complexity.

Proof. This is the same statement as Lemma 2.6 of [Sel]. However, as with the

previous lemma, the proof needs substantial changes to apply to our situation. We

start by reproducing the first paragraph of the proof of Lemma 2.6 of [Sel].
Let D be a 2-gon in the A&apos;-plane 77 with one edge X being a sub-arc of an

XX-qwxvz and the other edge \i being a sub-arc of a AT-curve. We can assume that
no sub-disc of D is a 2-gon, by replacing D by a sub-disc, if necessary. Thus the

interior of D contains no AX-points. As D cannot be an innermost 2-gon, its
interior must contain some AT-points. No AT-circle can lie in D as 77 contains no
innermost circles and no 2-gons of type XY. It follows that the AT-points of D lie

on arcs. None of thèse arcs can hâve both end points on A, as this would yield a

sub-disc of D which is a 2-gon. Also none of thèse arcs can hâve both end points
on jU, as 77 contains no 2-gons of type XY. Hence each AT-arc in D joins X to fi.
Finally thèse arcs are disjoint from each other by the 3-plane property for the

F-planes. Thus we hâve a configuration as shown in Figure 1.10.
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In [Sel], Scott showed that D projected injectively into M. As for the previous
lemma, this need not be true in the présent situation, but we can still define the

required isotopy of X in M in a similar way to that in [Sel].
Suppose now that gD meets D. If g/7 does not equal 77, then gDnD must

consist of AT-points in g/7 n 77. As the only AT-points in D lie on X, and the only
AX-points in gD lie on gX, we deduce that gL must meet L. But this implies that
gL L as L projects to a simple closed curve in M, and this implies that g préserves
77, as in the proof of Lemma 1.4. This contradicts our assumption that g/7 does not
equal 77. Thus g/7 77. Hence g(dD) must meet dD. Hence one of gX and gfi must
meet one of X and /i. If g\i meets ju, then g/i must contain one of the ^F-arcs which

crosses Z), so that gpt must meet X. It follows that, in ail cases, gDnD contains

points of k or of gk. As the only AX-points of D lie on X and the only AX-points
of gD lie on gX, we conclude that gX meets X. Hence gL meets L and so gL L.

Let 77&apos; dénote the F-plane which contains /x. If g is a nontrivial élément of
7i i (M) such that gD meets 7), the above shows that g/7 7/ and gL L, so that gn
must cross fi. Hence g/7&apos; must cross TT, and also g~xW must cross 77&apos;. By the

3-plane property for F-planes, g/7&apos; and g~xnf must be disjoint.
Let a dénote a generator of the stabiliser of L. The above arguments show that

if gD meets D then g must be one of 1, a or a&quot;1. See Figure 1.11. Now, as in the

T \
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/ \
/ \

4—4-
i i
i i

A
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Figure 1 11
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preceding lemma, we can define the required isotopy of X in M, by defining an
equivariant isotopy of the A&apos;-planes in M, which isotops k across D and just past \i.

As in [Sel], this isotopy increases the total number t of triple points oflnF,
but it reduces the number s of XX triple points by two, thus reducing the

complexity of h.

Now we are in a position to conclude the proof of Theorem 1.2, which asserts

that h can be isotoped to arrange that XnY has no triple points. We hâve just seen

five ways of isotoping h to reduce its complexity. The next lemma tells us that if
none of thèse isotopies can be carried out, then XnY has no triple points. It also

says that there are no nullhomotopic double curves.

LEMMA 1.12. Suppose that the homeomorphism h minimises the complexity
(s, t, d) among ail homeomorphisms isotopic to h. Then the complexity ofh is (0, 0, 0).

Proof. This is essentially the same statement as Lemma 2.7 of [Sel]. However,
the proof needs substantial changes to apply to our situation. We start by
reproducing the fîrst paragraph of the proof of Lemma 2.7 of [Sel].

Lemma 1.3 shows that no T-plane or 7-plane contains an innermost AT-circle.
Lemmas 1.4 and 1.5 show that no plane contains an innermost 2-gon. Lemma 1.6

then shows that no plane can contain a 2-gon of type XY. Finally, Lemma 1.9

shows that no T-plane contains a 2-gon of any type. It foliows that no AT-curve
can be a circle. Thus d must equal zéro.

Let IJ dénote an T-plane. We hâve just seen that ail the AT-curves in II are
Unes and that any two of the TF-lines and AT-lines in 77 meet in at most one point.

Recall the covering MF of M and the lift of/ to MF whose image is denoted by
F. The complète pre-image of X is denoted XF and the lift of h is denoted hF. Let
77 dénote the T-plane in M which is the pre-image of F. We consider the image in
F of the TT-lines and TF-lines in 17. The TT-lines project to a family of disjoint
essential simple closed curves on F, and each XF-line projects to some essential

closed curve. Recall that the TT-curves on F are the intersection curves of F with
the other components of XF. The AT-curves on F are the intersection curves of F
with hF(XF). If two of thèse curves Cx and C2 intersect, then they are the image of
a pair of Unes in 77 which intersect. As thèse Unes intersect in only one point, we
deduce that Cx and C2 intersect essentially i.e. they cannot be homotoped to the

disjoint.
Suppose that XnY has some XX triple points. Then there is a AT-curve C on

F which crosses a AT-curve. It follows from the above that C cannot be homotopic
to any AT-curve. Let F&apos; dénote the component of XF such that Fr\hF(F&apos;) contains
C. Note that F&apos; may not be embedded or compact. The 1-line-intersection property
for the T-planes implies that F&apos; is disjoint from F, or Ff equals F, or F&apos; is an
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annulus and meets F in one simple closed AX-curve The last case îs impossible as

C would then hâve to be homotopic to a XX-cuvve Thus F&apos; îs disjoint from F or
F&apos; equals F, but ht(Ff) crosses F In either case, ît follows that hF(F&apos;) intersects one

(and possibly both) of the closures of the components of MF — F in a compact
surface

Suppose that Ff îs an embedded surface in MF It follows, as in Lemma 4 1 of
[FHS], that there must be a compact product région W in MF between F and
hF{F&apos;) Let Q and Q&apos; dénote the surfaces in which W meets F and hF(F&apos;) Taking
the pre-image of W in M yields a F-plane 77 in M above hF{F&apos;) and a product
région W between 77 and 77&apos; which projects to W in MF Let Q and Q&apos; dénote the
surfaces in which W meets 77 and 77

&apos; Of course, PFwill probably not be compact
There îs an AT-hne L in 77 which projects to C and which crosses dû As L

projects to C, each component of L n Q projects to a compact subinterval of C It
follows that LnQ consists of compact arcs In fact, L n Q must be a single arc À,

as otherwise there would be a 2-gon in 77 between L and a component of dû Let
77&quot; dénote the F-plane which contains L, and consider the intersection of 77&quot; with
Q&apos; This îs a 1-manifold with exactly two boundary points, the endpoints of À, as

dû equals dû As 77&quot;n/7&apos; îs a single Une, it follows that 77&quot;r\Û&apos; îs a single arc A&apos;

But this implies that 77&quot; contains a 2-gon bounded by k and k\ which îs a

contradiction, as X-planes contain no 2-gons

If F&apos; îs not embedded in MF, we can make a very similar argument to the above,
as follows Let Mx dénote the covenng of MF such that F&apos; lifts to Mx by a

homotopy équivalence The lift will be an embedded surface F\ Let Fx dénote the

pre-image of F in Mx Then Fx cuts Mx into two pièces Now the projection map
of F\ to F&apos; îs proper It follows that hx{F\) intersects at least one of the closures of
the components of Mx — Fx in a compact surface As before, it follows that there îs

a compact product région W m Mx between Fx and hx(F\), and we can make ail the

arguments in the above paragraph to deduce the required contradiction
We hâve just shown that X n Y cannot hâve XX triple points, î e that s must be

zéro We will show below that this implies that no 7-plane contains a 2-gon of any
type Assuming this we can apply ail the above arguments with the rôles of X and
Y reversed, showing that t must be zéro

Hère îs the proof of the above claim that if there are no AT-tnple points then

no F-plane contains a 2-gon of any type We know that no 7-plane can contain a

2-gon of type XY from the arguments at the start of the proof of Lemma 1 12

Suppose that 77 îs a F-plane which contains a 2-gon Then 77 contains a 2-gon D
which has no 2-gon properly inside it This must be a 2-gon of mixed type which
cannot be innermost The proof of Lemma 1 9 apphes to show that D must be as

shown in Figure 1 10, îe the only double curves inside D are disjoint AT-arcs
which join the FF-edge of D to the AT-edge But this implies, m particular, that
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there are AT-triple points on the AT-edge of D. This contradiction complètes the

proof of the claim and hence the proof of Lemma 1.12.

§2. The main resuit

Using the notation of §1, we can now assume that our homeomorphism h of M
is such that X and Y intersect in gênerai position without triple points and without
nullhomotopic double curves. Our aim is to isotop h further until h is the identity
on X. It will then be trivial to isotop h to be the identity on a regular neighborhood
N of X. Now the closure of each component of M — N is a handlebody by Lemma
1.4 of [HRS], and any homeomorphism of a handlebody U which is the identity of
ôU is isotopic to the identity fîxing OU. Thus h is isotopic to the identity as required.

At one point in our proof it will be convenient to quote results on least area
surfaces. In order to do this, we pick a Riemannian metric on M and choose

/: F-+M to be least area in its homotopy class. Lemma 2.4 of [HS], shows that/
will still hâve the 3-plane property and the l-line intersection property. For the rest

of this section we will assume that / is least area.
We start with a resuit which extends our earlier observation that F cannot be the

torus.

LEMMA 2.1. With the hypothèses of Theorem 1.1, nx(M) cannot contain a

subgroup isomorphic to Z x Z, nor can it contain an infinité cyclic normal subgroup.

Proof. Suppose that nx(M) does contain a subgroup isomorphic to Z x Z. As

M is not Haken, the version of the Torus Theorem in [Sc2] shows that nx(M) has

an infinité cyclic normal subgroup. We will show that this is impossible.
Recall that we hâve an incompressible immersion f\F-*M which satisfies the

3-plane condition. In particular, / has no triple points. Thus if Fis the torus, then

M must be a Seifert fîber space which contradicts our hypothesis. If F is not the

torus, then nx{F) has no infinité cyclic normal subgroup. It follows that M is finitely
covered by a manifold M&apos; whose fundamental group has an infinité cyclic normal
subgroup with quotient group isomorphic to nx (F). In particular, M is finitely
covered by a Haken manifold. Again this implies that M is a Seifert fiber space by
[Sc2]. This contradiction complètes the proof of Lemma 2.1.

Now we show how to isotop h to be the identity on the double curves of X.
Recall that A dénotes the union of thèse curves.

LEMMA 2.2. We can isotop h to a homeomorphism h&apos; such that h&apos;&apos; \ A is the

identity on A. Further, h&apos; can be chosen so that h&apos; is homotopic to the identity rel A.
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i e h&apos; is homotopic to the identity by a homotopy which fixes ail points of A at ail
times

Remark Of course, X and h&apos;{X) are not in gênerai position and the points of
C are quadruple points of Xnh\X), but we can arrange that X — C and h\X — C)
are in gênerai position and without triple points or nullhomotopic double curves by
choosing the isotopy to be supported in a small neighborhood of C

Proof Let C dénote a component of A We will first show that we can isotop
h to h such that h\C) equals C Then we can isotop h to h&quot; which is the identity
on C unless h&apos; reverses the orientation of C But this would imply that the élément

of nx(M) represented by C is conjugate to îts inverse, which in turn would imply
that 7r,(M) contains a copy of the fundamental group of the Klein bottle and hence

contams a copy of Z x Z which is impossible by Lemma 2 1

Consider a component / of the pre image in M of C Thus / is the intersection
of two X-planes Px and P2 in M Let h be a lift of h to M which is homotopic to
the identity This choice of lift détermines corresponding lifts of h for each covenng
of M Then h(l) is the intersection of fi(Px) and h{P2) We will show that h(P2)
meets Px in a line m which is parallel to / in Px, i e / and m are disjoint and hâve

the same stabiliser Also m will be parallel to h(l) m ft(P2) Let G dénote the

stabiliser of Px and let MG dénote the quotient of M by G The image of P{ m MG
is an embedded surface Fx homeomorphic to F which séparâtes the two ends of MG
The image of P2 m MG is an annulus A2 which runs from one end of MG to the

other and meets Fx in a circle C, which projects to C in M Let hG dénote the

homeomorphism of MG determined by our choice of h Thus hG is homotopic to the

identity Further, hG moves points of MG a umformly bounded distance It follows
that hG(A2) still runs from one end of MG to the other and so must meet F, in a

closed curve Dx homotopic to C, in Fx As Cx and Dx must be disjoint, we see that
/T(P2) meets Px in a line m which is parallel to / in Px Also m will be parallel to K(l)

m /T(P2)

Let Sx dénote the infinité stnp in Px bounded by / and m, and let S2 dénote the

infinité stnp in ^(^2) bounded by m and n Let S dénote Sx u52 We will use the

projection of S into M to define the required isotopy of h{C) to C Note that S may
contain several XX, YY or AT-hnes, but ail thèse lines must be parallel to m and

so spht S into sub-stnps Each of thèse sub-stnps projects to an embedded annulus

m MG and this annulus projects into lor Y by an embeddmg or by a map which
embeds apart from identifying the two boundary components This defines an

isotopy of h(C) to C by isotoping along thèse annuli m turn and hence yields an

isotopy of h to hf such that h\C) equals C Note that when we lift this isotopy
between h and h&apos; to an isotopy between /Tand fi\ we find that K&apos;(l) equals / Now
we isotop h&apos; I C to the identity, and extend to an isotopy from h&apos; to h&quot; This lifts
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to an isotopy from K&apos; to fi&quot;. We choose our isotopy of /*&apos; in such a way that K&quot;
| /is the

identity. As h&quot; is isotopic to h which is homotopic to the identity, we hâve a homotopy
H&quot; oîh&quot; to the identity which lifts to a homotopy H&quot; oïfi&quot; to the identity and fi&quot;

\ lis
the identity. We claim that h&quot; is homotopic to the identity rel C. For the restriction of
H&quot; to C yields a homotopy #c : C x I-+M whose lift to M is a homotopy of the

inclusion of / in M to itself. It follows that we can homotop Hc rel C x dl to be the

identity at ail times, and extend to obtain a homotopy from H&quot; to H, where H is a

homotopy from h&quot; to the identity which fixes C at ail times. Thus h&quot; is homotopic to
the identity rel C, as required.

Finally, we consider the situation when A has more than one component. Let the

components be denoted C,,.. Cr. Suppose that we hâve isotoped htohl_l such that
ht_ x

| Cj is the identity, when y &lt; / — 1, and that ht_ x is homotopic to the identity rel

C, u • • • u C, _ We apply the foregoing argument to C,. If the track of the isotopy we
find does not meet Cx u • • • u Ct _ we can isotop hl _ x rel Cx u • • • u Ct _ to ht such

that /*, | Ct is the identity. The argument that ht is homotopic to the identity rel Ct also

shows that hl is homotopic to the identity rel Cx u • • • u Ct. If the track of the isotopy
does meet some C7,y &lt; / — 1, then the track must contain Cr In this case we simply
perturb the track slightly so as to avoid Cr Now we can construct ht as required.

The next step is to isotop h so as to be the identity on X. This turns out to be

a very délicate problem. The point is that although we hâve just shown that we can

isotop h to be the identity on A, there are non-isotopic ways to do this. i.e. one can

isotop h to hx and to h2 each the identity on A and each homotopic to the identity
rel A, but hx and h2 need not be isotopic rel A. A simple example of this

phenomenon can be described as follows. Suppose that M contains a fibered solid

torus V which contains two double curves of X embedded in V as fibers. Let hx be

the identity on M and let h2 be obtained from hx by an isotopy which rotâtes V

through a full turn about the center fiber of V. Then h2 is homotopic to the identity
rel A but is not isotopic to the identity rel A. Obviously much more complicated
examples are possible. It follows from the above that although we can isotop h to
be the identity on A and arrange that h is homotopic to the identity rel A, we may
need to alter h on A in order to isotop h to the identity on X.

Another technical problem is that when we hâve isotoped h so as to be the

identity on the image in M of a subsurface S of F, we will need to know that h is

homotopic to the identity rel f(S) u A in order to carry out further isotopies. The

following resuit shows that once we can isotop h to be the identity on a &quot;non-

trivial&quot; subsurface of X then this is automatic.

LEMMA 2.3. Let S be a compact incompressible subsurface of F. Suppose that
the restriction of h to f(S) is the identity. If no component of S is an annulus, then

h is homotopic to the identity rel f(S).
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Remarks. This resuit may fail if S is an annulus which / embeds in M.
The methods of Lemma 2.2 show that we can isotop h rel/(S) to be the identity

on f(S) u A in such a way that h is homotopic to the identity rel f(S) u A.

Proof. First we consider the case when S is connected. Recall that h is

homotopic to the identity. The homotopy of h to the identity yields a map
H : S1 xf(S)-+M, such that H | {1} xf(S) is the identity. Let a dénote a genera-
tor of 7r,(5&apos;1) and let /? dénote H^(oc) in 7^ (M). If /? is trivial then // is homotopic
rel {1} xf(S) to the identity homotopy. This shows that h is homotopic to the

identity rel/(S). If j8 is non trivial, then H^(nx(Sl xf(S))) is a subgroup of nx(M)
with non trivial center. This subgroup cannot be of finite index, as this would imply
that nx(M) itself has an infinité cyclic normal subgroup, by Lemma 4.2 of [Sc2],
which is impossible by Lemma 2.1. Thus H^(nx(Sl xf(S))) is of infinité index in
nx(M) and hence is the fundamental group of a non-compact covering space of M.
This covering will hâve a compact irreducible submanifold Z with the same
fundamental group [Sw]. Z must be a Seifert fiber space [Wa2], as nx(Z) has

non-trivial center and Z is orientable irreducible and with non-empty boun-
dary. As nx(M) cannot contain a subgroup isomorphic to Z x Z, it follows that
H*(nx(Sl xf(S))) is infinité cyclic. Thus nx(f(S)) must also be infinité cyclic, so

that S must be an annulus. It follows that if S is not an annulus, then h is

homotopic to the identity rel/(S).
If S is disconnected, we apply the above argument to each component of S in

order to complète the proof of Lemma 2.3.

Now we corne to the main part of the work in this section. We choose the
closure R of a component of F —f~l(A) such that R is not an annulus. Such a

component exists as F is not a torus. Recall that MF dénotes the covering of M with
nx(MF) =f^(nx(F)) and that/lifts to an embedding of Finto Mt whose image we
dénote by F. Let hF dénote the lift of h to MF which is the identity on At, the

pre-image in MF of A in M. We will consider how ht (R) meets F. Certainly hh (dR)
lies in F as dR lies in AF and hF fixes AF. Now hF{R) nF divides R into subsurfaces.

As R is not an annulus, the closure S of some component of hF(R) — hF(R) nF is

also not an annulus. As S lies in the closure of one component of MF — F, it follows
that there is a subsurface T of F with ôT equal to dS and that there is a product
région W in MF between S and T. The idea is to isotop S across W to T. If W
projects injectively into M, it is clear that this can be achieved by an isotopy of h.

But although S projects injectively into M, this need not be true of W nor even of
T. However, we will eventually isotop h to be the identity on the image of a

subsurface S&apos; of S which consists of S with a collar neighborhood of dS removed.
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We need to start by analysmg how the surfaces of XF and YF meet W Note that
if no surface ofXFox FFmeets the interior of Wthen Tand Wmxxst project injectively
into M Thus we can isotop h so that the mduced isotopy of hF carnes S across W
to T Now h is homotopic to the îdentity It follows that we can further isotop h to
be the îdentity on f(S), and that this further isotopy keeps h(f(S)) m/(F)

LEMMA 2 4 If W contains a comportent C of Af, then C lies in some regular
neighborhood of dS in W

Proof First we suppose that C lies mdW If C lies in S, it must be a component
of dS, so that the resuit is trivial Suppose that C lies in the interior of T Every
loop m T is homotopic in MF into S and hence into R, as S lies m hF(R) and hF

is homotopic to the îdentity As nx(MF) =f+{nx(F)\ every loop in Tis homotopic
in F into R As each component of dT is disjoint from OR or coïncides with a

component of dR, it follows that T consists of a subsurface of R and of annuh in
F which meet R in one boundary component Hence C is a boundary component
of T or lies in one of thèse annuh and so must be parallel in T to a component of
dT, so that again the resuit of Lemma 2 4 is clear

Now we suppose that C lies in the interior of W The point hère is that hF

is a homeomorphism of MF which fixes C and so C must lie on the same side of
F and of hF(F) It follows that there must be a second component S&apos; of
hF{F) — hF(F)nF, such that the product région W between Sf and some subsurface

T of F contains C As S&quot; and S are disjoint, it follows that W7 contains W or
vice versa We will suppose first that W is contamed in W Then S&quot; is homotopic
in W into S, as W is a product région Hence S&apos; is homotopic in hF(F) into S As
S&apos; and S are disjoint subsurfaces of hF(F), is follows that S&apos; must be an annulus
and that S&apos; is homotopic into dS Thus C lies in a regular neighborhood of ÔS as

required If W were contamed in W, the above argument would show that S is an
annulus, contradicting our choice of S This complètes the proof of Lemma 2 4

Now we analyse how XF and YF meet W Of course, S is contamed in YF and
T is contamed in XF Each sheet of Xt is really an immersed surface in MF The

pre-image of d W in this surface divides it into subsurfaces which are immersed into
W or into MF — W The subsurfaces which are mapped into W will be referred to
as the components of XF n W Note that this is an abuse of standard terminology
as components in this sensé may meet m W

LEMMA 2 5 Each component ofXFnW and ofYFnW is an embedded surface
Each component of XFnW other than T is either an annulus with one end on S and
the other on T which lies in a regular neighborhood of dS in W or it is a surface with
ail its boundary in S Each component of YFnW other than S is a surface with its
boundary in T
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Proof. Let I be a component of XF n W other than T. Then Z is a surface
immersed in W whose boundary embeds in d W. If dZ meets T it must do so in a

circle parallel in T into ôT, by Lemma 2.4. But any component of XF which meets

F must be an embedded annulus meeting F in a single circle, because our immersion
of F into M has the 3-plane property and the 1-line intersection property. Thus any
component of XF n W which meets T is an embedded annulus with one end in S

and the other on T, and any such annulus lies in a regular neighborhood of dS in

Now suppose that Z does not meet T. As W déformation retracts to S, we can
homotop Z rel ÔZ into S. Thus Z can be homotoped to hâve no crossings. This is

the point at which we use the fact that we chose/: F-+M to be least area in its

homotopy class. Theorem 1 of [H] shows that Z is least area in its homotopy class

rel boundary in MF and hence in W. Now we apply Theorem 6.3 of [FHS] modified
as discussed in §7 of that paper so as to apply to surfaces with boundary. This
shows that Z must be embedded as it is properly homotopic rel dZ to a surface
without crossings and it cannot factor through a proper covering as ôZ is embedded
in dW.

Finally let Z be a component of YF n W other than S. Then Z cannot meet S so

that ôZ lies in T. As W déformation retracts to T, we can homotop Z rel dZ into
T. Again it follows that Z must be embedded. This time Z is not least area, but
hFl(Z) is least area and the above arguments show that it must be embedded. This
complètes the proof of Lemma 2.5.

LEMMA 2.6. There is a subsurface S&apos; of S consisting of S with a collar of dS

removed, and an isotopy of h to h&apos; rel A such that h&apos;F(S&apos;) lies in T. There is afurther
isotopy of h&apos; to h&quot; such that h&quot; \ S&apos; is the identity.

Proof Suppose first that there is a regular neighborhood of dS in W which
contains ail components of XF n W and YFr\W other than S and T. Then XF n W
cuts S into annuli parallel to dS and a subsurface which we dénote by S&quot;. Let W&quot;

dénote the component of W ~XFc\W which contains S&quot;. Note that W&quot; nS may
not equal S&quot;. If W&quot; contains any components of dS, we let W&apos; dénote W&quot; with a

small regular neighborhood N of thèse components removed, and let T dénote

WnT and let S&apos; dénote W&apos;nS&quot;. Otherwise, W&apos; equals W&quot;.

The surfaces Sf and T&apos; both project injectively into M. Further S&apos; embeds in a

component V oï M — X which contains T in its boundary. Recall that the

boundary components of S&apos; in W are either in XF or in dN. It follows that the

boundary components of S&apos;in V are either in dV or in the image of dN. The second

type of component can be isotoped in V to lie in dV. Thus we can suppose that S&apos;

is properly embedded in V. Now 5&quot; is homotopic in W into Tf so that 5&quot; is
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homotopic in V into T&apos;. The Annulus Theorem provides an embedded annulus in
V between each component of dS&apos; and corresponding components of dT&apos;. This
allows us to further isotop S&quot; in V until dS&apos; lies in 7&quot;. Now there must be a

product région in V between S&quot; and T&apos;, so that we can isotop S&quot; to coincide with

r.
This complètes the proof of Lemma 2.6, under the assumption that there is a

regular neighborhood of dS in W which contains ail components of Xh n W and

YFc\W other than S and T. If this is not the case, we will need to make similar
arguments for product régions inside W. We apply the above arguments to
remove ail of such a product région except possibly for subregions which lie in a

regular neighborhood of dS in W.

Lemmas 2.4, 2.5 and 2.6 tell us that there is an incompressible subsurface Sx of
the interior of a component R of F —f~\A) such that Sx is not an annulus and

we can isotop h rel A to be the identity on S,. Lemma 2.3 tells us that the new h

is homotopic to the identity rel f(Sx) kjA. If the closure of R — S, has a component

S which is not an annulus, we want to repeat the above argument.

LEMMA 2.7. If the closure of R — Sx has a component which is not an annulus,
there is a subsurface S2 of the interior of S — Sx such that S2 is not an annulus and

we can isotop h rel f(Sx)uA to be the identity on f(SxuS2)uA.

Proof As R — Si has a component which is not an annulus, there is a

component of hF(R) — hF(R) nF whose closure S is not an annulus. The
arguments of Lemmas 2.4, 2.5 and 2.6 apply to show that we can isotop h to be the

identity on f(S2), where S2 is some surface in the interior of S which is homeo-

morphic to S. We need to check that h remains fixed on S, during this isotopy.
For this, it suffices to show that the interior of Sx cannot meet the product région
W in MF between S and the subsurface T of F. If the interior of Sx meets W, then

it must be contained in T and hence is homotopic in MF into S. This implies that
h(S}) is homotopic in hF(F) into S. As ^(^i) and S are disjoint subsurfaces of
hF(F), it follows that S{ is an annulus. This contradiction complètes the proof of
Lemma 2.7.

By repeatedly applying Lemma 2.7, we will obtain the following corollary.

COROLLARY 2.8. There are disjoint subsurfaces Su...9Sk of R such that
R — \JSt consists only of annuli and we can isotop h so that h\A\j(\JSl) is the

identity and that h is homotopic to the identity rel Au(\JSt).
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Now we can prove the following:

LEMMA 2.9. We can isotop h to be the identity on f(R).

Remark. Note that / may not embed R in M. Also note that our isotopy of h

need not fix A.

Proof. First we consider the annuli of R -[]Sl which do not meet dR. Let A be

such an annulus. We will consider the situation in M rather than in the cover MF.
The intersection hF(A)nA cuts A and hF{A) into sub-annuli. We can fînd inner-
most sub-annuli A&apos; of A and A&quot; of hh(A) with the same boundary. Their union is

an embedded torus in M. As M is not Haken, and A carries a non-trivial élément
of nx(M), this torus must bound a solid torus W in M. If the inclusion of A&apos; in W
induces an isomorphism of fundamental groups, we can isotop h(A &apos;) across W so

as to remove two components from hF{A) nA, or, if this intersection equals dA, we

can isotop h{A) across W so as to fix A. This isotopy can be done keeping h fixed

on \jSt. For S, cannot meet W, as S, cannot meet A or h(A). But this isotopy may
not fix A as W may contain a component of A. Conceivably, the inclusion of A

&apos; in
W may not induce an isomorphism of fundamental groups, but this problem can

occur for only one of the solid tori which can be obtained this way. For the union
of two such solid tori and a neighborhood of a sub-annulus of A joining them
would be a Seifert fiber space in M which was not a solid torus as it would hâve two
singular fibers. We can find at least two such solid tori unless hF{A) nA equals dA.

Thus we can always isotop h(A) until we hâve hF(A)nA equal to dA. Now we
consider the lift of A into MF. As h is homotopic to the identity rel [JSn we hâve

hF(A) nA equals dA. It follows that the solid torus bounded by A uhF(A) in MF
projects injectively into M and hence that we can isotop h to be the identity on A,
as required.

We repeat the above argument until h is the identity on \JSt and on ail

components of R — (J St which do not meet dR. Dénote this union by Rx.

If/embeds R in M, it is now trivial to isotop h to be the identity on R while

keeping h fixed oni?,. We can do this by contracting the collars of dR along hR and

expanding along R. Of course, such an isotopy does not fix A.

If/fails to embed R, let C and D be components of dR identified by/and let
A and B dénote the components of R — Rx which contain C and D respectively. As

before it is trivial to isotop h to be the identity on B, and we now need to show that
we can isotop h rel RxuB to be the identity on A. First we assume that, by
repeating the above argument, we hâve arranged that h is the identity on f(dR).
Now we argue as in the case of an annulus in the interior of R. The new problem
is that it is conceivable that a product région W in M between a sub-annulus of A
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and of hA contains a component E of f(dR). We will show that this cannot
happen. If W contains E, then there are two annuli of X n W which cross at E
and so are eut by E into four half annuli. One of thèse half annuli is fixed by h

because of the way that we chose h to fix f(dR). But such an annulus cannot
cross A or hA, yielding the required contradiction. This complètes the proof of
Lemma 2.9.

Finally we are in a position to complète the arguments of this section.

THEOREM 2.10. There is an isotopy of h to be the identity on X =f(F).

Proof. Lemma 2.9 tells us that we can isotop h to be the identity on f(R),
where R is the closure of a component of F —f~l(A) which is not an annulus.
Now we proceed to consider those components which are adjacent to R. If we
hâve an annulus adjacent to R which / embeds in M it is trivial to isotop h to be

the identity on the union of R and the annulus. If we hâve a component R&apos; which
is not an annulus and is adjacent to R, we argue as for R. Lemmas 2.4-2.9 tell us
how to isotop h to fix R&apos;. We need to check that this isotopy can be done keeping
h fixed on R. This is not obvious as our isotopy of R obtained from Lemmas
2.4-2.9 did not need to fix dR. The problem is that we might find a product
région W between a subsurface of R&apos; and of h(R&apos;) which contains a component of
dR in its interior. But the argument at the end of Lemma 2.9 shows that this
cannot happen.

Suppose there is a component A of F —f~l(A) which is an annulus adjacent to
R, that A is not embedded by /, and that only one component of dA lies in ôR.

Then the other component of dA lies in a component R&apos; which cannot be an
annulus unless /embeds Rf. (This is by the argument in the first paragraph of the

proof of Lemma 2.9.) Thus we can isotop h to fix R&apos; whether R&apos; is an annulus or
not. By repeating ail the above arguments, we can arrange that h fixes ail of/(F)
except those annuli of F —f~l(A) which are not embedded by /. Let Au Ak
be the annuli in F not fixed by h. Then/(^4/) is an embedded torus Tt in M. Let
Ct dénote f(dAt As M is not Haken and Tt carries a non trivial élément of
nx{M), Tt must bound a solid torus Wt. We consider the double curves

hFTtn(\JTj). By arguing as before, particularly as in the proof of Lemma 2.9, we

can isotop h rel X — (J Tn so as to arrange that hFTt n((J T}) is empty when i and

j are distinct and that hpT^T, consists only of the circle Ct. It follows that, for
each / and j, h Wt and W} are disjoint or one is contained in the other. Now it
follows that, for distinct i and y, hWt and W3 are disjoint, and that either hWl is

contained in Wt or vice versa. Hence we can isotop h rel X — \j T, to be the

identity on each Tt. Thus we hâve isotoped A to fix J as required.
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§3. Homeomorphisms fixing free links

Let M be a closed orientable irreducible non-Haken 3-manifold with infinité
fundamental group. Let h be a homeomorphism of M which is homotopic to the

identity and equals the identity on a link A in M. We would like to be able to
deduce that h is isotopic to the identity. If M is a Seifert fiber space it is known that
h is isotopic to the identity with no further assumptions [Sel] [B-O], but it is

unreasonable to expect to be able to do this in gênerai, as one can always isotop h

to fix a 3-ball in M and hence fix any circle in the 3-ball. So we restrict our attention
to links which hâve irreducible complément in M. We call such a link essential.

Note that if each component represents a non-trivial élément of 7i,(M), it is

automatically essential. We will also need one further condition on our link. Given
a link L in a manifold M, let M dénote the universal cover of M and let L dénote
the full pre-image of L in M. We say that L is free in M if the fundamental group
of M — L is free.

Now we show that the link A of §2 is free.

LEMMA 3.1. Let f : F -^ M be an immersion with the 3-plane property and with
double curve set A. Then A is free in M.

Proof In the universal cover M of M the pre-image of f(F) consists of
embedded planes which intersect each other in the Unes of A. In [HRS], it is shown
that the 3-dimensional régions into which thèse planes split M are ail simply
connected, and that the 2-dimensional régions into which the planes are eut by A

are also simply connected. Now Van Kampen&apos;s Theorem tells us that the
fundamental group of M — A is free as required.

LEMMA 3.2. Let M be a 3-manifold containing a free link L. Let g : T -* M — L
be a map of the 2-torus which injects nx(T). Then the image ofnx{T) in nx{M) cannot
be trivial.

Proof. If the image of nx(T) in nx{M) were trivial, then g would lift to a map
g\T-*M — L which would inject nx(T). But this is impossible as n{(M — L) is

free.

Now we prove the main resuit of this section.

THEOREM 3.3. Let M be a closed orientable irreducible non-Haken Z-manifold
with infinité fundamental group, and let L be an essential free link in M. Let h be a

homeomorphism of M which is homotopic to the identity and equals the identity on L.
Then h is isotopic to the identity.
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Proof. Let N dénote the closure of M minus a regular neighborhood W of L. As

M is irreducible and L is essential, it follows that TV is irreducible. Thus N is Haken.

If dN were compressible in N, then TV would be a solid torus. Thus M would be the

union of N and the solid torus W. But this would contradict our assumption that
M is irreducible and has infinité fundamental group as M would hâve to be a lens

space or S&apos;x S2. Thus we can assume that dN is incompressible in N. Now we
consider the characteristic torus décomposition of N.

Suppose first that the characteristic submanifold of N is empty. Thurston&apos;s work
[Th] implies that N admits a complète hyperbolic structure. Isotop h to be the

identity on W and let hx dénote the restriction of h to N. Mostow&apos;s Rigidity
Theorem [Mo] implies that hx is homotopic to an isometry gx of N. As TV is Haken
and is not homeomorphic to T x /, Waidhausen&apos;s resuit in [Wal] implies that hx is

isotopic to gx. Now any isometry of N is periodic, so it follows that we can isotop
h to a periodic homeomorphism g of M. A theorem of Conner and Raymond

[C-R] asserts that if M is an orientable aspherical closed manifold with centerless

fundamental group and if g is a periodic homeomorphism of M which is homotopic
to the identity then g is the identity. We deduce in our case that if nx(M) is

centerless, then h is isotopic to the identity as required. Otherwise, nx(M) has

non-trivial center and so M is a Seifert fiber space by the récent work of Casson and

Jungreis [C-J] and Gabai [G]. At this point, we could quote the gênerai resuit that
homotopic homeomorphisms of a Seifert fiber space are isotopic, or we can use the
results of Meeks and Scott in [M-S] which tell us that a periodic homeomorphism
of a Seifert fiber space with infinité fundamental group préserves some Seifert

fibration. As h is homotopic to the identity, if follows that h embeds in a circle
action on M and in particular is isotopic to the identity.

Next suppose that AT is a Seifert fiber space. Then Lemma 3 of [E-M] tells us

that, as M is irreducible, M must be a Seifert fiber space with a Seifert fibration
extending a fibration of N. Again we could quote the gênerai resuit that homotopic
homeomorphisms of a Seifert fiber space are isotopic, or instead we can use the

easier fact that any homeomorphism of N is isotopic to a fiber preserving one. Thus
h is isotopic to a fiber preserving homeomorphism of M and now it is easy to show

that h is isotopic to the identity.
Finally suppose that the characteristic submanifold of N is neither empty nor

equal to TV. Let I dénote the frontier of the characteristic submanifold of N and let

T be a component of I. As M is non-Haken, T must be compressible in M. Hence

either T lies in a bail in M or T bounds a solid torus. But Lemma 3.2 tells us that
the image of nx{T) in nx(M) cannot be trivial. We deduce that T bounds a solid

torus V in M. Let T and T be components of I which bound solid tori V and V
respectively in M, and suppose that V and V are not disjoint. Then V contains V
or V contains V or their union equals M. In the last case, we use the fact that there
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must be a closed curve C on dV which is essential in M as the image of nx(T) in

tt, (M) is non-trivial, by Lemma 3.2. Note that C must be essential in V and in V.
We consider the cover Mc of M whose fundamental group is the cyclic group
carried by C. Thus C lifts to Mc, and we dénote the lift by C also. The components
of the pre-images in Mc of V and V which contain C must be finite covers Vc and

F^ of V and K&apos;. Again one of thèse solid tori is contained in the other or their
union equals Mc. The first two cases are impossible as they would imply that V is

contained in V or vice versa. Thus Mc is the union of two solid tori and, in

particular, is closed. But our hypothèses on M imply that M is aspherical and hence

that Mc is an aspherical closed 3-mamfold with infinité cyclic fundamental group
which is impossible. We deduce that V must be contained in V or vice versa. Now
we let V dénote the union of ail the solid tori in M bounded by components of 1.
The preceding arguments imply that F is a disjoint union of solid tori. We consider
the décomposition of M into V and its complément N. We can isotop h so as to

préserve the charactenstic submanifold of TV and hence préserve V and N. By
construction, N is a Seifert fiber space or is hyperbolic. Now the preceding

arguments can be apphed to show that our homeomorphism of M can be isotoped
to the identity. This complètes the proof of Theorem 3.3.

REFERENCES

[A] K Asano, Homeomorphisms of pnsm manifolds, Yokohama Math J 26(1978), 19-25

[B-R] J Birman and J H Rubinstein, One-sided Heegaard splittings and the homeotopy groups of
some 3-manifolds, Proc London Math Soc 49 (1984), 517-536

[B-O] M Boileau and J -P Otal, Groupes des dijfeotopies des certaines variétés de Seifert, C R
Acad Sci Pans, t 303, Série I, no 1, 1986, 19-22

[Bon] F Bonahon, Diffeotopies des espaces lenticulaires, Topology 22(1983), 305-314

[C-J] A Casson and D Jungreis, Convergence groups and Seifert fibered 3-manifolds, prepnnt
[C-R] P E Conner and F Raymond, Manifolds with few penodic homeomorphisms, Proc Second

Conférence on Compact Transformation Groups, Spnnger Lecture Notes 299, Part II, 1-75

[E-M] B Evans and J Maxwell, Quaternwn actions on S\ Amer J Math 101 (1979), 1123-1130

[FHS] M H Freedman, J Hass and P Scott, Least area incompressible surfaces in 3-manifolds,
Invent Math 7/(1983), 609-642

[F-W] J L Friedman and D M Witt, Homotopy is not isotopy for homeomorphisms of3-manifolds,

Topology 25(1986), 35-44
[G] D Gabai, Convergence groups are Fuchsian groups, Bull Amer Math Soc 25 (1991),

395-402
[HRS] J Hass, J H Rubinstein and P Scott, Covenng spaces of 3-manifolds, Bull Amer Math

Soc 7&lt;5(1987), 117-119
[HRS] J Hass, J H Rubinstein and P Scott, Compactifying covenngs of closed 3-manifolds, J

Diff Geom J6? (1989), 817-832
[H-S] J Hass and P Scott, Homotopy équivalence and homeomorphism ofl-manifolds, Topology 31

(1992), 493-517
[Ho-R] C Hodgson and J H Rubinstein, Involutwns and isotopies of lens spaces, Knot theory and

manifolds, Spnnger Lecture Notes Number 1144, 60-96



364 JOËL HASS AND PETER SCOTT

[L] F Laudenbach, Topologie de la dimension trois homotopie et isotopie, Astensque 12(1914)
[Mo] G D Mostow, Quasi-conformai mappings in n-space and the ngidity ofhyperbohc space forms,

Publ IHES 54(1968), 53-104
[R] J H Rubinstein, On 3-manifolds which hâve finite fundamental group and contain Klein boules,

Trans Amer Math Soc 25/(1979), 129-137
[Sel] P Scott, Homotopy imphes isotopy for some Seifertfiber spaces, Topology 24 1985), 341 -351
[Sc2] P Scott, A new proof of the Annulus and Torus Theorems, Amer J Math 102 (1980),

241-277
[Sk] A Skinner, The wordproblem in a class of 3-dimenswnal manifolds, PhD thesis, University

of Melbourne
[Sw] G A Swarup, Finding incompressible surfaces in 3-manifolds, J London Math Soc d(1973),

441-452
[Th] W Thurston, The geometry and topology of3-manifolds, Princeton University Lecture Notes

(1978)
[Wal] F Waldhausen, On irreducible 3-mamfolds which are sufficiently large, Ann of Math 87

(1968), 56-88
[Wa2] F Waldhausen, Gruppen mit zentrum und 3-dimensionale Mannigfaltigkeiten, Topology 6

(1967), 505-517

University of California
Davis, USA

and

Department of Mathematics
University of Michigan
Ann Arbor, Mich 48109-1003
USA

Received October 10, 1990


	Homotopy and isotopy in dimension three.

