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Homotopy and isotopy in dimension three

JoeL HAss' AND PETER SCOTT?

Let M be a closed P?-irreducible 3-manifold. It is a long standing problem to decide
if homotopic homeomorphisms of M must be isotopic. The answer is now known
to be affirmative if M is Haken, [Wal], see also [L], or if M is a Seifert fiber space
[Ho—R] [Bon] [B-R] [A] [R] [Scl] [B-O], and for a few other special manifolds
[B-R]. Thus is now seems reasonable to conjecture that the answer is always
affirmative. Howéver, if one considers reducible manifolds, there is a counter example
[F-W]. In this paper, we further enlarge the class of 3-manifolds for which the above
conjecture can be proved. If a closed P*-irreducible 3-manifold is non-orientable, it
must be Haken, so we consider only orientable 3-manifolds in the rest of this paper.

Let M be an orientable 3-manifold, let F be a closed orientable surface not S?
and let f: F - M be an immersion which injects n, (F). Let M, denote the cover of
M such that (M) equals f,(n,(F)) and let M denote the universal cover of M.
We will suppose that the lift of f into M is an embedding. (Note that this is
automatic if f'is least area in the smooth or PL sense.) Thus the pre-image in M of
f(F) consists of an embedded plane IT which covers F in M, and the translates of
I by n,(M). We will say that f has the k-plane property if, given k distinct
translates of I1, some pair is disjoint. In this paper we will consider the case when
k equals 3. A map with the 3-plane property has no transverse triple points. We will
say that f has the 1-line-intersection property if two distinct translates of II are
disjoint or intersect transversely in a single line. The main result of this paper is

THEOREM 1.1. Let M be a closed orientable irreducible 3-manifold which is
neither Haken nor a Seifert fiber space. If there is a closed orientable surface F, not
S?, and an immersion f:F— M which injects n,(F) and has the 3-plane and
1-line-intersection properties, then homotopic homeomorphisms of M are isotopic.

In [H-S], we show that if M satisfies the hypotheses of this theorem, and M is
homotopy equivalent to an irreducible 3-manifold N, then M and N are homeomor-
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phic. In fact we prove a more general result in which the 3-plane hypothesis is
replaced by the assumption that f has the 4-plane property.

Note that as in [H—S], the hypotheses of Theorem 1.1 do not require that M
have any finite cover which is Haken. But if M is double covered by a Haken
manifold M, which admits an embedding of F injecting =,(F), then the immersion
f: F—> M obtained by projecting into M will have the 3-plane property. For the
planes in M above f(F) will split into two families, each family consisting of
mutually disjoint planes. Two out of any three planes in A must belong to the same
family and thus not intersect. If the embedding of F in M, also has the 1-line-inter-
section property then M will satisfy the hypotheses of the theorem unless it is
Haken or a Seifert fiber space. This will happen, for example, if M, is hyperbolic
and F is totally geodesic.

There is a general construction of manifolds which satisfy the hypotheses of
Theorem 1.1 which we have discussed with Aitchison and Rubinstein and which
will appear in future work of theirs. It is also discussed in [Sk]. One starts with a
closed orientable surface F of genus at least two, chooses an even number of
disjoint essential simple closed curves on F and chooses an identification of these
curves in pairs. Then one thickens the resulting 2-complex to an orientable
3-manifold so that the two sheets of F cross where the curves are identified and one
adds 2-handles and 3-handles to obtain a closed 3-manifold M which clearly has an
immersion of F without triple points. If one chooses the 2-handles to be attached
in a fairly complicated way, then one can show that M is irreducible, that the map
of F into M injects n,(F) and that F has the 3-plane and the 1-line intersection
properties. Presumably most of the manifolds obtained in this way will be non-
Haken, though we cannot prove this. It follows from [HRS] that any non-Haken
irreducible 3-manifold which admits such an immersion of F is obtained in this way.

The result of Theorem 1.1 and its proof are very closely related to those of [Scl].
In [Scl], Scott showed that homotopic homeomorphisms were isotopic for certain
Seifert fiber spaces. Any irreducible Seifert fiber space M with infinite fundamental
group admits an immersion of the torus T into M which injects 7,(7T), and such a
map always has the 1-line-intersection property [FHS]. Scott’s result in [Scl]
applied to exactly those non-Haken Seifert fiber spaces for which f: T'— M could
be found with the 3-plane property. Thus Theorem 1.1 is a natural extension of the
main result of [Scl]. The outline of the argument in this paper follows closely that
of [Scl], but our arguments differ in some important details. Note that, in Theorem
1.1, F cannot be the torus. For, as f has no triple points, this would imply that M
was a Seifert fiber space. The reason for our assumption, in Theorem 1.1, that M
is not a Seifert fiber space is that our arguments do not work well when F is the
torus. In [Scl], the map f was very special because it had only one double curve,
and this allowed the arguments to work.
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The idea of our proof of Theorem 1.1 is as follows. Let X denote the 2-complex
f(F)in M, and let h be a homeomorphism of M which is homotopic to the identity.
Note that, as M is not Haken, f cannot be an embedding. As in [Scl], we consider
hX n X. This intersection cannot be empty. The key step is to isotop 4 until AX N X
contains no triple points. We do this in §1. In [Scl], this almost completed the
argument, but here we need to work a great deal harder. Let 4 denote the union of
all the double curves of X. Our aim is to isotop 4 to the identity in stages, working
first with A | 4, then with A | X and finally with 4 itself. However this raises some tricky
points which did not need to be considered in [Scl]. We discuss these fully in §2.

There is an alternative approach which we discuss fully in §3. The first step is
still to isotop & to be the identity on 4, but the next step is to show that 4 is free
in a sense which we define. Then we show that if & fixes a free link in M, then 4 is
isotopic to the identity. This last result uses Thurston’s hyperbolization theorem,
whereas the arguments in §2 are more elementary and direct. However the argu-
ments in §3 are likely to lead to other applications. We would like to acknowledge
a helpful conversation with Francis Bonahon on this section of the paper.

§1. Removing triple points

We will use notation as close to that of [Scl] as possible, as several results we
need are proved in [Scl]. Our main result is

THEOREM 1.1. Let M be a closed orientable irreducible 3-manifold which is
neither Haken nor a Seifert fiber space. If there is a closed orientable surface F, not
S2, and an immersion f:F— M which injects n,(F) and has the 3-plane and
1-line-intersection properties, then homotopic homeomorphisms of M are isotopic.

We will arrange that f does not factor through a covering map of some surface
F’ by F, by replacing f'if necessary. If f factors through a covering of an orientable
surface F’ by F and an immersion f’ : F' — M, we simply replace f by f”, which will
still have the 3-plane and 1-line-intersection properties. Thus we can assume that f
does not factor through a covering of an orientable surface by F. If f factors
through a covering of a non-orientable surface F” by F, the degree of this covering
must be two. In this case, we can perturb fso that it no longer factors through such
a covering and still has the required properties. To do this, consider the cover M”
of M corresponding to =, (F”). The lift f” of f to this cover must double cover an
embedded copy of F”. We now replace f” by an embedding with image equal to the
boundary of a regular neighborhood of F”, and replace f by the composite of this
embedding with the covering projection from M” to M.
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Let X denote the 2-complex f(F) in M, and let » be a homeomorphism of M
which is homotopic to the identity. Let Y denote A(X). Let 4 denote the union of
the double curves of X. A point of 4 nY or of h(4) n X will be called a triple point
of X nY. We can always isotop 4 so that X and Y are in general position i.e. 4 and
h(4) are disjoint, 4 meets Y transversely and h(A4) meets X transversely at any triple
points and X meets Y transversely in the usual sense at all other points. In this
section, we prove

THEOREM 1.2. Under the hypotheses of Theorem 1.1, let h be a homeomor-
phism of M which is homotopic to the identity. Let X and Y be as above. Then h is
isotopic to a homeomorphism h, such that X and h,(X) are in general position and
intersect without triple points and without nullhomotopic double curves.

Proof. We first isotop A so that X and Y = A(X) are in general position. Thus
X nY has only finitely many triple points. As in [Scl], the basic idea is to give a
sequence of isotopies of X or Y in M, each of which reduces the number of triple
points of X nY. Any isotopy of Y can, of course, be extended to an isotopy of A,
and any isotopy of X can be replaced by an isotopy of Y, and hence of A, which has
the same effect on X n Y. However, we will need a measure of the complexity of
X n'Y which is more subtle than just the number of triple points. Having defined
this complexity, we will describe five types of isotopy each of which reduces our
complexity. Finally, we will show that if X n Y has least possible complexity, then
it has no triple points. Taken together, these results will complete the proof of
Theorem 1.2.

The points of X nY will be called XY-points, the points of 4 will be called
XX-points and the points of 4(4) will be called YY-points. A point of 4 n Y will be
called an XX triple point and a point of A(4) n X will be called a YY triple point.
A point in a covering space of M which projects to a XY-point in M will also be
called a XY-point, and we use similar definitions for the other types of point.

In order to define the complexity of 4, we need to consider the covering space
M of M whose fundamental group is f, (w,(F)). Recall that flifts to an embedding
of Fin M, whose image we still denote by F. Let X denote the full pre-image in
M, of X, let A, denote the full pre-image in M, of 4, and let A denote the lift of
h to My obtained by lifting the homotopy of 4 to the identity. Note that the
surfaces in X, need not all be embedded. The points of Fnhs(X;) are XY-points,
and the points of Fn A4, are XX-points. We define the complexity of 4 to be the
triple (s, ¢, d), where s is the number of XX triple points on F in M, ¢ is the total
number of triple points on F, and d is the number of null-homotopic curves of
XY-points on F. These complexities are to be lexicographically ordered.

For the rest of our proof of Theorem 1.2, it will be more convenient to consider
the universal covering space M of M in place of M, as all surfaces and double
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curves in M will be automatically embedded. Recall that the pre-image of f(F) in
M consists of a family of embedded planes with the 3-plane property. We call these
planes X-planes. The corresponding planes in the pre-image of Y will be called
Y-planes. Two X-planes intersect in a XX-line or are disjoint, two Y-planes
intersect in a YY-line or are disjoint, and the intersection of a X-plane and a
Y-plane is a 1-manifold each component of which is called a XY-curve. In all
diagrams, XX-lines and YY-lines will be drawn solid and X'Y-curves will be dotted.

Now we restrict attention to a single X-plane IT and the double curves which lie
on I1. These consist of a family of disjoint XX-lines and a fairly arbitrary collection
of XY-curves. The intersection of any two of these curves is a triple point. Similar
comments apply to a Y-plane with the roles of X and Y reversed.

An XY-circle C in IT will be called innermost if the disc D in IT which is
bounded by C has no double points in its interior. We let p denote the projection
map M - M.

LEMMA 13. If Il is an X-plane or Y-plane which contains an innermost
XY-circle, there is an isotopy of h which reduces its complexity.

Proof. This result is the same as Lemma 2.2 of [Scl], and the proof in [Scl]
applies unchanged to the present situation. The isotopy defined in [Scl] reduces d
by at least one and cannot increase s or ¢.

For our next results, we need some more definitions. A 2-gon in an X-plane or
a Y-plane IT is a 2-disc D in II such that 0D is the union of two arcs, each of which
is a sub-arc of a double curve in I1. If both arcs lie on X'Y-curves, we will say that
D is of type XY. Otherwise, we say D is of mixed type. A 2-gon D is innermost if
its interior contains no double points.

LEMMA 1.4. If I1 is an X-plane or Y-plane which contains an innermost 2-gon
D of mixed type, there is an isotopy of h which reduces its complexity.

Proof. This result is the same as Lemma 2.3 of [Scl]. The proof in [Scl] needs
the following slight modification.

As in [Scl], assume that IT is an X-plane, and let 0D consist of two arcs 4 and
U, where 4 is a sub-arc of an XX-curve L and p is a sub-arc of an XY-curve. The
isotopy required is defined as in [Scl]. The proof that D projects injectively to M
is also as in [Sc1] except for the following point. Let g be an element of =, (M) such
that gD meets D. If gL = L, then it follows that gIT = I1. In [Scl], this is proved by
using the fact that =,(M) has center. In the present case, we note that the
alternative is that g interchanges the two X-planes through L. Thus, in a neighbor-
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hood of L, g must act as a screw motion, so that g2 must preserve IT and reverse
its orientation, contradicting our hypothesis that F is orientable.

The isotopy defined in [Scl] reduces ¢ by at least two. If IT is an X-plane, then
it also reduces s by at least two. If IT is a Y-plane, then s is unchanged. In either
case the complexity of 4 is reduced.

LEMMA 1.5. If Il is an X-plane or Y-plane which contains an innermost 2-gon
of type XY, there is an isotopy of h which reduces its complexity.

Proof. This result is the same as Lemma 2.4 of [Scl]. The isotopy is constructed
as in [Scl], and the proof in [Sc1] only needs modifying as in Lemma 1.4. Namely,
we need to point out that if g preserves an XX-line L, then it must preserve each
of the two X-planes which contain L.

As for Lemma 1.4, the isotopy defined in [Scl] reduces ¢ by at least two and
reduces s by at least two or zero according as Il is a Y-plane or X-plane
respectively.

Our next move can only be used in a situation where the three preceding lemmas
are not applicable.

LEMMA 1.6. Suppose that no X-plane or Y-plane contains an innermost circle or
an innermost 2-gon, but that some plane Il contains a 2-gon of type XY. Then there
is an isotopy of h which reduces its complexity.

Proof. This result is the same as Lemma 2.5 of [Scl]. However, the proof needs
substantial changes. We start by reproducing the first three paragraphs of the proof
of Lemma 2.5 of [Scl]. We will first suppose that IT is an X-plane.

We have a 2-disc D in IT whose boundary consists of two arcs y, and u,, each
being a sub-arc of an XY-curve. We can assume that no sub-disc of D has the same
property, by replacing D if necessary. As we are assuming that D is not innermost,
the interior of D must contain some XX-points or XY-points. As D contains no
sub-disc which is a 2-gon of type XY, we see that there cannot be an XY-arc in D
with both ends on y,, or both on yu,, and that any two XY-curves in D meet in at
most one point. Also there cannot be an XY-arc joining y, to u, as this would
contradict the 3-plane property for the Y-planes. It follows that any XY-curve in D,
other than u, and u,, must be a circle in the interior of D, and that any two such
circles must be disjoint.

Suppose that D contains an XY-circle C. As no plane contains an innermost
circle, some XX-line must meet C. As all XX-lines in IT are disjoint, this implies
that D contains an innermost 2-gon of mixed type. As no plane contains an
innermost 2-gon, we deduce that the interior of D contains no XY-points. Hence
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Figure 1.7

the interior of D must contain some XX-points. Let A be an arc of XX-points in D.
If 04 lies on y,, then A together with a sub-arc of u, determines a 2-gon of mixed
type. This 2-gon may contain other XX-arcs, but it follows that D contains an
innermost 2-gon of mixed type. As we are assuming that IT has no innermost
2-gons, we deduce that all the XX-arcs in D join u, to u,.

Let I1, denote the Y-plane containing u,, for i =1, 2, let L denote the line
II,nII, and let A denote the segment of L with the vertices of D as end points.
Then 4 U g, bounds a 2-disc D, in IT,, and D u D, U D, forms a 2-sphere in M which
must bound a 3-ball B. See Figure 1.7.

In [Scl], Scott was able to show that B projects injectively into M. Then he
defined an isotopy of Y in M which isotoped p(D, U D,) across p(B) and just past
p(D). The present situation may be more complicated as B may not inject into M.
However, we will show how to define a similar isotopy of Y in M.

Suppose now that gB meets B. Exactly as in [Scl], it follows that gL = L. Thus,
as in our proof of Lemma 1.4, g must preserve each of I1, and I1,. If g also preserves
I1, then either g is the identity or gx = y, or gy = x. But the last two cases imply that
gB is on the opposite side of IT from B which contradicts the fact that IT projects
to a 2-sided surface in M. Thus, if g preserves I1, then g must be the identity. Hence
if g is a non-trivial element of =, (M) such that gB meets B, then g does not preserve
I1. Also g ~' does not preserve II. Now g acts on L as a non-trivial translation, so
that g2 acts on L as a non-trivial translation. It follows that g2 also cannot preserve
I1, so that gIT and g ~'IT are distinct. Now the 3-plane property applied to I1, gII,
and g ~'IT shows that gIT and g —'IT are disjoint. Hence IT and g*IT are disjoint.

Let a denote a generator of the stabiliser of L. We deduce from the above that
if gB meets B then g must be one of 1, « or « ~'. If B does not meet aB, we can
define the required isotopy of Y in M exactly as in [Scl]. If B does meet aB, the
picture must be as in Figure 1.8. We choose an isotopy of D, u D, across B such
that the isotopy restricted to (D, uD,) naB is obtained from the isotopy restricted
to (D,uD,) na~'B by applying a. This can be done precisely because aB and « ~'B
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Figure 1.8

are disjoint. This isotopy extends to an isotopy of the union of all the a"(D, U D,)
which is equivariant under the action of the group generated by «. Finally, this extends
to an isotopy of all the translates of D, u D, by n,(M) which is n,(M)-equivariant.
This isotopy extends equivariantly to the union of all the Y-planes by the identity.
Such an isotopy must descend to an isotopy of Y in M, as required. As in the preceding
two lemmas, this isotopy reduces ¢ by at least two and does not increase s as IT is
an X-plane. If IT is a Y-plane, we can apply the same arguments reversing the roles
of X and Y to obtain an isotopy of X which reduces s and ¢ by at least two. This
completes the proof of Lemma 1.6.

Our final move can only be used in a situation where none of the preceding lemmas
is applicable. Unlike the previous moves, this move may increase the total number
t of triple points of X n Y, but it does reduce the number s of XX triple points.

LEMMA 1.9. Suppose that no X-plane or Y-plane contains an innermost circle or
an innermost 2-gon, and that no plane contains a 2-gon of type XY. If an X-plane I1
contains a 2-gon, there is an isotopy of h which reduces its complexity.

Proof. This is the same statement as Lemma 2.6 of [Scl]. However, as with the
previous lemma, the proof needs substantial changes to apply to our situation. We
start by reproducing the first paragraph of the proof of Lemma 2.6 of [Scl].

Let D be a 2-gon in the X-plane IT with one edge A being a sub-arc of an
XX-curve and the other edge u being a sub-arc of a XY-curve. We can assume that
no sub-disc of D is a 2-gon, by replacing D by a sub-disc, if necessary. Thus the
interior of D contains no XX-points. As D cannot be an innermost 2-gon, its
interior must contain some X'Y-points. No XY-circle can lie in D as II contains no
innermost circles and no 2-gons of type XY. It follows that the XY-points of D lie
on arcs. None of these arcs can have both end points on 4, as this would yield a
sub-disc of D which is a 2-gon. Also none of these arcs can have both end points
on u, as IT contains no 2-gons of type XY. Hence each XY-arc in D joins 4 to pu.
Finally these arcs are disjoint from each other by the 3-plane property for the
Y-planes. Thus we have a configuration as shown in Figure 1.10.
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In [Scl], Scott showed that D projected injectively into M. As for the previous
lemma, this need not be true in the present situation, but we can still define the
required isotopy of X in M in a similar way to that in [Scl].

Suppose now that gD meets D. If gIT does not equal II, then gD n D must
consist of XX -points in gIT nI1. As the only XX-points in D lic on A, and the only
XX-points in gD lie on g4, we deduce that gL must meet L. But this implies that
gL = L as L projects to a simple closed curve in M, and this implies that g preserves
I1, as in the proof of Lemma 1.4. This contradicts our assumption that gIT does not
equal I1. Thus gIT = I1. Hence g(0D) must meet dD. Hence one of g4 and gu must
meet one of A and u. If gu meets u, then gu must contain one of the X'Y-arcs which
crosses D, so that gu must meet 4. It follows that, in all cases, gD n D contains
points of A4 or of gi. As the only XX-points of D lie on 4 and the only XX-points
of gD lie on g4, we conclude that g4 meets A. Hence gL meets L and so gL = L.

Let IT’ denote the Y-plane which contains u. If g is a nontrivial element of
7, (M) such that gD meets D, the above shows that gIT = IT and gL = L, so that gu
must cross u. Hence gIT’ must cross IT°, and also g ~'IT’ must cross I1’. By the
3-plane property for Y-planes, gIT’ and g ~'II’ must be disjoint.

Let o denote a generator of the stabiliser of L. The above arguments show that
if gD meets D then g must be one of 1, « or « ~'. See Figure 1.11. Now, as in the

| 1 | 1
- ay 2
4 ] N 7 | \ s ) N | N
‘o1, P ! ~ ! a ) ZD\\
’ " 7\ / a
(@ 01N Dy e 3 L
L L [ L1 | I U W \
| T A v v 1) v 4 L] T i L
. | 1 1 { ] 1 1 1 | ) |
) ' 1 ! y | 1 \ ' | L 1
& ~ ->

Figure 1.11



350 JOEL HASS AND PETER SCOTT

preceding lemma, we can define the required isotopy of X in M, by defining an
equivariant isotopy of the X-planes in M, which isotops 4 across D and just past u.

As in [Scl], this isotopy increases the total number ¢ of triple points of X N Y,
but it reduces the number s of XX triple points by two, thus reducing the
complexity of A.

Now we are in a position to conclude the proof of Theorem 1.2, which asserts
that 4 can be isotoped to arrange that X n Y has no triple points. We have just seen
five ways of isotoping 4 to reduce its complexity. The next lemma tells us that if
none of these isotopies can be carried out, then X n Y has no triple points. It also
says that there are no nullhomotopic double curves.

LEMMA 1.12. Suppose that the homeomorphism h minimises the complexity
(s, t, d) among all homeomorphisms isotopic to h. Then the complexity of h is (0, 0, 0).

Proof. This is essentially the same statement as Lemma 2.7 of [Scl]. However,
the proof needs substantial changes to apply to our situation. We start by
reproducing the first paragraph of the proof of Lemma 2.7 of [Scl].

Lemma 1.3 shows that no X-plane or Y-plane contains an innermost X'Y-circle.
Lemmas 1.4 and 1.5 show that no plane contains an innermost 2-gon. Lemma 1.6
then shows that no plane can contain a 2-gon of type XY. Finally, Lemma 1.9
shows that no X-plane contains a 2-gon of any type. It follows that no XY-curve
can be a circle. Thus d must equal zero.

Let IT denote an X-plane. We have just seen that all the XY-curves in IT are
lines and that any two of the XY-lines and XX-lines in IT meet in at most one point.

Recall the covering M of M and the lift of f to M, whose image is denoted by
F. The complete pre-image of X is denoted X and the lift of 4 is denoted .. Let
IT denote the X-plane in M which is the pre-image of F. We consider the image in
F of the XX-lines and XY-lines in II. The XX-lines project to a family of disjoint
essential simple closed curves on F, and each XY-line projects to some essential
closed curve. Recall that the XX-curves on F are the intersection curves of F with
the other components of X,. The XY-curves on F are the intersection curves of F
with Az (XF). If two of these curves C; and C, intersect, then they are the image of
a pair of lines in IT which intersect. As these lines intersect in only one point, we
deduce that C, and C, intersect essentially i.e. they cannot be homotoped to the
disjoint.

Suppose that X n Y has some XX triple points. Then there is a XY-curve C on
F which crosses a XX-curve. It follows from the above that C cannot be homotopic
to any XX -curve. Let F’ denote the component of X such that Fnhg(F’) contains
C. Note that F' may not be embedded or compact. The 1-line-intersection property
for the X-planes implies that F’ is disjoint from F, or F’ equals F, or F’ is an
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annulus and meets F in one simple closed XX -curve. The last case is impossible as
C would then have to be homotopic to a XX-curve. Thus F’ is disjoint from F or
F’ equals F, but h,(F’) crosses F. In either case, it follows that A, (F") intersects one
(and possibly both) of the closures of the components of M, — F in a compact
surface.

Suppose that ¥’ is an embedded surface in M. It follows, as in Lemma 4.1 of
[FHS], that there must be a compact product region W in M, between F and
hp(F’). Let Q and Q' denote the surfaces in which W meets F and h.(F’). Taking
the pre-image of W in M yields a Y-plane IT’ in M above h,(F’) and a product
region W between IT and IT° which projects to W in M,.. Let @ and @’ denote the
surfaces in which W meets IT and IT’. Of course, W will probably not be compact.

There is an XY-line L in IT which projects to C and which crosses d9. As L
projects to C, each component of L n @ projects to a compact subinterval of C. It
follows that L n @ consists of compact arcs. In fact, L nQ must be a single arc 4,
as otherwise there would be a 2-gon in IT between L and a component of €. Let
I1" denote the Y-plane which contains L, and consider the intersection of IT” with
@Q’. This is a 1-manifold with exactly two boundary points, the endpoints of 1, as
0Q’ equals 8Q. As IT" A I1" is a single line, it follows that IT” nQ’ is a single arc 4.
But this implies that IT” contains a 2-gon bounded by A and A’, which is a
contradiction, as X-planes contain no 2-gons.

If F’ is not embedded in M, we can make a very similar argument to the above,
as follows. Let M, denote the covering of M, such that F’ lifts to M, by a
homotopy equivalence. The lift will be an embedded surface F;. Let F, denote the
pre-image of F in M,. Then F, cuts M, into two pieces. Now the projection map
of Fi to F’ is proper. It follows that A, (F7) intersects at least one of the closures of
the components of M, — F, in a compact surface. As before, it follows that there is
a compact product region W in M, between F, and h,(F}), and we can make all the
arguments in the above paragraph to deduce the required contradiction.

We have just shown that X n Y cannot have XX triple points, i.e. that s must be
zero. We will show below that this implies that no Y-plane contains a 2-gon of any
type. Assuming this we can apply all the above arguments with the roles of X and
Y reversed, showing that ¢ must be zero.

Here is the proof of the above claim that if there are no XX-triple points then
no Y-plane contains a 2-gon of any type. We know that no Y-plane can contain a
2-gon of type XY from the arguments at the start of the proof of Lemma 1.12.
Suppose that IT is a Y-plane which contains a 2-gon. Then II contains a 2-gon D
which has no 2-gon properly inside it. This must be a 2-gon of mixed type which
cannot be innermost. The proof of Lemma 1.9 applies to show that D must be as
shown in Figure 1.10, i.e. the only double curves inside D are disjoint X'Y-arcs
which join the YY-edge of D to the XY-edge. But this implies, in particular, that
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there are XX-triple points on the XY-edge of D. This contradiction completes the
proof of the claim and hence the proof of Lemma 1.12.

§2. The main result

Using the notation of §1, we can now assume that our homeomorphism 4 of M
is such that X and Y intersect in general position without triple points and without
nullhomotopic double curves. Our aim is to isotop 4 further until 4 is the identity
on X. It will then be trivial to isotop 4 to be the identity on a regular neighborhood
N of X. Now the closure of each component of M — N is a handlebody by Lemma
1.4 of [HRS], and any homeomorphism of a handlebody U which is the identity of
dU is isotopic to the identity fixing 0U. Thus 4 is isotopic to the identity as required.

At one point in our proof it will be convenient to quote results on least area
surfaces. In order to do this, we pick a Riemannian metric on M and choose
f: F— M to be least area in its homotopy class. Lemma 2.4 of [HS], shows that f
will still have the 3-plane property and the 1-line intersection property. For the rest
of this section we will assume that f is least area.

We start with a result which extends our earlier observation that F cannot be the
torus.

LEMMA 2.1. With the hypotheses of Theorem 1.1, n,(M) cannot contain a
subgroup isomorphic to Z x Z, nor can it contain an infinite cyclic normal subgroup.

Proof. Suppose that 7,(M) does contain a subgroup isomorphic to Z x Z. As
M is not Haken, the version of the Torus Theorem in [Sc2] shows that =,(M) has
an infinite cyclic normal subgroup. We will show that this is impossible.

Recall that we have an incompressible immersion f: F — M which satisfies the
3-plane condition. In particular, f has no triple points. Thus if F is the torus, then
M must be a Seifert fiber space which contradicts our hypothesis. If F is not the
torus, then n, (F) has no infinite cyclic normal subgroup. It follows that M is finitely
covered by a manifold M” whose fundamental group has an infinite cyclic normal
subgroup with quotient group isomorphic to =,(F). In particular, M is finitely
covered by a Haken manifold. Again this implies that M is a Seifert fiber space by
[Sc2]. This contradiction completes the proof of Lemma 2.1.

Now we show how to isotop 4 to be the identity on the double curves of X.
Recall that 4 denotes the union of these curves.

LEMMA 2.2. We can isotop h to a homeomorphism h’ such that h’| A is the
identity on A. Further, h’ can be chosen so that h’ is homotopic to the identity rel A.
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i.e. h’ is homotopic to the identity by a homotopy which fixes all points of A at all
times.

Remark. Of course, X and A’(X) are not in general position and the points of
C are quadruple points of X nA’(X), but we can arrange that X — C and A'(X — C)
are in general position and without triple points or nullhomotopic double curves by
choosing the isotopy to be supported in a small neighborhood of C.

Proof. Let C denote a component of 4. We will first show that we can isotop
h to h’ such that 4’(C) equals C. Then we can isotop 4 to hA” which is the identity
on C unless &’ reverses the orientation of C. But this would imply that the element
of m,(M) represented by C is conjugate to its inverse, which in turn would imply
that n,(M) contains a copy of the fundamental group of the Klein bottle and hence
contains a copy of Z x Z which is impossible by Lemma 2.1.

Consider a component / of the pre image in M of C. Thus / is the intersection
of two X-planes P, and P, in M. Let / be a lift of h to M which is homotopic to
the identity. This choice of lift determines corresponding lifts of # for each covering
of M. Then A(/) is the intersection of A(P,) and A(P,). We will show that /A(P,)
meets P, in a line m which is parallel to / in P,, i.e. / and m are disjoint and have
the same stabiliser. Also m will be parallel to A(/) in A(P,). Let G denote the
stabiliser of P, and let M. denote the quotient of M by G. The image of P, in M,
is an embedded surface F, homeomorphic to F which separates the two ends of M.
The image of P, in M is an annulus 4, which runs from one end of M to the
other and meets F, in a circle C; which projects to C in M. Let h; denote the
homeomorphism of M, determined by our choice of 4. Thus A is homotopic to the
identity. Further, 4; moves points of M a uniformly bounded distance. It follows
that h;(A,) still runs from one end of M to the other and so must meet F, in a
closed curve D, homotopic to C, in F,. As C, and D, must be disjoint, we see that
h(P,) meets P, in a line m which is parallel to /in P,. Also m will be parallel to A(/)
in A(P,).

Let S, denote the infinite strip in P, bounded by / and m, and let S, denote the
infinite strip in A(P,) bounded by m and n. Let S denote S, U S,. We will use the
projection of S into M to define the required isotopy of A(C) to C. Note that S may
contain several XX, YY or XY-lines, but all these lines must be parallel to m and
so split S into sub-strips. Each of these sub-strips projects to an embedded annulus
in M and this annulus projects into X or Y by an embedding or by a map which
embeds apart from identifying the two boundary components. This defines an
isotopy of A(C) to C by isotoping along these annuli in turn and hence yields an
isotopy of h to A’ such that 4'(C) equals C. Note that when we lift this isotopy
between 4 and A’ to an isotopy between / and A’, we find that A’(/) equals /. Now
we isotop h’ | C to the identity, and extend to an isotopy from A" to h”. This lifts
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to an isotopy from /’ to #”. We choose our isotopy of 4" in such a way that A” | /is the
identity. As h” is isotopic to 4 which is homotopic to the identity, we have a homotopy
H" of h" to the identity which lifts to a homotopy A" of A" to the identity and A" | I is
the identity. We claim that 42" is homotopic to the identity rel C. For the restriction of
H” to C yields a homotopy H. : C x I - M whose lift to M is a homotopy of the
inclusion of /in M to itself. It follows that we can homotop H rel C x 01 to be the
identity at all times, and extend to obtain a homotopy from H” to H, where H is a
homotopy from A" to the identity which fixes C at all times. Thus 4" is homotopic to
the identity rel C, as required.

Finally, we consider the situation when 4 has more than one component. Let the
components be denoted C,, . . ., C,. Suppose that we have isotoped 4 to h; _ ; such that
h;_ | C;is the identity, when j < i — 1, and that A, , is homotopic to the identity rel
C,u---uUC,;_,. Weapply the foregoing argument to C;. If the track of the isotopy we
find does not meet C,u---uC,;_,, wecanisotop h,_, rel C,u---UC,;_, to h; such
that A, | Cis the identity. The argument that 4, is homotopic to the identity rel C; also
shows that 4, is homotopic to the identity rel C, u- - - U C,. If the track of the isotopy
does meet some C;, j <i — 1, then the track must contain C;. In this case we simply
perturb the track slightly so as to avoid C;. Now we can construct 4; as required.

The next step is to isotop 4 so as to be the identity on X. This turns out to be
a very delicate problem. The point is that although we have just shown that we can
isotop A to be the identity on 4, there are non-isotopic ways to do this. i.e. one can
isotop 4 to A, and to h, each the identity on 4 and each homotopic to the identity
rel 4, but 4, and h, need not be isotopic rel 4. A simple example of this
phenomenon can be described as follows. Suppose that M contains a fibered solid
torus ¥ which contains two double curves of X embedded in V as fibers. Let h, be
the identity on M and let 4, be obtained from A, by an isotopy which rotates V
through a full turn about the center fiber of V. Then 4, is homotopic to the identity
rel 4 but is not isotopic to the identity rel 4. Obviously much more complicated
examples are possible. It follows from the above that although we can isotop 4 to
be the identity on 4 and arrange that 4 is homotopic to the identity rel 4, we may
need to alter 4 on 4 in order to isotop 4 to the identity on X.

Another technical problem is that when we have isotoped h so as to be the
identity on the image in M of a subsurface S of F, we will need to know that 4 is
homotopic to the identity rel f(S) U 4 in order to carry out further isotopies. The
following result shows that once we can isotop h to be the identity on a “non-
trivial” subsurface of X then this is automatic.

LEMMA 2.3. Let S be a compact incompressible subsurface of F. Suppose that
the restriction of h to f(S) is the identity. If no component of S is an annulus, then
h is homotopic to the identity rel f(S).
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Remarks. This result may fail if S is an annulus which f embeds in M.
The methods of Lemma 2.2 show that we can isotop 4 rel f(S) to be the identity
on f(S)u 4 in such a way that 4 is homotopic to the identity rel f(S) U 4.

Proof. First we consider the case when S is connected. Recall that 4 is
homotopic to the identity. The homotopy of 4 to the identity yields a map
H :S'xf(S)—> M, such that H | {1} x f(S) is the identity. Let « denote a genera-
tor of n,(S"') and let § denote H () in 7,(M). If B is trivial then H is homotopic
rel {1} x f(S) to the identity homotopy. This shows that 4 is homotopic to the
identity rel f(S). If f is non trivial, then H (n,(S' x f(S))) is a subgroup of =,(M)
with non trivial center. This subgroup cannot be of finite index, as this would imply
that =,(M) itself has an infinite cyclic normal subgroup, by Lemma 4.2 of [Sc2],
which is impossible by Lemma 2.1. Thus H_(n,(S' x f(S))) is of infinite index in
7, (M) and hence is the fundamental group of a non-compact covering space of M.
This covering will have a compact irreducible submanifold X with the same
fundamental group [Sw]. 2 must be a Seifert fiber space [Wa2], as n,(X) has
non-trivial center and X2 is orientable irreducible and with non-empty boun-
dary. As m,(M) cannot contain a subgroup isomorphic to Z x Z, it follows that
H, (n,(S' x f(S))) is infinite cyclic. Thus n,(f(S)) must also be infinite cyclic, so
that S must be an annulus. It follows that if S is not an annulus, then /4 is
homotopic to the identity rel f(S).

If S is disconnected, we apply the above argument to each component of S in
order to complete the proof of Lemma 2.3.

Now we come to the main part of the work in this section. We choose the
closure R of a component of F — f~'(4) such that R is not an annulus. Such a
component exists as F is not a torus. Recall that M, denotes the covering of M with
(M) = f,(n,(F)) and that flifts to an embedding of F into M, whose image we
denote by F. Let A, denote the lift of A to M, which is the identity on A4, the
pre-image in M, of 4 in M. We will consider how A, (R) meets F. Certainly /.(0R)
lies in F as OR lies in 4 and A fixes 4. Now h.(R) n F divides R into subsurfaces.
As R is not an annulus, the closure S of some component of Ag(R) — hp(R) N F is
also not an annulus. As S lies in the closure of one component of M, — F, it follows
that there is a subsurface T of F with 0T equal to 05 and that there is a product
region W in M, between S and 7. The idea is to isotop S across Wto T. If W
projects injectively into M, it is clear that this can be achieved by an isotopy of A.
But although S projects injectively into M, this need not be true of W nor even of
T. However, we will eventually isotop 4 to be the identity on the image of a
subsurface S’ of S which consists of S with a collar neighborhood of dS removed.
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We need to start by analysing how the surfaces of X and Y, meet W. Note that
if no surface of X or Y meets the interior of W then T and W must project injectively
into M. Thus we can isotop 4 so that the induced isotopy of A carries S across W
to T. Now A is homotopic to the identity. It follows that we can further isotop 4 to
be the identity on f(S), and that this further isotopy keeps A( f(S)) in f(F).

LEMMA 24. If W contains a component C of A, then C lies in some regular
neighborhood of 0S in W.

Proof. First we suppose that C lies in 0W. If C lies in S, it must be a component
of 08, so that the result is trivial. Suppose that C lies in the interior of 7. Every
loop in T is homotopic in M into S and hence into R, as S lies in Ax(R) and hp
is homotopic to the identity. As n, (M) = f,(n,(F)), every loop in T is homotopic
in F into R. As each component of 0T is disjoint from J0R or coincides with a
component of OR, it follows that T consists of a subsurface of R and of annuli in
F which meet R in one boundary component. Hence C is a boundary component
of T or lies in one-of these annuli and so must be parallel in T to a component of
0T, so that again the result of Lemma 2.4 is clear.

Now we suppose that C lies in the interior of W. The point here is that A,
is a homeomorphism of M which fixes C and so C must lie on the same side of
F and of hp(F). It follows that there must be a second component S’ of
he(F) — he(F) nF, such that the product region W’ between S’ and some subsur-
face T’ of F contains C. As S’ and S are disjoint, it follows that W contains W’ or
vice versa. We will suppose first that W’ is contained in W. Then S’ is homotopic
in Winto S, as W is a product region. Hence S’ is homotopic in A, (F) into S. As
S’ and S are disjoint subsurfaces of A.(F), is follows that S” must be an annulus
and that S’ is homotopic into 0S. Thus C lies in a regular neighborhood of 45 as
required. If W were contained in W', the above argument would show that S is an
annulus, contradicting our choice of S. This completes the proof of Lemma 2.4.

Now we analyse how X and Y, meet W. Of course, S is contained in Y, and
T is contained in X.. Each sheet of X is really an immersed surface in M,. The
pre-image of dW in this surface divides it into subsurfaces which are immersed into
W or into M, — W. The subsurfaces which are mapped into W will be referred to
as the components of XN W. Note that this is an abuse of standard terminology
as components in this sense may meet in W.

LEMMA 2.5. Each component of X W and of Y W is an embedded surface.
Each component of X W other than T is either an annulus with one end on S and
the other on T which lies in a regular neighborhood of 0S in W or it is a surface with
all its boundary in S. Each component of YW other than S is a surface with its
boundary in T.
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Proof. Let X be a component of XN W other than T. Then X is a surface
immersed in W whose boundary embeds in dW. If 0X meets T it must do so in a
circle parallel in T into 07, by Lemma 2.4. But any component of X which meets
F must be an embedded annulus meeting F in a single circle, because our immersion
of F into M has the 3-plane property and the 1-line intersection property. Thus any
component of XN W which meets T is an embedded annulus with one end in §
and the other on 7, and any such annulus lies in a regular neighborhood of 4§ in
w.

Now suppose that 2 does not meet 7. As W deformation retracts to S, we can
homotop 2 rel 02 into S. Thus X can be homotoped to have no crossings. This is
the point at which we use the fact that we chose f: F — M to be least area in its
homotopy class. Theorem 1 of [H] shows that X is least area in its homotopy class
rel boundary in M, and hence in W. Now we apply Theorem 6.3 of [FHS] modified
as discussed in §7 of that paper so as to apply to surfaces with boundary. This
shows that ¥ must be embedded as it is properly homotopic rel 0% to a surface
without crossings and it cannot factor through a proper covering as 0Z is embedded
in 0W.

Finally let 2 be a component of Y. W other than S. Then X cannot meet S so
that 02 lies in T. As W deformation retracts to 7, we can homotop X rel 02 into
T. Again it follows that 2 must be embedded. This time X is not least area, but
h7'(Z) is least area and the above arguments show that it must be embedded. This
completes the proof of Lemma 2.5.

LEMMA 2.6. There is a subsurface S” of S consisting of S with a collar of 0S
removed, and an isotopy of h to h’ rel A such that h'=(S") lies in T. There is a further
isotopy of h’ to h" such that h" | S’ is the identity.

Proof. Suppose first that there is a regular neighborhood of dS in W which
contains all components of XN W and Y. W other than S and 7. Then X,n W
cuts S into annuli parallel to dS and a subsurface which we denote by S”. Let W”
denote the component of W — XN W which contains S”. Note that W’ NS may
not equal S”. If W” contains any components of 05, we let W’ denote W” with a
small regular neighborhood N of these components removed, and let 7° denote
W' nT and let S” denote W’ nS”. Otherwise, W’ equals W".

The surfaces S” and T’ both project injectively into M. Further S’ embeds in a
component V of M — X which contains 7 in its boundary. Recall that the
boundary components of S’ in W’ are either in X or in JON. It follows that the
boundary components of S in V are either in 0V or in the image of dN. The second
type of component can be isotoped in V to lie in V. Thus we can suppose that S’
is properly embedded in V. Now S’ is homotopic in W’ into T’ so that S’ is
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homotopic in V into T’. The Annulus Theorem provides an embedded annulus in
V between each component of dS’ and corresponding components of 67". This
allows us to further isotop S’ in V until S’ lies in 7°. Now there must be a
product region in ¥ between S’ and 7, so that we can isotop S’ to coincide with
T.

This completes the proof of Lemma 2.6, under the assumption that there is a
regular neighborhood of 0S in W which contains all components of X, n W and
YN W other than S and T. If this is not the case, we will need to make similar
arguments for product regions inside W. We apply the above arguments to
remove all of such a product region except possibly for subregions which lie in a
regular neighborhood of dS in W.

Lemmas 2.4, 2.5 and 2.6 tell us that there is an incompressible subsurface S, of
the interior of a component R of F — f~'(4) such that S, is not an annulus and
we can isotop 4 rel 4 to be the identity on §,. Lemma 2.3 tells us that the new A
is homotopic to the identity rel f(S,) u 4. If the closure of R — S, has a compo-
nent S which is not an annulus, we want to repeat the above argument.

LEMMA 2.7. If the closure of R — S, has a component which is not an annulus,
there is a subsurface S, of the interior of S — S, such that S, is not an annulus and
we can isotop h rel f(S,)u 4 to be the identity on f(S,U S,) U 4.

Proof. As R— S, has a component which is not an annulus, there is a
component of hp(R) — hz(R) " F whose closure S is not an annulus. The argu-
ments of Lemmas 2.4, 2.5 and 2.6 apply to show that we can isotop 4 to be the
identity on f(S,), where S, is some surface in the interior of S which is homeo-
morphic to S. We need to check that 4 remains fixed on S, during this isotopy.
For this, it suffices to show that the interior of S, cannot meet the product region
W in M between S and the subsurface T of F. If the interior of S, meets W, then
it must be contained in 7 and hence is homotopic in M into S. This implies that
h(S,) is homotopic in h(F) into S. As h(S,) and S are disjoint subsurfaces of
he(F), it follows that S, is an annulus. This contradiction completes the proof of
Lemma 2.7.

By repeatedly applying Lemma 2.7, we will obtain the following corollary.

COROLLARY 2.8. There are disjoint subsurfaces S,, ..., S, of R such that
R —US; consists only of annuli and we can isotop h so that h|AU({)S;) is the
identity and that h is homotopic to the identity rel A U (|JS;).
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Now we can prove the following:
LEMMA 2.9. We can isotop h to be the identity on f(R).

Remark. Note that f may not embed R in M. Also note that our isotopy of A
need not fix 4.

Proof. First we consider the annuli of R — () S; which do not meet JR. Let A be
such an annulus. We will consider the situation in M rather than in the cover M.
The intersection h.(4) " A cuts A and hp(A4) into sub-annuli. We can find inner-
most sub-annuli 4" of 4 and A" of h.(A) with the same boundary. Their union is
an embedded torus in M. As M is not Haken, and A carries a non-trivial element
of ,(M), this torus must bound a solid torus W in M. If the inclusion of 4" in W
induces an isomorphism of fundamental groups, we can isotop h(A’) across W so
as to remove two components from h-(A) N A, or, if this intersection equals 04, we
can isotop h(A) across W so as to fix A. This isotopy can be done keeping & fixed
on {JS;. For S; cannot meet W, as S; cannot meet 4 or h(A4). But this isotopy may
not fix 4 as W may contain a component of 4. Conceivably, the inclusion of 4" in
W may not induce an isomorphism of fundamental groups, but this problem can
occur for only one of the solid tori which can be obtained this way. For the union
of two such solid tori and a neighborhood of a sub-annulus of A4 joining them
would be a Seifert fiber space in M which was not a solid torus as it would have two
singular fibers. We can find at least two such solid tori unless 4:(4) N 4 equals 0A4.
Thus we can always isotop A(A4) until we have h.(4) " A4 equal to d4. Now we
consider the lift of 4 into M. As h is homotopic to the identity rel (JS;, we have
hg(A) N A equals 0A. It follows that the solid torus bounded by A4 Uhp(A4) in M,
projects injectively into M and hence that we can isotop 4 to be the identity on A4,
as required.

We repeat the above argument until 4 is the identity on |{JS; and on all
components of R — (JS; which do not meet dR. Denote this union by R,.

If f embeds R in M, it is now trivial to isotop A to be the identity on R while
keeping 4 fixed on R,. We can do this by contracting the collars of R along AR and
expanding along R. Of course, such an isotopy does not fix 4.

If f fails to embed R, let C and D be components of JR identified by f and let
A and B denote the components of R — R, which contain C and D respectively. As
before it is trivial to isotop 4 to be the identity on B, and we now need to show that
we can isotop h rel R, UB to be the identity on A4. First we assume that, by
repeating the above argument, we have arranged that 4 is the identity on f(JR).
Now we argue as in the case of an annulus in the interior of R. The new problem
is that it is conceivable that a product region W in M between a sub-annulus of A4
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and of hA contains a component E of f(dR). We will show that this cannot
happen. If W contains E, then there are two annuli of X n W which cross at E
and so are cut by E into four half annuli. One of these half annuli is fixed by A
because of the way that we chose 4 to fix f(0R). But such an annulus cannot
cross A or hA, yielding the required contradiction. This completes the proof of
Lemma 2.9.

Finally we are in a position to complete the arguments of this section.

THEOREM 2.10. There is an isotopy of h to be the identity on X = f(F).

Proof. Lemma 2.9 tells us that we can isotop h to be the identity on f(R),
where R is the closure of a component of F —f~!(4) which is not an annulus.
Now we proceed to consider those components which are adjacent to R. If we
have an annulus adjacent to R which f embeds in M it is trivial to isotop 4 to be
the identity on the union of R and the annulus. If we have a component R” which
is not an annulus and is adjacent to R, we argue as for R. Lemmas 2.4-2.9 tell us
how to isotop 4 to fix R’. We need to check that this isotopy can be done keeping
h fixed on R. This is not obvious as our isotopy of R obtained from Lemmas
24-29 did not need to fix JR. The problem is that we might find a product
region W between a subsurface of R’ and of A(R’) which contains a component of
OR in its interior. But the argument at the end of Lemma 2.9 shows that this
cannot happen.

Suppose there is a component 4 of F —f~!(4) which is an annulus adjacent to
R, that A4 is not embedded by f, and that only one component of 04 lies in JR.
Then the other component of dA lies in a component R’ which cannot be an
annulus unless f embeds R’. (This is by the argument in the first paragraph of the
proof of Lemma 2.9.) Thus we can isotop A to fix R’ whether R’ is an annulus or
not. By repeating all the above arguments, we can arrange that & fixes all of f(F)
except those annuli of F —f~!(4) which are not embedded by f. Let 4,,..., A,
be the annuli in F not fixed by A. Then f(4,) is an embedded torus T; in M. Let
C; denote f(0A;). As M is not Haken and T, carries a non trivial element of
n,(M), T; must bound a solid torus W,. We consider the double curves
heT;n(UT;). By arguing as before, particularly as in the proof of Lemma 2.9, we
can isotop h rel X —J T}, so as to arrange that h.T,n(JT;) is empty when i and
j are distinct and that A.T; T, consists only of the circle C,. It follows that, for
each i and j, hW, and W, are disjoint or one is contained in the other. Now it
follows that, for distinct i and j, hW; and W, are disjoint, and that either hW, is
contained in W, or vice versa. Hence we can isotop h rel X —J7; to be the
identity on each T;. Thus we have isotoped 4 to fix X as required.



Homotopy and isotopy in dimension three 361
§3. Homeomorphisms fixing free links

Let M be a closed orientable irreducible non-Haken 3-manifold with infinite
fundamental group. Let # be a homeomorphism of M which is homotopic to the
identity and equals the identity on a link 4 in M. We would like to be able to
deduce that 4 1s isotopic to the identity. If M is a Seifert fiber space it is known that
h is isotopic to the identity with no further assumptions [Scl] [B-O], but it is
unreasonable to expect to be able to do this in general, as one can always isotop A
to fix a 3-ball in M and hence fix any circle in the 3-ball. So we restrict our attention
to links which have irreducible complement in M. We call such a link essential.
Note that if each component represents a non-trivial element of =,(M), it is
automatically essential. We will also need one further condition on our link. Given
a link L in a manifold M, let M denote the universal cover of M and let I denote

the full pre-image of L in M. We say that L is free in M if the fundamental group
of M — [ is free.

Now we show that the link 4 of §2 is free.

LEMMA 3.1. Let f: F - M be an immersion with the 3-plane property and with
double curve set A. Then A is free in M.

Proof. In the universal cover M of M the pre-image of f(F) consists of
embedded planes which intersect each other in the lines of 4. In [HRS], it is shown
that the 3-dimensional regions into which these planes split A/ are all simply
connected, and that the 2-dimensional regions into which the planes are cut by 4
are also simply connected. Now Van Kampen’s Theorem tells us that the funda-
mental group of M — 4 is free as required.

LEMMA 3.2. Let M be a 3-manifold containing a free link L. Let g : T > M — L
be a map of the 2-torus which injects n,(T). Then the image of n,(T) in n,(M) cannot
be trivial.

Proof. If the image of n,(T) in n,(M) were trivial, then g would lift to a map
¢ : T— M — L which would inject n,(T). But this is impossible as m,(M — L) is
free.

Now we prove the main result of this section.

THEOREM 3.3. Let M be a closed orientable irreducible non-Haken 3-manifold
with infinite fundamental group, and let L be an essential free link in M. Let h be a
homeomorphism of M which is homotopic to the identity and equals the identity on L.
Then h is isotopic to the identity.
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Proof. Let N denote the closure of M minus a regular neighborhood W of L. As
M is irreducible and L is essential, it follows that N is irreducible. Thus N is Haken.
If ON were compressible in N, then N would be a solid torus. Thus M would be the
union of N and the solid torus W. But this would contradict our assumption that
M is irreducible and has infinite fundamental group as M would have to be a lens
space or S' x §2. Thus we can assume that dN is incompressible in N. Now we
consider the characteristic torus decomposition of N.

Suppose first that the characteristic submanifold of N is empty. Thurston’s work
[Th] implies that N admits a complete hyperbolic structure. Isotop 4 to be the
identity on W and let A, denote the restriction of A to N. Mostow’s Rigidity
Theorem [Mo] implies that 4, is homotopic to an isometry g, of N. As N is Haken
and is not homeomorphic to 7 x I, Waldhausen’s result in [Wal] implies that A, is
isotopic to g,. Now any isometry of N is periodic, so it follows that we can isotop
h to a periodic homeomorphism g of M. A theorem of Conner and Raymond
[C—R] asserts that if M is an orientable aspherical closed manifold with centerless
fundamental group and if g is a periodic homeomorphism of M which is homotopic
to the identity then g is the identity. We deduce in our case that if #,(M) is
centerless, then A is isotopic to the identity as required. Otherwise, m,(M) has
non-trivial center and so M is a Seifert fiber space by the recent work of Casson and
Jungreis [C-J] and Gabai [G]. At this point, we could quote the general result that
homotopic homeomorphisms of a Seifert fiber space are isotopic, or we can use the
results of Meeks and Scott in [M—S] which tell us that a periodic homeomorphism
of a Seifert fiber space with infinite fundamental group preserves some Seifert
fibration. As A is homotopic to the identity, if follows that # embeds in a circle
action on M and in particular is isotopic to the identity.

Next suppose that N is a Seifert fiber space. Then Lemma 3 of [E—M] tells us
that, as M is irreducible, M must be a Seifert fiber space with a Seifert fibration
extending a fibration of N. Again we could quote the general result that homotopic
homeomorphisms of a Seifert fiber space are isotopic, or instead we can use the
easier fact that any homeomorphism of N is isotopic to a fiber preserving one. Thus
h is isotopic to a fiber preserving homeomorphism of M and now it is easy to show
that A is isotopic to the identity.

Finally suppose that the characteristic submanifold of N is neither empty nor
equal to N. Let X denote the frontier of the characteristic submanifold of N and let
T be a component of X. As M is non-Haken, T must be compressible in M. Hence
either T lies in a ball in M or T bounds a solid torus. But Lemma 3.2 tells us that
the image of #,(T) in n,(M) cannot be trivial. We deduce that T bounds a solid
torus Vin M. Let T and T’ be components of ¥ which bound solid tori ¥ and V'
respectively in M, and suppose that ¥ and ¥’ are not disjoint. Then V contains ¥’
or V' contains V or their union equals M. In the last case, we use the fact that there
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must be a closed curve C on dV which is essential in M as the image of n,(T) in
7, (M) is non-trivial, by Lemma 3.2. Note that C must be essential in ¥ and in V",
We consider the cover M. of M whose fundamental group is the cyclic group
carried by C. Thus C lifts to M, and we denote the lift by C also. The components
of the pre-images in M of V and V" which contain C must be finite covers V' and
Ve of V and V’. Again one of these solid tori is contained in the other or their
union equals M. The first two cases are impossible as they would imply that V is
contained in ¥’ or vice versa. Thus M, is the union of two solid tori and, in
particular, is closed. But our hypotheses on M imply that M is aspherical and hence
that M. is an aspherical closed 3-manifold with infinite cyclic fundamental group
which is impossible. We deduce that V' must be contained in V'’ or vice versa. Now
we let ¥ denote the union of all the solid tori in M bounded by components of X.
The preceding arguments imply that ¥ is a disjoint union of solid tori. We consider
the decomposition of M into ¥V and its complement N. We can isotop 4 so as to
preserve the characteristic submanifold of N and hence preserve V and N. By
construction, N is a Seifert fiber space or is hyperbolic. Now the preceding
arguments can be applied to show that our homeomorphism of M can be isotoped
to the identity. This completes the proof of Theorem 3.3.
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