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Groups with no infinite perfect subgroups and aspherical 2-complexes

MiIcHEAL N. DYER

Abstract. The purpose of this paper is to generalize a theorem of J. F. Adams. He showed in [A] that
if X is a subcomplex of an aspherical 2-complex and the fundamental group G of X has no non-trivial
perfect subgroups, then X is aspherical. We weaken the hypothesis on G to ““no infinite perfect subgroups.”

1. Introduction

In [W], J. H. C. Whitehead, asked the following question: Is a subcomplex of an
aspherical 2-complex aspherical?

A [G, 2]-complex X is a connected two-dimensional CW-complex with funda-
mental group 7, X = G. If N is a subgroup of 7, X, let X,y denote the covering of X
corresponding to N. For any group G, let H,G denote the ith homology of G with
coefficients in the integers Z. A group G is said to be perfect if the abelianization
H,G of G is trivial; G is superperfect if H G = H,G = 0.

A [G, 2]-complex X is aspherical iff its second homotopy group m, X vanishes. If
X is a [G, 2]-complex which is a subcomplex of an aspherical 2-complex, then J. F.
Adams showed in [A] that X is aspherical provided G has no non-trivial perfect
subgroups. In this note we show that X is aspherical provided G is finitely presented
and has no infinite perfect subgroups.

The idea of the proof is to show that if X is a [G, 2]-complex and G is a finitely
presented group which has a finite, non-trivial, normal, superperfect subgroup P
such that Q = G/P has cohomological dimension 1 or 2, then the Hurewicz
homomorphism n, X — H, X, is non-trivial.

2. Basic definitions

If X is a connected 2-complex and N is a subgroup of n; X then X is N-Cockcroft
if the Hurewicz homomorphism 7, X = n,(X ) = H,(Xy) is trivial. The N-Cockcroft
property has been extensively studied in [Bo, BD, BDS, D, GH, H].

Let N be a subgroup of G. Then we say that G is N-Cockcroft if there is a
[G, 2]-complex X and an isomorphism ¢ : G —» ;X such that X is ¢ N-Cockcroft.
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The following is the main theorem of this paper.

2.1 THEOREM. Let P be a non-trivial, finite, superperfect, normal subgroup of
a finitely presented group G such that Q = G/P has cohomological dimension 1 or 2.
Then G is not P-Cockcroft.

Note that the theorem is false if Q@ =1. In this case, G = P is finite and
superperfect. Let G be the binary icosahedral group. In this case, G admits a
presentation with 2 generators and 2 relators. The realization of this presentation as
a [G, 2]-complex has H,X =0= H, X, so X is P-Cockcroft.

If G is a group, the maximal perfect subgroup PG of G is defined as the normal
subgroup of G generated by all perfect subgroups; it is also the intersection of the
(transfinite) derived series of G.

2.2 COROLLARY. Let G be a finitely presented group with maximal perfect
subgroup PG finite. Then any |G, 2]-complex X which is the subcomplex of an
aspherical 2-complex is aspherical.

Proof. If G is finite, the result is well known (see [BD]). Hence we will assume
that Q is infinite. If the [G, 2]-complex X is a subcomplex of an aspherical
2-complex and X is not aspherical, then by the main theorem of [BDS], we see that
there must exist a superperfect, normal, non-trivial subgroup P of G such that G is
P-Cockcroft and the quotient Q has cd Q <2. The group Q is infinite, so the
cohomological dimension of Q is 1 or 2. But the maximal perfect subgroup of G is
finite, so P is infinite. The theorem then says that G cannot be P-Cockcroft. Thus
X must be aspherical. [

3. Two lemmas

In this section we will prove two lemmas preliminary to giving a proof of the
theorem.

Let G be a group and let C be a projective ZG-resolution of the trivial ZG-
module Z. To each integer i > 0 we have an associated kernel K; =ker {0, : C, > C;__,}
(C_, =2Z). For any [G, 2]-complex X, let X be the universal covering of X. Then
C. X, the cellular chain complex of X, can be thought of as a partial resolution
(of length two) of free left ZG-modules. For any [G, 2]-complex X, the
kernel K, =ker {0, : C, X —» C, X} is called the relation module determined by X.

For any left ZG-module M, we let M denote the subgroup of elements fixed by
the action of G; we let M; =7 ®,c M = M/IG - M (IG is the augmentation ideal
in ZG) be M with the G-action killed.
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3.1 LEMMA. If P is a finite, normal subgroup of a group G and Q = G /P, then
H(G, ZG) = H(G, ZQ) =~ H(Q, ZQ) for all i > 0. The first isomorphism is induced
by ZG - ZQ and the second by G — Q.

Proof. Because P is finite, we have H/(P,ZG) =0 for j>0. By using the
Lyndon-Hochschield—Serre spectral sequence, we see that HYG,ZG)=
H(Q,ZG") for i>0. But clearly ZG’= @,.o (ZP)! = @ .0 (2),=ZQ as a
ZQ-module. [

3.2 LEMMA. Let X be a [G, 2]-complex and suppose P is a superperfect, normal
subgroup of n, X such that the Hurewicz map from n, X = 1, Xp = H, X is trivial (i.e.,
G is P-Cockcroft with respect to X). Let K, =ker {0, : C,X » Cy X} be the relation
module determined by X, where X is the universal covering of X. Then
Z ®zp Ky =ker {0,(Xp) : C\(Xp) > Co(Xp)} = Z ®25 C, X is a relation module for
Q =(mX)/P. Furthermore, the surjection G —Q induces an isomorphism
H*G,Z ®2,K)) = H(Q,Z ®25 K)).

Proof. Because P is a subgroup of 7, X we have C,X, =7 ®,, C;X. That P is
superperfect and G is P-Cockcroft with respect to X implies that

0-CXp 2 CiXpoCoXp—o2-0

is an exact sequence of free ZQ-modules (a free resolution of the trivial module Z).
Tensoring the exact sequence (of ZG-modules) 0—m,X —»C,X - K, —0 with
Z ®zp— and using the fact that X is P-Cockcroft, we see that Z ®, K, = C, Xp.

The isomorphism H*(G,Z ®zp K,) = HXQ, Z ®,p K,) follows from the LHS
spectral sequence for the extension

together with the facts that P is superperfect and that Z ®;,, K; is a trivial
ZP-module. [

4. Proof of Theorem 2.1

From now on we assume that X is a [G, 2]-complex with fundamental group
equal to G. We let P be a finite, superperfect, normal subgroup of G so that the
Hurewicz map n,X — H, X, is trivial. We let Q@ = G/P have cohomological dimen-
sion 1 or 2 and K, be the relation module determined by X. The proof by
contradiction is given in a series of steps as follows.
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STEP 1 is devoted to the proof of the following claim. Let p be the order of the
finite group P and consider the inclusion K¥ > Z ®,, K, = K, p.

CLAIM. If P is superperfect, then the image of Kt inside 7 ®zp K, is
P L ®zp K.

Proof of the Claim. Let F,»F, —»ZP — 7 — 0 be a partial resolution of Z over
ZP by finitely generated free modules. Let L, denote the kernel of the map
0, : F,— ZP. Then the following diagram commutes:

aP

Ff — FP

N/
LY
l
Lyp

/N

Fp — Fip
&p

The group P is finite implies that the vertical arrows are monomorphisms. The two
outer vertical arrows are clearly multiplication by p because the modules are free.
The group P is perfect implies that d,, and 0% are epimorphisms and hence
L,,=F,, and LY =F%. Thus the interior vertical arrow has image which is
multiplication by p. Now one uses Schanuel’s lemma and a simple argument to
show that the same is true of Kf — K,,. This completes the proof of the claim.
Hence the ZQ-module 4 =7 ®,, K, /KY =7 ®,,K,/p - Z ®p K,. If we write
Z®,p K, 270% (=7 ®,p C,X; this follows from lemma 3.2), then 4 =~ 7,0

STEP 2. The following diagram is commutative, with top and vertical sequences
exact:

0

HY(Q, ) — HXQ, K?) —— HXQ, Z ® 37 Ky) — HXQ, A) —> HXQ, K¥)

»i jl; “

HYG, K,)—— H¥G.,Z ®,,K,) 0 (4.1)

: |

ZpgHZ(P,Kl)Q—‘“’Hz(PaZ®ZPK|)Q=0
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The horizontal maps f and f” are induced by K, > Z ®,, K, and K¥ 57 ®,, K|,
respectively. By using a dimension shifting argument one shows that
H*(P,K,)=~Z, has trivial ZQ-action. The fact that p-A4 =0 shows that
p - H*Q, A) = 0 also. The vertical sequences come from the LHS-spectral sequence.
The left-most vertical sequence is exact, because cd Q <2 and H'(P, K,) = 0 (this
is a consequence of the finiteness of P). The fact that H*(P, Z ® ,p K,) = 0 follows
because P is superperfect and Z ® ;p K| is a trivial ZP-module. We observe that the
map f’ is an isomorphism modulo torsion; that is to say, the kernel and the
cokernel of f” are torsion groups. The group H3(Q, K¥) =0 because Q is two
dimensional. By lemma 3.2, Z ® ;, K, is a free ZQ-module, so j is an isomorphism,
by lemma 3.1.

STEP 3. Let M be any ZG-module and p(M) : M > Z ® ,, M be the natural
surjection. We will show that p(K,) : K, > Z ®p K, induces a split epimorphism

f:HXG,K,) > H* G, Z ®2» K)).

We will show that there is a map s : HXG, Z ®,, K,) » H*G, K,) such that fs is
an isomorphism.

Now H*G, C,X)~ HXG,Z ®,,K,), by lemma 3.1; the isomorphism is in-
duced by p(K,)d,, where 0,:7ZG*=C,X —K,. This last follows because
p(K,)d,=(1 ® 0,)p(C,X). The map 1 ® 9, is an isomorphism because G is P-
Cockcroft and p(C,X) induces an isomorphism on H*G, —) by lemma 3.1. Thus
the map 4, induces a map g : H¥G, C,X ) » H¥G, K,) whose composite gf is
induced by the natural map ZG*—ZQ* Thus gf is an isomorphism, again
by 3.1. Hence f is a split epimorphism and the map s can be chosen as

5 =05 (p(K}) 02)

STEP 4. We will show that, if i : H¥G, K¥) - H *(G, K,) is the map in diagram
4.1, then im s =1im i.
First we observe that, by definition, im s = im 0,,.. Let K, = ker d, and consider

the long exact sequence arising from the short exact sequence 00— K,—
C,X-K -0

Oyx ~
- HXG, C,X) 5 H¥G, K,) » HXG, K,) » H¥(G, C,X) =0.

The group H*(G, C,X) =0 by 3.1 and the fact that cd Q <2 (3.2).
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The commutativity of the diagram below (where we identify H3(P, K,) with
H*(P, K,)) shows that im i =im 0,, = im s:

H*G, KT)
< Oox l 3
HXG, C,X) — H*G, K,) — H¥G, K,) — 0 (4.2)
l h l -

Hz(Ps K])Q > H3(P9 K2)Q'

STEP 5. We show that Z, ® HX(Q, ZQ) = 0.

The map fi (see 4.1) is an isomorphism because ker fnim i = ker fnim s = 0.
This implies f" =" 'fi is an isomorphism. Thus, H*Q, A) =0 and hence
Z,® HXQ,Z2Q) = HXQ, Z,0) =0.

STEP 6. The contradiction.

Case 1 (Q is free). The same proof above works (by simply reducing the
dimension of the cohomology groups and the kernels by one in 4.1 and 4.2) to show
that Z, ® H'(Q, ZQ) = 0. But this is impossible because H '(Q, ZQ) is known to be
free abelian and non-trivial [Sw, corollary 3.7]. Thus, G is P-Cockcroft and Q free
leads to a contradiction.

Case 2. (¢cdQ =2). Because P is finite and cd Q=2 we have that
Z,® H*(Q,ZQ) =0 by step 5.

Because G is finitely presented, so is Q. We observe that ([BE], theorem 5.2) Q
is a free product of duality groups of dimension 1 or 2. Let R be one of the factors,
and define D = H¥Q, ZQ) and E = H*(R, ZR). Let g be any prime divisor of p.
The fact that Z,® D =0 implies that Z,® D =0. This in turn implies that
Z,®E=0.1f Ris a duality group of dimension 2, we have, for any Z,Q-module
M, HR,M)=7Z ®,r (M ®D). But because M is a Z,-module, we have
M®D=7,MQ®D =0. Hence, the cohomological dimension of R <1 over the
ring Z,. This, together with the fact that R is torsion-free, shows that cd R = 1.
Hence R is free and so Q is free. This brings us back to case 1. Hence no such group
G can be P-Cockcroft. This finishes the proof of Theorem 2.1. [
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