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Local fundamental groups of surface singularities in characteristic p

STEVEN DALE CUTKOSKY* AND HEMA SRINIVASAN*

The local fundamental group of a normal singularity gives much information
about the nature of the singularity. For instance, there is Mumford’s theorem [M]
that the local fundamental group of the germ of a normal complex analytic surface
is zero if and only if the surface is smooth. This has been generalized by Flenner [F]
to show that if (4, m) is a normal henselian equicharacteristic zero local ring of
dimension two, with algebraically closed residue field, then the algebraic fundamen-
tal group m,(spec (4) —m) =0 if and only if 4 is smooth. Artin has shown that
Mumford’s characterization of smooth surface germs is false in characteristic p.
(c.f. [A3]) The simplest example is the rational double point k[[x, y, z]]/x* + y* + z*
which has trivial local fundamental group in characteristic p.

In Section 1 we generalize the results of Mumford [M] to characteristic p = 0.
Suppose that (S, x) is a surface singularity of characteristic p > 0. We first demon-
strate that jf n,(S — x) is finite, then the intersection diagram of a resolution of
singularities of S is simply connected, with vertices of genus 0. When the intersec-
tion diagram of a resolution of singularities of S is of this form, we show that there
is an expression for the generators and relations of the prime to p part of the local
fundamental group of S, which is determined by the intersection matrix of the
resolution of singularities of S. This is proved in Theorem 3.

THEOREM 3. Let (A, m) be a complete normal local domain of dimension two
over an algebraically closed field k of characteristic p 2 0. Let g : X — spec (4) be a
resolution of singularities, such that the reduced exceptional fiber has simple normal

crossings, with irreducible exceptional curves E,, . .., E,. Suppose that the intersec-
tion graph of the exceptional locus is simply connected, and that each E; is a
nonsingular rational curve. Let F, be the free group on the symbols a,, . .., a,. Then

there exists a reindexing of the E; such that

n{”(spec (A) — m) = n{” (X— i E,-);(F,,/N)(”)

i=1

* Both authors were partially supported by NSF.
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where N is the normal subgroup of F(a,, ..., a,) generated by the relations
- d,
%, ajm(:)ai =1,

[ai’ ajl] = 1’ s. 0y [aia ajm(,)] = 13
for each 1 <i <n, where E;, ..., E; , with ji <: " <jnq are the m(i) curves which
intersect E; and d;, = (E;)".

In Corollary 5 we give an arithmetic proof of the Theorem of Mumford and
Flenner. To be precise, if (4, m) is a complete normal equicharacteristic zero local
ring of dimension two, with algebraically closed residue field, then the algebraic
fundamental group =n,(spec (4) —m) =0 if and only if 4 is smooth.

In Section 3, we prove that for normal Brieskorn singularities, the triviality of
the fundamental group is equivalent to the existence of a purely inseparable smooth
cover. More precisely,

THEOREM A. Let A =k|[x, y, z]]/x*+ y® + z¢ where k is an algebraically
closed field of characteristic p # 2 or 3, and A is normal. Let S = spec (A), and m be
the maximal ideal of A. Then the following are equivalent:

(1) m,(spec (4) —m) =0.

(i1) S has a purely inseparable smooth cover.

We prove this in Theorem 12. (ii) = (i) is always true (Lemma 2). Artin [A3]
has proved that the conclusions of Theorem A are true for rational double points
in characteristic bigger than two.

Our proof of Theorem 12 involves an anlaysis of the prime to p part of the
local fundamental group. We use a group theoretic group, proved in Section 2
(Theorem 6).

M. Artin [A3] has asked if the following are equivalent for a surface singularity
(S, x) of positive characteristic.

(1) S has finite local fundamental group.
(2) S has a smooth cover.

Artin has proved (2) = (1) in general, and proved (1) = (2) for rational double
points in all characteristics.

Establishing that the conclusions of Theorem A hold for an arbitrary surface
singularity would also answer Artin’s question in the affirmative.
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1. Local fundamental groups of surface singularities

F(e,,...,e,) will denote the free group on ¢,,...,e,. If G is a group, p a
prime, G will denote the pro-finite completion of G with respect to quotient
groups of finite order prime to p.

THEOREM 1. Suppose that (A,m) is a complete normal local domain
of dimension two, with algebraically closed residue field k. Suppose that
n{? (spec (A) — m) is a finite group. Then

(a) The divisor class group of A, CL(A), is an extension of a finite group by a
group with a composition series of factors isomorphic to k™.

(b) If f: X —>spec(A) is a resolution of singularities, such that the reduced
exceptional fiber has simple normal crossings, then the irreducible exceptional
curves are rational curves, and the intersection graph of the exceptional locus
is a tree.

Proof. We will first prove (a). Let f: X — spec (4) be a resolution of singulari-
ties such that the reduced exceptional fiber has simple normal crossings. Let D be
the reduced exceptional locus of f, and let D, be the (nonsingular) irreducible
components of D. There are exact sequences:

0 - Pic® (X) = CL(4) > G -0, (0
0— L —Pic’ (x) > []Pic*(D,) -0 (2)

where L has a composition series with factors isomorphic to £* and k* and G is
a finite group. (2) is derived in Section 1 of [Al], and (1) is Proposition 14.4 [L].

Suppose that # is an element of order n in Pic® (X), such that p does not divide
n if p>0. Then there exists ¢ € H(X, #£®") such that ¢:0, > %®" is an
isomorphism. .o/ = @"_) #® ' has an (0, algebra structure induced by identifying
£ ® " with 0 by 0. spec (f, ) is a finite cover of spec (/) which restricts to be
an irreducible, étale, kummer cover of spec («/) — m of degree n.

Suppose that CL(A) is not as in (a). Then either some D, has positive genus, so
that I Pic® (D;) is a non-trivial abelian variety, or L has k* as a term in a
composition series. In either case, it can be shown that for each » > 0 such that p
does not divide n, we have an element ¥ € Pic? (X) of order n. We can then
construct étale kummer covers of X of order n. n{”(spec (4) —m) is then infinite,
which is a contradiction.

Let N =X (n, — 1) —s + 1, where s is the number of irreducible components D,
of D, and n, is the number of D, containing the closed point g. The sum is over all
closed points ¢ of X. In the construction of the sequence (2), Artin [Al] shows
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that the contribution of k* to (2) is a term (k*)". (a) is equivalent to N =0 and
Pic® (D;) = 0 for all i. Now Pic® (D;) = 0 is equivalent to D, being a rational curve.
Further, if T is the intersection graph then

N =) (n, — 1) —s + 1 = number of edges — number of vertices + 1 =1 — x(T").
So N =0 if and only if T is a tree. This completes the proof.
The next Lemma gives one direction of the question (*) raised in the introduction.

LEMMA 2. Suppose that (A,m) is a complete, normal local domain with
algebraically closed residue field k, and that A has a purely inseparable smooth cover.
Then m,(spec (A) —m) =0.

Proof. Let A > B be the purely inseparable smooth cover, where (B, n)
is a complete local ring. Since a purely inseparable morphism is radicial,
7, (spec (4) — m) = n,(spec (B) — n) by IX 4.10 [S1]. But then, «,(spec (B) —n) =
n,(spec (B)) =m,(k) =0 by X 3.4, X 1.1 [S2].

We will introduce some notation which will be useful in the proof of Theorem
3. In Sections 3 and 4 of the book of Grothendieck and Murre on tame fundamen-
tal groups, [GM], it is shown that the notion of tame ramification over a divisor
with simple normal crossings extends to formal schemes.

Let Z be a normal, connected formal scheme, with a divisor D on & with simple
normal crossings. Let Rev? (Z) be the category of formal % -schemes which are
tamely ramified over Z relative to 2 - Rev? (%) is a Galois category by Proposition
4.2.2 of [GM], and hence has a fundamental group by Expose V of [S1].

THEOREM 3. Let (A, m) be a complete normal local domain of dimension two
over an algebraically closed field k of characteristic p 2 0. Let g : X — spec (A) be a
resolution of singularities, such that the reduced exceptional fiber has simple normal

crossings, with irreducible exceptional curves E,, ..., E,. Suppose that the intersec-
tion graph of the exceptional locus is simply connected, and that each E; is a
nonsingular rational curve. Let F, be the free group on the symbols a,, . .., a,. Then

there exists a reindexing of the E; such that

n{P (spec (4) —m) = nﬁ”’(X - i E,-) ~ (F,/N)»

i=1

where N is the normal subgroup of F(a,, ..., a,) generated by the relations
e di
ajl ajm(l)ai - 1’

[ai’aj‘]=13'°"[aiaa =19

im(:)]
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foreach 1 <i<n,where E; ,...,E,  withj, < <], are the m(i) curves which
intersect E; and d, = (E;)>.

The remainder of Section 1 will be devoted to the proof of Theorem 3. Without
loss of generality, we may assume that n > 1. Set E=X_,E,. Set p;=E,NnE,
whenever E; and E; intersect properly. Let ¥ be the formal completion of X along
o ~'(m). Let ¥, be the formal completion of X along E, for | <i < n, and let ¥, be
the formal completion of X along p,.

Let # =n,(¥)” be the prime to p part of a fundamental group =,(¥) for
Rev” (#). Let =, be the prime to p part of a fundamental group for Rev® (¢;), and
let 7, be the prime to p part of a fundamental group for Rev” (¥;). By Corollary
9.9 of [GM] we have

n = n{”(spec (4) — m). (3)

Let u, be the group of r-th roots of unity of k. Set

p'=lmp,.

r

[

=

Let w be a “generator’of u’. By Abhyankar’s Lemma, (c.f. XIIT 5.3 [S1]), we have
a canonical isomorphism n; = '@ pu', which is the direct sum of limits of inertia
groups of prime divisors ramified over E, N, and E;n.¥);. The map a, — (w, 1),
a; > (1, w) determines an isomorphism

m; = (Floy, o) /o, 4,]7).

Let E; ,..., E;  be the exceptional curves of o which intersect E; properly.
Suppose that

AUk T =T,

are paths. Then we will identify o, with A%(a, ) and «; with 274(«,) in 7;. We will
verify in the proof of Lemma 4 below that this is well defined.

LEMMA 4. Suppose that for some I, a path

gr
VHEE g 2

is given, and that t is a permutation of [1, ..., m(i)]. Then there exist paths

Uk
Al Ty, T



324 STEVEN DALE CUTKOSKY AND HEMA SRINIVASAN
such that

= (Fo, o, .., oc,-m(‘))/N)(”’

where N is the normal subgroup generated by the relations

ce d, _ —_ e — —
CxI"L'( l)aj‘r( 2) ajt(m(l))ail - [ai’ afll - - [ai’ aisjm(i)] - 1'

Proof. Let ¢ : X —» % € Rev® (¥) be connected and Galois. Then we have that
¢ ~'(E,) is irreducible, hence the inertia group of ¢ ~!(E;),.q is a normal subgroup
of Gal (Z'/¥;). This inertia group is naturally a quotient of u'. Taking limits, we
have a natural exact sequence (c.f. Corollary 5.1.11 [GM])

.ut_)ni_)n(lp)(Ei_zpijk>—)l' (4)

By our construction of n;, for any path A/x, A7(a,) =w € p'.

From the classical description of the fundamental groups of the m-times
punctured projective line (c.f. Section 7 of [Ab] and Section 12 of [P]), paths A% can
be chosen so that

(P . ( )
my” <El - Zp‘]k> (F( %jys - ]m(l))/ajf(” ]t(m(r))) i

In particular, «, is a quotient of F(a;, o, ..., o, )P\

Let s be an integer between 1 and m(i). Let r be an integer such that (r, p) =1,
(r,d)) =1 and r > —d,. Since E; can be contracted inside .# to a rational singular-
ity, there exists fel'(¥,0,) such that (f)=—dE +E. Let ¢ : W, > €
Rev® (¥;) be defined so that ¢, (0, ) is the normalization of ¢[¢]/1" — f. We can
choose a surjection

Az, - Gal (¥, |%).

¢ is unramified over E, if k #5s. Hence A(a,) =1 if k # 5. Consideration of the
induced map

n, —Gal (¥, /%))
shows that

Gal (W, |%,) = (F(o;, o) Jaf = o) =[a;, 0] = o, a = 1). (5)
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By taking r arbitrarily large, we see from (5) that (4) is left exact. Hence

;= (F(al’ Uijys=«=» a./m(l))/ajr(l)a/t(D o ah(m(,)) o= [O(,, ] = [ai’ ai,imw] = 1)(p)
for some integer e;. Now (5) shows that e, =d..
Now we will return to the proof of Theorem 3. Since the intersection graph of

E is a tree, 1t follows from Lemma 4 and induction that it is possible to choose
paths

Al imy—-mn, and ¢, :m —>7

such that after a reordering of the E,,
l ¢, (6)

commutes, and

(F(a,, ]l L Y ]m(,))/( 71 j’) e ]m(,) I [ali jl] =" :[ 19 I-lm(t)] = 1)(p)

where E; ,..., E,_with j, < --- <}, are the curves which intersect E; properly.
We can then identify «; with ¢,(2,) = ¢;(«;) in 7.

The statement of Theorem 3 now follows from (3), (6), and the arithmetic
analogue of Van Kampen’s Theorem proved in Corollary 8.3.6 of [GM].

As a corollary, we get an arithmetic proof of Mumford and Flenner’s Theorem.

COROLLARY 5 (Mumford-Flenner). Suppose that (A, m) is a complete nor-
mal local domain of dimension two, with algebraically closed residue field k of
characteristic zero. Then m,(spec (A) — m) =0 if and only if A is smooth over k.

Proof. By purity of Branch Locus (X.3.4 [S2] and X 1.1 [S2]), A smooth implies
that =, (spec (4) —m) =

Suppose that n,(spec (4) —m) =0. Then by Theorems 1 and 3 we have an
expression for m,(spec (4) — m) in terms of generators and relations, depending on
the intersection matrix of a resolution of singularities. 7, (spec (4) —m) is thus
isomorphic to the profinite completion with respect to quotient groups of finite
order of the group 7(I') associated to the intersection diagram of a resolution of
singularities defined in [F]. By Theorem 2.7 [F], this group is trivial if and only if
A4 is smooth.
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2. Existence of quotient groups of order prime to p

LEMMA 5. Lets,,...,s, be integers, greater than one. For every prime number
p >3 such that p does not divide s; for i =1, ...,1, there exists a prime q > 3 such
that g =1 (mod) s; for i =1,...,t, but p does not divide q(q — 1)(q + 1).

Proof. Let a =1I._,s,. Since (a, p) = 1, ma + np = 1 for some integers m and n.
There are indeed infinitely many primes in the set {kap + (—np +2) |keZ} be-
cause (ap, —np +2) = 1. Choose a prime g > 3 from this set

g=—np+2=—-1+2=1moda

and ¢ =2mod p. Thus g =1mods, fori=1,...,¢t and p divides g — 2. Since
both p and ¢ are larger than 3, p does not divide g(q — 1)(g + 1).

THEOREM 6. Suppose that t =23, s,, ..., s, are integers such that each s; > 1,
and p > 3 is a prime such that p does not divide s, for i =1,...,t. Then
Fler,.. e)feli=- - =eir=e, e =1

has a quotient of finite order prime to p.

Proof. Let ¢ >3 be a prime number such that g =1mod 2s; for i=1,...,¢
Let F = F, be the finite field with g elements. Since 2s; divides ¢ — 1, we can pick
an element x; of F, of order 2s;. Let

x; 0
-— 1
A=, L

x

0 — 1
= 1
E I x +—1"
X1
S
- 1
x2+—-° X3
E 2
3 = 1 ’
-— 0
. X3
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X5 0

_ 1 x 1 1
Ey=| —x,——+2+
Xy X3 XyX3 X3

Define E;, =1 for 3 <i <t trace (E;) =x; + 1/x; =trace (4,) for i =1, 2, 3. Since
s; > 1, A; # +1. Hence E; and A4, are conjugates in GL(2, F). The order of E, is thus
2s;.

Fori=1,...,1t define maps

@, : Z, - SL2, F)[{+1}

by &;(1) = E;. We have

n ¢1(1) = E1E2E3I = I

i=1

Let G =Z, *---*Z, [TI;_,e; =1. The ¥, define a unique map @ such that

G — SL(2, F)/{ 1}

L

S

commutes. Observe that
G=F(e,,...,e)|e'=---=ej'=ee, "¢ =1.

& is nontrivial since @,, ¥, and &, are nontrivial. Thus G/kernel (P) is a nontrivial
quotient of G whose order |®(G)| is a nontrivial factor of |SL(2, F)/{ £ I}|- So G has
a nontrivial quotient of finite order dividing g(¢ — q)(¢ + 1)/2. By Lemma 4, we can
choose the prime g such that p does not divide g(g — 1)(¢ + 1). Thus G has a finite
nontrivial quotient of order prime to p.

3. Brieskorn singularities
In this section we will use the following notations. Suppose that k£ is an
algebraically closed field of characteristic p > 3. Suppose that a,, a,, a; are positive

integers. Let

R(ala a,, a3) = k[[xla x25 x3]]/(x‘11l + x§2 + x‘;:&).
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R(a,, a,, a;) is normal precisely when p divides at most one of the exponents
a,, a,, a;. Suppose that R(a,, a,, a;) is normal. Let m be the maximal ideal of
R(a,, a,, a3). Let S(a,, a,, a3) = spec (R(a,, a,, a;)) — m.

PROPOSITION 7. Write a;, = p"b; where (b,, p) = 1. Then
7, (S(ay, a3, a3)) =, (S(by, by, by)).
Proof. Define

¢ kllx), x5, X311/ (xP + x5+ x5) > Ky, yo, » 1105 + y52 + ¥5)

by x, > y&", x,+> 82, x> y&3. ¢ is purely inseparable, hence radicial. The
proposition follows from IX 4.10 [S1].

Resolutions of Brieskorn singularities are constructed in characteristic zero in
[H-J] and [O-W]. the proofs easily extend to characteristic p.

PROPOSITION 8. Suppose that p does not divide a; for 1 <i <3. Then the
intersection diagram of the minimal resolution of singularities of spec (R(a,, a,, a3))
can be described as follows: Let

_ _(azaaa) _(alaaB) (ay, a)
C“(alsa23a3)s CI_—C—_, 62“'“_6,—”7 C3=_——C—9

al az a3

h= s V2= s V3= .
CC>rCy CCiCy CCiCy

Let 0 <r; <y, 0<ry,<y,, 0 <ry<vy; satisfy

17273 = —1mod (y)). ¢y y3r,= —1mod (;), c¢37,72r3 = —1 mod (y,)

Let b} for i =1,2,3 and 1 < j < t; denote the continued fraction expansions

__.b_l]_

Let L; be the linear graph with t, + 1 vertices and successive weights —b', . . .,
—bi, —b.
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The intersection diagram of spec (R(a,, a,, a;)) is the star shaped graph obtained
by identifying the vertex with weight —b of cc, copies of L,, cc, copies of L,, and
ccy copies of Ly to a common point. The arms of the star in the cc, copies of L,, cc,
copies of L,, and ccs copies of L, which are glued together at the vertex of weight
—b.

Each vertex in the intersection diagram corresponds to a smooth rational curve
except for possibly the central vertex (with weight —b), which corresponds to a
smooth curve K of genus

8x =3 (2 + c%c,cye5 — cy — ccy — cC3).

PROPOSITION 9. Suppose that p does not divide a; for i=1,2,3 and
7,(S(a,, a,, a;)) =0. Then g, =0, and one of the following cases must occur.

(1) c=c,=c,=1 and ¢, is arbitrary.

(2) c=cy,=c3=1 and c, is arbitrary.

(3) c=c,=cy=1 and c, is arbitrary.

4 c=2and c,=c,=c;=1.

Proof. gx =0 by Theorem 1. We will determine the positive integers c, ¢;, ¢,, C;
such that

24 c(ccice5—cp—cy—c3) 0.

Without loss of generality, we may assume that ¢, < ¢, < ¢;. We immediately reduce
to cc,cyc3 — ¢; — ¢, — ¢3 <0 which forces cc,c, < 3. The only solutions are ¢ =2,
co=c,=c;=1land c=¢,=1,c,=c¢;=2 and ¢ =c¢, =c¢, =1, c; arbitrary.

PROPOSITION 10. Suppose that p does not divide a; for i =1, 2, 3. Suppose that
gx =0. Then

7.C(]p)(S(al > da, 613))

., 11 1,1 2,1 cp,le 51,2 ¢2,2. ,1,3 ccy,3
= (Flesep',...,en'ed!, . evrliel? o ei2% e, ., ef?) [N)P

where N is the normal subgroup generated by the relations

1,3 .

1,1, .. ,cey 1,12, .. ccr,2 .. pee33,—b
e e;ley; e e eyre =1,

le, el =[e, ef7] =[e, 71 = 1,
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for 1 <k < cc; and the relations for 1 <i <3 <k < cc;

eei (ef’) ™ by = 1,

ehiehi) o = 1,

eftedl (e Y j=1 for2<j<t—1,
[eferi =1 for1<j<t—1

Proof. This is immediate for Theorems 1 and 3.
PROPOSITION 11. Let assumptions be as in Proposition 10. Then

n{?(S(a,, a5, a;)) = (Fle; e, ..., e €3, ..., e52es, ..., e53) /M)P

where M is the normal subgroup generated by the relations

el eSlel - es2el - efPe b =1,
ei(eX) =1 for 1<i<3, 1<k <cg,
[e,e¥]1=1 for1<i<3,1<k<cc.

Proof. The relations (i, k) determine relations

€5 )Pk~ v =1, 1<j<t—1,

eali(eﬁ’i)—aii*‘l =1
where af =0, af is determined by the recursion formula
ai=>bi_,ai_,—aj_,

for 2<j <t 4+ 1. That is,

i
% o 1
oy T ai
o,
So, we have
wfl 1
L5 i o i
I,-—-l l

(i, k)
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by Proposition 8. Since (y;, 7;) = 1, this gives e"(er’) "7 =1. On the other hand,
using the relations (i, k), one can eliminate the ef”, for 1 <j <, — 1, since they can
be written in terms of e;”’ and e. Set ef =e%’. We then have the conclusions of
Proposition 11.

THEOREM 12. The following are equivalent.

(l) nl(S(al » Ao, a3)) = 0

(2) Spec (R(a,, a,, a3)) has a purely inseparable cover by a power series ring in k.
(3) Some a, is a power of p.

Proof. (3) implies (2) follows from the proof of Proposition 7. (2) implies (1)
follows from Lemma 2. We must show that (1) implies (3).

We assume that b, are such that =, (S(b,, b,, b)) =0, and prove that some b; is
a power of p. Let a; be the positive integers such that (a,, p) =1, and b, = a;,p*.
Then n,((S(a,, a,, a;)) = 0 by Proposition 7. By Proposition 9, g, = 0. Proposition
11 shows that we have a surjection obtained by taking the quotient of
n'{”(S(a,, a,, a;)) by the normal subgroup generated by e.

nI(S(ala a, a})) '—)(F(e]la LR eL]‘C‘; eZIZ’ ceey e(z“?; eéa = oy eg(.B)/L)(p) (7)
where L is the normal subgroup generated by the relations

el - elel el i =

(ek)yn =1 for 1<i<3,1<k <cc,.

By Theorem 6, some y, = 1.

Suppose that one of the cases (1), (2), (3) of Proposition 9 occurs. After
reindexing the a;, we may assume that case (1) holds, so that c =c¢,=c¢, =1, and
¢y is arbitrary. Then (a,, a,, a;) = (y,¢3, 72¢5, 73). By (7), and Theorem 6, ¢y > 2
implies that y; =1 and a5 =1. If ¢; =2, and y,> 1, then y, =y, =1 which implies
that the right hand side of (7) is Z,, #0, a contradiction. If ¢; =1, then some
a, =1,

The remaining case of Proposition 9 is when ¢, = ¢, =c3;=1 and ¢ =2, so that
(a,, ay, ay) =(2y,, 2y,, 2y;). Suppose that some y;, > 1. Since n,((S(a,, a,, a3)) is
trivial, we see by Theorem 6 and (7) that at most one v, is greater than 1. After
reindexing the a;,, we may assume that y, > 1 and y, =y, = 1. The right hand side
of (7) is then Z, , a contradiction. Hence (a,, a,, a;) =(2, 2, 2).

In this case, the intersection graph of the minimal resolution of singularities of
x3+x3+ x3=0 is a single vertex, corresponding to a nonsingular rational curve,
with weight —2. Hence n,(S(a,, a,, a;) = Z, # 0, so that this case cannot occur.
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