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Transcendental submanifolds of R”
S. AKBULUT AND H. KING

Dedicated to memory of Mario Raimondo

Abstract. In this paper we show how the restriction of the complex algebraic cycles to real part of a
complex algebraic set is related to the real algebraic cycles of the real part. As a corollary we give
examples of smooth submanifolds of a Euclidean space which can not be isotoped to real parts of
complex nonsingular subvarieties in the corresponding projective space.

Algebraic numbers are dense in R. The problem of whether closed smooth sub-
manifolds M < R” can be approximated by nonsingular algebraic subsets could be
viewed as a possible higher dimensional version of this property. By adapting a
stronger version of the notion of nonsingularity (complexification is nonsingular) the
results of this paper show that this is not the case. By identifying R” = RP” we prove:

THEOREM. There are closed smooth submanifolds M — R" which can not be
isotoped to the real parts of nonsingular complex algebraic subvarieties of CP”.
Furthermore, we can choose M to be nonsingular real algebraic subsets of R”".

Now a brief history: Seifert showed that if M < R” has trivial normal bundle then
it can be isotoped to a nonsingular component of an algebraic subset of R” ([S]).
Nash proved that in general M can be isotoped to a nonsingular sheet of an algebraic
subset of R”; but the sheets might intersect each other ([N]). In [AK4] it was shown
that M can be isotoped to a nonsingular component of an algebraic subset of R”,
i.e. these sheets can be separated. Whether M can be isotoped to (not just to a
component of) a nonsingular algebraic subset of R” still remains open.

We should emphasize that stably the answers of these problems are known. For
example, Nash already proved that M can be isotoped to a nonsingular component
of an algebraic set inside of a larger Euclidean space R" x R¥; and later Tognoli
showed that in a larger Euclidean space the extra components of the algebraic set
can be removed ([T]). In [AK4] and [AKS] it was shown that any M < R” can be
isotoped to a nonsingular algebraic subset of R” x R; more generally M can be
isotoped to a nonsingular algebraic subset of R” if and only if M is cobordant
through immersions to an algebraic subset of R”.
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We obtain the above results as a corollary to our main theorem which says that
the restriction of complex algebraic cycles of the complexification of a nonsingular
algebraic set consists of the cup products of the real algebraic cycles. Another
corollary is that the Ponryagin classes of the tangent and the normal bundle of a
nonsingular algebraic set in R” are represented by real algebraic subsets, a fact
which was known only for the Steifel-Whitney classes.

1. Gysin homomorphism

Let f: M™— N" be a map. The Gysin homomorphism f, : H*(M) — H***(N)
is defined by the commutative diagram:

fe
H*(M) — H**XN)

=,

H,_ . M)—>H, _.(N)

where k =n —m and the vertical maps are the Poincaré¢ duality isomorphisms.
Gysin homomorphism satisfies the following well known properties:

LEMMA 1. The Gysin homomorphism satisfies the following properties:
(@) fL (f*W) —v)=u— [, ().

(b) Given a commuting diagram:

f
M— N

DL

g

K— L
where i, j are imbeddings and g is transveral to L with g ~'(L) = K then:
frojo=1i, 08"

LEMMA 2. Let f: M o N be an imbedding. Let u,, be the dual of the funda-
mental class of M in N, and x(v,) be the Euler class of the normal bundle of f then:

(a) [+ (1) =uy,

(b) f1/*(x) =x — up,

(©) L4+ (1) = *(uy) = 1)),

) fL )= fr(=frx—y) —fi(])

These lemmas are standard facts of algebraic topology; we leave the proofs as
an exercise to the reader.
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2. Algebraic homology

Let V be a Zariski open real (or complex) algebraic set (defined over R), and
R =1Z, (or R =12Z), then we can define algebraic homology groups H{(V; R) to be
the subgroup of H_(V; R) generated by the compact real (or complex) algebraic
subsets of V (cf. [AK1]). We define H%(V; R) to be the Poincaré duals of the
groups H{(V; R) when defined. The resolution theorem of [H], implies that
H;(V; R) is also the subgroup generated by the classes g, ([S]) where g : S— V is
an entire rational function, S is a compact nonsingular real (or complex) algebraic
set and [S] is the fundamental class of S. Therefore even when V is real, we can
define H{(V;Z) to be the subgroup generated by g,([S]) where g:S— V is an
entire rational function from an oriented compact nonsingular real algebraic set
and [S] is the fundamental class of S.

We call a real algebraic set V totally algebraic if H, (V;Z,) = H{(V;Z,). It is
known that not all nonsingular algebraic sets are totally algebraic. There are closed
smooth manifolds which can not even be diffecomorphic to nonsingular totally
algebraic sets ([ BD]), even though every closed smooth manifold is homeomorphic
to a totally algebraic set ([AK2]). Hence these algebraic homology groups are
intimately related to the nonsingularity of the underlying algebraic set.

Recall from [BBK] that, for a compact nonsingular real algebraic set V,
HE 4, (V; Z) is defined to be the subgroup of H*(V; Z) generated by the restric-
tion of the classes of H*%(V; Z) by the projective nonsingular complexification map
J:V o V¢ (this always exists). HE _ . (V; Z) is independent of the complexification
V. Define HE _ ,(V; Z,) to be the mod 2 reduction of HE _ .. (V; Z).

The real algebraic cocycle groups H*%(V, Z,) play useful role in real algebraic
geometry. For example, they carry obstructions to isotoping submanifolds to
algebraic subsets (see [AKI1]). Likewise the groups HE _ ... (V; Z,) also appear as
obstructions to algebraic approximation problems (see [BK1]). Our main result
describes the relation between these groups.

We need the next result in the proof of the main theorem. It is a special case of
Fulton’s theorem ([F]). In our notation V. denotes a complex algebraic set defined
over R with real part V. Square bracket such as [L] means the homology class
induced by L, and D denotes the Poincaré duality homomorphism.

LEMMA 3. Let nc: Ve— V¢ be a blowup of a compact nonsingular algebraic set
along a nonsingular center Xc < V. Let Lo be an algebraic subset of V¢ with
Xcc L. Let Lo Vi be the strict transform and X be the exceptional locus
nc'(Xc). Then there is a proper algebraic subset Z. < X such that:

(a) D7'[Lc]=n*D'[Lc) + D '[Z¢)

(b) D '[L]==*D'[L] + D '[Z].
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Proof. The fact that D '[L.] and n*D ~'[L.] differ by a cohomology class
supported in X is standard (e.g. [AK 1], Lemma 2.9.3). More specifically Theorem
6.7 of [F] gives an exact expression for the difference as an algebraic cohomology
cycle. O

3. Main results

Now for the rest of the paper let V' < RP” denote a compact nonsingular real
algebraic set of dimension v, and V- < CP” be a nonsingular projective complexifi-
cation of V. Let j: V ¢ V¢ denote the inclusion.

Define H2 (V¢; Z) to be the subgroup of H% (V; Z) generated by irreducible
complex algebraic subsets defined over R with k-dimensional real parts. In other
words it is generated by the complexification of k-dimensional real algebraic subsets
of ¥V in V. As above, by the resolution theorem, H5, (V¢; Z) is generated by the
classes g, ([Lc]), where L is a compact irreducible nonsingular complex algebraic
set defined over R, i.e., it is the complexification of a k-dimensional real algebraic
set L, and g : Lo — V¢ is an entire rational function defined over R, i.e., it is in the
form g = gc. Define a subgroup of Hg_ . (V; Z) by:

HE ,(V,Z) =j*H¥(V¢; Z).

Let H¥ . (V;Z,) be its mod 2 reduction. The main theorem below implies that
this last group is independent of the complexification V. Finally, define the
following natural subgroup:

HY(V;Zy)? = {0? |a e HY(V; Zy)}
of H¥(V; Z,) (since cup product operation preserves algebraic cycles, [AK1])

THEOREM A. For all k the following hold:
(a) HE_ 4(V; R) € HY(V; R), where R =1, (or Z when V is orientable).
(b) HE (V5 Zy) = HY(V; Zy)*

Proof. To prove (a) let a e H¢_ . (V; R) be represented by the restriction of
o€ H¥(V¢; R). Let B e HE 5 (Ve; R) be the Poincaré dual of « in V. Recall that
the map j, induced by the restriction and the Poincaré duality maps:

H*(Ve; R) —— H™V;R)

;l ) 1;

Hy, »(Ve¢; R)—> H, 4 (V; R)
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is the homology intersection with the fundamental cycle [V], i.e., j,(f) is obtained by
transversally intersecting V' and a representative of f.

By definition B is represented by g, ([S]), where S is a compact nonsingular
complex algebraic set and g : S — V is an entire rational function. We can ¢-isotop
g to a smooth function g,: S — V¢ which is transverse to V < V.. By [AKI]
Proposition 2.8.8, we can find a nonsingular real algebraic set S’ and a rational
diffeomorphism 7 : " — S and a rational map F : S’ — V¢ such that g, o 7 is e-close
to F (here we are viewing S and V( as real algebraic sets by thinking C as R?).
Hence Fis transverse to V. If T = F~'(V) and f: T - V is the restriction of F, then
/4[T] represents the Poincaré dual of a.

To see (b) let ae H¥_ ,,(V;Z,). Then a is the restriction of a class in
H¥(V¢; Z,) whose Poincaré dual in H%, _,,(V¢; Z,) can be represented by g, [Lc],
where g:L-— V¢ is an entire rational function from a nonsingular compact
complex algebraic set which is the complexification of a v — k dimensional real
algebraic set L.

We first prove (b) under the assumption that g is an inclusion Lo < V¢ of a
nonsingular algebraic subset: We first e-isotop g to a smooth function g,: Le— V¢
which is transverse to V < V. As before, by viewing L. as a real algebraic set we
can find a nonsingular real algebraic set L’ and a rational diffeomorphism
n:L > Lc and a rational map F: L”— V such that g, o 7 is e-close to F. So F'is
transverse to V. If T=F~'(VV) and f: T - V is the restriction of F, then f, [T]
represents the Poincaré dual of a.

We claim that f,[T] is also the self intersection of the homology cycle g, [L] in
V. In other words a is the cup product square of the dual of the map g,[L]. To see
this observe that the normal bundle of V' = V. is isomorphic to the tangent bundle
of V (given by the multiplication by \/———1). Hence the tubular neighborhoods of
V < V¢ and the diagonal 4, < V x V are diffeomorphic. So for the purpose of
computing F~'(V) we can assume that F: L'— V x V. Let F = (F,, F,). Then

T=F'(V)={x|F(x) = F,(x)}.

But since g o 7 is close to F and the maps F, and F, are generic this set is also the
transverse self intersection of the homology cycle g [L]. We see this by looking
carefully at the map F. First we look at the map g. We may identify a neighborhood
of L in L. with a neighborhood of the diagonal 4, in L x L. Then in a
neighborhood of 4,, the map g is given by (x, y) — (g(x), g(»)) (since locally g is
an inclusion C°~*<C%. Thus our algebraic approximation F is given by
F(x,y) = (F,(x, y), F>(x, y)) where F, approximates g(x) and F, approximates g( y).
Consequently, F~'(4,) represents the Poincaré dual of the cup product of the
Poincaré duals of g, (L) with itself.
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Conversely if a € H*(V; Z,)?, then a = «® with o € H%(V; Z,). The dual of a is
represented by a v — k dimensional real algebraic set L < V. Let Lo < V be the
complexification of L. Then by applying the above argument to the inclusion map
g :Lc— Ve we see that the restriction of the dual of g, [L¢] to Vois o?, ie.,
ae HE. ag(V's Zy).

Now in the general case, a is represented by restricting the dual of the
fundamental class [Lc] of a possibly singular algebraic subset Lo< V. Let
e : Ve— Ve be a resolution of V¢ turning L into a nonsingular subset L < V.
In particular the restriction map n: ¥ — V resolves L to L. Since 7 and n are
degree one maps in Z and Z, coefficients respectively, the following commutes:

~ D ~ o ~ Sqk ~ D ~
Hy (Vo) — H¥ (V) —— H¥V) — HY V) —> H, (V)

ln* In* '[n* k '[n* ln*

D > Sq D
Hy (Vo) «— H*(V¢) — H*(V) «—— H*(V) — H,_, (V)

In this abbreviated diagram, the two left vertical maps are induced by =, and
the homologies of the complex algebraic sets are taken with Z coefficients and the
real algebraic sets with Z, coefficients. D denotes the Poincaré duality isomor-
phisms, and Sg* is the Steenrod square, i.e. in our case Sq*(0) = 02. Also j* denotes
the composition map: Z, reduction followed by the restriction. By the previous
nonsingular case we have:

J*D~'[Lc] = Sq*D ~'[L] (*)

We need to show that j*D ~'[L.] = S¢*D ~'[L]; but since n¢ is a composition of
blowups along nonsingular centers, it suffices to prove the equality in the case where
T is a single blowup along a nonsingular center X < V. We will prove this by
induction on the dimension of V.

By substituting Lemma 3 to the identity (x) we see for some algebraic subset Z¢
of the exceptional locus Xc=nc'(Xe) (so Zc X =n (X))

j*n*D~'[Le] +j*D'[Ze] = Sg*n*D ~'[L] + S¢*D~'[Z],  hence
n*(j*D '[Lc] — Sq*D L) +j*D " '[Ze] - Sq*D '[Z] =0

Since 7 is degree one m* is an injection, hence it suffices to prove j*D '[Z ] =
Sq*D ~'[Z]. To see this, consider the inclusions:

!
C

i

S — Y
o B!

7
C
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By making i transversal to ¥ and calling i ~'(¥) = Q we obtain the inclusions:

J
D S—

51

Pt —
Q7 =

J
C

By the above discussion on the nonsingular case in fact Q = y(v)) = X n X, ie. Q is
the transverse self intersection of X in V. Also I=ici, and J =/ i, where
ip: Q o X is the inclusion.

Define & : H*~%X;Z,) » H*(V;Z,) be the map ®(x) =uz _1i, (x). We
claim that the following diagram commutes:

vak

_ D _ ” _ ¢ . D ~
Hy 5 (Vo) — H*(Vo) — H*(V) «— HYV) — H,_ (V)

Iu Tu T¢ Iﬁ Ti

qu~l

- D - * ~ ~ D ~
Hy  (Re) e— H*=X(%o) - H* (X)) & H* (X)) — H, (%)

As above the homologies and cohomologies of the complex algebraic sets are taken
with Z coeflicients and the real algebraic sets with Z, coefficients, and j* denotes the
composition map: Z, reduction followed by the map induced by .

Now given this, we can finish the proof as follows: Since Z. lies in X
we can write [Z¢] =i,[Z¢] and [Z] =7,[Z]. Since dim (X) =v — 1 by induction
7*D~'[Zc] = Sq¥~'D~'[Z]. This with the commutativity of the diagram implies
J*D i [Ze] = Sq*D i [Z].

It remains to check the commutativity of the diagram. By Lemma 2(a), (d)

SqT, () =T, () < T, (0 =T, () < T, (1) = B(x?) = 5¢*~ ().
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By Lemma 1(b) and Lemma 2(b)

Jriy () =1,.J*(x) = (l~° o) + (j~° ip)*(x) = l:— (i) + ig(f*(x)) = i~+ (j~*(x) — Ug)-

Being over Z, coefficients, in the last term we can commute the cup products, also
by using Lemma 2(c), (a) and Lemma 1(a):

[y (g — J*() = 1, (¥, (1) = J*0) = T, (Fug) < J*(0) = ug — I, (J*()).

Hence we have shown j*i, (x) = &j*(x).

Finally to start the induction observe that for algebraic sets V' of dimension
v — k + 1 any homology class [L] of dimension » — k has a nonsingular representa-
tive, so the proof in this case follows from the first part of the theorem. To see this
observation, pick a codimension one closed smooth submanifold S =V ho-
mologous to L. Then since the homology class [S] =[L] € H{_,(V; Z,) is algebraic,
the submanifold S can be isotoped to a nonsingular algebraic subset (e.g. [AK1]
Theorem 2.8.2). O

Remark. By defining HS, “4(V;Z) =jH%.(Vc; Z), even when V is nonori-
entable we can restate (a) in a slightly stronger form:

HS~“*(V;Z) = H3(V; Z).

A useful corollary to the theorem is that we can estimate the number of complex
algebraic cycles of a nonsingular complex algebraic set in terms of the real algebraic
cycles of the real part:

COROLLARY 1. rank H¥(V¢; Z) = rank H5(V; Z,)*.

It is well known that the duals of Steifel-Whitney classes of any compact
nonsingular real algebraic set are represented by algebraic subsets. This is because
the Grassmanian G(n, k) of unoriented k planes in R” is a nonsingular algebraic set
in such a way that all the Steifel-Whitney classes are represented by algebraic
subsets and the (tangent and normal) Gauss map « : ¥ — G(n, k) is entire rational
(cf., [AK3], [AK1]). It is also well known that the Chern classes of a complex
algebraic set are algebraic (cf., [F]). Since p, (V) = (— 1)¥j*c,. (V) then Pontryagin
classes are in HE ., (V; Z).

COROLLARY 2. The duals of Pontryagin classes of V are represented by real
algebraic subsets of V (in the unoriented case dual means the dual of mod 2 reduction
with Z, coefficient).
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Recall that under the additional assumption: either 2k <2v —n or V¢ is a
complete intersection, for all 2k < v the group H¥_ .. (V¢; Z) is equal to the image
of the restriction homomorphism (see [BBK]):

H¥(RP", Z) - H*(V; Z).

COROLLARY 3. If V< R” (here we are identifying R" < RP") and either
2k <2v —n or V¢ is a complete intersection, then no element o € H(V; Z,) with
2k <v and «® #0 can be algebraic.

This corollary has the following amusing consequence:

THEOREM B. There exist closed smooth submanifolds M < R” which can not be
isotoped to the real parts of any nonsingular complex algebraic subvarieties of CP".

Proof. Pick M™ c R" with n =2m — s, and ¢, € HX(M; Z,) such that:
(i) k <s/2.
(ii) ci #0.
(i) ¢, 1s either a Steifel—-Whitney class or a Z, reduction of a Ponryagin class
of the tangent or normal bundle.

We claim that M can not be isotopic to the real part V' of a nonsingular complex
algebraic set in CP”. Otherwise, by Corollary 3 the class ¢, could not be algebraic;
on the other hand by Corollary 2 and the preceding discussion ¢, would have to be
algebraic. Contradiction.

It remains to find examples of M satisfying the above properties. Real or
Complex projective spaces could be imbedded in this way ([J]). For example
RP'° = R'® ([Ha)), in which case we take k = 1 and c, the first Steifel- Whitney class
w,(M). More generally, for any s there exists m such that there are imbeddings
RP” = R ~° ((MM]). We claim that we can choose some of these M to be a
nonsingular algebraic subset of R”. To see that first choose g so that RP? = R% ~7,
If g is even we choose M =RPY with k =1 and ¢, = w,(M), otherwise we choose
M =RP?" ' RP/cR*?~ V=3 [In any case, in our example we can assume that
M™ < R?>™ 3. Hence by [AK4] we can isotop M to a nonsingular algebraic subset
of R ~2, O

On the positive side we can prove the following:
COROLLARY 4. If M < RP" is a topological complete intersection, that is if it

is an intersection (\L; of smooth codimension one submanifolds of RP" in general
position, then M is isotopic to the real part V of a nonsingular complex complete
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intersection V¢ in CP". Furthermore, when M < R" then for any o € H*(V; Z,) with
2k < v has the property a*=0.

Proof. We first isotop each L, to a nonsingular hypersurface V; in RP” (this is
possible since the group H, _,(RP”"; Z,) is algebraic, see [AK1]), then change the
coefficients of the defining equations of each V; a little so that the complex solutions
become nonsingular and transverse to each other without affecting the isotopy type
of N V;~ M. The last requirement follows from the above discussion. O

As an application to this theorem we see that we can isotop RP? a nonsingular
real algebraic subset ¥ of R’ such that HL(V; Z,) =0, a fact previously proven in
[BBK]. According to [BK2] any closed smooth manifold M is diffeomorphic to a
nonsingular algebraic set V' with H¢ _ . (V; Z) = H*(M; Z). According to [BD] if M
is a smooth manifold approximating to a large finite skeleton of K(Z,, 2), then for
any nonsingular algebraic set V diffeomorphic to M we must have H%(V; Z,) = 0.
These two results together appear to contradict (a) of Theorem A. The reason they
are consistent is that H*(K(Z,, 2); Z) and hence its Z, reduction is zero.

Remark. Some results in this paper were announced in [A]. The reader should
be warned that in [A] the distinction between the groups Hg . (V;Z) and
HE_ ., (V;Z) is intentionally suppressed. Also G. Mikhalkin independently ob-
served a special case of (b) of Theorem A.
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