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Quadratic differentials with prescribed singularities and
pseudo-Anosov diffeomorphisms

HOWARD MASUR AND JOHN SMILLIE

A quadratic differential on a Riemann surface M determines certain ‘“‘topologi-
cal” data: the genus of M; the orders of zeros and poles; and the orientability of the
horizontal foliation. In this note we determine which collections of data can be
realized by quadratic differentials with finite area. A pseudo-Anosov diffeomor-
phism of M also determines certain topological data: the genus of the M the types
of the singularities and the orientability of the stable foliation. As a corollary to our
result on quadratic differentials we determine which topological data can be realized
by pseudo-Anosov diffeomorphisms on oriented surfaces.

Let X be a closed Riemann surface of genus g with a system of holomorphic
coordinate charts {U,, h, }. This means that {U, } is a covering of X by open sets;
h, is a homeomorphism of U, to an open set in the complex plane and h, o h; ' is
conformal whenever defined. Let g be a positive integer. A meromorphic g-differen-
tial ¢ on X is a set of meromorphic function elements ¢, in the local parameters
z, = h,(p) for which the transformation law

dz,
dz,

¢.(z,) dzi = ¢,(z,) dz,  dz,=——dz,,

holds whenever z, and z, are parameter values corresponding to the same point p
of X. The differentials corresponding to g =2 are classically called quadratic
differentials and those corresponding to ¢ =1 are called abelian differentials. At
any point p in X we may choose a parameter z so that p corresponds to z = 0. We
say the differential ¢ has a zero (resp. pole) of order k at p if the meromorphic
function element ¢(z) has a zero (resp. pole) of order k& at zero. The quadratic
differential ¢ has zeroes and poles at a finite number of points p, ... p,. If the area
is finite then all poles are simple. We will assume that this is the case. Define k; to
be the order of the zero at p,, if p, is a zero, and set k; = — 1, if p; is a simple pole.
Thus each quadratic differential ¢ determines certain data

ky,...k,;0,
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where ¢ = +1 if ¢ is the square of an abelian differential, and ¢ = —1 if it is not.
In this situation we say that ¢ realizes the singularity data k = (k,,...k,;¢).
Theorem 1 describes precisely which sets of singularity data are realized by
quadratic differentials. Note that the order in which the k;’s are listed is irrelevant
for the realization problem.

There are two obvious necessary conditions on a set k of singularity data which
must be satisfied in order for k£ to be realized. To describe the first condition we
note that the data k = (k, ..., k,) determines the topological type of the surface.

Define a(k) by the formula

ak) = i k;.

i=1

It is a classical fact that if k can be realized on a surface of genus g then
o(k) =4(g — 1). In particular we see that a necessary condition for the realization
of the n + 1-tuple k is that a(k) =0 mod 4 and o(k) = —4.

If a quadratic differential ¢ has a zero or pole of odd order at a point p then
near p the quadratic differential cannot be written as a square of an abelian
differential. Thus if data (k,,...k,; ¢) can be realized by a quadratic differential
then if any k; is odd it must be the case that ¢ = —1.

We will show that with four exceptions every n + 1-tuple of integers, satisfying
these two necessary conditions can be realized by a quadratic differential on a
compact Riemann surface.

THEOREM 2. Let k=(k,,...,k,;€) be an (n+ 1)-tuple where each
kie{—1,1,2,...,} and ¢ = + 1. Then there is a quadratic differential ¢ on a closed
surface realizing k if and only if:

(a) a(k) =0mod 4 and a(k) = —4;

(b) e =—1if any k; is odd and

© (ky,..., k0 # (4 =1, (1,3, =1), (=1, 1; =) or(;—1).

The set of all quadratic differentials with fixed data (k,,...,k,;¢) forms a
moduli space. These moduli spaces, called “strata”, are studied in [V] and [MS].
Theorem 1 arose out of our interest in understanding these strata.

Geometric structures equivalent to quadratic differentials arise in contexts other
than complex analysis. A quadratic differential on a surface M determines a pair

of transverse foliations. The horizontal (resp. vertical) trajectories are arcs along
which

q(z) dz*>0 (resp. ¢(z) dz? < 0).
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The horizontal (resp. vertical) measured foliation consists of the horizontal (resp.
vertical) trajectories together with the transverse invariant measure

[Tm ¢'2 dz| (resp. |Re ¢ dz|).

Conversely a pair of transverse measured foliations determine a quadratic differen-
tial. For more information see [HM] and [G].

Let f be a pseudo-Anosov homeomorphism of a surface of genus g with »
punctures. According to Thurston [FLP] f determines stable and unstable trans-
verse measured foliations. These foliations have common “p-pronged” singularities
at a finite number of points x,. Let p, be the number of prongs of the singularity at
x,. Let ¢ be +1 or —1 depending on whether the stable foliation is or is not
orientable.

THEOREM 2. There is a pseudo-Anosov homeomorphism on a surface of genus
g with n punctures realizing data (p,, . .., p,;€) if and only if:

(a) i (p,—2)=4g - 1);

(b) ¢ = —1if any p, is odd,

(©) (prv--ups 0 #(6; =1, (3,5 1), (1,3, =1) or (; —1) and
(d) The number of indices i for which p, = 1 is less than or equal to n, the number
of punctures.

Proof of Theorem 1. A pair of transverse measured foliations with singularity
data (p,,...,p,;¢) determines a quadratic differential with singularity data
(ky,...,k;¢ where k,=p, —2. Moreover every quadratic differential can be
constructed in this fashion from two transverse measured foliations. Thus the
necessity of the conditions (a), (b) and (¢) in Theorem 2 follows directly from
Theorem 1. Condition (d) is a result of the convention that all 1 pronged
singularities occur at punctures. The sufficiency of the conditions in Theorem 2 is a
consequence of Theorem 1 and a deep theorem of Veech [V]. Veech’s theorem
implies (among other things) that if k can be realized by some quadratic differential
¢ then there is a quadratic differential ¢’ with the same data as ¢ and where ¢’

is constructed from a pseudo-Anosov diffeomorphism in the manner described
above. Q.E.D.

There is a third equivalent way to describe the geometric structure induced by
a quadratic differential. This geometric formulation will be useful in the construc-
tive half of our proof of Theorem 1. Let M be a surface and let X be a finite subset
of M. A Riemannian metric on M — X is flat if it has Gaussian curvature zero. We
say a Riemannian metric on M — X has cone type singularities if, in a neighbor-
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hood of a point of X, the metric can be written as
ds? = dr? + (cr d6)?,

where ¢ > 0. In this case we say the metric has singularity with cone angle 2nc.
Parallel translation defines a homomorphism from =n,(M — X) - SO(2, R). The
image of this map is contained in {+7} if and only if M possesses a parallel line
field. The image of this map is trivial if and only if M possesses a parallel vector
field. A quadratic differential gives rise to a surface with a flat metric and cone type
singularities that also posesses a parallel line field. Conversely every flat structure
with cone type singularities and parallel line field produces a quadratic differential.

Our proof of Theorem 1 uses complex analysis to show the necessity of
condition (c). It would also be interesting to understand geometrically why the
structures listed in condition (c¢) cannot be realized. We will give a short discussion
here.

The nonexistence of a structure of type ( ; —1) is a special (and particularly
simple) case. A structure of type ( ;¢) is a flat structure on the torus without
singularities. It is a consequence of Bieberbach’s classification of manifolds with flat
metrics that every such structure is isometric to R? modulo a lattice. Thus every
such structure possesses a parallel vector field, not just a parallel line field. In
particular ( ; —1) cannot be realized.

We now consider the other sets of singularity data listed in condition (c).
Consider the problem of realizing flat structures with parallel line fields and
prescribed sets of singularities on surfaces with boundary. It is a consequence of
our proof of Theorem 1 that any data other than ( ; —1) can be realized on a
surface with nonempty boundary so that the boundary components are parallel
geodesics. One approach to realizing data on a surface M without boundary is to
cut M along a closed curve, construct a flat structure with parallel boundary
components and then glue the parallel boundary components together. This method
fails in general because it is not always possible to realize the flat structure with
boundary components of the same length. In fact the data sets (4; —1), (1, 3; —1),
and (—1, 1; —1) described in part (c) of Theorem 1 are precisely those which
cannot be realized on surfaces with two parallel boundary components of equal
length.

There is a related geometric realization problem. One can consider the problem
of realizing prescribed sets of singularities by a flat structure with cone type
singularities which does not necessarily possess a parallel vector field. It still makes
sense to talk about cone angles in this case but the quantity ¢ is not defined. In this
case a result of Troyonov, (see [T]), implies that the obvious necessary topological
condition (condition (a) in Theorem 1) is in fact sufficient.
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Proof of Theorem 1 (necessity of condition (c)). We will first prove that there is
no quadratic differential ¢ on a closed surface realizing the topological data listed
in (c). We are indebted to Irwin Kra for pointing out the proofs in the first two
cases. If (4; —1) or (3,1; —1) can be realized, they are realized on a surface of
genus 2. Accordingly, let X be a Riemann surface of genus 2 which supports ¢.
Every Riemann surface of genus 2 is hyperelliptic. This means that it can be
represented as a two sheeted branched covering of the Riemann sphere. Let z be the
covering map and let P, ..., P¢ be the branch points in X.

Assume z(P,) # oo. There is a map w of X to the Riemann sphere which satisfies

w?=[] (z —z(P)),

j=1

and there is an involution 7 : X — X satisfying z ot =z and w - 1 = —w and fixing
precisely the points P,. By II1.7.5 Corollary 1 of Farkas—Kra the abelian differen-
tials w, =dz/w and w,==zdz/w form a basis for the vector space of abelian
differentials on X. Clearly t*(w;) = —w,. By II1.7.5 Corollary 2, the quadratic
differentials w?, w3, and w,w, form a basis for the vector space of quadratic
differentials on X. Thus every quadratic differential ¢ satisfies 1*(¢p) = ¢. Suppose
¢ now is a quadratic differential with a single zero of order 4 at a point p € X. We
show ¢ must realize (4; +1) and not (4; —1). Since t*(¢) = ¢ we have 7(p) =p.
Therefore p is one of the branch points P,. By Theorem II1.7.2 of Farkas—Kra [FK]
the points P, are also the Weierstrass points of X. This means that for each P, there
is an abelian differential on X with a single zero of order 2 at P,. Let w, be the
abelian differential with a zero of order 2 at p. The quotient ¢/w;, is therefore a
meromorphic function on X without zeroes or poles and therefore is a constant
function. Thus ¢ = cw; and ¢ determines (4; +1).

Next we show there is no quadratic differential ¢ on X with a zero of order 3 at a
point p, € X and a zero of order 1 at a point p, € X. If such a ¢ exists, we again have
7*(¢) = ¢ and therefore 7(p;) = p, and so the p, are Weierstrass points. Then ¢ /cu,z,l 1s
a meromorphic function with a simple pole at p, and a simple zero at p,. Thus ¢ /w}
defines a degree 1 covering of X to the Riemann sphere, which is impossible.

Next suppose ¢ is a quadratic differential with a simple zero and a simple pole
on a torus X. There exists a quadratic differential  on X which defines the flat
structure without singularities (Y defines ( ; +1)). Then ¢/ defines a degree 1
covering of X to the Riemann sphere, which is impossible. If ¢ defines ( ; —1), then
¢/ is a constant, which also is impossible.

Sufficiency of the Conditions of Theorem in the case g =0. The realization of
(n + 1)-tuples, k, with a(k) = —4 is particularly simple and we dispense with it here.
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Data with o(k) = —4 are realized on the sphere. Note that in this case some k; is
equal to —1 so by condition (b) ¢ = —1. Suppose k =(k,,...k,; —1), where
k;,= —1fori>m. Let z,, ...z, be distinct points on the Riemann sphere X. Then

the quadratic differential ¢ defined by

¢d22=(z—zl)"'...(z~zm)"md R

Z
(Z—Zm+1)"'(z—2n

realizes k.

Our construction in the general case, a(k) = 0, is by means of a “‘cut and paste”
argument which relies on the geometric formulation of the quadratic differential
structure. In the course of this proof it will be convenient to extend the definition
of flat surfaces with cone points to include surfaces with boundaries and singulari-
ties on the boundaries. For our purposes it suffices to consider surfaces with the
property that all boundary curves are unions of parallel geodesic segments. We
require that for each boundary point p, there is a chart mapping a neighborhood of
p to a neighborhood of the origin in the upper half plane so that with respect to this
chart the metric has the form

ds? = dr? + (cr d)*.

The cone angle at p is then cn. In our examples c¢ is always a positive integer.

Now suppose e, and e, are boundary edges of the same length on flat surfaces.
Let p, and p, be endpoints of ¢, and e,. If we glue ¢, to e, isometrically, identifying
p, and p,, then the cone angle at the identified point is the sum of the boundary
cone angles at p, and p.

We will use the following terminology. Let M be a surface possibly with
boundary. A flat structure on M is a flat Riemannian metric with cone type
singularities and a specified horizontal line field. If M has a boundary then we
assume in addition that the boundary curves are horizontal. If M does not have a
boundary then a flat structure is equivalent to a quadratic differential. We will call
a surface with a flat structure a flat surface.

Our strategy for constructing examples is to partition the singularity data into
subsets which are as small as possible, realize these subsets on flat surfaces with
parallel boundaries and then assemble these surfaces to give a flat structure on a
connected surface without boundary. The first step is to break up the data k into
minimal pieces.

NOTATION. If k'=(ki,...,ky;€") and Kk>=(ki,... k};¢®) and

ny?

¢'=¢?>=c¢ then we write k =k'@k? for (k},... kL k%, ..., k2 ;0.

nyo nyo
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Let k =(k,,...,k,;€) be an (n + 1)-tuple. Define a collection k to be admissible
if

(1) a(k) =0 mod 4.

(2) o(k) = 0.

We say k is minimal if it cannot be written as kK = k' @ k2 where k' and k? are
admissible. Every admissible k can be written as k = k'@ - - - @ k™ where each k/ is
minimal.

The following theorem shows that essentially every minimal collection can be
realized on a flat surface with two parallel boundary components.

THEOREM 1'. Let k=(k,,...,k,;€) be a minimal collection. Assume
k#(;—1).

(@ Ife=—1,k#4;, —1), k#3, 1, —1), and k #(1, —1;, —1), then for any
two positive numbers I, and ,, there is a flat surface M realizing the data k
with two horizontal boundary components of lengths I, and 1,.

(b) Ifk=(4; —1),(3,1; —1), or (1, —1; — 1), then for any two positive numbers
l, > 1, there is a flat surface realizing the data k with two horizontal boundary
components of lengths [, and I,.

(¢) If ¢ = +1, then for any positive number | there is a flat surface realizing the
data k with two horizontal boundary components of equal length I.

DEFINITION. We call the k-tuples (4; —1), (3,1; —1) and (1, —1; —1)
restricted.

We now show that Theorem 1’ implies Theorem 1.

Completion of the Proof of Theorem 1. Let k =(k,,...,k,, ¢) and suppose
o =0 and k satisfies the hypotheses of Theorem 1. Write k as k = k'@ - - @ k™ as
a sum of m minimal collections (k/, ..., k/,',,, ¢/). By convention ¢/ =¢.

Suppose first that m =1 so k itself is minimal. Hypothesis (c) of Theorem 1
implies that k is unrestricted. If ¢ = +1 we apply conclusion (c) of Theorem 1’ to
find a surface with two boundary components realizing k such that the boundary
lengths are equal. If ¢ = —1, conclusion (a) of Theorem 1’ says the boundary
lengths are arbitrary and thus we may choose them to be equal. In either case we

may glue the boundary components isometrically to realize k on a closed surface.
Now assume m > 1.

CASE A. e = +1.

Choose a flat structure X, with two boundary components realizing each
minimal collection so that the boundary lengths of all X, are equal. This is possible
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by Theorem 1’ part (¢). Foreach 1 <j < m— 1 glue a boundary component of X;
isometrically to a boundary component of X, ; and glue a component of X,, to a
component of X,.

CASE B. ¢ = —1 and at least one minimal collection is unrestricted.

We may assume the unrestricted collection is realized on X,,. If m =2 choose
the arbitrary boundary length of X, to be equal to the boundary lengths of X, and
glue isometrically. Suppose then that m > 3. Realize k' on X,. Realize k% on X, so
that one boundary length of X, is equal to a boundary length of X,. Glue these
boundaries together isometrically. Similarly we realize k* on X; and glue one
boundary component of X5 to the unglued component of X,. Continue in this
fashion eventually gluing a boundary component of X,, | to the unglued boundary
component of X,, _,. Since X,, has arbitrary boundary lengths we may choose them
so that one boundary length is the same as the length of the unglued boundary of
X,,_, and the other is the same as the length of the unglued boundary of X,. We
may glue X,, to the connected sum of the X, along these boundaries to form the
closed surface.

CASE C. ¢ = —1 and all minimal collections are restricted.

Realize the minimal collections on flat surfaces X;. For each X, label the
boundaries C/, j =1, 2 so that |C}| < |C?| where the notation |y| denotes the length
of y. The hypothesis of theorem 1 excludes the case that the data consists of a single
restricted collection so we may assume that m = 2. If m =2 we may choose X, and
X, so that |C}|=|C%|, j=1,2 and glue C} to C%. Suppose then m = 3. For
1 <i <m —2 we may choose X; so that |C?|=|C},,| and then form the connected
sum of X, and X, by gluing C7 isometrically to C;,,. Now |CZ,_,|>|C}|. Now
choose X, so that |C2 | =|C},_,| and |C),| =|C}|. Glue C7, isometrically to C2 _,
and C] isometrically to C}. Q.E.D.

Before proving Theorem 17 we will establish some properties of minimal
collections.

PROPOSITION 1.1. For each minimal collection (k,, . ..k,) either
(a) n <4 or
(b) exactly one k; > 0.

Proof. Write m_ for the number of indices i for which k;, = —1.
CASE 1. m_ <4.

We will show (a) holds. For m <n let o, =X7 ,k;. If n>4, then for
some 1<j,<j,<5 we have o, =a; mod4 by the pigeon hole principle.
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Thus o, —a; = b2l j,+1k,=0mod4. This implies that both subcollections
k'=(k; +1,...k;,) and k?=(k,,... k; ,k;,,1...,k,) satisfy o(k’) =0mod4.

The condition, m_ <4, that there are fewer than 4 indices with k; = — 1, implies
that o(k’) 2 —3 for both i=1,2. Therefore since o(k') =0mod4 we have
o(k’) 2 0. We have subdivided (k,, . . ., k,,) into two admissible collections contrary

to the hypothesis.

CASE II. m_ > 4.

We will show that (b) applies. Suppose to the contrary that k£, > 0 and &, > 0.

Consider first the situation when m_ > k, or m_ > k,. Assume for the sake of
definiteness that m_ > k,. Consider the subcollection k' = (k,, —1,..., —1) where
the number of — 1 entries in the subcollection is k,. We have (k') = 0. Therefore
k' and the complementary subcollection are admissible and we have subdivided
(ky,...,k,), contrary to assumption.

Now consider the situation when m_ <k, and m_ <k,. Since k is minimal,
k. # 4. Thus k,, k, = 5. Form the subcollection (k,, —1, ..., —1) where the num-
ber of —1 entries m’” satisfies 0 <m’” <3 and k&, =m’” mod 4. Then both this
collection and the complementary collection are admissible and again we have
contradicted the minimality of (k,,...,k%,). Q.E.D.

The remainder of this paper will be devoted to the proof of Theorem 1. We
construct three different classes of examples. The lowest level are the building
blocks. These are denoted below by A(1), A(m), B, and B, and are constructed by
making identifications on the boundary of a metric cylinder. These building blocks
will contain singularities on their boundaries.

We call the intermediate level pieces the basic examples. These are constructed
by gluing together building blocks. The basic examples do not contain singularities
on their boundaries and are in fact examples of surfaces with boundary which
realize minimal data.

In the final step of the construction we use two inductive procedures to build all
examples realizing minimal data from the basic examples.

Basic examples

Let C denote a metric cylinder, that is to say C is isometric to the product
S' x I. We choose the horizontal direction so that the boundaries are horizontal. C
realizes the data ( ; +1).

Building Block A(1). Let C be a metric cylinder and let C° be one of its
boundary components. Divide C° into three segments and labelled a, b and b~ so
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Figure 1

that |b| = |6~ "|. Let P,, Q and P, be the vertices as shown in Figure 1. We construct
a new surface, 4A(1), by identifying b and » ~' by an orientation reversing isometry.
Thus the endpoints of a, P, and P,, are identified to become a single point P and
a becomes a closed curve. The point P becomes a boundary singular point with
cone angle 2n. The point Q becomes an interior singular point in A(1) with cone
angle 7. In the language of quadratic differentials Q is a simple pole. In general we
identify sides using the standard convention that a side labelled x and a side
labelled x ~' are glued together by an orientation reversing isometry. The edge
identifications force certain vertex identifications. We will identify two vertices only
if their identification is forced in this way. A(1) has two boundary components
A°(1) and A4'(1) corresponding to the two components of C; |4°(1)|=|a| and
|4'(1)| = |a| + 2|b|. Note that by choosing the diameter of C, |a| and |b| appropri-
ately we can give the boundaries any assigned lengths with |4°(1)| < |4'(1)].

Building Block A(m), m > 1. Let C be a metric cylinder and let C° be one
of its boundary components. Divide C° into 2m + 1 segments and label them
a,b,b;', by, b5"...b,b," (see Figure 2). Choose the lengths of segments so that

Figure 2
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|b:] =|b:!|. Identify sides using the standard convention. The points P, ... P,, are
identified to a single point P. Let A(m) be the resulting flat surface with boundary.
A(m) has two boundary components; one, A°%m), corresponds to the edge a and the
other A'(1) corresponds to C'. Then |4°(m)| = |a| and |4'(1)| = |a| + Z 2|b,|. Note
that by choosing the lengths of segments appropriately we can give the boundaries
any assigned lengths with |4°(1)| <|4'(1)|. A(m) has m singularities with cone
angle = in its interior corresponding to Q,...Q,, and one singularity on the
boundary A°(m) with boundary cone angle (m + 1)n at the point P.
We now construct the first set of basic examples.

Basic Examples 1. k =(m, —1, ... —1; —1) with a(k) = 0.

If m =1 then the data is restricted. Construct a surface M from C and A(1) by
gluing one component of C to 4°%(1). We have that the length of 4'(1) is greater
than the circumference of C, but otherwise the lengths are arbitrary. M has two
singularities, one of cone angle n in the interior of A(1) and one of cone angle
2n + n = 3n which arises from the identification of the boundary cone angle 2n
singularity on 4°(1) and a boundary cone angle © point on the boundary of C.
Recall that boundary cone angles add under identification. The cone angle 3n
singularity is a zero of order 1.

If m > 1 then we construct a surface M by gluing a copy of A(1) to a copy of
A(m — 1) so that the boundary singularities coincide. Using the fact that cone
angles add we see that the singularity corresponding to the boundary singularity has
cone angle (m + 2)n. By choosing the boundary lengths of A(1) and A(m — 1)
appropriately we can realize any boundary lengths on M.

We now construct another building block, B,, and use it to construct further
basic examples.

Building Block B,. Let C be a metric cylinder and let C° be one of its boundary
components. Divide C? into 5 segments and label them aba ~'b~'c (see Figure 3).

P P
a b
-1
b a
P, P,
p

Figure 3
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Choose the segments so that |a| =|a~'| and |b|=|b""|. Identify sides using the
standard convention. Let B, be the resulting flat surface with boundary. B, has two
boundary components; one, B?, corresponds to the edge ¢ and the other, Bji,
corresponds to C'. |BY| =|c| and |B}| = 2|a| + 2|b| + |c|. Note that by choosing the
lengths of segments appropriately we can give the boundaries any assigned lengths
with |BY| < |B}]. All vertices are identified to a single point P. B, has one singularity
at P with cone angle 57 on the boundary BY.
We now construct the second group of basic examples.

Basic Examples 11. k =(4; —1), (8, —1), (5, —1; —1) and (5, 3; —1).

We first construct the example M that realizes the restricted data (4; —1).
Construct a surface M from B, and C by gluing the boundary B to one boundary
of C. The singularity of cone angle 57 on B gives a singularity of cone angle 6x in
M. This is a zero of order 4. We can choose the boundary lengths of B, and the
circumference of C to realize any boundary lengths /, > ;.

We construct (8; —1). Construct a surface M from two copies of B,, calling
them B, and B. Glue boundaries B} and BY so that the singularities coincide. The
resulting singularity has cone angle 10m. The boundary lengths can be chosen
arbitrarily.

We construct a surface realizing (5, —1; —1). Construct a surface M from a
copy of B, and a copy of A(1). Glue the boundaries B} and 4°(1) together so that
the singularities coincide.

The resulting singularity has cone angle 57 4+ 2n = 7n. There is one cone angle
n singularity in the interior of M coming from A(1). The boundary lengths'can be
chosen arbitrarily.

To construct (5, 3; — 1) we need one additional building block.

Building Block B,. Let C be a metric cylinder and let C° be one of its boundary
components. Divide C° into 6 segments and label them efe ~'d, f~'d, (see Figure
4). Choose the segments so that |e| =|e ~'| and |f| =|f"|. Identify sides using the
standard convention. Let B, be the resulting flat surface with boundary. B, has two
boundary components; one, BY, corresponds to the edge d, and d, the other, B),
corresponds to C'. Then |B}| = |d,|+ |do| and |B}| =2|e|+ 2|f| + |d\| + |d,|- Note
that by choosing the lengths of segments appropriately we can give the boundaries
any assigned lengths with |BY| < |Bj|; B, has a boundary singularity at P with cone
angle 27 and a boundary singularity at Q with cone angle 4n.

We construct the basic example (5, 3; —1). Construct a flat surface M by gluing
a copy of B, to a copy of B, by gluing BY to BY. BY contains a singularity with cone
angle 5n. BY contains singularities with cone angles 2z and 4rn. Choose the identi-
fication of the boundaries so that the 57 singularity and the 2z singularity P are
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Figure 4

identified. The resulting singularity will have cone angle 7n. The 4n singularity Q
will be identified with a nonsingular boundary point so the resulting singularity will
have cone angle 5n. The boundary lengths can be chosen arbitrarily.

We now construct the last set of basic examples.

Basic Examples 111. (2,2; —1), (3,2, —1;—1), (3,3, —1,—1;—1), (2,1,1; —1)
and (1,1, 1,1; —1).

The paradigm for these constructions is the construction of (2, 2; —1). Take a
metric cylinder C, and identify two diametrically opposite points on one boundary
component of C,. This gives two boundary circles ¢, and ¢, of equal length joined
at a point P. Note this space is a 2-complex but not a manifold with boundary.
Take a second metric cylinder C, with circumference |c,|=|c,| and glue one
boundary component isometrically to ¢,, the other to ¢,. Then P becomes a
singularity with cone angle 47 which in the language of quadratic differentials is a
zero of order 2. Now identify two not necessarily diametrically opposite points on
the other boundary component of C, giving two boundary circles 4, and d, of
arbitrary length joined together at a point Q. Glue one boundary component of a
third cylinder C, with circumference |d,| isometrically to d, and glue a boundary
component of a fourth cylinder C, with circumference |d,| isometrically to d,. The
point Q is also a zero of order 2. This construction produces a surface with two
boundary components corresponding to the unglued boundary components of C,
and C, and they have arbitrary lengths |d,| and |d,| respectively. (See Figure 5.)

(3,2, —1; —1): Replace the cylinder C, in the previous construction with a copy
of A(1). Glue the 2n singularity on the boundary of A(1) to Q on C,. This makes
Q a cone angle 57 singularity and adds a singularity of cone angle © coming from
the interior of A(1).

(3,3, —1, —1; —1): Replace the cylinder C, in the previous construction with a
copy of A(1). (This necessitates identifying points on the boundary of C, which are
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not diametrically opposite because the boundaries of A4(1) must have different
lengths.) In this way P becomes a cone angle Sn singularity and a second cone angle
7 singularity is added.

(2,1, 1; —1): We identify disjoint intervals of the same length on the “top’
component of C, by an orientation reversing isometry. (See Figure 6.) This gives
two circles d, and d, based at distinct points @’ and Q" and an interval joining
them. The lengths |d,| and |d,| of the circles are arbitrary. The points 0’ and Q" are
zeroes of order 1.

(1,1, 1, 1; —1): We identify intervals on both boundary components of C;. This
produces four zeros of order one: P’, P”, Q' and Q". (See Figure 7.) As in the case
of (2,2; —1) we require that the two boundary circles ¢, and ¢, on one component
have equal length so that they can be glued to boundary components of the same
cylinder C,.

The next two propositions allow us to build all minimal examples from the basic
ones and allow us to prove Theorem 1.

b

DEFINITION. A saddle connection is a geodesic segment joining two singular-
ities which has no singularities in its interior.
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PROPOSITION 1.2. Suppose M is a flat surface realizing k =
(ky, ko, ..., k,;c€). Suppose there is a horizontal saddle connection joining the zeroes

of order k, and k,. Then there is a new flat surface M’ determining
k=0, +2,k,+2,...,k,;¢).

Proof. Let y be the saddle connection joining p, and p,, the zeroes of orders k,
and k, and let d be its length. Tak a flat torus 7, points x,,x,eT and a
horizontal geodesic segment 7’ joining them of length 4. Slit M and T along y and
y’, and let M’ be the connected sum of M and T formed by gluing M and T
together along the slits with p, glued to x, and p, glued to x,. It is easy to see
that 27 is added to each of the cone angles at p, and p,. Thus 2 is added to the
order of each zero.

Notice that if M has two boundary components which are horizontal geodesics
without singularities then M’ has the same property. Also note that M’ has a
horizontal saddle geodesic joining the two zeroes of order k, +2 and k, + 2. If M
has a horizontal saddle connection which is a loop based at a zero, then there is

horizontal saddle connection which is a loop based at the corresponding zero of
M.
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PROPOSITION 1.3. Suppose M is a flat structure realizing k = (k,, ..., k,;€).
Suppose there is a closed horizontal saddle connection from the zero of order k, to
itself. Then there is a flat structure M’ determining k' = (k, +4, ...,k,;¢€).

Proof. Let p be the zero of order k,. Let y be the saddle connection based at p
and suppose it has length d. Find a flat torus 7, points x, and x, and a horizontal
geodesic y” with length 2d joining them. Slit 7 along y” and then identify x, and x,.
The result is a flat torus 77 with two boundary circles joined together at the point
x,; = X,. Now slit M along y. We form M’ by gluing each side of the cut to one
boundary circle of 7’. We glue the point x, = x, to the point on the cut correspond-
ing to p.

Note that M’ has a closed horizontal saddle connection from the zero of order
k, + 4 to itself. Suppose further that M has two horizontal boundary components,
then M’ has two horizontal boundary components with the same lengths as those
of M and if there is closed horizontal saddle connection from a zero of M to itself,
the corresponding zero of M’ has such a saddle connection as well.

Proof of Theorem 1.

CASE A. ¢ = +1.

Since the k; are even and k is minimal, it is easy to see that n =1 or n = 2. The
proof is by induction on (k) = X7_, k;. Assume k, = k,. For the sake of applying
Propositions 1.2 and 1.3 we make the following induction hypotheses:

(1) if k, #0 there is a horizontal segment joining the two zeroes.

(2) if k, > k, there is a closed horizontal saddle connection from the zero of

order k, to itself.

The only case when a(k) =0 is ( ; +1) which has already been constructed.
Thus assume a(k) = 4. To start the induction we construct the two examples for
which ¢ =4; namely (2, 2; +1) and (4; + 1), and the example (6, 2; +1). For the
first, take a metric cylinder and choose a horizontal segment joining distinct points.
Apply Proposition 1.2. Since the boundary lengths of the metric cylinder are equal,
the same is true of (2,2; +1). To construct (4; +1), choose a closed horizontal
geodesic which is a waist curve of the metric cylinder. Apply Proposition 1.3. The
induction hypotheses (1) and (2) are satisfied for both examples. The construction
of (6, 2; +1) is somewhat special since it does not follow the general pattern. We
construct this example from (4; +1) by joining the zero p of order 4 to a
nonsingular point by a horizontal segment which is not a subsegment of the simple
closed horizontal saddle connection from p to itself. Now apply Proposition 1.2.
The remarks following the proof of Proposition 1.2 show that the induction
hypotheses are satisfied for (6, 2; +1) as well. Now suppose inductively we have
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constructed all examples k with a(k) =4m, m > 1, and k satisfies a(k) =4m + 4. If
k,=k,+8letk’=(k, —4,k,; +1). Then k;, — 4 > k,. The induction hypothesis (2)
implies the existence of a horizontal saddle connection from the zero of order k;, — 4
to itself. Proposition 1.3 allows us to construct k from k’. The remarks following
Proposition 1.3 show that k satisfies the induction hypotheses (1) and (2). Suppose
k, <k, <k,+8. Since k, + k, 2 8, k, > 0. The fact that k, + k, = 0 mod 4 implies
k =(6,2; +1), or k, > 2. The example (6, 2; +1) has already been constructed so
assume k, > 2. Let k' = (k; — 2, k, — 2; +1). Since k, — 2 > 0, the induction hypo-
thesis (1) says there is a saddle connection joining the two zeroes. We may apply
Proposition 1.2 to k£’ to construct k. Again the remarks following Proposition 1.2
show that k satisfies (1) and (2).

We now divide the general case of minimal £k = (k,, ..., k,; —1) with a(k) =0
into two subcases based on the dichotomy of Proposition 1.1. We can assume k, > 0.

CASE B. ¢ = —1 and k, is the only positive entry.

The proof is by induction on a(k). For the sake of applying Proposition 1.3 we
make the following Induction Hypothesis: There is a closed horizontal loop based at
the single zero of order k,.

We construct the examples (4m; — 1) by induction on m. We have constructed
the examples for m = 1, 2. These examples indeed satisfy the induction hypothesis.
Suppose we have constructed (4m; —1). We may apply Proposition 1.3 to construct
(4m + 4; —1). By the remark following Proposition 1.3 (4m + 4; —1) satisfies the
induction hypothesis. Notice the unrestricted example (8; — 1) cannot be constructed
from the restricted example (4; — 1) using Proposition 1.3 because we cannot then
get arbitrary boundary lengths. That is why it was constructed separately.

Now we construct the examples k = (k,, —1,..., —1; —1) by induction on k;.
We have constructed all examples with (k) = 0 as well as (5, —1; —1). For each the
induction hypothesis holds. Suppose inductively we have constructed all examples for
which k;, < m where m > 5. Suppose k =(m +1,...). Letk'=(m —3, —1,...) and
m —3 =2 Thenk, — 3 = 250 k’ is unrestricted. We construct the unrestricted k from
k’ by applying Proposition 1.3. Notice again (5, —1; —1) cannot be constructed
from (1, —1; —1) since the latter is restricted and we cannot get arbitrary boundary
lengths. That is why we constructed (5, —1; —1) separately.

CASE C. ¢ = —1 and there is more than one positive k;.

The proof is by induction on o. By Proposition 1.1, n < 4. We can assume &, is
the largest positive entry. We make the following
Induction Hypothesis: If k is not the restricted example (3, 1; — 1) then for each k;
satisfying k; = max (1, k, — 4) there is a closed horizontal saddle connection based
at the zero of order k;.



306 HOWARD MASUR AND JOHN SMILLIE

There are no minimal examples with ¢ = 0. If a(k) =4, k, < 3. The possibilities
are the basic examples constructed already in III: (2,2; —1), (3,2, —1; —1),
(3,3, —1; =1),(2,1,1; —1), (1,1, 1, 1; —1) and the restricted example (3, 1; —1).
It is easy to check that the induction hypothesis is satisfied by the basic examples.
The example (3, 1; —1) is constructed from (1, —1; —1) by applying Proposition
1.2 to the horizontal saddle connection joining the zero and the pole. Suppose
inductively we have constructed all examples k” with a(k’) = 4m where m = 1 and
k=(k,,ky, ...,k,; —1)satisfies a(k) =4m + 4 = 8. We can assume k # (5, 3; —1)
since it was already constructed.

Assume first that k£, < 3. Since n < 4 and o(k) = 8, the possibilities are

(3,3,2; —-1),(3,3,3, —1; —1),and (3,3,3,3; —1).

We construct (3,3,2; —1) and (3,3,3,—-1; —1) from (1,1,2; —1) and
(3,1, 1; —1) respectively by applying Proposition 1.2 to the horizontal segment
joining the two zeroes of order 1. Since for both (1, 1,2; —1) and (3, 1, 1; — 1) there
is a horizontal loop from each zero to itself, the same is true for the examples built
from them. Thus the induction hypothesis is still satisfied. To build (3, 3, 3, 3; —1)
we first construct (3,3, 1, 1; —1) from (1, 1, 1, 1; —1) by applying Proposition 1.2
to a segment joining two zeroes of order 1. Then (3, 3, 3, 3; —1) is constructed from
(3,3,1,1; —1) by again applying Proposition 1.2 to a segment joining the remain-
ing two zeroes with order 1.

Now assume k, > 3. Then k, = 5 by minimality. The case of (7, 1; —1) is special
since it is an exception to the induction hypothesis. We recall the construction of
the flat surface realizing (S5, —1; —1) which has a horizontal saddle connection
joining the zero and the pole. We apply Proposition 1.2 to construct (7, 1; —1). For
any other case let k"= (k, —4,k,,...,k,; —1). Since k is assumed not to be
(5,3, —1), k" #(1,3; —1) so k’ is unrestricted. Moreover k, — 4 =2 max (1, k;, — 4),
for all i, and so by the induction hypothesis there is a closed horizontal saddle
connection based at the zero of order k, —4. Applying Proposition 1.3 to k',
constructs k. Again the induction hypothesis holds for k. This completes the proof
of Theorem 1.
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