Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 68 (1993)

Artikel: Die Parametrisierung des Teichmüllerraumes durch geodätische

Längenfunktionen.

Autor: Schmutz, Paul

DOI: https://doi.org/10.5169/seals-51769

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 11.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Die Parametrisierung des Teichmüllerraumes durch geodätische Längenfunktionen

Paul Schmutz*

§0 Einleitung

Sei T_g der Teichmüllerraum der markierten geschlossenen Riemannschen Flächen vom Geschlecht $g \ge 2$, versehen mit der Metrik der konstanten Krümmung -1. T_g ist homöomorph zum \mathbb{R}^{6g-6} und kann durch eine Anzahl geodätischer Längenfunktionen global parametrisiert werden. Es ist wohlbekannt, dass diese Anzahl echt grösser als 6g-6 ist. Was aber ist die kleinstmögliche Anzahl? Seit langem wurde vermutet, dass diese kleinste Anzahl 6g-5 ist. Jedoch wurden zunächst nur schwächere Resultate bewiesen. Verschiedene Autoren haben gezeigt, dass 9g-9 gut gewählte geodätische Längengfunktionen T_g jedenfalls parametrisieren können. Seppälä/Sorvali [4], [5], [6] haben dann die Anzahl auf 6g-4 hinunterdrücken können. Das Hauptresultat dieses Artikels ist die optimale Lösung dieses Problems.

THEOREM 1. Für jedes $g \ge 2$ kann T_g durch 6g-5 geodätische Längenfunktionen parametrisiert werden.

Entscheidend für den Beweis von Theorem 1 ist die folgende Tatsache. Sei $T_{g,n}$ der Teichmüllerraum der markierten Riemannschen Flächen der Signatur (g, n), d.h. vom Geschlecht g und mit n disjunkten Randkomponenten, welche einfach geschlossene Geodätische sind. $T_{g,n}$ ist homöomorph zum $\mathbb{R}^{6g-6+3n}$. Im Gegensatz zur obigen Situation mit geschlossenen Flächen kann $T_{g,n}$ hier durch 6g-6+3n geodätische Längenfunktionen global parametrisiert werden.

THEOREM 2. Für jedes g und jedes $n \ge 1$ (mit $2g + n \ge 3$) kann $T_{g,n}$ durch 6g - 6 + 3n geodätische Längenfunktionen parametrisiert werden.

Theorem 2 ist nicht neu. Es wurde erstmals von Sorvali in [7] (implizit) bewiesen. Jedoch sind die dortigen Methoden völlig verschieden von den meinigen.

^{*} Unterstützt vom Schweizerischen Nationalfonds.

Für den Beweis von Theorem 1 brauche ich Theorem 2 nur für den Fall g=1. In §1 wird diese schwächere Version von Theorem 2 sowie Theorem 1 bewiesen. In §2 wird der Beweis von Theorem 2 mit meinen Methoden durchgeführt, jedoch einige (wenige) Details dem Leser und der Leserin überlassen einerseits weil das Theorem nicht neu ist, anderseits weil keine gegenüber §1 neuen Methoden zur Anwendung kommen.

Im übrigen ist Theorem 2 ein Beispiel dafür, dass Flächen mit Rand oft ein grundsätzlich anderes Verhalten aufweisen als geschlossene Flächen. Weitere Beispiele dafür sind:

- (a) In Flächen mit Rand können alle einfach geschlossenen Geodätischen gleichzeitig verlängert (oder verkürzt) werden, was in geschlossenen Flächen nicht möglich ist.
- (b) Sei $\varepsilon > 0$. In $T_{g,n}$ gibt es Flächen mit 4g 4 + 2n Eigenwerten des Laplace-Operators, die kleiner sind als ε , siehe [2]. Wird ε genügend klein gewählt, so gibt es in geschlossenen Flächen höchstens 2g 2 Eigenwerte kleiner als ε , siehe [3].

Werden hingegen die Längen der Randgeodätischen bei Flächen mit Rand von Anfang an fixiert, so weisen solche Flächen in all diesen Beispielen das genau gleiche Verhalten auf wie geschlossene Flächen. Insbesondere gilt dies auch, wenn die Länge der Randgeodätischen degeneriert, das heisst verschwindet und es sich somit um Spitzen (cusps) handelt.

Anderseits haben natürlich Flächen mit Rand einen "Defekt". Ihre Teichmüllerräume lassen wohl eine reell-analytische Struktur zu, nicht aber eine komplexanalytische.

§1. Der Beweis von Theorem 1

Konventionen. Eine Riemannsche Fläche (oder einfach Fläche genannt) ist hier immer mit der Metrik der konstanten Krümmung –1 versehen. Sie ist orientiert.

Unter einer Geodätischen verstehen wir im folgenden immer eine einfach geschlossene Geodätische. Dabei kann dies sowohl eine Geodätische in einer bestimmten Riemannschen Fläche sein als auch die Homotopieklasse dieser Geodätischen im betreffenden Teichmüllerraum. Wenn wir von einer Geodätischen in einer Fläche mit Rand sprechen und ausschliessen wollen, dass es sich dabei um eine Randgeodätische handelt, dann sprechen wir von einer Geodätischen im Innern oder von einer inneren Geodätischen.

Sei a eine Geodätische in M. Dann bezeichnet L(a) die Länge dieser Geodätischen. Sind M und M' zwei Flächen aus dem gleichen Teichmüllerraum, dann

bezeichnen $L_M(b)$ beziehungsweise $L_{M'}(b)$ die Länge derjenigen Geodätischen in M beziehungsweise in M', welche jeweils in der Homotopieklasse von b ist.

DEFINITION 1. Sei M eine Riemannsche Fläche der Signatur (1, 1) und seien a, b und c drei Geodätische im Innern von M mit i(a, b) = i(a, c) = i(b, c) = 1, wo i(x, y) die Anzahl der Schnittpunkte der Geodätischen x und y bedeutet. Dann heisst $\{a, b, c\}$ Dreieck von M. (Dieser Name wird im Beweis des folgenden Lemmas seine Erklärung finden.)

Wir bezeichen A, B, C als Ecken dieses Dreiecks, wo $\{A\} = b \cap c$, $\{B\} = a \cap c$, $\{C\} = a \cap b$.

LEMMA 1. Sei M eine Riemannsche Fläche und a, b zwei Geodätische im Innern von M mit i(a,b)=1. Dann gibt es eine Teilfläche M' von M der Signatur (1,1) und eine Geodätische c so, dass $\{a,b,c\}$ ein Dreieck von M' ist.

Beweis. Da dies eine rein topologische Frage ist, können wir M im entsprechenden Teichmüllerraum frei wählen. Dann ist die Existenz einer Teilfläche M' der Signatur (1, 1), welche a und b als innere Geodätische enthält, evident (für einen detaillierten Beweis dieser Tatsache siehe z.B. [1]). Bleibt die Existenz von c zu zeigen.

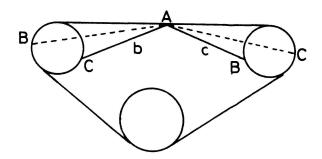
Flächen der Signatur (1,1) haben eine hyperelliptische Involution mit drei Fixpunkten A, B, C. Auf jeder inneren Geodätischen liegen genau zwei dieser Fixpunkte, welche die Geodätische in zwei isometrische Hälften zerlegen. Die Hälften von a und von b bilden zwei Seiten eines geodätischen Dreiecks mit Ecken A, B, C. Die Geodätischen c kann (und muss) so gewählt werden, dass einer ihrer Hälften die dritte Seite in diesem geodätischen Dreieck bildet.

Bemerkung. In Lemma 1 ist die Teilfläche M' durch a und b eindeutig bestimmt. Für die Wahl von c haben wir genau zwei Möglichkeiten, die sich durch die Orientierung des Dreieckes ABC unterscheiden lassen.

LEMMA 2. Sei $\{a, b, c\}$ ein Dreieck in einer Fläche $M \in T_{1,1}$. Dann sind die geodätischen Längenfunktionen L(a), L(b) und L(c) globale Koordinaten für $T_{1,1}$.

Beweis. Seien $M, M' \in T_{1,1}$ und sei $L_M(a) = L_{M'}(a), L_M(b) = L_{M'}(b),$ $L_M(c) = L_{M'}(c).$ Zu zeigen ist, dass dann M = M'.

Die hyperbolische Trigonometrie zeigt, dass die Längen von a, b und c die Länge der Randgeodätischen d von M bestimmen. Es folgt, dass $L_M(d) = L_{M'}(d)$ gilt. Der Teichmüllerraum $T_{1,1}$ kann durch die Längen von a und von d und durch den Twist entlang von a parametrisiert werden, das sind die Fenchel-Nielsen



Figur 1. Die entlang von a aufgeschnittene Fläche M'.

Parameter von $T_{1,1}$. Der Twist entlang von a kann hier als der gerichtete Winkel (mit C als Scheitelpunkt) von b nach a im Uhrzeigersinn definiert werden (vergleiche Figur 1).

Da ein geodätisches Dreieck durch die Längen der drei Seiten eindeutig bestimmt ist, ist dieser Winkel und somit der Twist entlang von a durch das geodätische Dreieck, gebildet durch die Hälften von a, b und c, wohlbestimmt. Somit folgt M = M'.

DEFINITION 2. Ein Standardsystem von Geodätischen für eine Fläche M der Signatur (1, n), $n \ge 1$, besteht aus folgenden 3n + 1 Geodätischen:

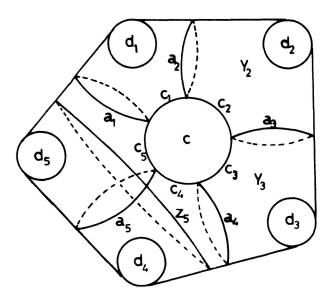
- (i) den Randgeodätischen d_1, \ldots, d_n ,
- (ii) einer nichttrennenden Geodätischen c im Innern,
- (iii) paarweise disjunkten Geodätischen a_1, \ldots, a_n , welche c jeweils genau einmal schneiden,
- (iv) Geodätischen b_1, \ldots, b_n , welche c jeweils genau einmal schneiden so, dass $\{a_i, b_i, c_i\}$ ein Dreieck bildet für alle $i = 1, \ldots, n$.

Ferner soll die Numerierung der Geodätischen a_i folgender Konvention folgen: Die Geodätischen a_i , a_{i+1} und d_i sind jeweils Randgeodätische eines Y-Stückes (Fläche der Signatur (0, 3)), das mit Y_i bezeichnet wird, und wenn man die Fläche entlang allen Geodätischen a_i aufschneidet, dann sind diese in fortlaufender Reihenfolge numeriert (vergleiche Figur 2).

Wir bezeichnen mit X_i (i = 1, ..., n) die Teilfläche von M, welche aus der Vereinigung der beiden Y-Stücke Y_i und Y_{i+1} besteht, ferner mit z_i (i = 1, ..., n) die (für n > 2 eindeutig bestimmte) Geodätische in X_i , welche a_{i+1} genau zweimal schneidet und $c \cap X_i$ nicht schneidet.

Die Existenz eines Standardsystems auf einer Fläche der Signatur (1, n) folgt mit Lemma 1.

Es sei noch darauf hingewiesen, dass aus topologischen Gründen jede Geodätische b_i alle Geodätischen a_i schneidet, $i, j = 1, \ldots, n$.



Figur 2. Die Fläche M für n = 5.

PROPOSITION 1. Sei $n \ge 1$ fixiert und sei CS ein Standardsystem für eine Fläche M der Signatur (1, n). Sei $K = CS \setminus \{d_j\}$, d_j irgend eine der Randgeodätischen von M. Dann sind die Längenfunktionen der 3n Geodätischen von K globale Koordinaten für $T_{1,n}$.

Beweis. Seien $M, M' \in T_{1,n}$ mit $L_M(x) = L_{M'}(x)$ für alle Geodätischen $x \in K$. Sei (ohne Beschränkung der Allgemeinheit) d_1 nicht in der Menge K. $T_{1,n}$ sei durch Fenchel-Nielsen Parameter wie folgt parametrisiert: Als Parameter dienen die Längen der Geodätischen $d_1, d_2, \ldots, d_n, a_1, a_2, \ldots, a_n$ sowie die Twiste entland den Geodätischen a_1, a_2, \ldots, a_n . Wir zeigen anhand dieser Parameter, dass M = M' sein muss.

(i) Wir zeigen zunächst, dass die Länge von d_1 eindeutig bestimmt ist. Sei t_1 das gemeinsame Lot zwischen a_1 und a_2 im Y-Stück Y_1 . Die Länge von d_1 lässt sich aus den Längen von a_1 , a_2 und t_1 ausrechnen. Also ist zu zeigen, dass die Länge von t_1 wohlbestimmt ist.

Sei c_i das Teilstück der Geodätischen c, welches in Y_i liegt, $i=1,\ldots,n$. Die gerichteten Winkel von c_i mit a_i beziehungsweise mit a_{i+1} sind durch die Dreiecke $\{a_i,b_i,c\}$ beziehungsweise $\{a_{i+1},b_{i+1},c\}$ eindeutig bestimmt. Für $i\neq 1$ sind die Längen von c_i damit mit Hilfe der hyperbolischen Trigonometrie eindeutig bestimmt, da die Längen der Randgeodätischen der Y-Stücke Y_i ($i\neq 1$) vorgegeben sind. Damit ist aber auch die Längen von c_1 bestimmt, da wir die Gesamtlänge von c_1 kennen. Aus der Länge von c_1 und den Winkeln von c_1 mit a_1 beziehungsweise mit a_2 kann die Länge von t_1 nun bestimmt werden.

(ii) Sei t_i , i = 1, ..., n, das gemeinsame Lot zwischen a_i und a_{i+1} im Y-Stück Y_i . Wie soeben gezeigt, sind die Längen von t_i eindeutig bestimmt. Die gleiche

Konstruktion zeigt aber noch mehr. Wir fixieren ein Urbild von c in der universellen Ueberlagerung. Da die gerichteten Winkel von c mit den Geodätischen a_i sowie die Längen von c_i $(i=1,\ldots,n)$ bekannt sind, ist dadurch die Position der gemeinsamen Lote t_i in der Ueberlagerung eindeutig bestimmt. Die gerichtete Distanz von t_i nach t_{i+1} gemessen auf der Geodätischen a_{i+1} ist in dieser Ueberlagerung wohlbestimmt. Diese Distanz definiert aber den Twist entlang von a_{i+1} . Es folgt, dass alle diese Twiste wohlbestimmt sind.

Somit ist M = M' und die Behauptung ist bewiesen.

Beweis von Theorem 1. (i) Sei $g \ge 2$ fixiert. Sei $M \in T_g$. Seien d_1, \ldots, d_{g-1} paarweise disjunkte Geodätische von M so, dass die Fläche M^* , die man erhält, wenn man M an allen Geodätischen d_1, \ldots, d_{g-1} aufschneidet, immer noch zusammenhängend ist, das heisst $M^* \in T_{1,2g-2}$. Wir parametrisieren diesen Teichmüllerraum mit einer Menge K von Geodätischen wie in Proposition 1. Nun haben jeweils zwei der Randgeodätischen von M^* gleiche Länge. Wir wählen auf M^* ein Standardsystem (vergleiche Definition 2) mit Geodätischen a_i , b_i , c, d_i^* so, dass die Randgeodätischen d_{2i-1}^* und d_{2i}^* von M^* von der gleichen Geodätischen d_i von Mherkommen. Wir behaupten, dass M^* durch die Längen der folgenden 5g-5Geodätischen wohlbestimmt ist: $a_1, \ldots, a_{2g-2}, b_1, \ldots, b_{2g-2}, c, d_3^*, d_5^*$ $d_7^*, \ldots, d_{2g-3}^*$. Wenn wir analog zum Beweis von Proposition 1 (und mit der entsprechenden Notation) vorgehen, bleibt zu zeigen, dass die Längen der gemeinsamen Lote t_1 und t_2 wohlbestimmt sind. Dies zeigen wir wie folgt. Die Summe der Längen von c_1 und c_2 ist jedenfalls bestimmt. Somit wächst c_1 genau dann, wenn c_2 fällt, wenn wir ihre Länge variieren. Weiter gilt, dass t_i genau dann wächst, wenn c_i wächst, i = 1, 2. Anderseits wächst d_1^* genau dann, wenn t_1 wächst. Das gleiche gilt für t_2 und d_2^* . Da die Längen von d_1^* und d_2^* gleich sind, folgt die Behauptung.

- (ii) Da wir nun wissen, dass die Längen der obigen 5g-5 Geodätischen den entsprechenden Teichmüllerraum (dessen Flächen immer g-1 Paare von Rand-Geodätischen gleicher Länge haben müssen) global parametrisieren, sind auch andere Fenchel-Nielsen Parameter als die, die oben analog zum Beweis von Proposition 1 gewählten wurden, wohlbestimmt. Wir wählen nun folgende Fenchel-Nielsen Parameter auf M^* : Die Längen der Geodätischen $d_1^*, d_3^*, d_5^*, \ldots, d_{2g-3}^*, z_2, z_4, z_6, \ldots, z_{2g-2}, a_2, a_4, a_6, \ldots, a_{2g-2}$ sowie die Twiste entlang all diesen Geodätischen, sofern sie nicht Randgeodätische sind.
- (iii) Wir kehren auf M zurück. Wir nennen ebenfalls a_1, b_i, c, z_i die von M^* induzierten entsprechenden Geodätischen auf M. Wir schneiden M entlang den Geodätischen $z_2, z_4, z_6, \ldots, z_{2g-2}$ auf. Wir erhalten zwei Flächen N und N', die beide die Signatur (1, g-1) haben. Die Geodätische c von M liege dabei in N. Wir wählen ein Standardsystem auf N' wie folgt: die Randgeodätischen nennen wir z'_{2i} beziehungsweise z'_{2i-1} , wobei z'_{2i} und z'_{2i-1} von der Geodätischen z_{2i} von M

herkommen; c' wählen wir so, dass c' jede Geodätischen d_i (gleicher Name wie in M) genau einmal schneidet (i = 1, ..., g - 1). Schliesslich wählen wir die Geodätischen b'_i so, dass $\{c', d_i, b'_i\}$ ein Dreieck bildet, i = 1, ..., g - 1.

Wir behaupten, dass der Teichmüllerraum T_g durch die Längen der folgenden 6g-5 Geodätischen global parametrisiert wird:

$$a_1, a_2, \ldots, a_{2g-2}, b_1, b_2, \ldots, b_{2g-2}, c, d_2, d_3, \ldots, d_{g-1}, b'_1, b'_2, \ldots, b'_{g-1}, c'.$$

Um dies zu beweisen, wählen wir die folgenden Fenchel-Nielsen Parameter auf M: die Längen der Geodätischen $z_2, z_4, z_6, \ldots, z_{2g-2}, a_2, a_4, a_6, \ldots, a_{2g-2}, d_1, d_2, \ldots, d_{g-1}$ sowie die Twiste entlang diesen Geodätischen. Nach (ii) sind alle Längenparameter sowie die Twiste entlang den Geodätischen $z_2, z_4, z_6, \ldots, z_{2g-2}, a_2, a_4, a_6, \ldots, a_{2g-2}$ wohlbestimmt. Für die Twiste entlang den Geodätischen $d_1, d_2, \ldots, d_{g-1}$ betrachten wir N'. Die Längen aller Geodätischen des oben gewählten Standardsystems für N' sind bekannt. Nach Proposition 1 folgt dann, dass die Twiste entlang den Geodätischen $d_1, d_2, \ldots, d_{g-1}$ wohlbestimmt sind.

Dies beendet den Beweis von Theorem 1.

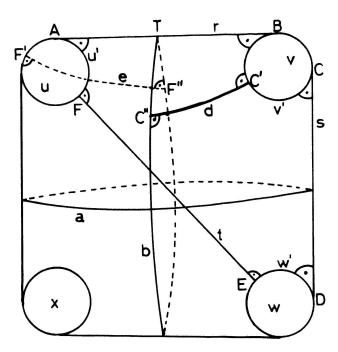
§2. Der Beweis von Theorem 2

DEFINITION 3. X sei eine Fläche der Signatur (0, 4) mit Randgeodätischen $u, v, w, x. \ a, b, c$ seien drei innere Geodätische von X mit folgenden Eigenschaften:

- (i) i(a, b) = i(a, c) = i(b, c) = 2.
- (ii) a trennt u/v von w/x. b trennt u/x von v/w. c trennt u/w von v/x. Dann heisst $\{a, b, c\}$ kanonisches Tripel von X.

LEMMA 3. Sei X eine Fläche in $T_{0,4}$ mit Randgeodätischen u, v, w, x. Sei $\{a, b, c\}$ ein kanonisches Tripel von X. Dann sind die geodätischen Längenfunktionen L(u), L(v), L(w), L(a), L(b), L(c) globale Koordinaten für $T_{0,4}$.

Beweis. (Im folgenden ist 'beziehungsweise' durch 'bzw.' abgekürzt.) Sei r (bzw. s, bzw. t) gemeinsame Senkrechte zwischen u und v (bzw. zwischen v und w, bzw. zwischen u und w) im Y-Stück mit den Randgeodätischen a, u, v (bzw. b, v, w, bzw. c, u, w). Durch die Vorgabe der Längen von u, v, w, a, b, c sind die Längen von r, s, t bestimmt. Sei S das geodätische Sechseck mit lauter rechten Winkeln mit den Seiten r, s, t sowie Teilen u', v', w' von u, v, w. Die Längen von u', v', w' sind durch die Längen von r, s, t bestimmt. Die Ecken von S seien A, B, C, D, E, F so, dass $\{A\} = u' \cap r$, $\{B\} = r \cap v'$, $\{C\} = v' \cap s$, $\{F\} = t \cap u'$. Sei der Punkt $C' \in v$ (bzw. $F' \in u$) so, dass $d(C', C) = \frac{1}{2}L(v)$ (bzw. $d(F, F') = \frac{1}{2}L(u)$). Sei d (bzw. e) gemeinsame Senkrechte zwischen v und b (bzw. zwischen u und b) im Y-Stück mit den



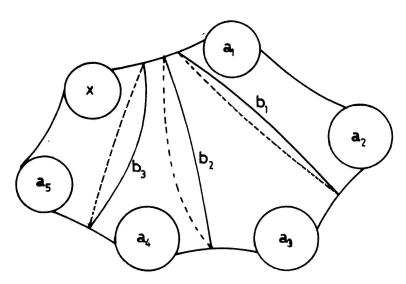
Figur 3. Die Fläche X.

Randgeodätischen b, v, w (bzw. b, u, x). Die Länge von d ist durch die Längen von b, v, w bestimmt. Die Endpunkte von d (bzw. e) nennen wir C' und C'' (resp F' und F''). Sei $\{T\} = b \cap r$. Sei V (bzw. V') das geodätische Viereck mit den Ecken B, C', C'', T (bzw. A, F', F'', T). Die vier Winkel dieser beiden Vierecke sind gleich: je drei sind rechte Winkel, der vierte, bei der Ecke T, sei jeweils α genannt. Die Länge der Seite $BC' = \left|\frac{1}{2}L(v) - L(v')\right|$ (bzw. die Länge der Seite $AF' = \left|\frac{1}{2}L(u) - L(u')\right|$) ist bestimmt. Das Viereck V ist durch L(BC') und L(d) bestimmt. Insbesondere ist damit der Winkel α wohlbestimmt. Durch α und L(AF') ist nun auch V' bestimmt. Somit ist L(e) bekannt. Es folgt, dass L(x) durch die Längen von e, u, b wohlbestimmt ist.

Seien nun die Längen von u, v, w, x, b sowie der Twist entlang von b die Fenchel-Nielsen Parameter von $T_{0,4}$. Wir haben bereits gesehen, dass die Längen von u, v, w, a, b, c die Länge von x bestimmen. Die obige Konstruktion zeigt, dass diese Längen auch den Twist entlang von b bestimmen, denn dieser kann als gerichtete Distanz von C'' nach F'' in der universellen Ueberlagerung mit einem fixierten Urbild von r definiert werden. Dies beendet den Beweis des Lemmas. \Box

PROPOSITION 2. Sei g = 0. Für jedes $n \ge 4$ kann $T_{0,n}$ durch 3n - 6 geodätische Längenfunktionen global paramestrisiert werden.

Beweis. Sei n > 4 fixiert. Sei $M \in T_{0,n}$. Seien $x, a_1, a_2, \ldots, a_{n-1}, b_1, b_2, \ldots, b_{n-3}$ wie in Figur 4. Seien nun c_i und d_i so gewählt, dass $\{b_i, c_i, d_i\}$ ein kanonisches Tripel von X_i ist, $i = 1, \ldots, n-3$, wobei X_i die Fläche der Signatur (0, 4) mit den



Figur 4. Die Fläche M für n = 6.

Randgeodätischen a_{i+1} , a_{i+2} , b_{i-1} , b_{i+1} ist, i = 2, ..., n-4. X_1 hat die Randgeodätischen a_1 , a_2 , a_3 , b_2 , X_{n-3} hat die Randgeodätischen b_{n-4} , a_{n-2} , a_{n-1} , x.

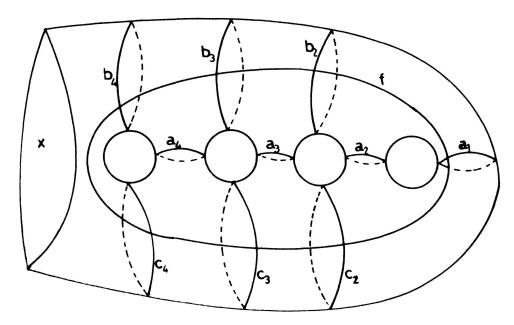
BEHAUPTUNG. Die Längenfunktionen der folgenden 3n-6 Geodätischen bilden eine globale Parametrisierung von $T_{0,n}$: $a_1, a_2, \ldots, a_{n-1}$; $b_1; c_1, c_2, \ldots, c_{n-3}$; $d_1, d_2, \ldots, d_{n-3}$.

Beweis der Behauptung. Wir wählen für $T_{0,n}$ die folgenden Fenchel-Nielsen Parameter: die Längen der Geodätischen $x, a_1, a_2, \ldots, a_{n-1}, b_1, b_2, \ldots, b_{n-3}$ sowie die Twiste entlang der Geodätischen $b_1, b_2, \ldots, b_{n-3}$.

Nach Lemma 3 ist in X_1 die Länge von b_2 sowie der Twist entlang von b_1 durch die Längen von a_1 , a_2 , a_3 , b_1 , c_1 , d_1 wohlbestimmt. Nun sind in X_2 die Länge von b_3 sowie der Twist entlang von b_2 durch die Längen von a_3 , a_4 , b_1 , b_2 , c_2 , d_2 wohlbestimmt. Und so weiter.

PROPOSITION 3. Sei n = 1. Für jedes $g \ge 1$ kann $T_{g,1}$ durch 6g - 3 geodätische Längenfunktionen global parametrisiert werden.

Beweis. Sei $g \ge 2$ fixiert. Sei $M \in T_{g,1}$. Die Randgeodätische von M heisse x. Seien $a_1, a_2, \ldots, a_g, b_2, b_3, \ldots, b_g, c_2, c_3, \ldots, c_g$ paarweise disjunkte innere Geodätische von M, welche eine Zerlegung von M in 2g-1 Y-Stücke bestimmen, siehe Figur 5. $b_i, c_i, b_{i+1}, c_{i+1}$ sind Randgeodätische einer Fläche X_i der Signatur (0, 4) mit innerer Geodätischen $a_{i+1}, i=2, \ldots, g-1$. d_{i+1} und e_{i+1} seien innere Geodätische von X_i so, dass $\{a_{i+1}, d_{i+1}, e_{i+1}\}$ ein kanonisches Tripel von X_i bildet, $i=2, \ldots, g-1$. Sei M an a_1 aufgeschnitten, wodurch a_1 in zwei Geodätische a' und a'' aufgeteilt wird. Dann sind a', a'', b_2, c_2 Randgeodätische einer Fläche X_1 der



Figur 5. Die Fläche M für g = 4.

Signatur (0, 4) mit innerer Geodätischen a_2 . Seien d_2 und e_2 innere Geodätische von X_1 so, dass $\{a_2, d_2, e_2\}$ ein kanonisches Tripel von X_1 bildet. Die gleichen Bezeichnungen verwenden wir auch für die unaufgeschnittene Fläche M. f sei innere Geodätische von M, welche die folgenden Geodätischen jeweils genau einmal schneidet: $a_1, b_2, b_3, \ldots, b_g, c_2, c_3, \ldots, c_g$. Ferner seien $r_1, s_2, s_3, \ldots, s_g, t_2, t_3, \ldots, t_g$ Geodätische so, dass $\{a_1, r_1, f\}$, $\{b_i, s_i, f\}$, $\{c_i, t_i, f\}$ jeweils ein Dreieck bildet, $i = 2, \ldots, g$.

BEHAUPTUNG. Die Längenfunktionen der folgenden 6g-3 Geodätischen bilden eine globale Parametrisierung von $T_{g,1}$: a_1, a_2, \ldots, a_g ; b_2, \ldots, b_g ; d_2, \ldots, d_g ; e_2, \ldots, e_g ; f; r_1 ; s_2, \ldots, s_g ; t_2, \ldots, t_g .

Beweis der Behauptung. Wir wählen für $T_{g,1}$ die folgenden Fenchel-Nielsen Parameter: die Längen der Geodätischen $x, a_1, a_2, \ldots, a_g; b_2, \ldots, b_g, c_2, \ldots, c_g$ sowie die Twiste entlang dieser Geodätischen, ausser entlang von x natürlich. Für den Rest vergleiche mit dem Beweis von Proposition 2 (für die Bestimmung der Längen von c_i und von x) sowie mit dem Beweis von Proposition 1 (für die Bestimmung der Twiste).

Beweis von Theorem 2. Für g = 0 sowie für n = 1 ist das Theorem schon bewiesen. Seien $g \ge 1$, $n \ge 2$ fixiert. Sei $M \in T_{g,n}$. Sei y eine Geodätische von M, welche M in zwei Teilflächen M' und N' trennt so, dass M' die Signatur (g, 1), hat und N' die Signatur (0, n + 1). Für M' wählen wir die analogen Fenchel-Nielsen Parameter wie im Beweis von Proposition 3, nur dass wir das dortige x jetzt y

nennen. Sei Y das Y-Stück in M' mit den Randgeodätischen y, b_g , c_g (in der Notation wie im Beweis von Proposition 3). Ist g=1, so denken wir uns M an a_1 aufgeschnitten und die beiden Kopien von a_1 sowie y sind dann die Randgeodätischen von Y. Sei $N=N'\cup Y$. N hat die Signatur (0,n+2). Für N wählen wir die analogen Fenchel-Nielsen Parameter wie im Beweis von Proposition 2, wobei die jetzigen Bezeichnungen y, b_g , c_g den dortigen Bezeichnung a_1 , a_2 , b_1 entsprechen. Die Fenchel-Nielsen Parameter für M' und für N induzieren nun Fenchel-Nielsen Parameter für ganz M. Nach den Propositionen 2 und 3 brauchen wir 6g-3 Längenfunktionen, um alle Fenchel-Nielsen Parameter von M' zu bestimmen, und 3(n+2)-6=3n, um die Fenchel-Nielsen Parameter von N zu bestimmen. Aber bezüglich N waren y, b_g , c_g schon durch M' bestimmt. Somit brauchen wir für N nur 3n-3 zusätzliche Längenfunktionen. Also kann M durch (6g-3)+(3n-3) Längenfunktionen parametrisiert werden.

BIBLIOGRAPHIE

- [1] P. Buser: Geometry and Spectra of Compact Riemann Surfaces. Birkhäuser Verlag, Basel-Boston-New York, 1992.
- [2] P. SCHMUTZ: Small eigenvalues on Riemann surfaces of genus 2. Inventiones mathematicae 106 (1991), 121-138.
- [3] R. SCHOEN; S. WOLPERT; T. YAU: Geometric bounds on the low eigenvalues of a compact Riemann surface. Amer. Math. Soc. Symp. Pure Math. 36 (1980), 279–285.
- [4] M. SEPPÄLÄ; T. SORVALI: Parameterization of Möbius groups acting on a disk. Comment. Math. Helvetici 61 (1986), 149–160.
- [5] M. SEPPÄLÄ; T. SORVALI: Parametrization of Teichmüller spaces by geodesic length functions. In Drasin D.; Earl C. J.; Gehring F. W.; Kra I.; and Marden A.; editors: Holomorphic Functions and Moduli II. Volume 11 of Publications of the Mathematical Sciences Research Institute Berkeley, p. 267–283. Springer Verlag, New York Berlin Heidelberg London Paris Tokyo 1988.
- [6] M. SEPPÄLÄ; T. SORVALI: Geometry of Riemann Surfaces and Teichmüller Spaces. North-Holland Amsterdam, London New York Tokyo 1992.
- [7] T. SORVALI: Parametrization for free Möbius Groups. Ann. Acad. Sci. Fenn. 579 (1974), 1-12.

EPFL-DMA CH-1015 Lausanne Switzerland

Received June 2, 1992