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Clones of spaces and maps in homotopy theory

C. A. McGIBBON

This paper deals with certain infinite dimensional spaces which appear to be
almost identical in the homotopy category. To explain precisely what is meant by
“almost identical”, I need a few definitions. Recall that two spaces, say X and Y,
are said to have the same n-type if there exists a homotopy equivalence between
X™ and Y™, their Postnikov approximations up through dimension n. These
approximations can be obtained by attaching cells to the original spaces to kill off
their homotopy groups in dimensions greater than n. Obviously, if X and Y are
homotopy equivalent, then they have the same n-type for all n. However, the
converse statement is false, indeed in [7] it is shown that counterexamples to the
converse can occur when X is the classifying space of a compact Lie group.

Let X, denote the localization of X at a prime p in the homotopy theoretic
sense of Bousfield—Kan, [1] or Sullivan, [15]. If X and Y are homotopy equivalent
nilpotent spaces then so are X, and Y, for each prime p. Again the converse
statement is false. In fact, a famous example of Rector [11] shows that when X is
the infinite dimensional quarternionic projective space, there are, up to homotopy,
uncountably many different Y’s, each of finite type and each locally p-equivalent to
X at each prime p.

In this paper we will regard two nilpotent spaces, X and Y, as almost identical
if (1) they have the same n-type for all n and (ii) their localizations at each prime
are homotopy equivalent. When this happens we will say that the X is a clone of Y.
The obvious question is then — does it follow, when X is a clone of Y, that the two
spaces are necessarily homotopy equivalent? I will show that the answer is no, even
when the spaces are 1-connected with finite type. According to the definition just
given, any space is a clone of itself, and so I will use the adjective nontrivial in
describing these clones of a space which are not homotopy equivalent to it.

EXAMPLE 1. When X = S° x K(Z, 3), there are, up to homotopy, uncount-
ably many different clones of X. O

Proofs will be given later in this paper. Here is a simple construction of some clones
of S* x K(Z, 3). Partition the set of all primes into two subsets, say 4 and B. Let
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Z denote the homotopy pull back of the diagram

K(Z ), 3)

J

S(BA) — K(Q, 3)

wherein the maps are rational equivalences. Let Z’ be a second pullback obtained
by reversing the roles of 4 and B. Then define Y to be Z x Z’. It will be shown that
Y is a clone of X, and that different partitions give rise to different clones of X. 1
do not know, however, if every clone of X can be constructed in this manner.

One place where clones arise is in the study of the Mislin genus of an infinite
dimensional space X. Recall that this genus, %(X), is defined to be the set of all
homotopy types [Y] where Y is a nilpotent space of finite type and where, for each
prime p, Y, ~ X,. If X denotes the Postnikov approximation of X up through
dimension », then one has a map

%(X) - lim F(X )

that sends a homotopy type [Y] to the sequence ([YV], [Y®], [Y*¥],...). Very little
is known about this function in general. For instance, is it always surjective? Notice
that the preimage of [X] under this function is just the set of clones of X. Thus
Example 1 shows that this function need not be one-to-one.

EXAMPLE 2. Let X = HP®, the infinite dimensional quaternionic projective
space. Then X g, has nontrivial clones (uncountably many, in fact) if and only if S
is an infinite subset of prime numbers whose complement is also infinite. Moreover,
any two clones of X, become homotopy equivalent when localized at any finite set
of primes. O

The verification of this example involves a surprising amount of arithmetic. In
the proof, the existence of clones of X, is shown to depend on whether or not the
index of a certain subgroup in Z% is infinite. The subgroup in question consists of
all positive units that have p-adic square roots for each prime p € S. The question
about the index, in turn, is shown to depend only on the cardinality of both S and
its complement. The proof of this result, Theorem 2.3, is due in large part to Hugh
Montgomery. I am very grateful to him for the clever proof he gave in response to
my query and for allowing me to present it here.

Let G denote a 1-connected compact Lie group. The existence of nontrivial
clones of BG, before localizing, is an open question. Only two special cases of it are
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known (G =SU (2) and SU (3), wherein no nontrivial clones of BG exist). As
Example 2 shows, the case of BSU (2), after localizing at any set of primes S, is well
understood. This case, however is the exception. The following result is currently
the most general one I know regarding clones of classifying spaces.

EXAMPLE 3. Let X = BG, where G is a compact connected Lie group of
rank at least 2, and F is a finite set of two or more primes. Then the set of
homotopy types of clones of X is a countably infinite set. O

Following Wilkerson, [16], let SNT (X) denote the set of homotopy types [Y]
with Postnikov approximations Y™ ~ X™ for all n. Notice that the set of homo-
topy types of clones of X is the intersection

Clones (X) = SNT (X) n%(X).

This raises the question — Do nontrivial clones of X always exist when the sets
SNT (X) and %(X) are both nontrivial? This seems to be a hard question. The case
of X = BG, where the rank of G is at least 3, is a special case of it.

The study of clones reveals the strange manner in which the function SNT ( )
behaves with respect to localization. For, as Example 2 shows, there exists a space
Y such that

SNT (Y) # = while SNT (Y ,)) =+ for every prime p.

However, the example of BSU (3) shows that there exists a space X such that
SNT (X) = * while SNT (X)) #* for every prime p.

This last example was worked out in [7]. These examples seem to suggest that

recovering SNT (X) from that of its localizations is going to be difficult if not
impossible.

Clones of maps

We say that two maps, say f,g:X — Y are clones of each other if their
localizations at each prime are homotopic and if their Postnikov approximations at
each stage are homotopic.

It is worth noting that if X is a CW-complex with finite n-skeletons for each n,
then the condition that f and g are homotopic at each prime p implies that their
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restrictions to each skeleton of X are homotopic, by [5], Theorem 5.3. Hence, in this
case, the Postnikov approximations of f and g would likewise be homotopy
equivalent. However, if X does not have finite type, then the first condition does
not, in general, imply the second one (ibid., Prop. 5.5).

One place where clones of maps often occur is among phantom maps. Recall
that a phantom map is a based map from a CW-complex X to another space Y,
whose restriction to each skeleton X, is null-homotopic. Equivalently, a phantom
map from X to Y is one whose projection onto each Postnikov approximation Y
is null homotopic. Let Ph (X, Y) denote the set of homotopy classes of phantom
maps from X to Y. The next theorem contains the most general result I know
regarding clones among phantom maps.

THEOREM 4. Assume that X and Y are nilpotent CW-complexes of finite type.
If X has the rational homotopy type of a suspension, or if Y has the rational homotopy
type of a loop space, then the following statements are true:
(1) Ph (X, Y) has a natural, divisible, abelian group structure.
(i) The map Y - I1Y,, whose pth component for each prime p, is the canonical

map Y — Y, induces an epimorphism

Ph (X, Y) »[] Ph (X, Y,,)).
¥4

(iii) The map just displayed has a nonzero kernel whenever its domain, Ph (X, Y)
is nontrivial. This kernel (consisting of clones of the constant map) is also a
divisible group. O

Remark. Part (i) generalizes results of Roitberg ([12], [13]) who reached the
same conclusion assuming that X is a co-H-space or that Y is a H-space.

The result in part (ii) is not the most general one possible. The rational
hypothesis on X or Y can be dropped here at the expense of losing the natural
group structure on Ph (X, Y). More importantly, the induced map in part (ii)
remains an epimorphism of sets. This follows from a li}_‘ﬂ‘ result of R. Steiner, ([14],
Theorem 2.5).

Since nonzero divisible groups are never finite, one concludes in part (iii) that
there are, up to homotopy, infinitely many different clones of the constant map in
Ph (X, Y), whenever this group has more than one element in it. I do not know if
the rational conditions on X or Y are really necessary here. In the proof, these
conditions enable one to identify the set Ph (X, Y) with Ext (4, Z), where A4 is a
certain torsion-free countable abelian group. The conclusions of parts (ii) and (iii)
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are then a consequence of some homological algebra; namely that the obvious map
Ext (4, Z) > ][] Ext (4, Z,))
p

it always surjective and that it always has a nontrivial kernel (unless, of course, its
domain, Ext (4, Z) is the trivial group). This particular result was one announced
by Willi Meier in [9], but as far as I know, no proof of it was ever published. The
slick proof of it in this paper is due to H. Pat Goeters; I am very grateful to him
for allowing me to use it here.

Let me mention two examples which are relevant to Theorem 4. The first one is
due to Harper and Roitberg. In [4], they study phantom maps whose domain is a
finite Postnikov space and whose range is the iterated loops on a finite complex. In
this case one can be more specific about clones of the constant map (or special
phantom maps in their terminology). The following example is representative of
their Theorem 2.2.

EXAMPLE 4.1. In Ph (CP*, Q"S"*?) the subgroup consisting of clones of the
constant map is uncountably large and its index is also uncountably large. O

Compare this example to the next, in which every phantom map is a clone of the
constant one.

EXAMPLE 4.2. Let

X = cofiber {al -V SZP—+S3}
p=3
where for each prime p, a, | S% = «,(p). Then Ph (X, §*) # 0, while Ph (X, S¢,)) =0
for all primes p. 0

This phenomenon, where essential phantoms exist and yet all of them are clones of
the constant map, also occurs in Ph (Q2S?"*!, §%") for each n = 2. Both examples
are verified in [3].

Here is another situation in which clones of maps arise quite naturally. Let
Aut (X)) denote the group of based homotopy classes of self equivalences of a space
X and let WI(X) denote the weak identities of X, that is, the subgroup of Aut (X)
consisting of those classes which project to the identity class on each Postnikov
approximation of X.
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THEOREM 5. Let X be a simply connected CW-complex of finite type. If the
subgroup WI(X) is nonzero, then it contains nontrivial clones of the identity map.
O

A simple example in which WI(X) #0 is X = CP* x S°. In this case, WI(X) =
Ph (CP>, S°) ~ R, as rational vector spaces, [12]. It is still an open question if
WI(Y) could be nonzero when Y is the space of loops, free or based, on a finite
complex.

This completes the discussion of the main results in this paper. Before giving the
proofs, I wish to thank Hugh Montgomery and Pat Goeters for their contributions
mentioned earlier. I also want to thank Jesper Mgller for his help in the early stages
of this project. In particular, it was he who first proved the existence of clones in
Example 1 by methods different from those used here. He also deserves the credit
for naming these things clones.

Proofs

Proof of Example 1. Let Y = Z x Z’ as described in the introduction. It is clear
from the construction that Y is in the genus of X where X = S* x K(Z, 3). Thus the
Postnikov approximation Y™ € 4(X™), for each natural number n. According to
Zabrodsky, [17], there is a short exact sequence

d
EXW)— ZF [ £1 — G(XT) — =

which is defined as follows. In the middle term, Z* denotes the group of units in the
ring of integers modulo ¢. This number ¢ depends upon X. The prime divisors of
t include those primes p, for which there is p-torsion in the homotopy groups of
X, Zabrodsky gives a description of the smallest possible exponents v,(7), in [17].
However, it should be noted that in this sequence, 7 can be taken to be sufficiently
large in the multiplicative sense. The first term in the sequence, &,(X™), denotes the
monoid (under composition) of homotopy classes of those self-maps of X, which
are local equivalences at each prime divisor of z. The function d then assigns to each
such map the determinant of the linear transformation f* on H3(X", Z). Zabrod-
sky shows that this image is a subgroup and that the quotient is isomorphic as an
abelian group to 4(X™). Since X = S* x K(Z, 3) it is easy to find, for any integer
d, a self map of X, and of X, which induces a linear transformation with
determinant d on H3( , Z). Thus the first map in Zabrodsky’s sequence is surjective
and so 9(X™) = %, Consequently, Y ~ X for each natural number n, and thus
Y is a clone of X. However, notice that Y has the following simple property: There
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is a basis, say {u,v} < H (Y, Z) ~ Z® Z, such that
P'u,#0 and 2'v,=0, foreveryped

while
P'u,=0 and 2'v,#0, for every p € B.

Here x, denotes the image of an integral class x in H*(Y, Z/p). Also when p =2,
one should replace ' by Sq? in this property. If one takes a different partition
{A’, B’} of the set of all primes, it is not difficult to verify that there is no basis of
H3(Y,Z) with the corresponding property in terms of A’ and B’. Since this
property is clearly homotopy invariant, our claim follows that distinct partitions of
the set of all primes give rise to distinct clones of X. O

Proof of Example 2. Recall that an Hy-space is one whose rationalization is an
H-space. In particular, HP* becomes an Eilenberg—MacLane space K(Q, 4) when
rationalized and so the following result from [7] applies to it.

THEOREM 2.1. Let X be a 1-connected, Hy-space with finite type over ZLp for
some set of primes P. The following conditions are equivalent:
(i) SNT (X) = .
(ii) the usual map Aut X — Aut X', has a finite cokernel for all n.
(i11) the map Aut x5 Aut H="(X; Zp) has a finite cokernel for all integers n.
O

Let B denote HP™. If we localize at a set of primes S, it is easy to see that for n > 4,
Aut H="(B,, L)) = L,

because the cohomology ring in question is a polynomial algebra on a single

generator of degree 4, truncated at height [#/4] 4+ 1. Each graded algebra automor-

phism of it is completely determined by what it does in degree 4. The following
result then describes the image of the composite map,

This result i1s a consequence of the pioneering work of Sullivan, [15], and Rector,

[11].
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THEOREM 2.2. Given A € Zf,, there is a self-equivalence of B, that induces
multiplication by A in degree 4 if and only if /. has a square root in the p-adic numbers
for each prime p in S. U]

Recall from number theory that when p is an odd prime and 4 is a p-local unit, one
has the Legendre symbol

1 if A is a square mod p
—1 if 4 is not a square mod p

(A4/p) = {

and that J is the square of a p-adic integer if and only if (4/p) = 1. For p =2, set

2/2) 2{ 1 if 4 is a square mod 8

—1 if 4 is not a square mod 8.
For a 2-local unit 4 to be the square of a 2-adic integer it is necessary and sufficient
that (1/2) =1. Thus letting S = {p}, it follows that the image of Aut B, in
Aut H="(B, Z,,) has index at most 2 or 4, depending on whether p is odd or even.
In both cases it follows that SNT (B,,) = * by Theorem 2.1.

Now suppose Y € SNT (B,s,), where S is any nonempty set of primes. Localizing
at any prime p € S, it follows that Y, is in SNT (B,). It was just shown that
SNT (B,) has only one element and so it follows that Y, ~ B ; thus
Y € 9(Bs,). In other words, every member of SNT (Bs,) is a clone of B,. Now,
the set SNT (Bs,) is either the one element set or else it is uncountably large by
Theorem 2 of [7]. To determine which alternative holds, one can use Theorems 2.1,
2.2, and the following result.

THEOREM 2.3. Let S be a set of primes and let U denote the group of positive
units in the ring of integers localized at S. Define

G={1e¥|(Alp) =1 for every p € S}.

Then G has finite index in U if and only if either S is a finite set or its complement
is finite. O

Note that % has index 2 in Z,. Thus, for the purposes of applying Theorem
2.1, it suffices to know whether the index of G in # is finite or not.

Let me begin the proof of 2.3 with the easiest case where S is a finite set of n
primes. For each odd prime p in S, the function 4 — (4/p) defines an epimorphism
from % to Z/2. If 2 € S, one can also map % onto the units in Z/8. The subgroup
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G is clearly the intersection (over S) of the kernels of the epimorphisms just
considered. It follows that the index of G in % is at most 2”* ! in this case.

The next case to consider is where the complement of S consists of a finite set
of primes, say p;, p,, . .., p,. These primes freely generate the subgroup #. Within
U there is the subgroup %> = {x?| x € #}; of index 2" in %. Clearly %* < G and so,
in this case, the index of G in % 1s at most 2”".

We are left with the hardest case where both .S and its complement are infinite.
The following argument is due to Hugh Montgomery. Let A denote a doubly
infinite matrix whose rows are indexed by the odd primes p € S and whose columns
are indexed by the odd primes g ¢ S. Each entry in A is an element of Z/2 and is
given as follows:

4 ={1 if (g/p) = —1
0 if (g/p) = 1.

CLAIM. The subgroup G has finite index in % if and only if the matrix A has
finite rank. O

To verify this, consider the homomorphism, say

x5 1 zp2

odd pin §
defined by the product of the Legendre symbols. The g-column in this matrix

records the image of ¢(g) in additive notation. It is then easy to see that A has finite
rank

<> A has only finitely many linearly independent columns
<> the image of ¢ is finitely generated

<> the kernel of ¢ has finite index in %.
If 2 €S, there is also a reduction mod 8 map,
p U - (Z/8)*.

Since G = ker ¢ nker p, and ker p has finite index in %, it follows that G has finite
index in % if and only if ker ¢ does.
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If 2 is not in S, it 1s then one of the units in %. It is clear that G has finite index
in % if and only if the image of

a—> T z/2

pin S

is finitely generated. But for this purpose, it is enough to consider the sub-group of
4 generated by the odd primes not in §. The claim follows.

Assume now that the matrix A has finite rank r. I will show that this leads to
a contradiction. Choose » larger than r. There is evidently a nontrivial linear
relation among the first n rows of A; that is, an equation

Y. c,R,=0

where the sum is indexed by the first » odd primes in § and where the mod 2
coefficients ¢, are not all zero. Let P denote the product of those odd primes in §
for which ¢, # 0. It follows, that for each odd prime g € S,

Z a,,=0.

p|P

Expressed multiplicatively, in terms of the Legendre symbols, this says

[I (g/p) =1,  for each odd prime g € S.

plP

Using the Jacobi symbol, this is simply (¢/P) =1 for all odd primes ¢ not in S. By
repeating this argument with rows and columns interchanged, we see that there is
an integer Q (squarefree, and composed of a subset of the first » odd primes not in
S) such that (Q/p) =1 for all odd primes p in S.

Choose a residue class a (mod P) for which (a/P) = — 1. By quadratic reciproc-
ity, as b runs through the odd positive integers, the value (Q/b) has period 4Q.
(This is not necessarily the least period.) Choose a value of b (mod 4Q) for which
(Q/b) = —1. Since P and 4Q are relatively prime, it follows by the Chinese
remainder theorem there is a ¢ (mod 4PQ) for which ¢ =a (mod P) and c=b
(mod 4Q). Since ¢ and 4PQ are relatively prime, it follows by Dirichlet’s theorem
that there is an odd prime / with / = ¢ (mod 4PQ). Thus /[ =a (mod P) and [ =b
(mod 4Q), which is to say

(/P)=—1 and (Q/I)= —1.
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The first equation implies that / is in S, while the second implies that it is not. This
contradiction completes the proof of Theorem 2.2.

The last statement in Example 2 is a consequence of the triviality of SNT (X g,)
when S is a finite set of primes. This, in turn, follows from Theorems 2.1, 2.2, and
2.3. O

Proof of Example 3. Let X = BG, where G is a compact, connected Lie group
and F is a finite set of two or more primes. Because F is finite, it follows from [17],
Proposition 1.5, that 4(X') = * for each integer n. Thus

Y e 9(X) = Y e SNT (X),

and consequently every member of the genus of X is a clone of X. However, the
genus of X is an infinite set when rank (G) = 2, by Theorem 2.2 of [10]. That this
set is countable can be seen by representing %(X) as a double coset space of the
form A\G/B where G is the n-fold product of Aut (X,), and »n is the number of
primes in F. O

Proof of Theorem 4. The proof of part (i) starts with the natural bijection of
pointed sets,

Ph (X, Y) ~lim' [X, QY*].

See [1], Chapter IX, for this and background information on lim'. Let G, =
[X, QY™]. The finiteness conditions on X and Y imply that each E;,, is a finitely
generated nilpotent group. The rational conditions on X or Y imply that each
rationalized group, (G,), =~ [4, 22B], and thus is abelian. Since the rationalization
map,

[X, QY™] > [X, QY™

has a finite kernel ([5], page 84), it follows that each G, has a finite commutator
subgroup, denoted G,. Consider the short exact sequence of towers,

{Gh}—{G,}~{4,}

where A4, is G, made abelian. Apply the 6-term lim — lim' sequence to this short
exact sequence of towers and recall that lim' vanishes on towers of finite groups. It
follows that the quotient map, G, — 4,, induces a bijection

lim' G, ~lim' 4,,.
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Clearly, this bijection is natural as well. Since the tower {4,} is abelian, there is a
well known description of its lim' term as the cokernel of a homomorphism into
I1, A,. From this abelian groﬁp structure on the lim' term and the natural
bijections just described, one gets a natural abelian groTxp structure on Ph (X, Y).

Since the groups G, were finitely generated, so are their abelian quotients A4,. Let
T, denote the torsion subgroup of 4,. It is then a finite group which, for purposes
of hm calculations, can be ignored. Indeed, apply the 6 term lim — hm sequence
to the short exact sequence of towers

{T,} - {d4,} - {F.}.

Since hm T, =0 for reasons noted earlier, the 11m terms for {4,} and for the
torsion free quotient {F,} are isomorphic. Hence, ‘we may (and will) assume from
now on that the groups A4, are torsion free.

It is easy to see that the group lim' A4, is divisible; one method amounts to
applying lip' to the short exact sequeﬁce of towers,

(4.} = (4.} — {4, /d}
This could also be proved using Jensen’s formula

lim' 4, ~ Ext (lim Hom (4,,, Z), Z). (1)
We will have other uses for this isomorphism as well and we need to understand it

better. Jensen obtains it in the following way in [6]. He first constructs a short exact
sequence of towers

i j

{An}”——) {Bn}m* {Cn} (2)
in which B, =2,_,4,=A4,®B,_,. The structure map B, —» B,_, coincides with
A,—A,_, - B,_, on the first factor and it restricts to the identity on the second
factor. Since the map just described is an epimorphism, it follows that l@‘ B,=0
and the 6-term lim — lim' sequence, applied to (2) reduces to the following

0— lim 4, — lim B, —— lim C, — lim" 4, — 0. (3)

Apply Hom ( , Z) to (2), denote it by ( )*, and then take direct limits. The result
is a short exact sequence of groups,

lim 4 — lim B¥ — lim C}. (4)
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It is easy to see that limBY=~ ®@A4,, which is free. Consequently,
Ext(lip B¥,7Z) =0. Moreover, if D denotes 4, B, or C, one has a natural
isomorphism

Hom (1i_rp D7)~ lip D,

because the groups D, are free abelian of finite rank. Therefore, the Hom—Ext
sequence, applied to (4) reduces to
Jx

0 — lim A, — lim B, > lim C, — Ext (lim 4%, Z) — 0. (5)

Comparing (3) and (5), the isomorphism in (1) follows. Using this description it is
not difficult to see that the following diagram commutes,

Ext (lim A}, Z) — Ext (lim A%, Z,))
lip‘ A, — liln1 (4,®Z,)
wherein the horizontal maps are induced by the inclusion Z - Z,,. The rest of

Theorem 4 is then a consequence of the following result. The proof here is due to
H. Pat Goeters.

THEOREM 4.3. Let A be a countable, torsion free abelian group. The diagonal
embedding Z— 11,7, induces a map

Ext (4, Z) — [ ] Ext (4, Z,))
p

which is always surjective and which has a nonzero kernel whenever Ext (4, Z) #0.
O

Proof. Let P denote the product I1,Z , and consider the short exact sequence

S

0—Z—P—C—0.

Here 6 is the diagonal embedding and C is its cokernel. Since ¢ induces isomor-
phisms under Tor ( ,Z/p) and ( ) ® Z/p for each prime p, it follows that C is
torsion free and divisible. Therefore the third term in the following portion of the
Hom (A4, )—Ext (4, ) sequence

Ou
—— Ext (4, Z) — Ext (4, P) — Ext (4, O),
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is zero and so ¢, is surjective as claimed. Since A4 is countable and torsion free, it
follows from Stein’s theorem ([2], page 94) that

AxB®F

where F is free and Hom (B, Z) = 0. Since Ext (F, Z) = Ext (F, P) =0, there is a
commutative diagram

O
Ext (4, Z) —— Ext (4, P)

-, L

Ext (B, Z) — Ext (B, P)

and thus ker 6 =0 iff ker 6’ = 0. Suppose that ker " = 0. Then, in the following
portion of the Hom (B, )—Ext (B, ) sequence,

Hom (B, Z) — Hom (B, P) — Hom (B, C) — Ext (B, Z),

the first group is zero and the image of the last map is zero. This forces the map in
the middle to be an isomorphism. However, since C is divisible, so is Hom (B, C).
The isomorphisms

Hom (B, C) ¥ Hom (B, P) ~ || Hom (B, Z,,))
T2

then imply the last group is divisible as well. However, it is easy to see that this can
happen only if B =0. O

Proof of Theorem 5. Let aut X denote the space of self equivalences of X; hence
Aut X = ny(aut X'). A Postnikov decomposition of X then induces a short exact
sequence of groups,

lim' 7, aut X — Aut X — lim Aut X

according to [1], page 254. Thus WI(X) ~ lim' r, aut X. Since each X has finite
type, the tower {m, aut X} is one of finitely generated abelian groups. The
properties of its lim' term are those described in the proof of Theorem 4 and
Theorem 4.3. " U



Clones of spaces and maps in homotopy theory 277

REFERENCES

[1] A. K. BousrieLD and D. M. KAN, Homotopy limits, completions, and localizations, Lecture Notes
in Math., 304, Springer Verlag, Berlin—-Heidelberg—New York, 1972.

[2] L. FucHs, Infinite Abelian Groups, Pure and Applied Math Series, 36-I, Academic Press, New
York, 1970.

[3] B. GrRAY and C. A. MCcGIBBON, Universal phantom maps, Topology, to appear.
[4] J. R. HARPER and J. ROITBERG, Phantom maps and spaces of the same n-type for all n, J. Pure and
Applied Algebra, 80, (1992), 123-137.
[5] P. J. HiLTON, G. MIsLIN, and J. ROITBERG, Localization of Nilpotent Groups and Spaces, North
Holland Math. Studies 15, Amsterdam (1975).
[6] C. U. JENSEN, Les Foncteurs Dérivés de lim et leurs Applications en Théorie des Modules, Lecture
Notes in Math., 254, Springer Verlag, Berlin—Heidelberg—New York, 1972.
[7] C. A. McGiBBON and J. M. M@LLER, On spaces with the same n-type for all n, Topology, 31, No.
1, (1992), 177-201.
[8] C. A. McGiBBON and J. M. M@LLER, How can you tell two spaces apart when they have the same
n-type for all n?, Proceedings of the J. F. Adams Memorial Symposium, N. Ray and G. Walker,
ed., London Math. Soc. Lecture Notes /76, Cambridge Univ. Press, 1992, 131-143.
[9] W. MEIER, Localisation, complétion, et applications fantémes, C.R. Acad. Sc. Paris, 281, (10
novembre 1975), 787-789.
[10] J. M. MOLLER, The normalizer of the Weyl group, Math. Annalen, 294, (1992), 59-80.
[11] D. RECTOR, Loop structures on the homotopy type of S>, Springer Lecture Notes in Math., 249,
(1971), 99-105.
[12] J. ROITBERG, Weak identities, phantom maps and H-spaces, Israel J. Math., 66, (1989), 319-329.
{13] J. ROITBERG, Phantom maps, cogroups, and the suspension map, Quaestiones Mathematicae, /3
(1990), 335-347.
[14] R. J. STEINER, Localization, completion and infinite complexes, Mathematika, 24, (1977), 1-15.
[15] D. SULLIVAN, Geometric Topology, part 1, Localization, Periodicity and Galois Symmetry, MIT
notes, 1970.
[16] C. W. WILKERSON, Classification of spaces of the same n-type for all n, Proc. Amer. Math. Soc.,
60, (1976), 279-285.

[171 A. ZABRODSKY, p-equivalences and homotopy type, Springer Lecture Notes in Math., 418, (1974),
160-171.

Wayne State University
Detroit, Michigan, 48202

Current address:

Department of Pure Mathematics
16 Mill Lane

Cambridge, England, CB2 1SB

Received May 5, 1992



	Clones of spaces and maps in homotopy theory.

