Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 68 (1993)

Artikel: Equivariant outer space and automorphisms of free-by-finite groups.
Autor: Krstic, Sava / Vogtmann, Karen

DOl: https://doi.org/10.5169/seals-51767

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 12.11.2025

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-51767
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Comment. Math. Helvetici 68 (1993) 216-262 0010-2571/93/020216-4781.50 + 0.20/0
© 1993 Birkhduser Verlag, Basel

Equivariant outer space and automorphisms of free-by-finite groups

SAVA KRrsTI¢! AND KAREN VOGTMANN?

§1. Introduction

A well-known elementary application of algebraic topology to group theory is
the theorem that any group which acts freely on a (simplicial) tree is a free group,
and its corollary that any subgroup of a free group is free. A deep generalization
of this i1s the theorem of Karrass—Pietrowski—Solitar, Cohen and Scott which
classifies groups with a free subgroup of finite index (free-by-finite groups) as
those groups which act on trees with finite stabilizers of bounded order (see, e.g.
[8], chapter 4).

In [7], Culler and Vogtmann study the group Out (F,) of outer automorphisms
of a finitely generated free group F, by constructing an ‘“‘outer space” X, of free
actions of F, on simplicial trees. In this paper we generalize their construction to
study automorphism groups of finitely generated free-by-finite groups. By results of
McCool [13], information about these automorphism groups can be derived by
studying centralizers of finite subgroups of Out (F,). This has been used by Krsti¢
to prove that these groups are finitely generated [11], and then independently by
Kalajdzievski and Krsti¢ to prove that they are finitely presented [9, 12].

Given a finite subgroup G of Out (F,), we construct a simplicial complex L; on
which the centralizer C(G) acts with finite stabilizers and finite quotient. This
complex L is an equivariant deformation retract of the fixed point subcomplex of
outer space X,. The main theorem of the paper is that L is contractible. In
addition, we compute the dimension of L, thereby giving an upper bound on the
virtual cohomological dimension (vcd) of C(G). Under mild hypotheses on G, we
show that the dimension of L is in fact the ved. Since the quotient of L is finite,
C(G) has finitely generated homology in all dimensions. These homological finite-
ness properties translate directly into similar properties for automorphism groups of

! Partially supported by Science Fund of Serbia grant #0401A, through Matematicki Institut
2 Partially supported by NSF grant # DMS-8702070
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free-by-finite groups. In particular, we show that the vcd of the outer automor-
phism group of a free product of » finite groups is equal to n — 2, as conjectured
by Collins in [3, 4].

The paper is organized as follows. In Section 2 we review the connection
between automorphism groups of free-by-finite groups and centralizers of finite
subgroups of Out (F,). In Section 3 we briefly review [7] and define the complex L
as the geometric realization of a partially ordered set whose elements are “marked
G-graphs’” and whose relation is given by collapsing an invariant forest. In Section
4 we develop some theory of invariant forests in G-graphs, and show how maximal
invariant forests are related. In Section 5 we give a combinatorial description of the
link of a minimal vertex in L., which will be used in the proof that L, is
contractible and in computing the dimension of L. In Section 6 we define a norm
on minimal vertices of L; and show how the norm changes under a move to a
“nearby’”’ minimal vertex. The proof that L. is contractible is given in Sections 7
and 8. In Section 9 we compute the dimension of L, thereby giving an upper
bound on the ved of C(G), and show that this is often equal to the vcd. Other
corollaries are collected in Section 10.

The first author would like to thank Cornell University for its hospitality during
the time most of this paper was written.

§2. Automorphisms of free-by-finite groups and centralizers

A. McCool’s results

In this section, we recall some results of McCool relating automorphisms of
free-by-finite groups and centralizers of finite subgroups of Out (). For further
details and proofs, see [13] or Section 2 of [12].

Let E be an extension of a finitely generated free group F, by a finite group K:

|->F,-E->K-1l.

Let Aut, (E) be the subgroup of Aut (E) consisting of automorphisms which send
F, to itself and induce the identity on K. The group Aut, (E) has finite index in
Aut (E).

Conjugation in E induces a map 6 : K — Out (F,). Let G be the image 0(K),
C(G) the centralizer of G in Out (F,), and D(G) the preimage of C(G) under the
projection Aut (F,) —» Out (F),).

PROPOSITION 2.1. The map Aut, (E) - D(G) given by restriction to F, is an
isomorphism. , O
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Since virtual cohomological finiteness properties are preserved by passing to
subgroups of finite index, we have

COROLLARY 2.2. The virtual cohomological dimension (vcd) of D(G) is equal
to the vcd of Aut (E). Aut (E) is VFL if and only if D(G) is VFL. O

The following commutative diagram allows us to pass to Out (E):

11— F,— Auty (E) —> Outy (E) — |
-

l— F,—> D(G) — C(G) — 1
where Out, (F) is the image of Aut, (E) in Out (E).

COROLLARY 2.3. The vcd of C(G) is equal to the vcd of Out (E). Out (E) is
VFL if and only if C(G) is VFL. O

B. Graphs of groups and free-by-finite groups

By the theorem of Karrass, Pietrowski and Solitar [10] and the Bass—Serre
theory [17], any finitely generated free-by-finite group E as above acts on a tree T
with finite stabilizers and finite quotient E\T. In particular, there is a graph of
groups presentation ¥ for E based on the graph E\T7, with finite vertex and edge
groups. If E fits in the exact sequence

l->F,-oE->K-1

then the quotient map 7T — E\T factors through I' = F \T. The graph I' has
fundamental group F,, and K acts on I' by graph automorphisms with quotient
E\T, generating the same graph of groups presentation ¢ for E.

EXAMPLE 2.4. Let E ={x, y,z | x?, y?, z2) be the free product of three copies
of Z,. Representing E as the fundamental group of a graph of groups as in Figure
la, we get an action of E on the tree T depicted in Figure 1b. The commutator
subgroup [E, E] is free of rank 5 (free generators are xyxy, yzyz, zxzx, xyzyzx, and
yzxzxy). We have K=E/J[E, E] =<{x|x?) x{y | y*> x <y |y*> = Z,*. Figure lc
represents the quotient graph I' = [E, E]\T. We can think of I" as the 1-skeleton of
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Figure 1

the cube centered at the origin, with edges parallel to the coordinate axes. Then the
generators x, y, z of K act on I' by reflections in the coordinate planes.

§3. The complexes K, and L
A. Review of marked graphs and forest collapse

We briefly recall the definition of the “outer space” X,. In fact, we will need
only the simplicial complex K, described in [7], which is an equivariant deformation
retract of X,,. Our description differs slightly from that given in [7]. A vertex of K,
is a minimal free action of F, on a simplicial tree. It is useful to describe such an
action by considering the quotient graph of the action, as follows. By a graph we
mean a Serre graph I', with vertices V(I'), oriented edges E(I'), involution e ¢ ™!
on E(I'), and initial and terminal vertex maps 1,7 : E(I') » V(I'). We reserve the
right to think of a graph as a topological space as well as a combinatorial object,
where a map of graphs always sends vertices to vertices and is locally injective on
edges which are not collapsed. Fix a graph R, with one vertex v and 2n oriented
edges, and identify F, with n,(R,, v). A vertex of K, is an equivalence class of pairs
(s, I'), where I' is a connected graph with vertices of valence at least three, and
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s : R, — T is a homotopy equivalence. Two pairs (s, I') and (s’, ') are equivalent if
there is a graph isomorphism A : I' > I'’ such that h o s ~s’. An equivalence class
of pairs is called a marked graph; the equivalence class of (s, I') will be denoted
o =|s, I.

A vertex o is said to be obtained from ¢’ by a forest collapse if representatives
(s, ') and (s’, I'") can be chosen so that I' is obtained from I'’ by collapsing each
connected component of a forest # in I'’ to a point, and s is the composition of
s’ with the collapsing map; we write I' = (I"")+. The vertices of K, form a poset
(partially ordered set) under forest collapse. The complex K, is the geometric
realization of this poset, i.e. vertices g,,...,0, of K, span a k-simplex if o; is
obtained from o;_, by a forest collapse.

B. The fixed-point subcomplex K; and Culler’s theorem

If ¢ is an automorphism of F,, represent ¢ ~' by a map f: R, — R,. Then
¢(s, I') = (s o f, I') induces an action of Out (¥,) on K,,. For any pair (s, I'), the map
Aut (I') > Out (F,) induced by h +— (s "' o h o 5),, where s ' is a homotopy inverse
for s, induces an isomorphism from the finite group of graph automorphisms of I’
onto the stabilizer of [s, I'] (see [18], Proposition 1.6).

Let G be a finite subgroup of Out (F,), and let C(G) be the centralizer of G in
Out (F,). To obtain the homological finiteness properties that we want for C(G),
we need a contractible complex on which C(G) acts with finite stabilizers and
finite quotient. A natural candidate for such a complex is the subcomplex K of
K, fixed by G, since the action of Out (F,) on K, restricts to an action of C(G)
on K.

A vertex of K; is a marked graph ¢ =[s, I'), where I' comes equipped with a
G-action h: G —» Aut (I') (i.e. I' is a G-graph), and s is a G-equivariant map in the
following sense: represent x € G by a map f, : R, = R,,; then h(x) o s ~ s o f,. If the
action of G on I' sends an edge e to its inverse e ', we subdivide e with a single
bivalent vertex so that G acts without inversion on I'. With this convention, vertices
of K will be called marked G-graphs.

The complex K, is the geometric realization of a sub-poset of the poset of
vertices of K, where the poset relation is given by collapsing a G-invariant forest.
A G-graph I is said to be reduced if it contains no G-invariant forest. Thus a
minimal vertex of K is a marked G-graph [s, I'] where I' is reduced.

A theorem of Culler [S] implies that any finite subgroup of Out (F,) can be
realized as a subgroup of the stabilizer of some vertex [s, I'] of K,,; thus K is not
empty.
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C. Inessential edges and essential graphs

In order to obtain the best homological finiteness results, we would like the
smallest possible C(G)-complex with the required properties. The complex K has
a natural equivariant deformation retract L., which we now describe. We will show
in Section 9 that L is often the smallest possible complex.

An edge of a G-graph I is inessential if it is contained in every maximal
invariant forest of I'; otherwise it is essential. The set of all inessential edges of I
is itself an invariant forest. If G is the trivial group, the maximal invariant forests
are the maximal trees, and the inessential edges are the separating edges.

A G-graph is essential if all its edges are essential, all vertices have valence at
least two, and the two edges terminating at a bivalent vertex are in the same
G-orbit. Note that reduced G-graphs are essential.

EXAMPLE 3.1. Consider the Z,-graphs I', and I', given in Figure 2, the action
of the generator of Z, being given on either graph by rotation by 2n/3. Neither is
reduced. ', is essential, but I'; is not.

Figure 2

EXAMPLE 3.2. The graph I' given in Example 2.4 is essential. The orbit of
each edge of I' spans a maximal invariant forest. There are three maximal invariant
forests in I'; each consists of four trees (parallel edges of the cube).

Let L denote the subcomplex of K spanned by the essential marked G-graphs.
The action of the centralizer C(G) on K restricts to an action on L.

PROPOSITION 3.3. The subcomplex L; of K; spanned by essential marked
G-graphs is a deformation retract of K.
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Proof. Let o,=1[sy,, I',] be the marked graph obtained from ¢ =[s, I'] by
collapsing all inessential edges in I'. Then the map ¢ : K; —» L; sending [s, I'] to
[s0, I'o] is a poset map with o, = ¢(6) < ¢ for all . The Proposition now follows by
applying the following lemma, which follows easily from [15], Section 1.3. O

LEMMA 3.4 (Poset Lemma). Let X be a poset and f : X — X be a poset map with
the property that f(x) < x for all x € X (or f(x) = x for all x € X). Then f(X) is a
deformation retract of X. ]

§4. Invariant forests and the Factorization Lemma

In order to work with the complex L;, we need to understand the invariant
forests in a marked G-graph [s, I']. In this section we characterize invariant forests
both in I and in the quotient of I' by the G-action, and prove a Factorization
Lemma (Proposition 4.7) which relates two maximal invariant forests in I'.

A. Characterization of inessential edges and invariant forests

DEFINITION. Let e be an edge of the G-graph I' and let v = i(e) or t(e). The
endpoint v is weak if stab (v) = stab (e). The edge e is elliptic, parabolic or hyperbolic
if it has respectively zero, one or two weak endpoints. The edge e is straight if its
endpoints are in different orbits, and bent if its endpoints are in the same orbit.

Let I" denote the quotient graph G\TI', and q : I’ —» I the quotient map. An edge
é in I is hyperbolic, parabolic or elliptic if any preimage e of ¢ is. Straight edges in
I' have distinct endpoints in I", and bent edges are loops in TI.

EXAMPLE 4.1. Let I be the Z,-graph in Figure 3, where the generator of Zg
acts by

A > Ay > Ay > A as> ag ay, by by— by b,.

The edges a; are bent elliptic, while the b; are bent hyperbolic. The free-by-finite
group corresponding to this Z-graph is Z * (Z x Z,).

EXAMPLE 4.2. Let I' be the graph shown in Figure 4, corresponding to the
edges of a truncated cube, with the action of (Z,)* defined by reflections in
coordinate planes, as in Example 2.4. The edges are straight hyperbolic and
parabolic. The corresponding free-by-finite group is Z *Z, x Z, x Z,,.
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Figure 4

LEMMA 4.3. Let e be an edge of a G-graph I'. Then the orbit Ge spans a forest
in I' if and only if e is parabolic or straight hyperbolic.

Proof. Let v and w be the endpoints of e. If v and w are in different G-orbits,
the valence of v in the span of Ge is equal to the index of stab (e) in stab (v);
otherwise it is twice the index. Since a forest must contain a free edge, the orbit Ge
spans a forest if and only if some endpoint of e has valence one in the span of Ge.

O

DEFINITION. A path in I' is level if the stabilizers of all edges and all interior
vertices are the same and its projection in I' is simple (i.e. does not cross itself). An
endpoint of a level path is weak if its stabilizer is equal to the stabilizer of the edges
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of the path. A level path is elliptic, parabolic or hyperbolic depending on whether it
has zero, one or two weak endpoints. A level path is straight if its endpoints are in
different orbits and bent otherwise. A strong path is a level path which is either
elliptic or bent hyperbolic.

Again, these notions descend to paths in I'.

PROPOSITION 4.4. Let & be an invariant subgraph of I'. Then & is a forest if
and only if & contains no strong paths.

Proof. If & is not a forest, let C be a simple cycle in &. If all vertex and edge
stabilizers of C have the same order, they are all equal and C contains a bent
hyperbolic path. If the stabilizers do not have the same order, then C must contain
a level elliptic sub-path. In either case, we have found a strong path in &.

Now suppose & contains a strong path #. We induct on the length of 2. If 2
has one edge e, then e is elliptic or bent hyperbolic. Thus the span of GZ contains
a cycle by Lemma 4.3, so & is not a forest. If 2 has more than one edge, then every
edge of £ is either parabolic or straight hyperbolic, so every edge-orbit spans a
forest. Choose an edge e of 2. Since Ge spans a forest in G2, the collapsing map
from G2 to (GZ),, is a homotopy equivalence. If e is straight hyperbolic, the image
of e is a vertex with stabilizer equal to the stabilizer of e. If e is parabolic, its image
vertex in I';, has stabilizer equal to the stabilizer of its non-weak endpoint. In either
case, the image of 2 in I, is a strong path. By induction, the orbit (G#),, contains
a cycle. Since G2 — (GZ#),, is a homotopy equivalence, GZ contains a cycle, so &
is not a forest. O

COROLLARY 4.5. An edge e of T is essential if and only if it belongs to a strong
path.

Proof. Suppose e belongs to a strong path 2. By Proposition 4.4, the span &
of G(Z — e) is a forest, but the span of G2 = % U Ge is not; thus e does not belong
to every maximal invariant forest, i.e. e is essential.

Now suppose e is essential. Then there is an invariant forest &% such that
F U Ge 1s not a forest. By Proposition 4.4, there is a strong path 2 in % U Ge
which is not contained in &, i.e. 2 must contain a translate xe of e for some x € G.
Then x ~'2 is a strong path containing e. O

PROPOSITION 4.6. Let I'; be obtained from I' by collapsing the invariant
forest F. An edge e € I ; is essential if and only if its (unique) lift € in I is essential.

Proof. If é is essential, ¢ is contained in a strong path #. But the image 2 of #
in I'; is strong (as in the proof of Proposition 4.4), so by Corollary 4.5, e is
essential since e is an edge of 2.
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If e is essential, choose a strong path £ containing e. We need to find a strong
path & containing é. For each vertex v € I',, let T, be the tree in I" with image v
under the collapsing map. Note that the stabilizer in I' of v is the maximum of the
stabilizers in I'; of the vertices of 7,. Write 2 = v,e,v,e, " - - e,v,, Where e; € E(I')
is an edge from v; _, to v,. Then set # = p,é,p,é, - - - &, p,, where ¢, is the unique lift
of e;, and p; is a path in T, defined as follows. If 0 <i <k, then p, is the unique
reduced path from t(¢;) to 1(é;. ). If v, = xv, for some x € G, then p, is the path
from t(xé,) to 1(€,), and p, is constant. If stab (v,) strictly contains stab (e,), then
Po 18 any shortest path from t(é,) to a vertex in T, whose stabilizer properly

contains stab (e,), and p, is defined similarly. It is straightforward to check that &
is strong. O

B. Orientations and statement of the Factorization Lemma

In this section we state a proposition (the Factorization Lemma) which we will
need in the proof that L. is contractible. The Factorization Lemma finds a
particularly nice bijection between the edges of two maximal invariant forests. For
the proof it is convenient to put a “natural” orientation on invariant forests.

DEFINITION. An orientation of a tree is confluent if at most one edge
emanates from any vertex. It follows that there is a unique sink in the tree, and all
edges point to it. An orientation of an invariant forest & in I is natural if it is
equivariant, confluent on each tree in %, and every parabolic edge of % is oriented
away from its weak endpoint.

In Section 5, we will show that every maximal invariant forest in an essential
G-graph can be given a natural orientation.

Denote by E*.# the set of positively oriented edges in the forest #. If # is an
oriented forest whose orientation is confluent on each tree and e € E " (%), let Z_,
denote the connected component of # — {e} which contains i(e). In other words,
F ., is the subtree of # spanned by all edges of E* (%) which “point towards” the
initial vertex of e.

If & is a naturally oriented maximal invariant forest in I', and a is a positively
oriented edge of %, then define D (a) to be the set of e € E(I') — E(¥) such that
stab (e) = stab (a), t(e) € #_, and 1(e) is not in the orbit of #_,.

PROPOSITION 4.7 (Factorization Lemma). Let & and &' be maximal invari-
ant forests in the G-graph I', and suppose that F is naturally oriented. Then there

is an orientation of ¥’ (not necessarily natural) and an equivariant bijection
¢ EY(F)-> ET(F') such that ¢(e) € D (e).
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C. Proof of the Factorization Lemma in the case G =1

A proof of this lemma for trivial G can be found in [7], Lemma 3.3.1. We
present here a different, algorithmic proof for this case which helps to motivate the
general proof.

Since G = 1, the maximal invariant forests # and &’ are maximal trees in I', &
is oriented confluently, #_, is one of the two components of # — a, and the set
D (a) is the set of edges in I' which terminate in % _, but begin in the other
component of # — a.

Proof. The proof proceeds by induction on the number k of vertices of I', the
case k = 1 being vacuous. If k > 1, let v be an extremal vertex of # which is not the
sink of &, and let a be the edge of &# with initial vertex v. Draw the geodesic in #”’
from the terminal vertex of a to v, and define ¢(a) to be the edge of this geodesic
terminating at v.

Now collapse a and delete ¢(a) to obtain a new graph I', with k — 1 vertices.
The images &, and &, of # and &’ are maximal trees in I',, and %, inherits a
confluent orientation from #%. By induction, we can define ¢, on &%, with the
required properties. Define ¢ on E* () — {a} to be the map induced by ¢,. Since
¢,(e) terminates in (£,)_,, ¢(e) terminates in F_,. Since ¢,(e) does not begin in
(Z,) <., ¢(e) does not begin in F_,, i.e. for all e, ¢(e) € Ds(e). O

D. Admissible forests and clusters

Since we want the map ¢ in the Factorization Lemma to be equivariant, it is
convenient to work in the quotient graph I' = g(I") of I' by the G-action. The next
lemma shows how to recognize invariant forests in I' by looking in I

DEFINITION. A forest of I' is admissible if it contains no strong paths.

LEMMA 4.8. If % is an invariant forest in I, then q(F) is an admissible forest
in . If F is an admissible forest in T, then q ~'(¥) is an invariant forest in I.

Proof. If % is an invariant forest in I', it contains no strong paths by
Proposition 4.4. We claim that the image ¢(#) contains no strong paths. Any
strong path in g(#) can be lifted to a strong path in %, contradicting the fact that
Z is an invariant forest. In particular, ¢(%) is a forest, since any cycle would
contain a strong path.

If # is an admissible forest in I', then g ~'(£#) cannot contain a strong path,
since the image of a strong path in ¢ ~'(¥) is a strong path in #. By Proposition
4.4, g~ (%) is an invariant forest. O
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We now decompose maximal forests in I' and I into pieces to which we can
apply the G =1 case of the Factorization Lemma.

DEFINITION. Let H(I') be the set of hyperbolic edges of I', and W(I') the set
of weak endpoints of edges in I'. A cluster is a connected component of the
subgraph H(I') v W(I'). In particular, a vertex which is the weak endpoint of a
parabolic edge but not an endpoint of any hyperbolic edge is a one-point cluster.

For any cluster C, the extended cluster PC is the subgraph of I' spanned by C

and the set of parabolic edges whose weak endpoint is in C. A cluster is bald if
PC =C.

The notions of cluster, extended cluster and bald cluster descend to the graph I'.

Let C be a cluster, and consider the quotient PC* of PC obtained by identifying
all the vertices of PC — C to a single point.

PROPOSITION 4.9. If # is a maximal admissible forest in I' and C is a cluster
in I then the image of % N PC in PC* is a maximal tree.

Proof. 1f the image is not a maximal tree, we can add an adge e of PC to &
without creating any new strong paths; then &% Ue is an admissible forest, contra-
dicting the maximality of #. O

In Example 4.1, the only cluster is spanned by the orbit {b,, b,, b3} and is bald.
In the truncated cube (Example 4.2) the clusters are the small triangles; the
maximal admissible forests in the quotient are given in Figure S.

Figure 5

E. Proof of the Factorization Lemma in the general case

Let % and %  be the images of # and & in I, and let PC be an extended
cluster of I". By Proposition 4.9 the images T and T" of # N PC and &' nPC
in PC* are maximal trees. The confluent orientation on & induces a confluent
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orientation on T. If C is not bald, the sink is the image of the vertices of PC — C;
otherwise, the sink is a vertex in C. By the case G =1 of the Factorization Lemma,
we can define an orientation on T’ and a bijection ¢, : ET(T)— E*(T’) with
¢r(e) € D,(e). The orientation and map lift to an orientation of %’ PC and map
¢ EX(F NnPC)->E (F NnPC). Since = - (¥ NnPC), we can define ¢ on all
of # by repeating this procedure.

We claim that ¢(e) € Dz (e) for each e € #. Fix an edge e of %, and let PC be
the extended cluster containing e. Since the preimage of T_, is contained in % _,,
we have 1(d(e)) € #_, and 1(P(e)) is not in F_,.

Now lift the orientation of %’ to an orientation on %', and define a lift
¢ ET(F)->ET(F’) of the map ¢ as follows. If e € E*(F), let C be the cluster
of I' containing the weak endpoint of e. Then #_, n PC < C. The quotient map
I' > I is a covering map on C, since the stabilizer of each edge of C is equal to the
stabilizer of each vertex in C. Therefore, %_, nC maps homeomorphically onto
F_,nC. We know ¢(e) terminates in #_, nC. Define ¢(e) to be the unique lift of
@(é) which terminates in #_,. Since ¢(é) does not begin in F_,, ¢(e) does not
begin in any translate of #_,. Thus ¢(e) € D (e) as desired. CJ

§5. The star of a reduced marked G-graph

In this section we give a combinatorial description of the star of a minimal
vertex in L, i.e. of a reduced marked G-graph. We define an operation called
“blowing up” which produces a new marked G-graph, and determine when two
blow-ups produce the same marked G-graph. We then show that a blow-up of a
reduced marked G-graph is essential, and that every essential G-graph can be
obtained by blowing up some reduced marked G-graph.

We will use this combinatorial description in the proof of contractibility and to
compute the dimension of L.

A. Ideal edges and ideal pairs

DEFINITION. Let v be a vertex of the G-graph I', and let E, be the set of
oriented edges terminating at v. Let « be a subset of E,, and let P be the subgroup
of stab (v) generated by stabilizers of edges in a. Then a is an ideal edge if

(i) card («) =2 and card (E, — a) = 2;
(i1) Ge na = Pe for all e € «;
(iii) For some a e a, stab(a) =P and a ' ¢ | Ga.
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The subgroup P is the stabilizer of a. Denote by D(x) the set of all edges which
satisfy condition (ii). A pair (a, a) is ideal if o is an ideal edge and a € D(a).

Let « be an ideal edge of I' at a vertex v. If E, — a is an ideal edge which is not
a translate xa for some x € G, then « ~! = E, — a is the inverse of a. In all other
cases, o 1S not invertible.

The following lemma characterizes invertible ideal edges in reduced G-graphs.

LEMMA 5.1. Let I be a reduced G-graph, and let o be an ideal edge of I at a
vertex v. Then « is invertible if and only if stab («) = stab (v).

Proof. Let a € D(a). Since I' is reduced, Ga is not a forest. By Lemma 4.3, a is
either bent hyperbolic or elliptic. In the first case, stab (x) = stab (v), and we claim
that « is invertible, i.e. f§ = E, —a is an ideal edge. Conditions (i) and (ii) are
clear. Since a is bent hyperbolic, t(a~') = 1(a) =x 'v for some xeG, so
t(xa ") =x(x"'v) =v, ie. xa ' terminates at v but is not in «. Since
stab (xa ') = stab (v) = stab (a), we have xa ~' € D(B). Now assume aq is elliptic. If
p=E, —ais an ideal edge, choose b € D(). Then b must also be elliptic by the
argument above. Choose elements x e stab (v) — stab (b) and y € stab (v) — stab (a).

Then xf < « and ya < B; in particular, @ and § have the same number of elements,
so in fact f = xa. O

COROLLARY 5.2. Let o and B be ideal edges with oo = B. If « is invertible, then
B is invertible. O

B. Blowing up an ideal edge-orbit

If « is an ideal edge, then xa is also an ideal edge, for any x € G. The set
Goa = {xa | x € G} is an ideal edge-orbit. If P is the stabilizer of a, then Ga has
p = [G: P] elements, and the stabilizer of xa is xPx .

Given a marked graph ¢ =[5, I'] and an ideal edge-orbit Ga, we obtain a new
marked G-graph ¢9* = [s%*, '] by blowing up the ideal edge-orbit Ga as follows.
Let P be the stabilizer of «, with index p = [G: P]. The vertices and edges of I'“* are
the same as the vertices and edges of I', with one additional vertex orbit Guv(a) and
additional edge orbits Ge(a) and Ge(o) ~'. The new vertex v(a) has stabilizer P. The
new edge e(a) begins at v(a), terminates at v and also has stabilizer P. For x € G,
the edges which terminate at xv(a) are xe(x) ~' and the elements of xa. The terminus
of an edge which is not in () Ga remains unchanged. The orbit Ge(a) spans an
invariant forest in I'°*, and I’ can be recovered from I'®* by collapsing this
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invariant forest. Collapsing Ge(«) is an equivariant homotopy equivalence from I"°*
to I'. Choose an equivariant homotopy inverse f : I' — I'®* and define s°* to be f o s.
The marked graph [s*, I'*] is said to be obtained from [s, I'] by blowing up Go.

EXAMPLE 5.3. Consider the Z,-graph I' in Figure 6; the action of the generator
x of Z, is defined by a, — a,+— a3+ a,+—> a,, b, & b,. The set a = {a,, a5, b} is an
ideal edge with stab () =Z, and D(a) = {b,}. The figure presents also the graph
obtained by blowing up the ideal edge-orbit Z,a = {a, xa} = {{a,,as, b},
{a,, a4, by}}.

Figure 6

EXAMPLE 5.4. In Figure 7 we have a Z;-graph I'; the action of the generator
x is given by a,—a,+—>ay+>a,, b+ by by b,. The set a ={a,, b,} is an
invertible ideal edge with stab (a) = Z; = stab (v), D(a) =« and o~ ' = {a; ', b5 '}.
The figure also presents the blow-up I'*3*, where Z,o = {o, xa, x’a}.

a
v
a o e(©)

v(a)

T a;

Figure 7
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C. Compatibility

The operation of blowing up can be done with several ideal edge-orbits at once
if they satisfy certain compatibility conditions.

DEFINITION. An ideal edge-orbit Ga is included in the ideal edge-orbit Gf
if o’ is a subset of f’ for some ideal edges o’ € Ga and B’ € GB. Ideal edge-orbits
Go and Gf are disjoint if a’'np’'= for all a’eGa and B’ eGP, ie.
(UGa)n(J GP) = . They are inverse if an edge of Ga is invertible, and its
inverse is in Gf.

Ideal edge-orbits Ga and Gf are compatible if one is included in the other or if
they are disjoint and not inverse.

Note that if Gf is either disjoint from Ga or included in Ga, then Gf can be

regarded as an ideal edge-orbit of I'“*. Moreover, if Ga and G are disjoint, one has
(FG::) GB _ (FG/J) Gaz.

D. Blowing up an oriented ideal forest

Let [s, I'] be a marked G-graph, and let {Ga,, ..., Ga,} be a pairwise compat-
ible collection of ideal edge-orbits of I'. The union @ = Ga,U- - - U Gay is called an
oriented ideal forest. An oriented ideal forest @ gives rise to a new marked G-graph
[s®, I'?] as follows. Partially order the ideal edges in @ by inclusion. Since orbits of
¢ are pairwise compatible, maximal elements of @ are disjoint, and the set of all
maximal elements of @ is a union of pairwise disjoint ideal edge-orbits. We may
blow these ideal edge-orbits up, in any order, to obtain a new marked G-graph
[s’, I'"]. The remaining ideal edge-orbits can be regarded as ideal edge-orbits in I'’,
so the operation can be repeated until all ideal edge-orbits in @ are used; the final
result is the marked G-graph [s®, I'®?]. We say [s®, I'®] is obtained from [s, I'] by
blowing up the oriented ideal forest ®. The graph I'® can be described explicitly as
follows, where + denotes disjoint union.

Vertices. V(I'®) = V(I') + {v(a) | & is an ideal edge in ®}.

Edges. E(I'®) = E(I') + {e(x) *' | a is an ideal edge in ®}.

Incidence maps. Let 1 and 1 be the initial and terminal vertex maps of I', and 14
and 1, the corresponding maps of I'?.

If « < E, is an ideal edge in &, then

19(e(x)) = v(a),

v if o is maximal

Ta(e(2)) = {v(l}) if B is the smallest ideal edge in @ with o < f.
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If e € E(I'), then

ro(e) = {r(e) ife¢ Y@

v(a) if « is the smallest ideal edge in @ which contains e,

1p(€) =7o(e ™).

The edges e(x) for a € @ form a forest # in I'®, which is naturally oriented, in
the sense of Section 4B; the sink of a component T of # is a vertex whose stabilizer
contains the stabilizers of all vertices of T.

E. Blowing up a reduced marked G-graph

The operation of blowing up an oriented ideal forest of I' produces a new
marked G-graph. In this section we show that for reduced marked G-graphs,
blowing up always produces an essential marked G-graph.

PROPOSITION 5.5. Let [s, 4] be a reduced marked G-graph, and ® an oriented
ideal forest of ®. Then the marked G-graph obtained from A by blowing up @ is
essential.

Proof. Let I' =A% and let &# be the subgraph of I' spanned by edges
e(a), « € . Then, as remarked above, # is an invariant forest in I', and I'; = 4.
Since A4 is reduced, # is maximal in I.

Note that all edges of A4 are essential, since 4 has no invariant forests. Since
A=T4, Lemma 4.6 implies that all edges in I' — % are essential in I'. If
e € ET(Z), then e = e(x) for some o € ® and I' - _ ;, = 4°%; thus it suffices to check
that e(x) is essential in 4°*. Let a € D(«). Then Ga is a forest in A%*. If e were
inessential, then Ga u Ge would span a forest in 4°*; thus Ga would span a forest
in 4, contradicting the assumption that 4 is reduced.

It remains to check the valence conditions on the vertices of I'. We claim that
the valence of v(x) is at least 3 for every a € @. If v(a) is extremal in &, all edges
of o end at v(x) and there are at least two of them. If the valence of v(«) in & is
equal to two, then v(a) = t(e(f)) for some B, so f < a and edges of « — f end at
v(a).

Now let v € V(4) and let E, and E? be the sets of edges ending at v in 4 and
I'. Leta,,...,o(k=0) be all maximal ideal edges in @ contained in E,. If £k =0,
then Ey = E,. If k =1, then EY = {e(o;)} U(E, — ), so the valence of v in I' is at
least three. If Kk =2 and E, = a, Ua,, then a, = xa, for some x € G, so the valence
of v in I' is two and the two edges at v in I" are in the same orbit. If k =2 and
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E. —(x;ua,) # &, then E? contains e(x,), e(x,) and at least one more element.
Finally, if & = 3, then obviously the valence of v in I' is at least three.

F. Essential marked G-graphs

Let [s, I'] be an essential marked G-graph, and % a maximal invariant forest in
I'. In this section we will find an ideal forest @ in the reduced marked G-graph
obtained from I' by collapsing %, so that blowing up @ results in [s, I'].

Recall from Section 4B that an orientation of & is natural if it is invariant,
confluent on each component and each parabolic edge is oriented away from its
weak endpoint.

PROPOSITION 5.6. Let [s, I'] be an essential marked G-graph, % a naturally
oriented maximal invariant forest in I', and [r, A] the reduced marked G-graph

obtained by collapsing . Then & determines an oriented ideal forest ® of A with
[s, TT=[r? 47].

Proof. For every ae E* (%), define a(a) ={e e E(I') — E(¥) [ (e) e F_,}.
Since the edges of 4 are naturally identified with E(I") — E(%), we may consider
a(a) as a subset of edges of 4.

CLAIM 1. a(a) is an ideal edge of A.

Proof. Since all edges in a(a) terminate in the same connected component of %,
their images all terminate at the same vertex v of 4. An element of G stabilizes a if
and only if it stabilizes #_,, if and only if it stabilizes a(a), i.e. the stabilizer of a(a)
is equal to the stabilizer of a. We now check the conditions for a = a(a) to be an
ideal edge.

(1) card (2) =2 and card (E.(4) — a) = 2.

Let T be the component of # which contains a, and let w be an extremal vertex
of T. If w were bivalent in I', then both edges incident to w would be in & since
they are in the same G-orbit. Thus at least three edges of I' terminate at w,
including at least two which are not in #. By considering w € T_,, we see that
card () = 2, and taking w e T — T_, shows that card (E,(4) —a) = 2.

(i1) Ge na = stab (ax)e for e € a.

Let x be an element of G which is not in stab (x). Then xe ¢ a since xe
terminates at #_ , and the trees #_, and % _,, are equal or disjoint depending on
whether x is in stab («) or not.
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(i) D(o) # .

We must show that there is an edge e € a with stab (e) = stab (a), 7(e) € #_, and
e) ¢ GF_,.

Since I is essential, there is a strong path £ in I which contains a (Proposition
4.4). Let 2 be the image of 2 in I'. Since 2 is strong, Z is also strong. Starting at
1(a@) and travelling along 2 in the direction opposite to the orientation of @ we must
come across a vertex which is not in #_,. Indeed, if 2 is hyperbolic, then £ is a
cycle passing through 7(a), which is not in #_,. If 2 is elliptic, then its endpoints
have stabilizers which contain stab (a), so their images in I" are not in Z_,. It
follows that there must be an edge ¢ in 2 with 1(é) ¢ #_, and 1(é) € #_,. Let e be
a lift of & which terminates in &#_,. Clearly i(e) ¢ G¥_,. Since 1(e) € #_,, we have
stab (e) < stab (#_,) = stab (a). Since e is a translate of an edge of # and £ is a
strong path, it follows that stab (e) is a conjugate of stab (a), so stab (e) = stab (a).

CLAIM 2. Let @ ={a(a) |a € E*(F)}. Then @ is an oriented ideal forest of A.

Proof. We have to check that a(a) and a(b) are compatible for all edges a and
bin E*(%). For any such a and b, either #_,nx¥_, =% _,n%_,, is empty for
every x € G, or, for some x € G, there exists an oriented path in % which contains
both a and xb. It follows that a(a) nxa(b) = & for every x € G or, for some
x € G, a(a) < xa(b) or a(a) > xa(b).

Finally, if for some a,b € E* (%) and v € V(4) we have a(a) ua(b) = E, (A),
then it follows that @ and b terminate at the same bivalent vertex of I'. But then a
and b are in the same G-orbit, so a(a) = xa(b) for some x € G. O

Finally, we show 4¢ =T,

Proof. We define a map from I' to 4% by sending a to itself if a ¢ #, and to
e(a(a)) if a € #. The description of 4? given in Section 5D shows that this map is
an isomorphism. O]

G. Ideal forests and the star of a reduced marked G-graph

Blowing up two different oriented ideal forests may result in the same marked
G-graph. We now determine exactly when this happens.

Ideal edge-orbits 4 and B are called pre-compatible if either A and B are
compatible or A is invertible and 4~ is included in B. In the second case, B is
necessarily invertible, and B~ is included in 4 as well. Note that an ideal edge-
orbit is compatible with itself, but not with its inverse; however, it is pre-compatible
with its inverse. If 4 and B are not pre-compatible they are said to cross.
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The union of a collection of ideal edge-orbits is an ideal forest if its elements are
pairwise pre-compatible and if it contains the inverse of each of its invertible
edge-orbits.

If @ is an oriented ideal forest in I', it can be completed to an ideal forest ¢ *
by adding the inverses of all invertible edges in @.

LEMMA 5.7. Let ® and ¥ be oriented ideal forests in the reduced marked
G-graph [s, ). If ®* =¥ * then [s¥, '¥] =[s®,T'?].

Proof. Since ®* = ¥ * there is a bijection f: & — ¥ sending each ideal edge «
either to itself or to its inverse. Let / = {0 € @ | f(x) =a '}. Let « be a maximal
element of 1. We claim that a is maximal in @. If « = f§ for some f € &, then Ga !
is not compatible with GB. But Gf(x) = Ga ~! is compatible with Gf(f), so we must
have f(B) = B!, i.e. B €I, contradicting the maximality of a.

The proof now proceeds by induction on the number k of G-orbitsin I. If k =1
then 7 = Ga for some ideal edge a. Let v be the terminus of edges in a. Since o is
maximal in @, the edge e(x) in I'® begins at v(«) and terminates at v. Define a map
from I'® to I'¥ by sending xv — xv(a ~ '), xv(a) > xv, xe(a) ! — xe(a ") ¥! for all
x € G, and fixing all other vertices and edges. This induces a graph isomorphism
giving [s®, I'?] =[s¥, I'Y].

Now assume k > 1, and let f be any ideal edge in @ different from «. Since « is
maximal in @, we must have Gf included in Gua or disjoint from Ga. In either case,
Gf is compatible with Ga~', so the set &, = @ — Go + Go ' is an oriented ideal
forest. By induction, [s?, I'?] =[s®, I'®] =[s¥, I'¥]. O

LEMMA 5.8. Every invariant forest # in an essential G-graph I' can be given a
natural orientation.

Proof. Let T be a connected component of #. Let v be a vertex of T whose
stabilizer has maximal order among stabilizers of vertices of 7. If w is any other
vertex of T, let 2 be the geodesic path from w to v. Since £ contains no strong
sub-paths (in particular, each edge of £ is either hyperbolic or parabolic), the
stabilizers of vertices on Z must be linearly ordered by inclusion. In particular, all
vertex stabilizers of T are contained in stab (v), and vertices of T with this stabilizer
span a subtree of T.

Orient T confluently towards v. For parabolic edges, “‘towards v’ means “away
from its weak endpoint”, so the orientation satisfies the conditions for being
natural. Since stab (v) =stab (T'), we can extend equivariantly to get a natural
orientation on the invariant forest GT. Continue to orient orbits of trees in % in
this way until all of % is oriented naturally. O
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Let p =[r, 4] be a reduced marked G-graph. Recall that the star of p in L is
the geometric realization of the poset of marked G-graphs which collapse to p, with
forest collapse as the poset relation. The set of ideal forests of 4 also forms a poset,
under inclusion.

PROPOSITION 5.9. Let p =|[r, 4] be a reduced marked G-graph. Then blowing
up induces a poset isomorphism from the poset of ideal forests of A to the star of p.

Proof. Denote the poset of ideal forests of A by IF(A), and the vertices of the
star of p in L by ST(p).

Let @ be an oriented ideal forest of 4. Define a map from the set of oriented
ideal forests in A4 to the star of p in K; by sending & to [r®, 4%]. By Proposition
5.5 the image lies in S7(p), and by Lemma 5.7, the map induces a map
¢ : IF(4) - ST(p).

We define an inverse y : ST(p) — IF(A) to ¢ as follows. If [s, I'] is in the star of
p, then for some maximal invariant forest # of I', p is obtained from [s, I'] by
collapsing #. By Lemma 5.8, we may put a natural orientation on % ; by
Proposition 5.6, # then determines an oriented ideal forest @ of 4, with
[r®, A%] =[s, I'). Different choices of natural orientation on % correspond to
different choices of orientation on the ideal forest @ *, so the map y([s, [']) = @ * is
a well-defined inverse to ¢. O

H. Whitehead moves and connectivity of Lg

In this section we apply results of Krsti¢ [11] to show that L is connected.

LEMMA 5.10. Let o < E, be an ideal edge of the G-graph I' and let a € D(x).
Then the orbits Ga and Ge(x) each span an invariant forest in I *.

Proof. The vertex v(«) is an endpoint of both e(x) and a in I'°*, and v(a), e()
and a all have stabilizer equal to the stabilizer of «. The endpoints v and v(«) of e(x)
are in different G-orbits by construction. Since a € D(«), the endpoints of a are also
in distinct G-orbits. The result follows by Lemma 4.3. U

Since Ga is an invariant forest in ', we may collapse it to obtain a new
reduced marked G-graph [s’, I'’]. The path [s, I'] —[s*, %] —[s", '] in K is
called a Whitehead move, and the marked G-graph [s’,I''] will be denoted
[s, I')(Ga, Ga). On the level of edge-path groupoids, a Whitehead move is expressed
by formulas which generalize Whitehed automorphisms of free groups (see [11, 12]
for details). The following proposition can be deduced from Corollary 1 and
Proposition 4 of [11].
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PROPOSITION 5.11. Any two reduced marked G-graphs are connected by a
sequence of Whitehead moves. O

Since any marked G-graph is connected to a reduced marked G-graph, we have

COROLLARY 5.12. The complex L is connected. O

§6. The norm of a reduced graph

In this section we define a norm on reduced marked G-graphs. We will use this
norm to filter the complex L, by subcomplexes. We will prove L is contractible
inductively by showing the subcomplexes are contractible.

A. Dot product and absolute value

Let ¢ =[s, I'] be a marked G-graph, and w a conjugacy class of elements of F,.
Represent w by a cyclically reduced word in the edges of I', and define the star
graph of w to be the graph with one vertex for each oriented edge of I' and one edge
from the vertex e to the vertex f for each occurrence of e¢f~' in the word
representing w. The G-star graph of w (with respect to o) is the graph formed by
superimposing the star graphs of xw for each element x € G.

Let # = {w,,w,, ...} be the set of conjugacy classes of elements of F,. Then
A =12" is an ordered abelian group with the lexicographical ordering, which we
will denote by the symbol “<".

If A and B are two subsets of E(I'), the dot product A.B of A and B is the
element of A whose ith coordinate (A.B), is the number of edges of the G-star graph
for w, with one vertex in 4 and one vertex in B. Note that x4.xB = 4.B for any
xeG,and A(B+ C)=A.B + A.C, where “+" denotes disjoint union. The abso-
lute value of A is the dot product |A|= A.(E(I') — A), i.e. |A]| is the element of A
whose ith coordinate |4|, is the number of edges of the G-star graph of w, with
exactly one endpoint in 4. Note that |4|= |E(I') — A|. If 4 consists of a single edge
e of I, then |e|, is the valence of the vertex of the G-star graph for w; corresponding
to e, i.e. it is the number of times one of the reduced paths xw, crosses e in either
direction. If we represent oriented edges of I' by points in the plane, and edges of
star graphs by arcs in the plane which miss these points, then we can separate A4
from E(I') — A by a simple closed curve which intersects the G-star graph for w; in
exactly |4, points.

The following elementary properties of dot product and absolute value follow
easily from the definitions.
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PROPOSITION 6.1. If A and B are disjoint subsets of E(I'), then
|4 + B| = |A|+|B| — 2(4.B). O

PROPOSITION 6.2. Let K be a subgroup of G, let A be a K-invariant sub-
set of E(I'), and let e be an edge of I' with stab (e) contained in K. Then
(Ke).A = [K: stab (e)](e.A). O

B. Norm of a marked graph

If ¢ =[s, I' is a marked G-graph, define its norm |a|| to be the element of A4 whose
ith coordinate is given by

2 el
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Equivalently, the ith coordinate |o|; is equal to the sum of the lengths of the
cyclically reduced edge-paths representing the conjugacy classes xw; for x € G.

Note that the image of a reduced edge-path in I' under a forest collapse is still
reduced. In particular, the absolute value of an edge e of I which is not in the forest
is unchanged by the forest collapse. From this it follows that collapsing an invariant
forest in a marked G-graph strictly decreases the norm.

If we think of a marked G-graph ¢ as an action of F, on a Z-tree which is fixed
by the subgroup G of Out (F,), then the coordinate ||o |, is the (hyperbolic) length
of w; in the action, multiplied by the order of G. Results of Alperin and Bass [1] or
Culler and Morgan [6] imply that an action of F, on a Z-tree is determined by its
norm. In particular, the norm gives a total ordering to the set of marked G-graphs
for a fixed G.

PROPOSITION 6.3. The set of marked G-graphs is well-ordered by the norm.

Proof. Let U be any set of marked graphs. We must find a least element of U.
Let U,= U, and define subsets U, of U, for i = 1, inductively as follows. Let
Z;=min {|c||;| ¢ € U;,_,}. Then U, is the subset of U,_, consisting of elements ¢
with ||lo|; =¢,. We have

U=U():_D_.U]2U2"'

Define a function f: F,—>Z by f(w;) =¢;. The axioms for hyperbolic length
functions (see [6] or [16]) are satisfied by f, so fis the length function of some action
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of F, on a Z-tree [16]. Since #; # 0 for all i, this action is free, and since f'is constant
on G-orbits, this action is in K ; we will call the vertex of K corresponding to this
action a,.

CLAIM. A minimal free action of F, on a Z-tree is determined by the lengths of
finitely many conjugacy classes (which depend on the action), i.e. there is a finite set
of conjugacy classes such that no other action has the same lengths on those classes.

Proof. Given any finite set of conjugacy classes & ={q,,...,q,} in F,, we can
define an &/ -norm on the set of free actions on Z-trees by taking the & -norm of
an action to be the sum of the lengths of the conjugacy classes a; in that action. By
Proposition 6.2.5 of [7], there is a finite set of words &/, so that there is a unique
rose p, of minimal .«/,-norm.

Fix a minimal free action 7. Then 7 is in the ball B, consisting of graphs of
&/ -norm less than N, for some N. We claim that B, contains only finitely many
marked graphs. By the Existence Theorem of [7], every rose p in B,y can be
connected to p, by a Whitehead path (i.e. a path of elementary Whitehead moves)
which reduces .&/,-norm at each step, so has length at most N; since there are only
a finite number of Whitehead paths of a given length from p,, this shows that B,
contains only a finite number of roses. If ¢ is any action in B,, then collapsing a
maximal tree in ¢ produces a rose with o/,-norm smaller than the 7 ,-norm of o,
so ¢ is in the star of some rose in B,. Since the star of a rose contains only finitely
many marked graphs, there are only a finite number of marked graphs in B, .

The finitely many marked graphs in B, can be distinguished by a finite set £ of
conjugacy classes of F,. Therefore the lengths of conjugacy classes in & U%
distinguish 7 from any other action. O

Now choose N large enough so that o, is determined by the lengths of

Wi, ..., wy (ie. {w,...,wy} contains all the conjugacy classes which are needed
to determine o,). Then Uy = {06,}, s0 a, is an element of U which is smaller than
any other element of U. O

We now compute the effect of blowing up and blowing down on the norm of a
reduced G-graph.

Let 0 =[s, I'] be any marked G-graph, and suppose that o, is obtained from o
by collapsing an edge-orbit Ga which is a forest in I'. Since there are [G: stab (a)]
edges in Ga, all with the same absolute value, we have

loall=loll = % le[= o]l -G stab (a)]|a] (*)

ee Gua
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If « is an ideal edge of I', then ¢ is obtained from ¢“* by collapsing the edge-orbit

Ge(o); thus equation (x) gives that |69*|| = |o| +[G: stab (®)]|e()|- But |e(x)| in
e is equal to |¢| in I', and stab (x) = stab (e(2)), so

lo | =llo] +ﬂZG B = llo || +[G: stab (@)]]a]. (%)

Combining equalities (x) and (**) gives

PROPOSITION 6.4. Let (o, a) be an ideal pair in the reduced G-graph p, and
suppose p’ is obtained from p by the Whitehead move (Ga, Ga). Then |p’||=
le |l + p(|z| = |a]), where p =[G: stab ()] = [G: stab (a)). O

The quantity [G: stab (¢)](|a| — |x|) will be called the reductivity of (a, a), de-
noted red (a, ). The Whitehead move (Ga, Ga) reduces the norm if and only if
red (a, a) >0. We will be particularly interested in Whitehead moves which
reduce the norm, which we call reductive Whitehead moves. The reductivity of
an ideal edge « is the maximum, over all a € D(x), of red (a, a). If « is inver-
tible and a e D(«), then xa~'e D(e~') for a unique x € G, and red (a, a) =
red (« !, xa ).

The following proposition is an application of the Factorization Lemma 4.7,
which will be needed in the proof of the contractibility of L.

PROPOSITION 6.5. Let p’ be a reduced marked G-graph, which is obtained
from the reduced marked G-graph p by first blowing up the oriented ideal forest ® of
p, and then collapsing the maximal invariant forest F of p®. If ||p’|| <|p |, then some
ideal edge in @ is reductive.

Proof. The oriented ideal forest @ gives a maximal invariant forest in I'® which
is oriented naturally; thus the Factorization Lemma 4.7 gives an orientation on %
and a bijection f: & - E* (&) such that («, f(«)) is an ideal pair for each ideal edge
o of @. Applying equations (*) and (*x) repeatedly, we obtain

oI~ lol= % o~ % lel= %, eI~ ).
Since ||p’|| — |o| <0, we must have |a| — | f(«)] <0 for some a € ®, i.e. the White-

head move (Ga, Gf(«)) is reductive. O
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§7. Combinatorial Lemmas: Finding new reductive ideal edges

In this section we prove two combinatorial lemmas which we will need in the
proof that L, is contractible. Each lemma shows that one of a small number of
candidates is a reductive ideal edge. The method is to compare the reductivity of the
candidates to the reductivity of ideal edges already known to be reductive, using
two basic counting inequalities.

In previous sections we have written Ga for the set of ideal edges of the form xa
for x e G. We abuse notation in this section by writing Ga for | ) Ga = |J, . ¢ xa as
well. It should be clear from the context which is meant in each case.

A. Intersection components and crossing number

Let o and f be two ideal edges. Let P denote the stabilizer of a, with index p in
G, and let Q be the stabilizer of f, with index ¢ in G. Choose double coset
representatives x, = 1, x,, .. ., x, for P\G/Q, i.e.

G=PQ+P.X2Q+"'+P.ku,
The intersections y = a NGB and y”" = f N Ga decompose as disjoint unions

Y=" i i

7

— 4 -
Y=V Ak

where y, = a N Px,f = P(a nx;f) and y; = B Ox; 'a = Q(x; 'a n P) (see Figure 8).
The y, are the intersection components of o with p.

Note that Gy =Gy’ and Gy, =Gy,. The map e+ x;'e sending anx;p
to x; 'anp induces a bijection between the P-orbits in 7y, and the Q-orbits
in y;.

DEFINITION. The crossing number N(Ga, GB) is the number of non-empty
intersection components y; = P(a N x;f).

If N(Ga, GB) =0, the orbits Ga and Gf are disjoint, hence pre-compatible. If Go
and Gf are not disjoint, we replace by some translate xf so that o« N ff # &, so
7, # . If Ga and Gf cross and N(Ga, GB) = 1, we say Ga and Gf cross simply; in
this case y =y, = P(a nf) and y" =71 = Q(a N ).
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Figure 8

B. Basic inequalities
LEMMA 7.1. If Ga and G cross simply, and stab () < stab (), then

plenB|+ q|BuQa| < pla| + q|B).

Proof. Recall that y =anp, let A=a —y and B=f + QA, and let E = E(I')
(Figure 9).

Figure 9

By Proposition 6.1,
jo| = Iy| = |4] —24.y
and || — |B| = |E — 8| |E - B]
= |QA| - 2(QA4).(E — B).
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Thus the inequality in the statement of the lemma reduces to showing

plA| + q|QA4|—2pA.y —2q(QA).(E — B) > 0. It suffices to show this on each orbit
Pt of A separately, i.e.

pPt(E — A) +qQt.(E — QA) —2pPty —2qQt.(E — B) >0
for each t € 4.
By Proposition 6.2, we have pPt.(E— A)=p[P:stab()]t(E— A) =

[G: stab (£)]¢.(E — A). Similarly, [G: stab (¢)] is a factor in each term of the inequal-
ity, so we can cancel to get the equivalent inequality

t(E—A)+1t(E—QA) -2ty —2t(E—B) >0.

Since t.(E — A) > t.(E — QA), it suffices to show
t(E—QA)—ty—t(E—B)>0.

But this is immediate since QA, y and E — B are disjoint subsets of FE. O
LEMMA 7.2. If Ga and Gf cross, then for all i,
plae —vi|+qlB —vi| < ple| +q|B].

Proof. Let E=FE(I'), A=o —y,and B = f§ —y; (Figure 10). By Proposition 6.1
we have

o = i + [4] = 27,4

Bl=Pil+[B|—2v.B

Figure 10
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Thus the inequality in the statement of the lemma reduces to showing
plyil+qlyi|—27.4 —2y;.B = 0.

We do this separately on the orbits in y;, and y; as follows. For each P-orbit in y,,
choose an edge ¢ representing it which lies in « n x;f; then the associated Q-orbit
in y/ is represented by " = x; 't. We will show

pPt(E —7v;) +qQt'.(E —y;) —2pPt.A —2qQt’.B >0
By Proposition 6.2,
pPt.(E —y;) = p[P: stab ()]t.(E — y;) =[G stab ()]t.(E — ;).

Similarly, [G: stab (f)] =[G: stab (¢")] is a factor in each term of the inequality, so
we can cancel to obtain the equivalent inequality

t(E—9y)+t'.(E—y;)—2t.A—-2t'.B>0.

Now t(E—9y,)>t(E—Gy;) and ¢t (E—vy;)>t'(E—-Gy;)=t'(E—Gy;)=
t.(E — Gy,). Thus it suffices to show

t(E—-Gy,)—tA—tx;B>0.

But this is immediate since Gy,, 4 and x;B are disjoint subsets of E. O

C. The Pushing and Shrinking Lemmas

PROPOSITION 7.3 (Pushing Lemma). Let (1, m) be a maximally reductive ideal
pair of a reduced marked G-graph, and let a be a reductive ideal edge which simply
crosses pu, with m € a.nu. Then one of the sets u — o or o Ustab (ax)u is a reductive
ideal edge.

Proof. Set P =stab («), and fix a € D(a), with red (a, a) >0. We divide the
proof into cases according to the position of a ~! and m ~!, illustrated in Figure 11.
Since m € a, we have stab (u) < stab (x).

Case 1. a~' ¢ Gu.
An application of inequality 7.1 shows that

red (« U Py, a) + red (2 nu, m) > red (a, a) + red (u, m).
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Figure 11

Since (u, m) is maximally reductive and («, @) is reductive, both (x U Pu, a) and
(¢ N pu, m) must be reductive.

To complete the proof, we must check that («u Pu,a) is an ideal pair; in
particular, we must check condition (i) of the definition of ideal edge, which says
that card (E, — (x v Pu)) = 2. Since a is an edge of a reduced G-graph, a must be
either elliptic or bent hyperbolic. If a is bent hyperbolic, some translate xa ~! is in
E,, but is not in Ga or in Gu. If xa~' is the only edge of E, — (¢ U Pu), then
lo U Pu|=|a"| =la|, contradicting reductivity of (x U Py, a). If a is elliptic, then P
is a proper subgroup of stab (v). Choose an element x €stab (v) — P, an edge
b ea — Pu and an edge c € u —a. Then xb and xc are both in E, — (a U Pp).

In what follows, we omit similar cardinality checks.

For the remaining cases we may assume that a ~! € Gu. Choose x with xa = ' € pu.

Since stab (xa ~') is a conjugate of stab (x) = P and a subgroup of stab (u) < P, we
must have stab (u) = P.

Case 2. a '€ Gu and m~! € Ga.
Choose y € G with ym ' e a. Then (¢ — yu, ym~') and (u — a, xa ") are ideal
pairs and inequality 7.2 shows that

red (@ — u, ym ") +red (u — o, xa ') > red («, @) + red (u, m).

Since (4, m) is maximally reductive and («, a) is reductive, both (¢ — u, ym ~') and
(u — o, xa ") must be reductive.
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Case 3. a '€ Gu,m ' ¢ Go and a € p.
Then (U u, m) and (o N, a) are ideal pairs and inequality 7.1 shows that

red (e U u, m) + red (o N p, @) > red («, a) + red (u, m).
As above, both (¢ LUy, m) and (x N u, @) must be reductive.

Case 4. a 'e Gu,m~'¢ Ga and a ¢ pu.
Then xa~' e D(u), so |m| > |a|. Thus

red (o« U u, m) + red (a N, m) > red (o, a) + red (u, m).
As above, both (x up, m) and (a N p, m) must be reductive. d

PROPOSITION 7.4 (Shrinking Lemma). Let (u, m) be a maximally reductive
ideal pair of a reduced marked G-graph, and let o be an ideal edge which crosses .
Let y;,, ..., be the intersection components of a with y which contain no translate
of m, and let f =o — U7, Then B or one of the sets v, is a reductive ideal edge.

Proof. Let P =stab («), with index p in G, and Q = stab (u) with index ¢ in G.

Suppose m € Ga, i.e. some intersection component y;, =« N Px,u contains a
translate xm of m. Since « is an ideal edge, G(xm) na = P(xm). Since y, is a union
of P-orbits, P(xm) is in y,. Thus at most one intersection component y,; contains a
translate of m. Replacing u by xu, we may assume this intersection component is vy,,
and m e y,.

Let ¢ be the union of all intersection components y; which contain neither a nor
m, and ¢’ the corresponding union of y;. If ¢ # J, repeated use of the inequality 7.2
gives

ple — el +qlu— €| < pla|+ qlul.
From this it follows that
red (a — ¢, a) + red (u — €', m) > red («, a) + (u, m).

Since (u, m) is maximally reductive, we have red (« — ¢, a) >0, i.e. « — ¢ is reduc-
tive.

If a is not in y, for any i, or if a and m are both in y,, then « —¢ = f§ and we
are done. By renumbering, we may therefore assume that either m € y, and a € y, or
a€y, and m ¢ Ga. We may also replace a by a —¢; then either N(Ga, Gu) =1,
aey=y, and m ¢ Ga or N(Ga, Gu) =2, mey, and a € y,.



Equivariant outer space 247

Cr (D G (D
&

Case 2
Pu o "
(D /N
yH h
Case 3 Case 4
e

a (04

G /D
O =

Case 5 Case 6

y

(6 .

Figure 12

We divide the proof into cases depending on N(Ga, Gu) and the location of a =

and m ' (see Figure 12).

Case 1. N(Ga, Gu) =1, m " ¢ Ga.
Then (y, @) and (1 U Qa, m) are ideal pairs, and the inequality 7.1 gives

red (y, a) + red (u U Qa, m) > red (a, a) + red (u, m).
Since (u, m) is maximally reductive, (y, a) is reductive.

Case 2. N(Ga, Gu) =1,m " 'e Ga but a~' ¢ Gp.
Fix x with xm ~' €a. Then P = Q, and (« — 7y, xm ~') and (u — 7', m) are ideal
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pairs. Since a € D(u) and (u, m) is maximally reductive, we have |m| > |a|; this

together with inequality 7.2 gives

red (o —y, xm~") +red (u —y’, m) = p(|m| — |ot| + |m| — |u])
> red («, a) + red (u, m).
Maximal reductivity of (u, m) now shows that (¢ —y, xm ~ ') is reductive.
Case 3. N(Ga, Gu) =1,m '€ Go and a ' e Gpu.
Again P=Q. Choose yeG with ya 'epu Then (ax—7y,xm ") and
(u —y’, ya—') are ideal edges. Inequality 7.2 gives
red (@ —y, xm ") +red (u —y’, ya ") > red (a, a) + red (u, m).

Thus (¢ — 7y, xm ~') is reductive.

In the next three cases, we have N(Ga, Gu) = 2. Since m € a, we have P = Q and
v, =77. Fix y € G so that y,=anyu and y5 =y 'y,.

Case 4. N(Ga, Gu) =2, m ™" € Ga.
Choose x € G with xm ~' € a. The inequality 7.2 gives

red (0 —y,, xm ") +red (u —7y,, y "'a) >red («, a) + red (u, m).
Inequality 7.1 gives

red (y,, a) +red ((a — 7)) U yp(u —y1), xm ")
>red (@ —p;, xm ") +red (u—7y,,y 'a).

The pairs (y,,a) and ((@ —y,) uy(u —7y,), xm ") are ideal pairs. Since (u, m) is
maximally reductive and («, a) is reductive, these two inequalities together show
that (y,, a) is reductive.

Case 5. N(Ga, Gu) =2,m ' ¢ Ga,a ' e Gpu.

Choose z € G with za ' € u. Then (¢« — y,, m) and (u — y5, za ~ ') are ideal pairs,
and inequality 7.2 gives

red (a — y,, m) +red (u —y5, za ') > red («, a) + red (u, m),

so o — 7y, 18 reductive.
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Case 6. N(Ga, Gu) =2, m ' ¢ Ga,a ' ¢ Gu.
In this case, (¢ —y,,m) and (u —y,, m) are ideal pairs and |m|> |a| since
y ~'a € D(u). An application of inequality 7.2 gives

red (a — Y2 m) + red ('Ll ~y59 m) = red (as a) + red (ua m)a

so that a — y, is reductive. U

§8. Proof of Contractibility

THEOREM 8.1. The complex L is contractible.

Proof. By Proposition 6.3, the set of all reduced marked G-graphs is well-or-
dered by the norm. The complex L is the union of the stars of the reduced marked
G-graphs p. Set

L= U st (p”)

le”ll < fiell

and let S, =st(p)nL_,. We will show that S, is contractible whenever it is
non-empty; an easy transfinite induction argument then proves the statement “For
every p, all components of L_, are contractible.” Since L is connected (Proposi-
tion 5.11), it must then be contractible.

Fix a reduced marked G-graph p ={s, I']. By Proposition 5.9, the star of p in L
is identified with the geometric realization of the poset of all ideal forests of p. We
will prove that S, is contractible by repeated retraction using the Poset Lemma
(3.4). The proof is contained in the sequence of lemmas below.

For every invariant set € of ideal edges of p, let S(¥) denote the subcomplex of
st (p) spanned by the ideal forests of p, all of whose edges are in €. Let € * be the
set obtained by adjoining to ¥ the inverses of its invertible elements, and let # be
the set of all reductive ideal edges of p. Notice that Z =2 7.

Let u be a maximally reductive ideal edge of p, and choose m € u so that
red (i, m) is maximal. Define

%, ={o € # | is compatible with u},
and

%, =%,u{n €A |ais invertible}

u{a e # |me Ga and N(Ga, Gp) = 1}.
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LEMMA 8.2. S, deformation retracts onto S(XR).

Proof. By Proposition 6.5, we can identify S, with the geometric realization of
the subposet consisting of ideal forests of p which contain a reductive ideal edge.
The map which sends an ideal forest to the subforest consisting of its reductive ideal
edges is thus a poset map. The lemma follows by applying the Poset Lemma (3.4).

UJ

LEMMA 8.3. Let € =%* be an invariant subset of # which contains €,. Then
S(€) deformation retracts to S(¥¢,). In particular, S(R) deformation retracts onto
S(%,).

Proof. The proof is by induction on the cardinality card (¥ — %,). If this
cardinality is greater than 0, choose « € ¥ — %, such that

1. card (e« »nGp) is minimal,

2. a is minimal with respect to property (1), ie. if a’ € ¥ —¥,,2" <, and

o' nGu =anGu, then o’ = a.

Since x € ¥ — €,, « is not invertible, and either N(Ga, Gu) = 2 or N(Ga, Gu) = 1
and m ¢Ga. By the Shrinking Lemma (7.4) and with its notation, one of the sets
Vise--sVe OF & —(y,+ -+ 7y is a reductive ideal edge, which we call a,. If
N(Ga, Gp) =1 or ay=y;, then «, is compatible with u; otherwise, N(Ga,, Gu) = 1
and m € Ga,. In either case, a, € €,.

CLAIM. For every B €€, if G is pre-compatible with Ga, then G is pre-com-
patible with Ga,.

Proof. If Ga is included in G or is disjoint from it, then the same is true for
Ga,. The case when GB ' is included in Ga does not occur because Go is not
invertible (Corollary 5.2). There only remains the case when G is included in Ga.
We may safely assume that f is a subset of «, so that card (8 nGu) < card (« N Gp).
If B ¢ €,, then, by the first condition on our choice of a, these cardinalities must be
equal, and then by the second condition, we must have f = a. If f € €, then, since
p cannot be invertible, we have either f € €, or m € Gff and N(GB, Gu) = 1. The
intersection f N Gu is empty in the former, and is a subset of y, in the latter case.
So f is a subset of « — (y, + - - - + y,) and thus compatible with every choice of «,.

O

The claim shows that if @ is an ideal forest which contains a, then @ U Ga, is
also an ideal forest. Thus there is a well-defined poset map f from S(%¥) to itself
which sends an ideal forest @ to @ U Gu, if @ contains a, and to itself if @ does not
contain a. Since f(P) = P, the image f(S(¥)) is a deformation retract of S(%). The
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map g from f(S(%)) to itself sending a forest ¥ to ¥ — Ga if ¥ contains a, and to
itself if ¥ does not contain a is then a well-defined poset map with image
S(€ — {Ga}). Since g(V) = ¥, S(¥ — {Ga}) is a deformation retract of the image of
f, and hence of S(%). Since a,€ €,, card (¥ — {Ga} — €,) <card (¥ —¥,), so
S(¢ — {Ga}) deformation retracts to S(%,) by induction. O

LEMMA 8.4. Let € =€ * be an invariant subset of €, which contains €,. Then
S(¥) deformation retracts to S(¥,). In particular, S(€,) deformation retracts to S(%,).

Proof. This proof is similar to the proof of the previous lemma, but uses the
Pushing Lemma (7.3) instead of the Shrinking Lemma. Again, the proof is by
induction, now on the cardinality card (¢ — %,). If this cardinality is greater than
0, choose o € ¢ — %, such that m € « and

1. card (« nGu) is maximal;

2. o is maximal with respect to property (1), ie. if 2’ €4 —%6,, a" 2>, and

a’'NnGu =anGu, then a’ =a.

If an ideal edge belongs to € — %,, then a translate of it or of its inverse
contains m; so a is well-defined. Since Ga and Gu cross simply (for « invertible this
is automatic), the Pushing Lemma applies. Thus one of the sets 4 — o or « U Pu is
a reductive ideal edge, where P is the stabilizer of «. Call this edge «, and note that
% € 6.

CLAIM. For every B €€, if GB is pre-compatible with Ga, then Gf is pre-com-
patible with Ga,.

Proof. If G is included in Ga, then G is included in G(a U Pu) and is disjoint
from G(u — ), so is compatible with either possibility for Go,. The same argu-
ment settles also the case when GB ! is included in Ga. If Ga is included in Gg,
then, assuming without loss of generality that « is a subset of B, we have
card (8 nGu) = card (x " Gp). If f ¢ €,, then by the first condition on our choice of
a, these cardinalities must be equal, and then by the second condition, we must have
p=a If B €%, then f must contain u, so Ga, is included in Gp.

Finally, suppose Ga and Gf are disjoint. We may assume f is not invertible;
otherwise Gua is included in GB ' and we are in the previous case. If f ¢ €,, then
m € G and so a "GP # & — a contradiction. So Gf is compatible with Gu. If Gf
is disjoint from Gu then it is disjoint from either possibility for Ga,. If GB is included
in Gu then it is included in G(u — &) and so in G(x U Pyu) too. The possibility that
Gu is included in G does not occur because Gf and Ga are disjoint. O

The claim shows that if @ is an ideal forest which contains a, then @ U (Gag) *
is also an ideal forest. Thus there is a well-defined poset map f from S(%¥) to itself
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which sends an ideal forest @ to @ U(Ga,y)* if @ contains «, and to itself if ¢ does
not contain «. Since f(®) 2 &, the image f(S(¥)) is a deformation retract of S(%).
The map g from f(S(%)) to itself sending a forest ¥ to ¥ — (Ga) * if ¥ contains «,
and to itself if ¥ does not contain a is then a well-defined poset map with
image S(¢ — {Ga}?*). Since g(¥) = ¥, S(¥ — {Ga}*) is a deformation retract of
the image of f, and hence of S(%). Since o,€®,, card(¥ — {Ga}* —%,) <
card (¢ — €,), so S(¥ — {Ga}*) deformation retracts to S(%,) by induction. [

The following lemma completes the proof of the theorem.

LEMMA 8.5. S(Cy) is contractible.

Proof. The poset map @ — dupu* — u* gives a deformation retraction of
S(€,) to a point, by the Poset Lemma (3.4). O

§9. Virtual cohomological dimension
A. Dimension of Lg

In this section we compute the dimension of the complex L, thereby giving an
upper bound to the virtual cohomological dimension of C(G). We first note that
any maximal simplex in L, contains a reduced marked G-graph p, which is a
minimal element in the poset ordering on the vertices of L, and a maximal element
a. The vertex p is obtained from ¢ by collapsing a maximal invariant forest in o,
and o is obtained from p by blowing up a maximal oriented ideal forest in p. The
dimension of the simplex is the number of edge-orbits in the maximal (oriented)
forest of ¢ or, equivalently, the number of ideal edge-orbits in the maximal oriented
ideal forest of p. It follows from the Factorization Lemma (4.7) that any two
maximal oriented invariant forests in ¢ contain the same number of edge-orbits
(and, in fact, the same number of edges). We show below (Proposition 9.3) that any
two maximal oriented ideal forests in p have the same number of elements. Since
any two reduced marked G-graphs can be connected by a sequence of blow-ups and
collapses, it follows that every maximal simplex in L, has the same dimension. We
compute this dimension in terms of the quotient graph of groups determined by a
fixed reduced marked G-graph p.

B. The quotient graph of groups

Fix a reduced marked G-graph p = [s, I'], with quotient map ¢ : I' > T = G\TI.
The action of G on I’ gives rise to a graph of groups 4 = {I’, {94, }, {¥,}} based on
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I', where the edge and vertex groups are stabilizers of edges and vertices in I', and
the injection 4, - %_,, is an inclusion or is conjugation by an element of G followed
by an inclusion (see [17] for details). Write %(e) for the image of ¥, in ¥_,,.

The following elementary lemmas show how to recognize ideal edges and ideal
forests of p by their images in .

If a and e are edges of I terminating at v, write e < a if %(e) is conjugate to a
subgroup of %(a) by an element of 4, and e < a if %(e) is conjugate to a proper
subgroup of %(a). Note that we may have ¢ < a and a < e for distinct edges a and
e, so this fails to be a partial ordering.

LEMMA 9.1. Let v be a vertex of I, E, the set of edges of I" terminating at v,
and o < E,. Then o is the image of an ideal edge of I if and only if
(1) card (o) = 2;
(ii) there is an edge a € a such that a ' ¢ o and, for all e e a, e < a;
(111) if 9(a) =9, for some a satisfying condition (ii), then card (E, —a) =2 2. [

The image of an ideal edge of I' will be called an ideal edge of I'. All translates
of an ideal edge of I' project onto the same ideal edge of I, but the converse is not
true: an ideal edge of I' does not determine an ideal edge-orbit of I". In Example
5.3, there is only one ideal edge of I', but two ideal edge-orbits in I’

If o is the image of &, define D(a) to be the image of D(&); this is precisely the
set of edges in a which satisfy condition (ii) above. If a, b € D(x), then %(a) is
conjugate to %(b) in %, ; we let P(a) denote the corresponding conjugacy class of
subgroups of 4,. If @ and f are inverse ideal edges in I', with images « and f in I,
then P(a) = P(f) =%, and a U = E,; in this case we say a and f are inverse.

LEMMA 9.2. A4 set @ of ideal edges of T is the image of an oriented ideal forest
of I if and only if, for each o and f in ®, we have a € f, < a, or a N = and
o and P are not inverse. O

The image of an oriented ideal forest of I' will be called an oriented ideal forest
of T.

We compute the dimension of L; by computing the number of elements in an
oriented ideal forest of I. This number is computed in terms of the numbers of

particular types of edges, vertices and conjugacy classes of groups in %, which we
now specify.

DEFINITION. An edge e of I is active if it belongs to an ideal edge of I'. An
edge e is critical if e is active and e £ a for any q, i.e. %(e) is not conjugate in ¥,
to a proper subgroup of %(a) for any a terminating at t(e).
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A vertex v of I' is critical if there is a critical edge e terminating at v with
YGe)=9%,.

A conjugacy class P of subgroups of a vertex group 9, is active or critical if
%(e) € P for some active or critical edge e terminating at v.

A conjugacy class P of 4, is a rose class if {e | %(e) € P} is a rose.

PROPOSITION 9.3. Let G be a finite subgroup of Out (F,), and let [s, I'] be a
reduced marked G-graph, with quotient graph of groups ¥ ={I',{%,},{%,}}. Then
the number of elements in any maximal oriented ideal forest in I is equal to

card {active edges of T} — card {critical vertices of T}

—card {critical conjugacy classes of 4} — card {critical rose classes of %4}.

LEMMA 9.4. If ® is a maximal oriented ideal forest of I' and a € ®, then there
are card («) — 2 ideal edges in ® which are proper subsets of a.

Proof. Let I be the set of ideal edges in @ which are properly contained in a.
Decompose a as the disjoint union a = 4, + - - - + A,, where each A, is either a
maximal element of 7 or a single edge e € & — |J I. Choose an element a € D(«), which
we may assume lies in 4,. If £k > 2, then A, U A4, is an ideal edge which is compatible
with every ideal edge of @ but not contained in @, contradicting maximality of @.
Thus k =2, and the lemma follows easily by induction on card (x). O

In particular, Lemma 9.4 implies the following.

LEMMA 9.5. Let ® be a maximal oriented ideal forest of I'. Then

card (@) = ) (card (x) — 1),

xe PO

where ®° is the set of all maximal elements of ®. O

Proof of Proposition 9.3. If @ is an oriented ideal forest in I and v a vertex of
I, let @, be the oriented ideal forest consisting of all ideal edges in @ which are
subsets of E,. It suffices to show that, for every vertex v of I' and every maximal
oriented ideal forest @,

card (®,) = card {active edges in E,}
— card {critical conjugacy classes in %, }
— card {critical rose classes in %, }

=€

where ¢ = 1 if v is a critical vertex, and ¢ = 0 if v is not critical.
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Decompose the active edges of E, into a disjoint union A4, + - - * + Ay, where
each A; is either a maximal element of @, or a singleton edge in E, —J®,. The
following local version of Lemma 9.5 also follows immediately from Lemma 9.4:

card (®,) = ljv_l;) (card (4;) — 1).

i=1

Therefore it suffices to prove

k(v) = card {critical conjugacy classes in ¥, }
+ card {critical rose classes in %, }

+c (%)

where ¢ = 1 if v is a critical vertex, and ¢ = 0 if v i1s not critical.

We prove this formula separately for critical and non-critical vertices.

If v is critical, the only critical conjugacy class in ¥, is ¥, itself. Since I is
reduced, the critical edges at v are all loops, so we have a critical rose at v. All edges
in E, are active. Thus equation (*) reduces to showing that k(v) = 3. Choose an
edge a with %(a) = %,; we may assume a € 4,. If A, is an ideal edge, then for any
b € D(A,) we must also have 4(b) = %, and, in addition, b "' ¢ 4,. Thus we may
assume a € A, and a '€ 4,. If k = k(v) = 4, then A, U A, is an ideal edge which is
compatible with every element of @,, contradicting the maximality of @. Thus
k < 3. It is clear that K > 1. Suppose k = 2. If either 4, or 4, is a singleton, this
contradicts the definition of ideal edge. If 4, and A4, are ideal edges, then 4, = A,
contradicting the definition of oriented ideal forest. Thus k = 3.

Now assume v is not critical.

CLAIM 1. Every active edge in E, which is not critical belongs to an ideal edge
of ®.

Proof. 1f e is an active edge at v which is not critical, then e < a for some a € E,.
Suppose e ¢ | J®,. Then {e} = A, for some i. If a € A; then A4, + A, is an ideal edge
which is compatible with every element of ¢ but is not in @,, contradicting
maximality of . O

CLAIM 2. Every maximal element of ®, contains a critical edge.

Proof. Let o = A, be a maximal ideal edge in @,, and a € D(x). If a is not
critical, then there is some b € E, with a < b, say b € 4;,. Then e < b for all e € a, so
A; + A, is an ideal edge, contradicting the maximality of . O
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Thus each A, is either a single critical edge, or is a maximal ideal edge a with
P(a) critical.

Fix a critical conjugacy class P, and let kp(v) = card {4, | P(A;) = P}. To prove
(*) it suffices to show that

k() 2 if P is a rose class
rv) =
F 1 otherwise.
Let By, ..., B, denote the sets A; with 4(A4;) € P. Extend the definition of D(x) to

those A4, which are singletons by setting D({e}) = {e}. If D(B;) #{e ' |e € D(B,)}
then B; + B; is an ideal edge compatible with every ideal edge in @, contradicting
maximality of @. In particular, we must have r <2, and r =2 if and only if Pis a
rose class. O

C. Free abelian subgroups of C(G) and the vcd

Again, fix a reduced marked G-graph [s, I'], and let ¢ : I’ - I" be the quotient
map, with quotient graph of groups ¥ = {I, {%4.}, {¥4.}}.

DEFINITION. An edge e of I' is flexible if the subgraph spanned by the orbit
Ge contains a non-trivial cycle stabilized by stab (e).

We can check this condition in I' using the following:

(1) If e is a bent edge, then e is flexible;

(1) if e is a straight elliptic edge, and %(e) has nontrivial normalizer in both 4,

and %,,,, then e is flexible.

Note that since [s, I'] is reduced, all edges are either hyperbolic or elliptic, and

all hyperbolic edges are bent.

PROPOSITION 09.6. If all critical edges of I' are flexible, then the virtual
cohomological dimension of C(G) is equal to the dimension of L.

Proof. Let & be a maximal oriented ideal forest in I', and «,,...,a, the
maximal ideal edges in . For each i =1, ..., k, choose an ideal edge &, in I" with
image «, and an edge a, € D(4;). Finally, for each element a of a,; other than the
image of a,, choose a representative b(a) in &,. Set B, = {b(a) | a € o, a # g(a;)}, and
B=B,+ - +B,.

By Lemma 9.5, dim (L) = XZ¥_, card (a;) — 1 = Z¥_, card (B;) = card (B). In
order to prove the proposition, we will find a free abelian subgroup in C(G) with
one generator ¢, for each element b € B. Since such a free abelian subgroup has
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cohomological dimension equal to its rank, dim L; is a lower bound for the vcd of
C(G); but we showed it is an upper bound in the previous section.

It is easiest to define the automorphisms ¢, on the level of the edge-path
groupoid n(I'). Since the ideal edges «, are maximal, the edges a; € D(«;) are critical
(Claim 2 of Proposition 9.3). By hypothesis, all critical edges are flexible; thus for
each i we may choose a simple closed cycle p, in the orbit of a; which starts at 7(a;)
and is stabilized by stab (a;). For b € B, there is a G-equivariant automorphism ¢,
of n(I') which sends b to bp; if b € B; and fixes every edge which is not in the orbit
of b or b~'. It is easy to check that these automorphisms commute, so generate a
free abelian subgroup H of the group Aut; (n(I')) of G-equivariant automorphisms
of n(I').

An automorphism of n(I") gives an outer automorphism of =, (I") by restriction.
To complete the proof, it suffices to show that the resulting map

f: Autg (n(I) = Outg (7, () = C(G)

is injective on H. By Corollary 2 of [11], the kernel of f'is equal to the subgroup of
G-equivariant inner automorphisms, where ¢ € Aut; (n(I')) is inner if there are
paths A, starting at each vertex v with A, = x4, for all x € G, and ¢(e) = 1) el
We will show that no non-trivial element of H is inner.

Fix an element ¢ =11, 5 ¢, € H. For each edge e of I', we have

¢(€) :(:ue*[)#le“e’ (1)

where

_ {(x~'p)me if xe € B,
He = Voo, if e ¢ JGB.

Suppose that ¢ is inner. Then ¢(e) can also be expressed as
d)(e) = A’t?eg eir(e) (2)
for appropriate paths 4,,, and 4.

CLAIM 1. If e is elliptic, with initial vertex u and terminal vertex v, then pu, = A,
and p,—1 = 4,.

Proof. Since x4, =4,, for x e G, A, is fixed by stab (v). If e is elliptic with
t(e) = v, then neither e nor e ! is in A,; in fact neither A, nor 4, contain edges in
the orbit of e or e ~'. The same is true for u, and p, . O



258 SAVA KRSTIC AND KAREN VOGTMANN

CLAIM 2. If u, is not trivial, then 4., is not trivial.

Proof. This follows for e elliptic by Claim 1. If e is hyperbolic, its initial vertex
is a translate xv of its terminal vertex v. Thus ¢(e) = (x4, "Jed, and ¢(e) =
(uo—1) 'eu,. If 2, =1, then ¢(e) =e, so u, = 1. O

Now suppose that ¢ is non-trivial, i.e. there is some b € B with m, #0. If
v =1(b), then p, #1, so by Claim 2, 4, # 1. Consider the edge a,, where b € B,.
Using equation (1), ¢(a;) = a,; using (2), ¢(a;) = 4, ,a;4,. By Claim 1, g; cannot be
elliptic. Thus a; is hyperbolic, so stab (q;) = stab (v) and 1(q;) is a translate xv for
some x € G. Equations (1) and (2) give

d)(ai) =4a; = (xj'v— l)ai)'v'

It follows that all edges in A, are in the orbit of @, or a; ', and A, is a cycle. Since
stab (a;) = stab (v), &; is invertible, so there are at least two edges in E, — G, at least
one of which is not a translate of a;'. Choose e € E, which is not in the orbit of
& or of Ga~'. By equation (1), ¢(¢) = (u.—1) 'ep, ends in e or in an edge xa;*' for
some j #i and some x € G. But by equation (2), ¢(e) = 4,,,e4,, which ends in a
translate of af', a contradiction. Thus ¢ is trivial, so ker (f) and H intersect
trivially, i.e. H injects into Outg (n(I)). O

COROLLARY 9.7. If all edge groups are normal in their vertex groups, then the
ved of C(G) is equal to the dimension of L. O

Remark. The technique used in the proof of Proposition 9.6 can be used to find
free abelian subgroups in arbitrary graphs of finite groups, whose ranks depend on
conjugacy information present in the graph of groups; this can be used to give a
lower bound on the vcd of C(G).

We end this section with an example which shows that the dimension of L can
sometimes be strictly larger than the ved of C(G).

EXAMPLE 9.8. Let H,, H, and H; be finite groups, and let P —- H, be
monomorphisms such that the image of P is proper and has trivial normalizer for
each i. Let E be the amalgamated free product H, x, H, *, H,; we can represent E
as the fundamental group of the graph of groups % shown in Figure 13.

Let F, be a free subgroup of finite index in E. As in Section 2, there is a
subgroup G of Out (F,) and a G-graph I' with quotient graph of groups 4. From
% one sees that I' is reduced, since every edge is elliptic.
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H2
H, P
/\ P
P P
H, H,
H, H,

Figure 13

The quotient graph of groups % has only one ideal edge, consisting of both
edges which terminate at the vertex with stabilizer H,. The condition that the
normalizer of P in H, is trivial implies that there is in fact only one ideal edge-orbit
oin I

Let s : R, —» I’ be a marking of I', and let [s’, I'’] be the (essential) marked graph
obtained by blowing up Ga; I'’ has quotient graph groups %’, shown in Figure
13.

All edges in ¢’ are parabolic, so the three edge-orbits in I'" are all (maximal)
invariant forests. Collapsing any one results in a reduced marked G-graph similar
to [s, I'], but with the H, permuted; each has a unique ideal edge-orbit which can be
blown up to recover [s’, I'']. Thus the complex L, is a finite one-dimensional
complex with central vertex [s’,I'’'] and three ‘“‘spokes” leading to the three
other vertices. The centralizer C(G) must fix [s’, "], so ved (C(G)) =0, while
dim (L;) = 1.

§10. Corollaries
A. Trivial edge stabilizers

If E is the fundamental group of a finite graph of groups in which the vertex
groups are finite and the edge groups are trivial, then E is a free product of the form
G,* -G, = F,, where m,n >0, the groups G,,...,G,, are finite, and F, is a
free group of rank n. Consider the graph of groups representation for E given in
Figure 14.

For very small m and n (both less than two or m =2, n = 0), there are no ideal
edges at all; in these cases ved (Out (E)) = 0. If there is at least one ideal edge, then
the set of active edges is all of E,, there is only one critical conjugacy class,
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Figure 14

corresponding to the trivial subgroup, and this conjugacy class is a rose class if and
only if m < 1. In view of Proposition 9.3, we have

PROPOSITION 10.1. If E =G, * - - x G, *x F, with G, finite and F,, free of rank
n, then

0 ifmn<1
ved (Out(E)) =<2n+m—3 ifm<landn>1. O
2n4+m—2 ifm>1

This proposition contains the result of Culler and Vogtmann [7] that
ved (Out (F,)) = 2n — 3 and also has the following corollary, which was conjectured
by Collins in [3, 4].

COROLLARY 10.2. The vcd of the outer automorphism group of a free product
of m finite groups is m — 2, for m = 2. |

Remark. This corollary also follows from work of McCullough and Miller [14].

B. Fixed point set of Outer Space is contractible

The complex K, is an equivariant deformation retract of the full outer space X,,.
It can be shown that X, does not admit a piecewise-Euclidean metric of non-posi-
tive curvature [2], although it has properties reminiscent of non-positively curved
metric spaces. We have the following property to add to the list.

COROLLARY 10.3. Let G be a finite subgroup of Out (F,). Then the fixed-point
set X of the action of G on outer space X, is contractible.
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Proof. The ideal triangulation of X, described in [7] restricts to an ideal
triangulation of X : an ideal simplex is given by assigning lengths to the edges of
a marked graph, so that the sum of the lengths of all edges is equal to one. The
complex K, (resp. K ) is obtained by taking the barycentric subdivision of the ideal
trangulation of X, (resp. X ), then removing all vertices which are at infinity. The
entire ideal simplex collapses linearly onto the subcomplex of the barycentric
subdivision spanned by the remaining vertices, giving the equivariant deformation
retraction of X, onto K, (resp. X; onto K;). U

Remark. This has been proved independently by White [19].

C. VFL

COROLLARY 10.4. The group of outer automorphisms of a free-by-finite group
is VFL. In particular, it has finitely-generated homology in all dimensions.

Proof. C(G) acts transitively on the set of marked G-graphs based on the same
G-graph. There are only finitely many homeomorphism types of essential G-graphs.
Thus the quotient of L; by C(G) is finite. 0O
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