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Relative growth rates of closed geodesics on a surface under
varying hyperbolic structures

JOHN W. MORGAN* AND JEAN-PIERRE OTAL

This paper has two interrelated goals. The first is to give necessary and sufficient
conditions that an action of a surface group on a tree be geometric, that is to say,
be dual to a codimension-1 measured lamination on the surface. The second is to
study the limiting ratios of lengths of simple closed geodesics under a degenerating
sequence of hyperbolic structures on the surface. We begin by explaining in more
details each of these goals.

In order to explain the first, let us return to an old result of Stallings. Recall
from [5] that if X < M is a compact codimension-1 submanifold, then there is an
action of 7n,(M) on a simplicial tree dual to X = M (or more precisely dual to
X < M where M is the universal covering of M).

THEOREM (Stallings). Let S be a closed surface; let I' = n,(S); and let
I' x T =T be a minimal action of I' on a simplicial tree. Then this action is dual to

a compact 1-manifold X < S if and only if the stabilizer in I' of every edge of T is
cyclic.

Our first goal is to generalize this result to actions of surface groups on R-trees
and on A-trees for more general ordered abelian groups A. As was proved in [7],
associated to any codimension-1 measured lamination in a manifold M, satisfying
some mild conditions, there is a dual action of n,(M) on an R-tree which is
minimal. If M is a surface then the stabilizers of germs of edges in such a dual
action are all cyclic. This leads naturally to the following question.

If I, the fundamental group of a closed surface S acts on an R-tree so that the
action is minimal and so that the stabilizer of the germs of edges are cyclic, then is
the action dual to a measured lamination in S?

We do not know the answer to this question. The first purpose of this paper is
to show that, with one additional assumption on the action, the answer is yes.

* Work partially supported by the National Science Foundation under grant number DMS-82-01045
and DMS-85-03758.
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It is easy to establish that the answer to the above question is yes if the Euler
characteristic x(S) is non-negative. We prove the following theorem which provides
a partial answer to the question in the hyperbolic case.

THEOREM. Let I' x T - T be a minimal action of a closed hyperbolic surface
group ,(S) on an R-tree. Then the action is dual to a measured lamination in S if and
only if the following two conditions are satisfied:

(a) The stabilizer of every germ of an edge is cyclic.

(b) Any time y, and 7y, are elements in I’ whose axes in the universal covering S

cross, then the axes of y, and y, in T, provided that they both exist, also
intersect.

Thus, one of our conditions is purely geometric and the other concerns the
stabilizers. To answer the question above is to decide whether (a) implies (b). It
seems likely to us, though we have not seriously tried to establish it, that (b) implies
(a). When we prove this theorem in Section IV.1, we prove it in the generality of
A-trees for any ordered abelian group A of finite rank.

The second main theme of the paper is the study of growth rates of simple
closed geodesics under a degenerating sequence of hyperbolic structures. A hyper-
bolic structure « on a surface S determines a function from the set €(S) of
conjugacy classes in I' = 7;(S) to R. This function associates to each y € ¢(S) the
length /,(a) of the closed geodesic representing y in the hyperbolic structure. If («,,)
is a sequence of hyperbolic structures, we can always extract a subsequence so that
for any pair of elements y, u € C the ratio lim, , , 7,(x,)/¢,(a,) exists in [0, oo]. If
(2,) is an unbounded sequence in Teichmiiller space, then these limit ratios
determine a point in the projective space with homogeneous coordinates indexed by
%(S). This point is the limit point in Thurston’s compactification of Teichmiiller
space.

It is easy to establish that conditions (a) and (b) above hold for the action
produced in [6] from unbounded sequences in Teichmiiller space. Thus, one
corollary of the above theorem is that all limit points of Teichmiiller space in the
projective spaces are given by intersection numbers with a fixed measured lamina-
tion. (In [6] this result was recovered by appealing to Hironaka’s result on
resolvability of singularities; here we give a more direct, satisfactory proof.) Thus,
this part of the paper can be viewed as a natural conclusion to [6].

Because we work with A-trees rather than R-trees we are able to generalize the
results of [6] from the archimedean context described above to the non-
archimedean context.

The idea is that the limit point in the projective space ignores much of the
information in the limit ratios. Any time lim, , ., ¢, (X,)/{,(X,) =0 for i =0, 1,



Relative growth rates of closed geodesics on a surface 173

then the value lim, ., , 7, (X,)/{, (X,) is completely undetermined by the point in
the projective space. In this sense, taking the point in projective space is like taking
a top order term of the ratios and ignoring the rest. As we indicated above, the
restriction of the results of this paper to R-trees gives a different proof of
Thurston’s result that the top order term is represented geometrically by intersec-
tion with a measured lamination on the surface. By working with more general
ordered abelian groups we extend this result to the full limit ratio: we show that it
is represented geometrically by intersection with a non-archimedeanly measured
lamination on the surface.

The paper is organized along the following lines. Chapter I is an introductory
one, devoted to expanding the theory of A-trees introduced in [6] and to developing
the theory of codimension-1 measured laminations where the measure takes values
in an arbitrary ordered abelian group. In Section 1.1 we define the notion of an edge
of a A-tree. Using this we define a morphism of A-trees. In Section 1.2 we define
transversely measured codimension-1 laminations where the measure takes values in
an arbitrary ordered abelian group. In Section 1.3 we state axioms for a codimen-
sion-1 measured lamination and show that these axioms guarantee that the lamina-
tion has a dual A-tree. In Section 1.4 we give an alternate set of axioms for the case
of hyperbolic surfaces, and we show that these alternate axioms imply the original
ones.

Chapter II is a one-section chapter which introduces the notion of a transverse
map from the complement of a codimension-1 lamination in a manifold to a A-tree.
Next, we show that if the measured lamination has a dual tree then the transverse
map factors through a morphism of the dual tree. Lastly, we show that given a
compact manifold M and an action of n,(M) on a A-tree T, there is a measured
lamination £ < M and an equivariant transverse map of M — % to T.

In Chapter III we prove that if M is a complete hyperbolic surface of finite area
and if we have an action n,(M) x T — T on a A-tree T then there is a codimension-
I measured lamination ¥ < M with a dual tree and a transverse, equivariant map
(M — £) - T. The method of proof is to begin with any measured lamination and
transverse, equivariant map as constructed in Chapter II and modify it until the
axioms set forth in Section 1.4 are satisfied. There are several steps in this process;
they occupy the entire chapter.

Chapter IV is devoted to proving the two main results of the paper. The
characterization of geometric actions of surface groups on A-trees is proved in the
following way. Given an action of n,(M) on a tree T, by the results of Chapter III
we construct a measured lamination in M with a dual tree 7”7 and a transverse,
equivariant map from the complement of the lamination to 7. We then show by a
direct argument that the natural map 7°— T can have no folding if the action of T
satisfies the two conditions given in the theorem above. Hence it is an isomorphism.
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Then, we show that all the limiting ratios of lengths of closed geodesics for a
degenerating sequence of hyperbolic structures on a surface are given by intersec-
tion numbers with a non-archimedeanly measured lamination in the surface.
Given the first main result of the paper and the work of [6], this result is easily
deduced.

The authors would like to thank THES and I'Université de Paris-Sud, respec-
tively, I’Université de Geneéve and the Max Planck Institute, Bonn, for their
support and hospitality while this work was being done.

Since this paper was accepted, its main result has been extended by R. Skora
([9], [10]), who proved that an action of a surface group on a A tree is dual to a
A-measured lamination, once the edge stabilizers are cyclic.

Chapter 1. Trees and measured laminations
Section 1.1. Trees and pre-trees

In this section we expand the theory of trees developed in [6]. Let A4 be an
ordered abelian group and let 7, d: T x T — A be a A-tree. Let T=T,11 T, be a
division of T. A spanning segment for this division is a segment / < T with one
endpoint in T, and the other in 7. If any two spanning segments for the division
have the property that their intersection contains at least one point of both 7, and
T,, then we say that the division is an edge of T.

If T=T,11T, is an edge of T, then an element v, € T; is a vertex of the
edge if v; belongs to every spanning segment for the edge. There is at most
one vertex of the edge in each 7,, and hence at most two vertices in all. In
general, an edge can have none, one, or two vertices. If e is an edge with vertex v,
then e is called a direction at v. The order of v € T is the number of distinct
directions at v.

If Iis a segment in a A-tree, then a Dedekind cut of 7 is a division I = [, 111,
with neither I, nor I, empty, such that there is an isometric embedding ¢ : I ¢ A
with @(a,) < @(a,) for all ag € I, and a, € I,. A point p € I is an end point of the
Dedekind cut if either Iy ={o €| @(x) < ¢p(p)} or [y ={a € I | p(a) < ¢(p)}.

If e is an edge of T and if I is a spanning segment of e, then e determines a
Dedekind cut of I. Any endpoint of this Dedekind cut is a vertex of e and
conversely. Conversely, if I « T is a segment, then a Dedekind cut of / determines
an edge of T. If I =1,111, is the Dedekind cut, then we define T; = T to be the
set of points in T which can be joined by a segment which misses 7, _; to I;. One
sees easily that T = T, L1 T, is an edge of T and that I is a spanning segment for
this edge.
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Examples. (i) A Z-tree is the same thing as the set of vertices of a simplicial
tree. An edge of a Z-tree is the same thing as an edge of the corresponding
simplicial tree. Each edge of a Z-tree has two vertices.

(ii) If A is a dense subgroup of R, then any A-tree T can be embedded
isometrically as a dense subset of an R-tree T. An edge of T corresponds to a
maximal class of arcs in T with the property that any two members of the class have
intersection which contains a third member. An edge e of T has at most one vertex;
and it has v as a vertex if and only if all the arcs in T belonging to the
corresponding class contain the point v.

The notion of an edge is important in order to define a morphism between
A-trees. A morphism from T to T’ is a function ¢ : T — T’ with the property that
for each edge e of T there is a spanning segment I, = T for e with ¢ | I, an isometry.

We claim that if ¢ : T > T’ is a morphism then ¢ induces a map from the set
of edges of T to those of T”. To define the induced map on the set of edges, let e
be an edge of 7. Choose a spanning segment I, for e for which ¢ | I, is an isometry.
The edge e is equivalent to a Dedekind cut (Z,), v (1,), of I,. The image under ¢ is
a Dedekind cut of ¢(Z,). Hence, it determines an edge e’ of T”. One sees easily that
e’ is independent of the choice of I,. We define ¢, (e) =¢’.

The map on edges and vertices is compatible: if v € T is a vertex of an edge e,
then ¢(v) is a vertex of ¢, (e). Thus, ¢ induces a map from the set of directions at
v € T to the set of directions at ¢(v) in 7’. This map need not be 1-1. If it is not
1-1, then we say that ¢ folds at v. Along the same lines, we say that ¢ folds along
a segment I = T at v el if the two directions at v in I are identified under ¢.
Suppose that ¢ folds along I at v. Parametrize I as {&x € A |a < a < b}. Set a, equal
to the parameter value at v. Then there are a_,a,, witha <a_ <a,<a, < b such
that for all x € 4,0 < a < g, — a_, we have @(a, + @) = p(a, — ).

LEMMA L.1.1. Let ¢ : T - T’ be a morphism of A-trees. Either there is a vertex
v e T at which ¢ folds or ¢ is an isometry onto a sub-A-tree of T".

Proof.
STEP 1. For all a,b € T we have d(¢p(a), (b)) < d(a, b).

Proof of Step 1. Suppose that there is a, b with d(¢(a), ¢(b)) > d(a, b). Let I be
the segment in T from a to b. Let I, =1 be {r|d(¢(a), ¢(s)) < d(a, s) for all s,
a <s <t}. Clearly, if t,<t, and if t,€ 1, then t,el,. Also ael, and b ¢ I,.
Hence, if we set I, =1 — I, (I,, I,) is a Dedekind cut of 1. This determines an edge
e of T. Let J = I be a spanning segment for e with the property that ¢ | J is an
isometry. Let j, and j, be the endpoints of J with j; € I,. For any j € J, we have
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d(a, j) = d(a, jo) + d(jo, )))- Since j, € Iy; d(a, jo) = d(p(a), ¢(Jjo)). Since ¢ | J is an
isometry, d(¢(j,), ©(j)) = d(Jj,,Jj).- Hence, for all j € J, we have

d(a, ) 2 d(e(a), 9(ji)) + d(e(jo), @()))-

By the triangle inequality,

d(e(a), (jo)) + d(e(jo), ¢())) = d(¢(a), (/).

Hence, the required inequality holds for all j € J. Hence, j, € I,. This contradicts the
fact that j, € I,.

STEP 1I. For any a,b € T let I be the segment with endpoints a and b. Then
d(¢(a), (b)) =d(a, b) if and only if ¢ has no folding along I.

Proof of Step 1L If ¢ |I folds at rel then there are ¢, <t <t, with
@(1,) = ¢(1,). Hence

d(¢(a), (b)) = d(¢(a), ¢(11)) + d(o(t), (b))
< d(a, 1)) +d(1,, b) =d(a, b) —d(t,, 1,) <d(a, b).

Conversely, suppose that ¢ | I has no folds. Let I, = I be the set of ¢ for which
d(p(a), (1)) =d(a,t). Clearly,ael,. Bystep I, if a <s <1, and ¢ € [, then s € I,.
Hence, either I,=1, in which case d(¢(a), (b)) =d(a,b), or (I,,I—1,) is a
Dedekind cut of 1. Let us assume the latter. Let e be the corresponding edge of T,
and let J I be a spanning segment for e with the property that ¢ |J is an
isometry, say J = [j,, ;] with j, € I, and j, € I —i,. We have ¢([a, j,]) is a segment
of length d(a,j,), and ¢([j,,/;]) is a segment of length d(j,,/;). Thus, either
o([a, j]) is a segment of length d(a, j,) + d(jo, /1) = d(a, j) or ¢(a, jo]) N e(ljo, /1]
is a non-degenerate segment. In the former case j, € I, which is a contradiction; in
the latter ¢ folds along I at j,.

Proof of Lemma. If ¢ is not 1-1, then there are points a #b in T with
@(a) = @(b). Let I be the segment in T connecting a to b. Clearly, according to Step
IT ¢ folds along I at some point. This proves that either ¢ is 1-1 or ¢ has folding.
If ¢ is 11, then it follows immediately from Step II that ¢ is an isometry onto its
image. ]

COROLLARY 1.1.2. Suppose that T and T’ are A-trees each with a I -action.
Suppose that T’ is minimal with respect to its I -action, and suppose that ¢ : T - T’
is a I'-equivariant morphism. Then either ¢ is an isometry or ¢ has folding.
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Proof. o(T) =« T’ 1s a I'-invariant subtree. Since 7" is minimal for the I'-in-
variant subtree. Since 7" is minimal for the I'-action, this implies that o(T) = T".
The result is now immediate from Lemma 1.1.1. O

(I.1.3). It 1s convenient to work with slightly more general objects than
A-trees. These were introduced by Bass [1] and Gillet—Shalen [2]. We follow
Gillet—Shalen and call them pre-trees. A A pre-tree is a A-metric space (T, d)
such that:

(1) for any x,y e T the set [x,y] consisting of all ze T with d(x,z)+
d(y, z) =d(x, y) is isometric to a subset of a closed interval in A, with x and y
corresponding to the endpoints of that interval;

(if) for any x, y, z € T we have [x, y] n[x, z] =[x, w] for some w € T; and

(iii) if [x, y] n[x, z] = {x} then [x, y] U[x, z] =y, z]. The set [x, y] is the pre-
segment with endpoints x and y. Gillet—Shalen [2] show that any A-pre-tree can be
embedded isometrically in a A-tree AT in such a way that every point of AT lies
in a segment with endpoints in 7. Furthermore, AT is unique up to an isometry
which is the identity on T. It is called the A-completion of T. Every point of
AT — T is an edge point of AT.

Section 1.2. Non-Archimedean measured laminations

In [7] the basic theory of codimension-1, measured laminations is presented.
These objects have a transverse measure which is real-valued, or equivalently
complete and archimedean. In order to measure the non-archimedean growth rates
discussed in the previous sections we need non-archimedean measures. These will
not be complete but rather will have values in an ordered abelian group.

Recall that a codimension-1 measured lamination ¥ has at most countably
many complementary regions each bounded by at most countably many leaves of
£. These leaves are said to be isolated on one side.

(I.2.1). Let & =« M be a codimension-1 lamination and let V=U x1I be a
flow box for £. Then the local leaf space of & |V is identified with a closed
subset X =/ and the support of &, |#|, meets V in U x X. The set Y of
complementary regions of . in V is then identified with the set of components of
I — X. These complementary regions are ordered (up to sign) by the order on I.
By a segment in Y we mean any subset of the form S, ={ye S|a <y <b}, for
a < b arbitrary elements of y. Given a segment S2 = Y and an element y,e S
we can subdivide S) into two segments S} ={yeS|a<y<y,} and S} =
{reS|y<y<b}.
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A measure on Y with values in an ordered abelian group A is a symmetric
function

pYxY->A4>°
such that for any segment S% = Y the function
Sa — [0, u(a, b)] defined by y — u(y, a)

is an order preserving bijection. We define the measure u(S2), to be u(a, b). This
measure is an additive function on segments in the sense that if y,e S%, then
u(S%) + p(Sh ) = u(S5). A segment S is degenerate if and only if u(S) =0; if S is
a subsegment of S, then u(S) < u(S’). Lastly, if S$ =S5,u---US, is a finite partition
of S, then u(S) = Z7_, u(S;). Since we do not assume that A is complete we cannot
hope to extend this to a countably additive measure, nor can we hope to define the
integral over an arbitrary sub-interval of i.

If J:[0,1] > N is transverse to . (see [7]) and if the endpoints of J lie in
V —|%]|, then u(J) is defined as an element of A. Namely, we partition J into
finitely many closed measure intervals with endpoints in ¥ —|.#|, each of which is
either contained in a complementary component or is monotone in the /-direction.
Each such interval has a natural image in Y which is a segment. By definition u(J)
is the sum of the values of u along these segments in Y.

If V, and V, are two flow boxes and if u, and pu, are A-valued transverse
measures for V| and V,, then yu, and u, are compatible provided that for any closed
interval J in ¥, AV, which is transverse to % and has endpoints in V,nV, —|.Z|
we have pu,(J) = u(J).

DEFINITION 1.2.2. A transverse measure with values in A for %, is a
compatible set of transverse measures with values in A, one for each flow box of .Z.

Notice that if u is a transverse measure and if J : [0, 1] » M is a path transverse
to & with {J(0) UJ(1)} =« M —|&|, then u(J) € A4 is defined.

Examples 1.2.3. Let S be a surface and let 1 = S be a train track. Associated to
this train track we have the real vector space with basis the branches of 7, R®, and
the integral linear branch equations (see [7]). A non-negative solution w € R® to
these equations gives rise to a measured lamination carried by 7 with the given
weights. One can show that any closed interval transverse to the lamination has
measure in the free abelian subgroup of R generated by the weights w(b), b € B.
Thus, in fact the measured lamination has value group contained in this free abelian
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group of finite rank. Of course, this group is ordered via its inclusion into R. This
order is archimedean. It thus can be completed to a R-measure. This completion is
the usual (countably additive) transverse measure.

Example. Let A be Z x Z with the lexicographic order. Let . be the lamination
on a surface with two leaves, indicated below.

The transverse measure is determined by defining u(4) =(0,1) and u(B) =
(1, 0). This lamination does not admit an archimedean measure of full support, for
the integral of B must be infinitely large with respect to the integral of A.

Section 1.3. Trees dual to measured laminations

In [5] the notion of a tree dual to an (archimedeanly) measured lamination
was introduced and necessary and sufficient conditions were given for the exist-
ence of such a dual tree. In this section we generalize this to the non-archimedean
case. ¥

Let (&, n) be a codimension-1 lamination in a compact #n-manifold M with a
transverse measure taking values in the ordered abelian group A. We denote by
(2, i) the induced measured lamination in the universal covering M of M.
Throughout this section we make the following assumptions

_
(a) |Z| is nowhere dense in M;

(b) each leaf of .2 is a closed subset of M;

(I.3.1) < (¢) if p and g are points of M — X then there is a path o : I - M,
with w(0) = p, and w(1) = ¢, which is transverse to .£ and which
crosses each leaf at most once.

~

In [5] it was proved that if A = R, then under these assumptions there is a dual
tree. Miniking this argument, we shall construct a dual A-tree for arbitrary A. What
we actually do is construct a A-pre-tree T and then appeal to the general results
which allow us to complete the A-pre-tree to a A-tree.
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The points of T are the complementary regions of £ in M, i.e., the connected
components of M —|#|. To define d: T x T —A>° let R, and R, be complemen-
tary regions. Choose an arc w :[0, 1] » M transverse to # with w(i) € R; for
i =0, 1 that meets each leaf of .2 in at most one point (here, [0, 1] denotes the
segment in the real numbers). We set d(R,, R,) = jw i = j(w). The argument in [5,
Lemma 5] generalizes mutatis-mutandis to show:

LEMMA 1.3.2. d(Ry, R,), as defined above, is independent of the choice of
w. ]

This then defines T and a function d : T x T — A =°. One sees easily that (T, d)
is a A-metric space (i.e. d is symmetric, d(x,y) =0 iff x =y, and d(x,y) +
d(y, x) 2 d(x, y)).

LEMMA 1.3.3. T is a A-pre-tree.

Proof. Since we know that T is a A-metric space we need only show that the
three axioms in (1.1.3) hold. Let x, y € T correspond to complementary regions R,
and R,. Let w be an arc in M from R, to R, satisfying (1.3.1)(c). We claim that
(x, y) is equal to the set w € T corresponding to complementary region that w
meets. Clearly w € T corresponds to a complementary region that » meets then
d(x, w) +d(w, y) =d(x, y). Conversely, suppose that d(x, w) + d(w, y) =d(x, y).
Let w, and w, be a path as in (1.3.1)(c) from x to w and from w to y. We can
assume that w,(1) = w,(0).

Then o = w, * w, is a path from R, to R, and |, u = d(x, y). Arguing as in [5,
Lemma 5] we see that w satisfies (I1.3.1)(c).

Associating to each w e T corresponding to a complementary region that w
meets d(x, w) gives an isometric embedding of [x, y] into [0, d(x, y)] < A.

The argument in the proof of Lemma 5 in [5] shows that [x, y] n[x, z] =[x, w]
for some we T.

Lastly, Axiom (iii) is clear from the description, of [x, y]. O

COROLLARY 1.3.4. Let (¥, p) = M be a measured lamination. Let % < M be
the induced lamination in the universal covering of M. If £ satisfies Axioms 11.3.1,
then there is a dual A-tree AT, . The action of n,(M) on & and M — L induces an
action of m,(M) on AT . O

Having finished the construction of the A-tree dual to (£, i) = M, let us
describe the correspondences:
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((a) A point of the pre-tree T, = AT, is a component of M —|.2|.

The set of directions in AT, at the point corresponding to R is

in natural one-to-one correspondence with the boundary leaves

(1.3.7) < of R.

(b) Every point of AT, — T is an edge point of AT . Each edge of
AT, whether or not it is represented by a point of AT, — T,
corresponds to a unique leaf of Z.

-

(1.3.8). It follows from (1.3.7) that the stabilizer of a point in T is the stabilizer
of a complementary component of .Z in M, or equivalently is the image in 7, (M)
of the fundamental group of a complementary component of % in M. The
stabilizer of any point of AT, — T, is the stabilizer of a leaf of 2, or equivalently
is the image in n,(M) of the fundamental group of some leaf of Z.

Let (&, u) c M be a measured lamination. A loop w in M is said to be
transverse to & if either w lies in a leaf of £ or w is covered by intervals transverse
to # in the sense of Section 1.2. In either case we can define j'u . In the first case
the integral is zero.

COROLLARY 1.309. Let (Z,u) =M be a measured lamination. Suppose
P < M satisfies Axioms 1.3.1 and that n,(M) x AT — AT is the dual action. Then
for each y € m\(M) there is a loop w, = M representing y and transverse to ¥ such
that the geometric intersection of w, with (¥, p) i.e. fa,y U, is equal to the translation

length 1(y). Furthermore, .fwy, U= jw? p for any loop w freely homotopic to y and
transverse to &£ .

Proof. Let ¢’ be a loop in the free homotopy class of y transverse to .. Let
xel;n(M —|Z]). Cut ¢, open at x and lift it to an arc in M. The endpoints of

this arc are of the form X and yX and lie in complementary regions R and yR. We
have

J wzd(RyR) 2 7).

Now we construct a loop #, to minimize the integral. Suppose first that y either
has an axis or a fixed point meeting T. Let R, be a complementary region to £ in
M corresponding to a point in the axis or fixed set of y. Let w be a path in M from
R, to YR, crossing each leaf of .Z at most once. We can suppose that o projects to
a loop ¢ in M. This loop satisfies |, & = 7(y) and is in the free homotopy class of .

The last case to consider is when y is an inversion, i.e. y fixes no point of 7 but
has translation length 0. Such an element leaves invariant an edge of AT. Thus, the
element is represented by a loop in a leaf of #. Clearly |, u = 0. O
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DEFINITION 1.3.10. Let (&, u) c M be a measured lamination satisfying
Axioms 1.3.1. We define geometric intersection with (£, ), i o ary : 1, (M) - A =° as
follows; i () =min,y u where 7, ranges over all transverse loops in the free
homotopy class of y. Clearly, by (1.3.9) is ) : 7, (M) > A=° is the same as the
translation length function of the dual tree.

Section 1.4

In the last section we gave general axioms (1.3.1) for a measured lamination to
have a dual tree. In this section we gave an alternative set of axioms in the special
case of a surface.

The work of this section is to establish that the axioms given here are simply
the conditions expressed in (1.3.1) thus guaranteeing that the measured lam-
ination has a dual tree. It is the axioms (I.4.1) with which we work in the next
chapter.

Let M be a complete hyperbolic surface of finite area and let £ < M be a
codimension-1 lamination. The universal covering M of M can be identified with
the hyperbolic disc D% Hence there is an ideal boundary at infinity identified with
S'. We denote it by 0M. Let # < M be the lamination covering #. Let £ = M be
a non-compact leaf of & with the leaf topology, ¢ is homeomorphic to the real line.
Let A =/ be a ray. We identify 4 with [0, c0) = R. Then the embedding # = D?
induces a map ¢, =[0, o[ » D?. We say that 4 has endpoint a € S' if in the
compactification of D? by D?uU S!, lim,_, ¢ ,(f) = a. Notice that this notion is
independent of the identification of A with [0, o0).

Now we formulate our alternative conditions. Let M be a complete, hyperbolic
surface of finite area. Let (%, u) be a codimension-1, measured lamination in M.
Let & = M = D? be its lift. We suppose:

( (a) Each leaf of 2 is a proper and non-compact submanifold.

(b) Each x €|#| has arbitrarily small flow box neighborhoods
meeting M — |.Z| and meeting each leaf of . in a connected set.

(c¢) Each leaf ¢ of 2 possesses two distinct endpoints in
OM = S' and so defines a point e(¢) in (S'x S'-diagonal)/
(flip of factors) = Z.

(d) The map from the leaf space of Z to % is continuous in the
sense that if x; € | 2| converges to x,, € |Z| and x, lies on the
leaf #; of 2 for all i < oo, then the points e(£;) converge to e(Z.,)
in 4.

(14.1) <
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Notice that we don’t assume that e is one-to-one. The main result of this section
is the following.

THEOREM 1.4.2. Suppose that M is a complete hyperbolic surface of finite area.
Suppose that (£, p) = M satisfies (1.4.1). Then it satisfies Axioms 1.3.1.

Proof. Axioms 1.3.1(a) and (b) are clear. We establish Axiom 1.3.1(c). That is
to say if R, and R, are distinct complementary regions of £, then there is an arc
w : [0, 1] - D? with endpoints in R, and R,, transverse to ., and crossing each leaf
of £ at most once. Since each leaf # of Z is proper and non-compact, it divides M
into two simply connected pieces. We say that a leaf # of . separates R, from R,
if R, and R, lie in distinct components of M — #. Clearly, if ¢ separates R, and R,
then any arc from R, to R, which is transverse to £ must cross £ an odd number
of times.

We claim that the set of leaves separating R, from R, is an open and closed
sublamination of . To prove this notice that each of R, and R, has a single
boundary component separating the two regions. We call these leaves /, and 7,. If
£, = ¢, then the result is clear. Suppose ¢, #¢,. These leaves are the frontier of a
sub-disk B in D, with B n0D? consisting of two closed intervals (possibly reduced
to points). For a leaf ¢ of & to separate R, from R, it must be contained in B.
Furthermore, it must have an endpoint in each of 7, and 7_. It is easy to see that
this is an open and closed condition on the leaves of £ because of (1.4.1)(c) and (d).

Let us denote by Z(R,, R,) the sublamination of £ consisting of leaves
separating R, from R,. The leaves of Z(R,, R,) have a natural total ordering which
is described by the progression from R, to R,: £ </’ if and only if / separates R,
and /’. The first element in this ordering is a boundary component of R,, and the
last is a boundary component of R,. Furthermore, one sees that each complemen-
tary region — other than R, and R, — which has a boundary component separating
R, and R, has exactly two and these two are neighbors with respect to the ordering
in the sense that there is no leaf of #(R,, R,) between these two leaves.

Consider the subset of leaves ¢ = Z(R,, R,) with the property that there is an
arc  : [0, 1) » D? transverse to .# with endpoint in R, which crosses each leaf of
# at most once, and which crosses 7.

We claim that this set of leaves has the following properties:

~
(a) It is closed under forming least upper bounds.

(b) It is non-empty.

(1.4.3) < (9 If it contains one boundary component of a region R # R, or R,,
then it contains the other boundary component of R which
separates R, from R,.
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Let us show that (1.4.3)(a), (b), (c) imply that ,e ZP(R,, R,). By (a) and (b)
the lub of all leaves of Z(R,, R,) exists and is an element of Z(R,, R,). We shall
show that this lub is /,. Clearly, since our paths are open paths the lub must be
isolated in Z on the side containing R,. Thus, the lub, 7, is the boundary
component of a region R # R,. Unless R = R,, the other boundary component ¢’
of R which separates R, and R, is contained in Z(R,, R,) and satisfies £ <¢’.
This is impossible. Hence, R = R,. This implies that £ =/¢,.

This completes the proof that (1.3.1)(c) holds. O

Chapter I1. Construction of measured laminations by transversability
The material in this section is the analogue for A-trees of Section I of [8].

DEFINITION II.1. Let N be an n-manifold. Let ¥ < M be a codimension-1
lamination and let 7 be a A-tree. A transverse map ¢ : (N —|£|) - T is a locally
constant function with the property that for any point x € |.#| there is a flow box
U™~ ' x (0, 1) containing x in which % is horizontal (i.e. so that |¥|=U x X,
where X is a closed subset of (0, 1) containing no neighborhood of either end of
(0, 1)) and in which ¢ takes the form

Ux(0,1)=X) 250, 1) —X) - T

where 4 is a locally constant, weakly monotone function inducing an order-pre-
serving bijection from the components (0, 1) — X to the points of a segment in T.
We call such a neighborhood U x (0, 1) a flow box for ¢.

Notice that a flow box for ¢ is also a flow box for the lamination .# and the
map 4 :((0, 1) — X)) » T defines a transverse A-measure for # in this flow box. It
is easy to see that these transverse A-measures are compatible, so that A actually
defines a global transverse A-measure for . This codimension-1, A-measured
lamination is the induced measured lamination. The map ¢ : (N — |#|) — T assigns
to each complementary region of . in N a point of 7. It also assigns to each
leaf of ¥ an edge of T. To define the map from the leaves of £ to the edges of
T, let x € |$ ,and let U x (0, 1) be a flow box for .# near x with x corresponding
to (u, t). The point ¢ determines a Dedekind cut of (0, 1) — X which is mapped by
4 to a Dedekind cut of a segment of T corresponds to an edge of 7. It is clear
that the resulting edge of T depends only on the leaf of ¥ in which x lies. Two
leaves of # passing through the same flow box will determine the same edge of T
if and only if there are no complementary regions of ¥ between them in that flow
box.
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Remark 11.2. Suppose that (&, u) = M satisfies Axioms (1.3.1). Let T be
the tree dual to (2, i) c M as constructed in Section I.3. The natural map
p: (M —|2|) - T is transverse. Furthermore, if ¢ : (M —|2|) - T" is a transverse
mapping, them we have a factorization ¢ = o p where y maps 7 to T’. By the
definition of transverse, ¥ is actually a morphism of trees, though there is no reason
to think in general that it is an isomorphism.

The goal of this section is to prove that equivariant transverse map always exist.
Namely, we have:

THEOREM 11.3. Let I' be the fundamental group of a n-manifold M. Let
I' x T—T be an action of I’ on a A-tree T. Then there exists a codimension-1
lamination ¥ < M and a I -equivariant transverse map ¢ : (M — L) - T. If there is
a neighborhood of infinity Z - M such that for each component Z, of Z,
Im (n,(Z,) — n,(M)) fixes a point in T, then we can take ¥ to have compact support.

The rest of this section is devoted to proving this theorem. We begin by
choosing a triangulation t of M. We denote by 7 the induced triangulation of M.
We shall construct ¢ by induction over the skeleta 7; of 7.

(a) O-skeleton: We choose arbitrarily a I'-equivariant map @, of 7, to 7. We
define ¥ N1, = ¢.

(b) 1-skeleton: To extend @, to a map @, defined on 7, we need the following
result.

LEMMA I1.4. Let [a, b] be a segment in a countable ordered abelian group A. Let
[0, 1]gx = R be the unit interval. Then there is a A-measure pu on [0, 1]g with the
following two properties:

(1) The support F of u is nowhere dense and contained in the interior of [0, 1]g.

(i) The function t —a + [} du defines a monotone bijection from the components
of ([0, 1lx — F) to [a, b] < A. Finally, if u, and u, are A-measures satisfy-
ing (i) and (ii) then there is an orientation-preserving homeomorphism
h [0, 1]g = [0, 1]g such that h * u, = u,.

Proof. For any countable segment [a, b] in a totally ordered set S, there is an
order-preserving injection f: S + (0, 1), with the property that for some compact
nowhere dense set F < (0, )i — f([a, b)), each connected component of (0, 1) — F
contains a unique point of f(S). The proof of this fact is elementary.

If [a, b] is a segment in a totally ordered abelian group A, we can further define
a measure y on (0, 1), supported on F, as follows: for any two points « and f in
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(0, g — F, set u(Ja, ) =f'(w) —f '(A) where A and p are the points of f([a, b])
belonging to the same connected component of (0, 1)z —f([a, b]) as « and S
respectively.

This proves the existence of a measure p with properties (i) and (ii). The
uniqueness of such a measure up to an orientation preserving homeomorphism is
left to the reader. [

We are now ready to extend the map @, to the 1-skeleton. Let e be an edge of
t with endpoints @ and b. Let a = ¢,(d) and b = ¢,(h). There is in T a unique
segment with endpoints a and b. This segment is isomorphic to an interval of A. By
using Lemma II.1.4 above, we can “pullback”™ this interval to e. More precisely,
there is a nowhere dense closed set F cint e, support of a measure u, such that
x—a +j;§ d, furnishes a monotone bijection from the components of e — F to
[a, b] = 7. The closed set F will be the trace of & on e and the above map the
extension of @, to e. We make such a choice for each 1-simplex e of 7. Clearly, we
can get an extension of @, to the whole 1-skeleton. Making the choices equivariant
(as we can always do) makes @, equivariant.

(c) 2-skeleton. Let A4 be a 2-simplex of 7. Its boundary is the union of 3 edges
e, e, and e, each endowed with a A-measure y; with support F;. The mal @, allows
us to identify the components of e¢; — F; with the intervals I; = T. From the axioms
for a tree, one sees that the intervals I,, I,, I; (after possibly a permutation of the
labels) fit together in one of the two ways pictured below:

1
[ IV 2
I]/ M h '\_ b ' 13;.,;
—~
h

The vertex v corresponds to 3 components ¢; < ¢; — F,, which ¢, sends to v. By
the uniqueness of the u;, there exists a homeomorphism 4, between components of
e; — C; identified by @,. We use the A; to identify the traces of the F; on these
components and to extend (J F; < 04 to one of the laminations in 4 pictured below
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We let this lamination be 2 | 4. There is a unique map ¢,: (4 — P |4)->T
which is locally constant and extends @; on the boundary. Working I'-equivari-
antly, we define a lamination .2 restricted to 7, and an equivariant transverse map
@s. _

(d) The higher skeleta. Suppose by induction we have defined ¥ restricted to
,_, and an equivariant transverse map @, , on 7,_; — & | T;_,, for some i > 3.
Let A’ be an i-simplex. We have (¢, _ | A — P | = 4"). Before extending ¢,_,
over A’, we must study £ | 4°. First recall the following definition contained in [7).

DEFINITION. A lamination ¥ < M is a family of parallel compact leaves if
there is a neighborhod U of ¥, homeomorphic to S x I, where S is a compact
codimension . submanifold of M such that ¥ nU =~ § x F for a closed set F < I.

LEMMA IL.5. & | 04" decomposes as a finite disjoint union of sublaminations;
each of them is a family of parallel compact leaves.

Proof. First we show that each leaf of & |94 is compact. Choose a finite set
of transversality flow boxes for @, |(04°'— £ |04, U,, ..., Ux. Because of the
transversality property, each leaf of £ | 4" meets each U, at most once. Hence,
each leaf of 2 |84 is compact. If a leaf ¢ had non-trivial holonomy, then a leaf
near to /£ would cross one of the flow boxes U, at least twice. Since all leaves are
compact and all holonomy groups are trivial, the argument in [7] shows that each
leaf has a saturated neighborhood which is a family of parallel compact leaves. As
04" is compact, there can be only a finite number of such families. O

We are now in a position to extend @,_,|d4’ to 4. By the above result,
P noA' decomposes in a finite number of families of parallel compact leaves. A
leaf of each family bounds in 4’ a codimension-0 submanifold. By pushing into 4°
and using the product structure for a given family, we construct a lamination 2’
of A’ bounded by £ ndA’. We then define @, | (4’ — %) as the unique possible
extension of ¢ [(6/.1"—,'?). Clearly, we can choose these extensions to be I'-
equivariant. This completes the inductive definition of # and @.

If there is a neighborhood Z of infinity in M with the property that for each
component Z, of Z, the group Im (n,(Z,) - n,(M)) fixes a point, then we can
define the map @ to be locally constant on Z < M sending each component of Z to
a point left invariant by the subgroup of =, (M) fixing that component. O

To end this section, we want to remark that the constructed lamination has only
a C'-regularity along the leaves, this is because the glueing maps A; in the above
construction at the level of the 2-skeleton are only homeomorphisms.
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Chapter II1. The case of surfaces continued
The main result of this chapter is the following.

THEOREM II1.1.1. Let M be a complete hyperbolic surface of finite area, and
let my(M) x T - T be an action of n,(M) on a A-tree with the property that, for each
cusp E of M, the group n,(E) < n,(M) has a fixed point in T. Then there is a
codimension-1, measured lamination (£, u) = M with compact support such that:

(a) (&, ) satisfies Axioms (1.4.1);
(b) there is a transverse equivariant map & : (M — |2|) > T such that the trans-
verse measure for & by & is fi.

COROLLARY II1.1.2. Let M be a complete hyperbolic surface of finite area. Let
n, (M) x T - T be an action on a A-tree with the property that, for each cusp E of
M, n,(FE) o, (M) fixes a point of T. Then there exists a A-measured lamination
(Z.W) =M of compact support and a transverse m,(M)-equivariant map
@ : (M — @) > T such that:

(i) (2, fi) has a dual tree T, and

(i1) the A-measure induced by ¢ is [i.

The map & factors as the natural map G4 : (M —|Z|)> Ty by a n(M)-
equivariant morphism of trees  : Ty — T.

Proof that 111.1.1 = I11.1.2. This is immediate given Theorem 1.4.2 and Remark
IL.2. O

Section 111.1

In this section, we find a measured lamination (&, u) « M and a transverse
equivariant map @ : (M — |Z|) — T such that Axioms 1.4.1(a) and (b) hold and
such that Axioms 1.4.1(c) and (d) hold for all leaves of .Z lying over non-compact
leaves of Z. In the next section, we shall deal with the leaves lying over compact
leaves of #.

By Theorem I1.3, there is a lamination ¥ < M of compact support and an
n,(M)-equivariant, transverse map @ : (M — |Z|) > T. We shall modify % and &
until Axioms (1.4.1) are satisfied. First, however, let us show that some of what we
need to establish is automatically true.

Cover M by a finite set of flow boxes for £ which lift to standard flow boxes
for the map ¢ as in Definition II.1. We label the lifted flow boxes in M by
Vi, Vi ..
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CLAIM II1.1.3. & satisfies (II1.5.1(b)) and each leaf of & is a proper submani-
fold of M.

Proof. Since |Z| is nowhere dense in M by construction, if a leaf of £ crosses
V. twice, then a complementary region of & in M also crosses ¥, twice. This
contradicts the fact that ¥, is a flow box for @. Hence, each leaf of & crosses ¥, at
most once. The claim follows immediately. O

We must modify £ and ¢ in order to arrive at a situation which satisfies the
conclusion of Theorem III.3.1. The first modification is to remove the compact
leaves of 2.

Step A. Elimination of the compact leaves of P

Suppose that I is a closed interval in a leaf of £. We say that I follows the path
of flow boxes V, , ..., V, if there is a partition of I into subintervals I,, I, . .., I,
(in order) with I, 17,-1 for j=1,...,t (Notice that I can follow many different
paths of flow boxes; also notice that there is a completely analogous notion of an
entire half-leaf following an infinite path of flow boxes.)

Any closed leaf follows a finite path 17,. P 17,-, which is periodic in the sense
that V, =V, .

There are analogous notions of paths of flow boxes in M. These paths are
obtained from projections paths for the lifted leaf in M down into M. The compact
leaves of Z project in M onto the compact leaves of £ homotopic to zero. To
eliminate them, we need the following:

LEMMA 111.1.4. The leaves of ¥ homotopic to zero decompose into a finite
number of equivalence classes under the relation “‘following the same path of flow
boxes”. Each equivalence class is a sublamination.

Proof. Suppose that we have a fixed finite path of flow boxes in M. The set of
leaves of # containing intervals following this path is an open and closed subset.
If the path of flow boxes is periodic, then each leaf containing an interval following
the path must close to form a compact leaf following the periodic path (this is
because each leaf crosses V", at most once).

This proves that those compact leaves of £ with a given periodic path of flow
boxes form an open and closed sublamination of £. They project into an open and
closed sublamination of £ of leaves which are trivial in M and follow a given path
of flow boxes in M. The proof will be complete when we show that the image

sublaminations in % form a finite family of sublaminations.
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Let V be one of the flow boxes in M, say V' = U x (0, 1). We claim that each
leaf ¢ of % in the image of the compact leaves of £ meets V at most twice. Let 4
be an embedded disc in M, with boundary ¢; each component of 4 "V is of the
form U x (0,a), U x (b, 1), of U x (a,b) with 0 <a,b <1. But if AnV has a
component of the third type, then there is a lifting of 4 to 4 = M which meets a lift
V of V also in U x (a, b). This would mean that there is a lift # of & meeting ¥
twice. This contradicts Claim III.1.3.

From this it follows easily that the sublaminations of trivial leaves with a given
path of flow boxes in M form a finite family. O

Now we are ready to eliminate the leaves of .# which are homotopically trivial.
We have decomposed these leaves into a finite collection of open and closed
sublaminations, say C,, ..., C,, in . Each C, consists of a nested family of circles
with an outermost member which bounds a disk containing all the rest. Let D, be
this maximal disk associated to the sublamination C,;. Of course, dD; is a leaf of C;
which is isolated in % on the outside of D;. Let D, be a slightly larger disk whose
boundary is contained in M —|.&|, and which meets £ exactly in C,.

We begin by eliminating C,. We define &, = % — C,; we then construct a new
transverse map @, on M — |2, | to be equal to ¢ on (M — |Z|) (M — D,) and to
be locally constant on D,. This has the effect of removing C, and all other families
contained in D,.

Continuing in this manner, we construct a new lamination £’ < & consisting of
% minus its trivial leaves and a transverse equivariant map ¢ : M — |Z'| > T.

At this point, we have Axioms 1.4.1(a) and (b) satisfied. Let us take up the
study of the endpoints of half-leaves of Z.

Step B. Existence of endpoints for all half-leaves of &
The main result of this study is:
PROPOSITION I11.1.5. Let 7, be a half-leaf of £, then £y has an end in S’.

The proof of this proposition is an adaptation of [3, p. 124] to our case. Let us
start with a classical result.

LEMMA 111.1.6. Let ¢, be a half-leaf of a lamination on a complete hyperbolic
surface of finite area M. The set C of cluster points of £, is a minimal lamination (i.e.
each leaf of C is dense in C).

Proof. 1t is well-known (and easy to show) that C is a sublamination of . We
establish that it is minimal. If C contains a compact leaf /, then £, must spiral into
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/. Clearly, then C =¢. Otherwise, let 4 be a noncompact leaf of C and denote by
X the closure of 4 in C, then 1 is a sublamination. If A, < 4, then C = 1 and hence
A is dense in C. If £, & A, then ¢, is contained in a connected component of M — |1].
Let us study these complementary components.

DEFINITION. A spike for K is an end of a complementary component R of K
which is bounded by two rays in leaves of K which follows the same infinite path
of flow boxes.

CLAIM. Let K be a lamination in M. Each complementary region R of K in M
consists of a compact part together with a finite number of spikes.

For a proof, see [7]. ]

Let X = M — |1]. If £, is contained in a compact part of X, then the closure of
Z, is contained in the complement of the spikes of X. This is impossible since the
boundaries of the spikes are contained in || = |C|. Thus, £, must enter at least one
of the spikes of X. Once it enters a spike it must run out to infinity in that spike,
following the same infinite path of flow boxes that the sides of the spike do. One
sees easily then that the set of cluster points of ¢, is the same as the set of cluster
points of either half leaf of dX which bounds the spike. Since X < |1], it follows
that C = 4. This proves that C = 4, or equivalently that A is dense in C. This
completes the proof of the lemma. O

Proof of Proposition 1II.1.5. If 7/, & projects down to a compact leaf of
& < M, then it has an endpoint in dD which is the attracting fixed point of the
hyperbolic transformation associated with the oriented simple closed curve (homo-
topically nontrivial) on M.

If 7, projects to a non-compact half leaf #, of ., then we apply Lemma III.1.6.
Let C be the limit set of /,. If C is a simple closed curve, then ¢, spirals into C
and has the same endpoint as the hyperbolic transformation associated to C. If C
is an exceptional minimal set, there is a transversality flow box U for ¥ which
meets C.

Choose a leaf ¢ # £, in C, which is not isolated on either side in C. By using that
¢ is dense in C, one constructs easily a simple closed curve y = a U f# where f is an
arc transverse to %, contained in a flow box U, and « is an arc =/ which intersects
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p with the same orientation at both endpoints, as pictured below:

eCR.#. Ry

Since / is not isolated on one side, C N f # ¢, so that ¢/, intersects § infinitely
many times. Consequently 7, will meet the full preimage 7 of y infinitely often.

FACT. Let §, be a component of 7; then, the intersection ,nZ, is either empty
or a single point.

Proof. We note g the hyperbolic translation corresponding to 7,. It acts on 7,
by translation with a fundamental domain a union of a lift & of « and a lift f of
(cf. picture).

3 B 8

Assume that §,n7#, has more than a single component. Then 7, crosses
successively two translates of ff, say g’f and g*f, r <.

By considering the leaves of Z containing the translates g'@, r <t < s, we find
one which intersects some g‘f twice.

This contradicts the fact that U is a transversality flow box for .&. O

To complete the proof of Proposition III.1.5, we argue as in [3, p. 124]. Choose
a sequence 7; of components of §, each meeting 7, in one point such that, if i <,
then 7; N7, is farther out in the end of Z, than is §, n Z,. The intersection of the half
spaces bounded by §, defines a point in 4D which is the end of 7. O

Remark 111.1.7. If the cluster points of £, form an exceptional minimal set, then
the half spaces h, > h,> - - - determine one endpoint of 7,. Since 7, crosses the
boundary of each k; at most once, the other endpoint of 7, lies outside 4,. Hence,
the endpoints of 7, are distinct in this case.
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Step C. Continuity of the endpoints of half-leaves of & lying above non-compact
leaves of &

PROPOSITION 111.1.8. Let 7, = £ be a half-leaf which projects to a non-com-
pact leaf of . All half-leaves of £ which pass sufficiently close to the initial point
of £y and with the same orientation as £, have ends in 0D which are close to the end

of Z,.

Proof. If the image of 7, in M spirals around a closed loop C, then the same is
true for all sufficiently close half-leaves. Thus all half-leaves which are sufficiently
close to #, have the same end in 0D.

Now let us consider the case when the cluster points of 7, form an exceptional
minimal set. In M, construct a simple close curve y which meets 7, infinitely often
(as in the proof of Proposition III.1.5). Let §,, 7,, . . . be the sequence of lifts of y,
in order, that 7, meets. We know that the half spaces that they bound, 4,, &, . . .,
form a decreasing family. The closures of these half-spaces in D have a single point
in common — the endpoint of Z,. For any neighborhood N of this endpoint, there
is an i such that A, ndD < N. Any half-leaf 7, that passes sufficiently close to the

initial point of 7, (with the same orientation as 7,) will meet 7,,7,, ..., J,. Since
/, cannot cross 7, twice, its endpoint must be contained in 2,nS' and hence
in N. O

This completes the proof that Axioms I1.4.1(c) and (d) hold for leaves of £
lying about leaves of . whose closures contain exceptional minimal sets. We have
also established the continuity of the endpoint map for oriented leaves at any leaf
of Z lying above a non-compact leaf of Z.

Section 111.2

In this section, we complete the proof of Theorem III.1.1 by studying the
endpoint phenomena near compact leaves of #. We keep the notation and
assumptions of the last section. In particular, ¥ < M satisfies Axioms 1.4.1(a) and

(b).

LEMMA I11.2.1. If 7, is a leaf of @ which projects to a compact leaf {, < &,
then any leaf 7, with distinct endpoints which is sufficiently close to £, has endpoints
close to the endpoints of ?,.

Proof. Any leaf in % nearby to ¢, contains some end which spirals around ¢,.
The spiralling end has the same endpoint as 7, moving in the same direction. If the
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nearby leaf 7, has distinct endpoints, by equivariance under the cyclic group
generated by /,, we see that the other endpoint of 7, converges to the other
endpoint of 7, as 7, gets closer and closer to 7,. O

Lemma III.2.1 and Proposition I11.1.8 imply the following.

COROLLARY 111.2.2. If every leaf of & < M has distinct endpoints, then the
map from the leaf space of £ to J is continuous. O

Our next task is to modify .Z until each leaf has distinct endpoints. First let us
give an example to show an example where leaves with the same endpoints actually
arise.

Example. Let £, and ¢, be parallel simple closed curves on M and form a Reeb
component between them,;

Ro

I

21

All leaves in this Reeb component have both endpoints equal in ¢ D-

Elimination of Reeb-type components

We define an annulus for ¥ to be an annulus 4 =« M bounded by two closed
leaves of #. An annulus for . is maximal if it is contained in no larger annulus for
Z. Let us show first that any annulus for .# is contained in a maximal annulus. Let
(A4,); . y be an increasing sequence of annuli bounded by the leaves ¢;" and ¢; of
. In the universal cover of M choose an increasing sequence A, of lifts of the A,.
The A, are infinite strips bounded by leaves 7;" and 7, of Z; each 4, is invariant
under a fixed element y € n,(M) and the endpoints of Z;* and 7/ are the fixed
points of y on dM. Let x;* be a sequence of points on Z; converging to a point
xt € H. If the leaf 7+ of 2 passing through 77 projects down to a non-compact
leaf of &, then by the continuity of the endpoint map (Proposition III.1.8),
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endpoints of 77 coincide with those of the 7;*. By the assumption that the A, form
an increasing sequence, the leaf 77 is invariant under y, contradicting the fact that
7+ projects to a non-compact leaf.

If the leaf 7% projects to a compact leaf # %, then, by Lemma I11.2.1, all the nearby
leaves ¢ ;" are parallel to 7 ;. The same reasoning applied to the £, shows that the
union of the A, is the interior of an annulus bounded by the two leaves 7} and 7 .
Hence, any annulus is contained in a maximal one. Furthermore, maximal annuli are
disjoint and non-parallel; they are in finite number.

DEFINITION. We say that an annulus 4 for £ is taut if when we consider a
component 4 of the pre-image of 4 in the universal covering of M, there is a spanning
arc o transverse to & such that ¢ | (x —|.Z|na) is a strictly monotone function from
the components of (a — |£?|ma) onto (a possibly infinite) segment of T.

One sees easily that if 4 is taut, then & | 4 consists of leaves parallel to 64 and
leaves which spiral between them, always spiralling in the same direction.

We are going now to define ¥ and ¢ until all the maximal annuli for & are
taut, proving:

LEMMA 111.2.3. Given an action n,(M) x T — T, there is a measured lamination
% < M without trivial leaves and a transverse map ¢ : M - & — T with only taut
annuli. Furthermore, each leaf of & has distinct ends in the Poincaré disk, and the
induced map from the leaves of & to J is continuous.

Clearly Theorem III.1.1 is immediate from Lemma II1.2.3.

Proof. We begin with the lamination ¥ obtained in the previous section. The
proof is by induction on the number of maximal non-taut annuli. There are several
cases of non-taut maximal annuli to consider. In each case we shall succeed either
in removing the annulus entirely or replacing it by only taut ones. Since we shall
never create new non-taut annuli, this will complete the proof.

Let A = M be a non-taut maximal annulus for .. Let £, and /, be its boundary
components. Let 4 be a component of the pre-image of A in the universal covering
of M with boundary 7, and 7,. Let e, and e, be the edges of T given by @(7,) and
@(/,). Let s, and s, be the sides of ¢, in T determined by the normals to 7, and 7,
pointing out of A.

Case (1). e, = ¢, and s, and s, are opposite sides of ¢, =¢, in T.
In this case, we change the lamination .# by removing the interior of 4 and
gluing £, to /,. In the universal covering this removes the interior of each
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component of the pre-image of 4 and glues the sides together. The map ¢ induces
a map on the new manifold. One sees easily’that, under the conditions of Case 1,
this new map is transverse. Choosing a product structure in a neighborhood of the
original annulus defines an identification of this new manifold with the original one
M. Thus, under this identification, we have constructed a new lamination
L'=% |(M— A)uy where y is the image in M’ of the gluing circle. We have a
new transverse equivariant map ¢’ : (M’ — ‘,9,7”|) — T. This operation has the effect
of removing the annulus 4 for & and replacing it by a single circle. Hence, it
reduces the number of non-taut maximal annuli by one.

Case (2). ey=e¢, and s,=3,.

In this case we shall do a surgery and then remove all trivial leaves. Choose an
arc a, through a point x, € #, which lifts to an arc &, in M which is a vertical arc
in a transversality flow box for @. Of course a, is transverse to #. There is a
subinterval J, < a,, meeting A exactly in one endpoint, such that the Poincaré map
P around ¢, is defined on J,n|#| and sends it to ayn|Z|.

We can take the other endpoint of J, to miss |Z|.

If Jon|Z|=Jyn¢,, then £, is isolated on the side M — 4. Otherwise, at the
expense of reversing the direction of 7, all leaves crossing J, spiral towards ¢, as
we go once around /.

Using this we construct a simple closed curve y, in M — 4 which is parallel to
/, and transverse to ¥. Take an arc a which spirals around 7, once parallel to the
leaves of & beginning at a point x € J, — Jon|#|; complete « to a simple closed
curve y, by adjoining the appropriate subinterval of J,.

Let C, be the annulus in M bounded by £, and y,.

Let A = M be a component of the pre-image of 4 to the universal covering of
M. Let J, be a lift of J, ending at 7, < 4.

Since s, =s,, if J, is short enough, there will be an arc J, with endpoint in
7, A and a homeomorphism A :J,—J, such that the following diagram com-
mutes

~
~ ~ ~ h

Jo— JoU |L]

;71—7lﬂ|2l

A
A

T
25

Let % € J, cover x. Then, we can construct a loop y, parallel to #, in M using the
point A(X) € J, analogous to y,. Let C, be the collar bounded by ¢, and y,.
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Let C, and C, be the components of C, and C, which meet the component 4
of A in M.

>l

G . |

g

Y1

We can extend H : J, > J, to an equivariant homeomorphism & : €,— C, which
sends Cy,n|Z| to €, n|Z| and which makes the diagram below commute

Co—Co U |Z] h -, - Cin|Z|

"

A

T

Now we shall change .Z and ¢. The change will take place in the pre-image of
C,u A uC,. Fix a component C,u A uC,. We have a homeomorphism £ : §, - 7,
commuting with the map to T and with the cyclic subgroup of =, (M) leaving this
component invariant. We remove int (C,u 4 U €)) and glue 7, to 7, by «.

Making this change equivariantly over all components of the pre-image of
CouAd U C, in M constructs a new transverse map ¢’ : M — T. Let #’ denote the
induced, measured lamination. First, notice that ¢ : (5, — Jon|-Z|) - T induces a
bijection between the components and the points of a segment in 7. Thus, any leaf
of &’ crosses 7, at most once.

CLAIM. 2’ has no trivial leaves and each annulus of &' < M is either an
annulus of ¥ = M or is taut.

Proof. Let 7’ be a leaf of #’. Either it is also a leaf of Z or it crosses some lift
of y, exactly once. Since .Z has no trivial leaves neither does £".

Let A’ = M be an annulus for £’, bounded by 7} and ¢5. If both ¢} and ¢} are
leaves of ., then A’ is an annulus for . Suppose that £, ¢ £. Let A’ M be a
component of the pre-image of A4, bounded, say by 7} and 7. Since 7} ¢ 2, there
is a component j, of the pre-image of y, so that 7} crosses §, once. We divide into
2 sub-cases.
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Case a: ¢ is not parallel to y,. In this case, the ends of 7} are distinct from the
ends of y,. Since 77 and 7, have the same ends, 75 must also cross 7,.

The arc §,n A’ projects to a spanning arc for A’. Since ¢ | (5, — Fon|L)) is
injective on components, this proves that A’ is taut.

Case b: ¢ is parallel to y,. In this case, 7 is also parallel to y,. Thus, since the
original annulus 4 was maximal for %, ¢, cannot be a leaf of .#. Thus, 7, also
crosses some lift §, of y,. Since 75 and 77 have the same endpoints, they cross the
same lift 5, of y,. Once again, the arc §,n 4’ projects to a spanning arc for A4’
showing that A4’ is taut. O

Case (3). e, # e,; e, 1s not on the s,-side of e, and e, is not on the s,-side of ¢,.

In this case, we replace this maximal annulus by a taut one with the same
boundary. There is (a possibly infinite) segment 7 of T joining the edge ¢, to ¢,. This
segment is, as an oriented segment, invariant under the cyclic group generated by
the loop Z,. Let a be a spanning arc for A. Let & be a lift of « to 4. We define £’ | &
and ¢’ |[(@ —d& n.Z’) so that the latter is a strictly monotone map of & — & N.Z’
into 1. Since I is invariant under the cyclic subgroup of =,(M) which leaves A
invariant, it is an easy matter to extend £’ and ¢’ to all of 4. This, when extended
by equivariance to the other components of the pre-image of A4, replaces .# by a
lamination ¢’ which is taut in 4 and which agrees with ¥ outside A.

Case (4). e, # e;; e, 1s not on the sy-side of ¢,, but ¢, is on the s,-side of e,.

Consider the leaves of £ in 4 which map to the edge e, of T. Clearly, 7, is such
a leaf. Since a neighborhood of 7, in 4 maps into the side of e, opposite to s, and
hence opposite from the side of e, containing e,, there must be other leaves 7 in 4
which map to e,. We claim that each of these leaves projects to a closed leaf in
% N A. If one such leaf 7 projects to a non-closed leaf of & N4, then ¢ must
accumulate to points x € £ N A not contained in 7. Since / is contained in 4, the
various elements of n,(M) which measure the differences of the various branches of
¢ near x all lie in the same cyclic group and this group fixes the edge e,. In the
universal cover, since @, (/) = e, and g,e, = ¢, for all i, we see that ¢, (g,/) = e, for
all i. Hence ¢, (7") = e,. This contradicts the transversality of @. This proves that
all leaves of 4 mapping to the edge e, project to simple closed curves in A.

We consider this set of leaves projected into A. They form a finite subset of
parallel simple closed curves. There is one such /£ = 4 which is closer to 7,. We
know that £ cint 4. We use £ to divide A into two annuli 4_ from £, to /, and
A, from 7 to £,. Clearly, the argument above shows that as we pass from A_ to
A, , we pass from the side of ¢, containing e, to the opposite side. Thus, we can
apply the argument in Case (3) to replace & | A_ and @ be a taut lamination and
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map. Then, we apply the argument in Case (2) to do surgery on & | 4 . As before,
we see all new annuli created are taut. ~

Case (5). g, # e,; e, 1s not on the s,-side of ¢,, but ¢, is on the s,-side of e,.
This case is identical with Case (4) with the roles of ¢, and e, reversed.

Case (6). ey, #e,; e, is on the s,-side of e, and e, is on the s,-side of e,.

This case is the “union” of Cases (4) and (5). We divide the annulus A4 into
three annuli A_, A,, A, A_ going from ¢, to £, A, from £, to /| and A, from
/1 to £,, where the single curves £, and /| are constructed as above with respective
images 7, and /, under ¢. We replace then A, by a taut annulus and do surgery to
remove A_ and A4, . This proves the first half of Lemma II1.2.3.

To finish the proof, we need just to show the following

SUBLEMMA 111.24. If £ <M is a lamination and ¢ : M — £ - T a trans-
verse equivariant map, then if & has no trivial leaves and no non-taut annuli, each leaf
¢ of & has two distinct endpoints in 0D.

Proof. We have already seen (Proposition II1.1.5) that each half-leaf of Z has a
well-defined endpoint in 0D and (Remark I11.1.7) that these endpoints are distinct
if either end of ¢ adheres to an exceptional minimal set inside #. Clearly, if 7 is
compact it has two distinct endpoints. Thus, if the endpoints of ¢ are the same, then
both ends of # must spiral around simple closed curves, #, and ¢,. Let 7, and 7, be
the lifts of ¢, and ¢, with the property and 7, and one end of 7 are asymptotic
whereas 7, and the other end of 7 are asymptotic. Since 7, and 7, have an endpoint
in common and represent closed loops in M, they must have both endpoints in
common. By transversality, we see that 7, # Z,. In particular, the region between 7,
and /, projects to an annulus 4 in M. Since a spanning arc for 4 must cross the
image of 7 at least twice, 4 is not taut. This contradicts our assumption that all the
annuli for & are taut. Hence, all the leaves of £ have distinct endpoints. O

This finishes the proof of Lemma II1.2.3. O
Chapter IV. Geometric actions of surfaces groups
Section 1V.1. Characterization of geometric actions of surface groups

The point of this section is to prove the following theorem characterizing those
actions of a surface group on a A-tree which are geometric.
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THEOREM 1V.1.1. Let M be a complete hyperbolic surface of finite area. Let I
be the fundamental group of M. Suppose I' x T — T is a minimal action on a A-tree
with the property that, for each cusp E of M, the group n,(E) < I' has a fixed point
in T. Then, the actionn is dual to a A-valued measured lamination (¥, u) = M if and
only if the following two conditions are satisfied:

(a) The stabilizer in I' of any edge is cyclic.

(b) If y, and y, are elements of I' whose axes in M cross and if B, and B, are

partial axes for y, and y,, respectively, in T, then there is no non-degenerate
segment [x, y] with Byn[x, y] = {x} and B,n[x; y] = {y}.

N.B. Whether or not the axes of y, and y, cross in D? is independent of the
hyperbolic structure on M.

Proof. Suppose I' x T — T is dual to a measured lamination (%, ) in M. Then,
the stabilizer of an edge is the stabilizer of the corresponding leaf in .2 (see (1.3.8)).
These are clearly cyclic groups.

We show that Condition (b) holds as well. For any element y € n,(M), the
axis of y in T (assuming it has one) consists of a sequence of complementary
regions for £ in M. The sequence is invariant under y. Choose a transverse arc
from one of these regions R, to y - R, crossing each leaf of ¥ at most once. We
can suppose that w projects to a closed loop in M. Thus, |, .z 7"® =}fy is a
properly embedded copy of R in D? invariant under y. The regions that Zy passes
through all correspond to points of T on an axis for . Now suppose that y’ is
another element of =,(M) which acts without fixed point on 7. We construct a
properly embedded line Zv, as above. If the axes of y and y” in D? intersect, then
A,n A4, # &. Since we can deform A, slightly, we can assume 4,4, c M — 2. A
complementary region containing a point of /L N A, is common to the axes for y
and y" in T.

We turn now to the sufficiency of the two conditions. Suppose I' x T—> T is a
minimal action satisfying Conditions (a) and (b). By Lemma III.2.3, there is a
measured lamination ¥ < M with compact support and a transverse equivariant
map & : (M < L) - T such that

(IV.12) { (i) Allleaves of Z c M are proper and non-compact;
(i1) All the annuli of ¥ < M are taut.

We claim that y : T, —» T is an isomorphism. Proving this, of course, will
establish that the action on T is dual to .#. By Corollary 1.1.2, either ¥ is an
isomorphism or y has folding. Our goal, then, is to show that { has no folding.
Before beginning the proof of this, we list two facts about actions on A-trees. Let
T, be a A-tree and let I’ x T,— T, be an action.
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Fact 1. Lety € I' and x € T,. Suppose the translation length of y is positive. Let
7, be the direction of the segment [x, y,] at x and 7, its direction at y,. Then, x is
contained in a partial axis for y if and only if y,1y # t,. If y,.7, = 1,, then there is
a partial axis B, for y missing x, and a non-degenerate segment [x, z] leaving x in
the direction 7, such that [x, z] n B, = {z}.

Fact 2. Let y, and 7, have partial axes B, and B, in T, with B, "B, # J, such
that the positive directions of B, and B, induced by y, and y, disagree on
B, n B, =[x, y]. If ©(y,) and 1(y,) are both greater than the length of B, B,, then
y,7; ! has a partial axis meeting B, U B, in exactly [y, x, y] u[y, 72 x].

Now we return to the proof that y has no folding. For simplicity, we denote by
the same letters a component of M — % and its image in T, ; likewise a leaf of Z
and the corresponding edge in T.

If R is a component of M — %, then R is the union of a compact piece and
spikes. Each spike is bounded by two half-leaves following the same infinite path of
flow boxes and having the same endpoint in dD?. Conversely, any end of a
non-compact leaf in JR is part of the boundary of a spike.

LEMMA 1V.1.3. Let R be a complementary region of & < M. Suppose that
leaves 7, and 7, of £ bound a spike S in R. Then, the directions ¢ ,(7,) and & ,(7,)
at (R) in T are distinct. Furthermore, there is an element y € I' with a partial axis
B’ in T, such that:

(a) B passes through R,

(b) its directions at R are given by £, and 7,, and

(c) ¥ | B, : B, > T is an injection.

Proof. Clearly, the existence of a partial axis B satisfying (a), (b) and (c)
implies that ¢, (7)) # @,(7,). There is a transversality flow box U c M for ¢
which the spike of R bounded by 7, and 7, crosses infinitely often. Choose two
crossings which go in the same direction.

Let w be the loop formed from an arc in the spike « and a vertical arc f§ in U
as pictured on following page. Let U in M be a component of the pre-image of U.
We have f < U with endpoints in lifts of the spike S.

Thus, there is an element y € I' whose conjugacy class is represented by the loop
o with y - §, = §,. The image of f in T, is a fundamental segment for the action
of y on a partial axis B, c T,. Since U is a transversality flow box for @,
¢ |:(F—BFnP)>Tis an injection onto a segment u of T. Furthermore, if 7,
denotes the direction of this segment at x” = @(x), then y - 1, is the direction @ , (£5)
which is distinct from 1, = ¢, (7}) again because U is a transversality flow box for
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@. Thus, by Fact 1, the translates of « under the powers of y form a partial axis B,
for y in T. Clearly ¢ : B, - B, is an isomorphism. O

COROLLARY 1V.1.4. ¥ has no folding at a vertex v € T, of order 2.

Proof. Let R be the complementary region of & — M corresponding to v. Then
OR consists of two leaves 7, and 7, of 2.

Consider the map R — M. It is either one-to-one or an infinite cyclic covering.
If the map is one-to-one, then R has finite area and 7, and 7, bound a spike in R.
By the above lemma, & ,(7,) # &, (7,). If R — M is an infinite cyclic covering, then
7, and /, project to parallel simple closed curves and R projects to an annulus.
Since all annuli in M are taut for @, ¢, (7,) # ¢ ,(7,) in this case as well. O

Assume that ¥ has a folding. By the above result, this folding must be at a
vertex of order >2. Let R be the corresponding component of M — % and 7,, 7,
two leaves in R which are identified. By Corollary IV.1.4, R has order at least 3.
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The completion of the proof of Theorem IV.1.1 is based on the following
lemma:

LEMMA IV.1.5. Let 7 be a leaf of £ in OR which projects to a non-compact leaf
in M; let 7+ and 7~ be the leaves of @ tangent to the ends of 7. Then, there is an
element w € I' such that:

(1) The axis B, in T for w passes through R from the /* to the / ~ direction.

(2) If $ (£ *) # & ,(£ ), then the axis B, for w in T passes through G(R) from

the (/) to the (/) direction.

B3 If 9, (") =6G,(f7), then the axis B, for w in T misses $(R) and is

connected to ¢(R) by a segment [(R), ») which leaves G(R) in the &, (/)
direction.

Proof. By Lemma IV.1.3, there are elements A and v of I' such that:

-
(i) There is a partial axis B} = T, for A that crosses R from

7+ to 7 when oriented in the direction that 1 operates.
(IV.1.6) ﬁ (i1)) There is a partial axis B, = T, for v that crosses R from

¢ to £~ when oriented in the direction that v operates.
k(iii) ¥ | B; and ¢ | B} are injections.

In T, the picture of the axes of 4 and v are:

Z\ ] / B’
7\

where z # R since B/ enters R and B/, leaves R both in the 7,-direction. Let 7(4) and
7(v) be the translation lengths of 4 and v in T,. We say that these lengths are
comparable if there are integers m, n > 0 with n(t(4)) > t(v) > ©(1)/m.

CLAIM IV.1.7. There exist elements A and v satisfying (IV.1.6) with (1) and ©(v)
comparable.

Proof. By symmetry, we can suppose t(4) = 7(v). Let r be the length of the
segment B, N B),. If r > (v), then A and vA ~'v ! have all the properties required in
(IV.1.6) for 4 and v. In addition t(vA ~'v~") = 7(4). Thus, replacing v by vA~'v !
proves Claim IV.1.7 is this case.
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Now suppose v < 7(v). Consider the element vA~'. By Fact 2, it has a partial
axis as pictured below:

Clearly, t(vA ") = 7(v) + ©(4) < 2t(4), and t(vA ') = 1(4). Thus, replacing v with
vA ! will prove the result provided that | B;, 1 18 injective, or equivalently that the
image of the segment / =[AR, R]U[R, vR] is a fundamental domain in T for the
action of vA~' on a partial axis. Clearly, ¥ restricted to 7 is an injection.
Furthermore,  , of the direction at AR pointing toward R is transformed by vi !
to ¥, of a direction at vR pointing away from R. Hence, y(I) ny(vA ~'I) is equal
to [vR|. Hence, ¥|5;, _, is an injection. O

CLAIM IV.1.8. Let 1 and v be elements as in (IV.1.7). There is an integer n >0
such that the intersection of the axes B, "B, < T is a segment of length less than

n - min (z(4), ©(v)).

Proof. Since t(4) and t(v) are comparable, the length of B, n B, is greater than
n - min (t(4), ©(v)) for all » if and only if it is greater than » - (7(4) + ©(v)) for all n.
Let us suppose that this is the case. The elements 4 and v generate in I" a free group
of rank 2 (4, v). If B; n B, has length greater than n(7(41) + t(v)) for all n, then any
finite set of words in the commutator subgroup [{4, v}, {4, v)] fixes some non-de-
generate segment in 7. This contradicts Condition (a). O

We fix now elements A and v as in (IV.1.7) and an integer n > 0 such that the
length of B, n B, is less than n - min (7(4), ©(v)). Of course, it is also true that the
length of B; B/ is less than » - min (t(4), 7(v)). We wish to study the element
w =v"A" and its axes in T, and in T. First, let us consider the situation in T, . Let

n

y=A""zand y'=v 7"z
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The axis B, satisfies: B,, " (B, U B,) =[y, RJU[R, y’]. In particular, B,, passes
through R, entering from the 7 *-direction and leaving via the # ~-direction. Now
Y | B, and y | B; are injections, but of course B, N B; can be longer than B, N B),.
Suppose that the endpoints of B, " B, are u and w as pictured below.

N, .,/
SN0 W Ny By

Then, w has a partial axis B, in T with B, n(B, UB,) =[4""u, wl u[w, v'u].
This completes the proof of Lemma IV.1.5. O

Now we return to the proof of Theorem IV.1.1. Let 7, and 7, be leaves in dR
which are identified under @ . From Lemma IV.1.3, we deduce that 7, and 7, have
no common endpoints. There are three cases.

Case 1. The images #, and ¢, of 7, and 7, in % are non-compact.
Let 7/ be the leaves adjacent to 7.

Subcase 1a. (b#(ff) # (b#(f{). By Lemma IV.1.5 there is an element w € I
whose axis B., in T, passes through R from direction 7;* go 7, , and whose axis
B,, in T, passes through @(R) from the ¢, (7 )-direction to the ¢, (7 )-direction.

By Lemma IV.1.5 there are elements 4., A_, y whose axes in T pass through
R from directions 7, to 7}, 7, to /; and 7, to 7}, where /5 is tangent to 7, and such
that ¢ is an injection on each of these axes.

Since ¢, (77) # ¢, (/7). we know that ¢, (73) is dintinct from one of ¢, (7).
By symmetry we can assume that ¢, (/%) # qi#(f().

Now consider u =1"'y. Since B, B, = |R|in Ty, the axis B, in T, passes
through R from the 7,-direction to the 7,-direction. Clearly, then B, n B, = |R|. It
follows that the geometric axes for u and w in hyperbolic space also cross.

Let us look at the picture in 7. B, passes through @(R) from the ¢ 4 (05)-
direction to the ¢, (/})-direction and B, passes through @(R) from the ¢, (7))-
direction to the ¢, (7, )-direction. By Lemma IV.1.3, ¢, (7)) # @, (Z}). Since
G4 (1) = G 4(7y), and ¢4 (75) # ¢ 4(7), we have

6#(‘; D =-‘5:('E7)

B
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The element p=4-! has an axis in 7 unless 1="(¢(R)) =7 ~(¢#(R)). Thus,
replacing A_ by A% if necessary, we can assume that y = A~'y has an axis in T.
Clearly, this axis does not pass through @(R), but rather is connected to @(R) by a
non-degenerate segment leaving @(R) in the & , (7, )-direction. Either the axis for @
in T passes through @(R) from the ¢, (7 )-direction to the ¢, (/;)-direction or it
misses @(R) and is connected to it by a segment which leaves @(R) in the
@ 4 (/1)-direction. Since ¢, (7)) # ¢4 (Z} ), B, and B,, are connected by a non-de-
generate segment in 7. This contradicts Condition (b).

Subcase 1b. ¢, (L) # ¢, (7).

Since 7 is part of the boundary. of a spike, it does not project to a compact leaf
in #. Let /" be the leave distinct from 7, asymptotic to #;*. By Lemma IV.1.5 there
are elements w and u such that the axis B, of w in T, passes through R from the
/3 to the Z; direction and the axis B, of u passes through R from the /’ direction
to the 7, direction. Furthermore, the axis B, in T misses ¢(R) and is joined to it by
a segment leaving ¢(R) in the ¢, (£ ") direction. Likewise, either B, passes through
@(R) from the @, (¢’) direction to the ¢ ,(7,) direction or B, misses ¢(R) and is
joined to it by a segment leaving @(R) in the ¢ ,(7,) direction. Since ¢, (7,) and
@, (¢’) are distinct from @, (7;") by Corollary IV.1.3, this contradicts condition
(b).

Case 2. ¢, is compact but £, is non-compact.

7, corresponds to an element y e I' which stabilizes R. Hence, y(7,) € dR. The
map @ is I'-equivariant, hence the directions 7, and y(7,) are identified in T. As 7,
and y(7,) project down on #,, non-compact, we can apply the first case. Thus, once
again Case 2 leads to a contradiction.

Case 3. /, and £, are compact.
If the region R is not an annulus, then the stabilizers y, of 7, and y, of 7, do not
lie in a cyclic subgroup of I'. But {y,, 7, ) stabilizes the direction ¢ (Z,) = ¢ . (7,).
This contradicts Condition (a).
Hence, R must be an annulus. It is taut for the map @. This means that
¢ ,(7)) # ¢, (7). This is a contradiction.
This completes the proof of Theorem IV.1.1. O

Section IV.2. The convergence theorem for surfaces

Let us recall the following definition from [6]. Let M be a surface of finite area,
and P the set of cusps of M. We denote by Dg(M, P) the set of characters of
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discrete and faithful representations of I = n,(M) in SL,(R), which sends periph-
eral elements to parabolics. From an unbounded sequence (x;) in Dg(M, P) one can
extract a subsequence (x; ) and define an action ¢ : I' x T—>T of I' on a A-tree T
with cyclic edge stabilizers such that (x;) “converges” to the action ¢ : ' x T > T.

The basic property of the action I' x T — T is that for any a, f € I such that
|tr (B(x; ))| = oo, we have

lie |tr (o(x1,))] _ T,(a) .
j—o Jtr (Bx))|  1,(B)

[0, o]

where 7, is the translation length function for T and where the right-hand side is the
non-archimedean ratio on A ~°.

PROPOSITION 1IV.2.1. Given an unbounded sequence (x,-j) and an action
@ : I x T—Tas in IV.1, for any elements g, h € I' with A" ~ A}® # H? and with
g and h having partial axes B, and B, in T, it cannot be the case that there is a
non-degenerate segment [x, y] = T with B, 0\ [x, y] = {x} and B, n[x, y] = {y}.

Proof. We note by ¢;(y) the translation length for the representation x; of y € I'.
Since the axes for g and 4 meet for each of the hyperbolic structures x;, it is easy
to see that

£,(gh) <{;(g) +7:(h)
so that, for some constant C, one has
log |tr (gh(x;))| < log |tr (g(x;))| + [tr (A(x;))| + C.

Since g and h have partial axes in the action ¢, it follows that log |tr (g(x,-j))| and
log |tr (A(x;))| go to infinity with j. Clearly

. log |tr(gh(xij))]< I log |tr (g(x:)))]

Pl log |tr (A(x,))| =0 log |tr (h(x;))| th
Thus,
T,(gh) < 7,(8) + 7, (h). (*)

If there were a segment [x, y] as in Proposition IV.2.1, then a fundamental
domain for gh on a partial axis would be [g ~'x, x] U[x, y] U[x, Ay] U[hy, hx]. Thus,
(gh) = 1(g) + t(h) + 2 length [x, y], contradicting (). O
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We come now to our main result.

THEOREM 1V.2.2. Let (x;) € Dg(M, P) be a sequence which defines a growth
function for the lengths of closed curves in M. Then, there is a codimension-1
nonarchimedeanly measured lamination (£, u) < M such that geometric intersection
with (£, 1) defines the same non-archimedean ratio on the set of homotopy classes of
closed curves as the sequence (x,) does.

Proof. According to [6] the non-archimedean growth function associated to the
sequence (x;) is also associated to the translation length function of a minimal action
I'x T—>T of I' on a A-tree with cyclic edge stabilizer. Since the cusps of M are
represented by parabolic elements throughout the sequence, for each cusp E, n, (E) has
a fixed point in 7. According to IV.2.1 the action satisfies Condition (b) of Theorem
IV.1.1. Thus, by Theorem IV.1.1., this action is dual to a measured lamination
(&, p) = M. By (1.3.10) the geometric intersection with (&, ) is the translation length
function of the action. This completes the proof of Theorem 1V.2.2. O
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