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Galois cohomology of biquadratic extensions

A. S. MERKURIJEV AND J.-P. TIGNOL*

For a quadratic extension K/F of fields of characteristic different from 2, there
is a well-known long exact sequence relating the Galois cohomology groups of (the
absolute Galois group of) F and K with coefficients in u, = { +1}; if (@) € H'F is the
element which corresponds to K = F (\/5), the exact sequence is:

res C

(a) - or (a) -
. H" 'F H"F » H'K s H'F sy H'H1F 5 » o (])

where res and cor are respectively the restriction and corestriction maps (see for
instance [1, Cor. 4.6]). This exact sequence plays a crucial role in the investigation
of quadratic forms under quadratic extensions: see [1], [2].

In the case of a biquadratic extension M =F(\/cz, \/a—2), i.e. an elementary
abelian Galois extension of degree 4, there is no such long exact sequence. However,
the kernel of the restriction map H?F— H?M is known from Brauer group
computations (see for instance [23, Cor. 2.8]); it consists of sums of symbols of the
type (a,, x,) + (a,, x,) where x,, x,e F*. Moreover, there is a ‘“‘common slot
lemma” which gives a criterion for such a sum to be zero: if (a,, x,) + (a,, x,) =0,
then there exists an element y € F* such that

(ala xl) = (al,y) = (a2’ y) = (aZ’ x2)'

This information can be encapsulated in the following exact sequence (see [23],
[6, §3], [19]):

3
ﬁ res
@ H'L, —> X ®;, H'F —— H*F — H*M
i=1
where L,, L,, L, are the quadratic extensions of F contained in M and X is the
subgroup of H'F generated by (a,) and (a,); 7, is the cup product and B, is defined
below. (The corresponding sequence for triquadratic extensions is not exact in

general: see [6, §5], [19, §5)).

* Supported in part by F.N.R.S.
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The aim of this paper is to extend and generalize this exact sequence, and to
define a kind of *“dual” sequence centered around the corestriction map. For each
positive integer n, we define two 7-term zero-sequences S, and S” associated to a
biquadratic extension M/F and show that exactness of both of these sequences
depends only on the vanishing of two of their homology groups; we further show
that these sequences are exact for n < 2.

To describe more explicitly the results of the paper, we fix the following
notation: M /F is a biquadratic extension of fields of characteristic different from
2; a,,a,,a;€ F* are such that a,a,a;,=1 and M = F(\/aT, \/a_z, \/a—3). For
i=1,2,3welet L = F(\/g,) < M and we denote by o, the non-trivial element of
the Galois group G = Gal(M/F) which leaves L; elementwise invariant.
We denote by (a,) € H'F the image of aq,e F* in F*/F*?=H'F and we let
X ={0,(a,), (a,), (a;)} = H'F. The group X is naturally identified to the dual of the
Galois group G, by Kummer theory, since it is the kernel of the restriction map
H'F-H'M. Fori=1,2,3, we also choose a square root \/5,. e L in such a way
that \/c—z: \/21—2\/21; =1, and we denote by (ﬁ) its image in H'L,. The non-trivial
element of Gal (L,/F), which is the restriction of o, to L;, for any j # i, is simply
denoted by: x +— X. Finally, as a general rule, if K/E is an extension of fields, the
image of the cohomology class ¥ € H"E under the restriction map H"E —- H"K is
simply denoted by u,; if K/E is finite and separable, the corestriction map
H"K — H"E is denoted by N, . or corg, .

We define the following sequences, for n > 0:

}
Xn - Bn 7n res
S, HM®HTF)—> @ H'L, > XQH'F > H'*'F— H"*'M
=1
5’1

3
" C_B H'1+1L,;*H'H—IM@(X@H")”F)@H"*_ZF

=1
and

C o 3 pn " cor
S H"+IM®(H'1+1F)3<—-—®Hn+]L,4——G®H"+lF‘ H"F « H"M

=1

3" 3 en
@ HL — H'M®GRHF)®H"'F

1= 1

where the tensor products are over F, (or Z) and the maps are defined as follows:

* o, (U, (0)1 <, <3) = (Npgg, (@) +(0,) )1 <0 <3

3
¢ BII(II)ISISB: Z (a1)®NL,'F(11)
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* )’n('z,l (a;) @ﬁ) = ‘Zl (@) - f:
* 5,(u) = (NM/L,(u))l <i<3

3 3
* ﬁn(li)lsis3=(z Taes Br i < i< 35 Z NL,/F((\/‘;) : li))

i=1 i=1
and, denoting by {,)>: X x G - F, the canonical pairing,

* OC"(I,-)l <i<3™ ( Z (li)Ma (NL,/F(li))l <i< 3)

i=1

) ﬁn(.i Uf@“'):((i (a)), 0j>uj>L‘> -, so that

B0, ®u, +0,@u, +03@us) = (1 + 13) > (g + t43),, (g + 1))

3

* Yu) = Z 0,®(a;) u

i=1

* 5" <ics= Y (m

i=1

3 3
¢ 3n<ua Z o, ®v;, t)'_"(NM/L,(u) +((\ﬂ;i)tL,))lsiSJ+ﬂn‘l<Z Gi®vi>'

i=1 i=1

(In sequence S°, we set H™'F =0).
The fact that S, and S” are zero-sequences is easily checked. (To see that
g, - 0, =0, observe that

2 3
L Noir((/a) - Nage () = NM/F(Z (V@) - u) =0,

i=1

since the square roots have been chosen in such a way that (\/21‘1) ar
(\/LZ)M + (\/cZ)M = 0). Therefore, we may define homology groups:
H,(1)=Ker §,/Ima, H#"(1)=Kera"/Imp"
#,(2) =Kery,/Imp, #"(2)=Ker f"/Imy"
#,(3) =Kerres/Imy, #"(3)=Kery"”/Imcor
H,(4) =Kerd,/Imres H#"(4) =Ker cor/Im $”
H,(5) =Kereg,/Ims, H#"(5)=Kerd"/Ime".
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The results we prove are the following:

THEOREM A. For all n 20, there are natural isomorphisms: #,(2) ~
H"(2) ~H (&) ~ H"(4) and H ,(3) ~ H#"(3). Moreover, if #,(3)=#"(3)=0,
then #,(1) =H"(1) = H,(5) = #"(S5) =0.

THEOREM B. The sequences S, and S™ are exact for n < 2. Moreover,

H3(1) = A1) = H3(3) = #H7(3) = H'5(5) = #7(5) = 0.

In the case where M is not a field but only an étale algebra Galois over the field
F with Galois group G elementary abelian of order 4, the sequences S, and S” are
exact for all n, provided (\/67,) e H'L,is suitably chosen when L;is split: if L, ~ F x F,
one sets (\/(7,) =((—=1),0)0r (0,(—1)) e H'F x H'F, adjusting the various choices
in such a way that (\/;IT)M + (\/aiz)M + (\/a.3)M = 0. Exactness of S, and S” in the
completely split case (i.e. when M ~ F*)is easily checked by elementary computations;
in the case where M ~ L x L for some field L quadratic over F, exactness of S, and
S” follows from the exact sequence (1) for quadratic extensions.

1. Proof of Theorem A

Our method of proof uses the following easy observation: consider two intersecting
exact sequences:

We then get two zero-sequences:

&

¢ d e
ctp iz @
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and

r—A4—>F—5G. (3)

We denote the homology groups of (2) at D and Z by #(D) and #(Z)
respectively and the homology groups of (3) at 4 and F by #(4) and #(F)
respectively.

LEMMA (of the 700th'). There are natural exact sequences:
d ePe
0—> #D)— E— FDZ
] e®e
d+ 9o £
D®A— FE— H#(Z)— 0
d+ 9o e
D®A— E— #(F)— 0.
In particular, there are natural isomorphisms: # (D) ~ #(A) and #(Z) ~ H(F).
The proof is a straightforward verification, which is left to the reader.

Henceforth, we use the same notation as in the introduction; for simplicity, we
denote by A the field F, with two elements. If I' denotes the absolute Galois group
of F, we then have H"F = H"(I', A); moreover, Shapiro’s lemma shows that the
cohomology of I' with coefficients in the group algebra A[G] is canonically
isomorphic to the cohomology of M:

H"M = H'(T', A[G)).

For i=1,2,3, let G, =Gal (L,;/F); we denote by e; and e, respectively the trivial
and the non-trivial element of G, viewed in @?_ | A[G,]. Thus, (e,, €, e,, &,, €3, &)
is a basis of @;_, A[G;] as a vector space over A. There is a fundamental exact

sequence of I'-modules:

res f 3 cor
0— A — A[G] — @ A[G,] — A[G] — A —0 (4)

i=1

! We thank M.-A. Knus for suggesting this name to us.
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where the maps are defined as follows:

*res(l) =140, + 0,4+ a,. This map induces the restriction map in cohomol-
ogy.

* f(1) = e, + e, + e5; the fact that fis a I'-module homomorphism then implies:
flo))=e +e&,+ &, f(0,) =€ +e,+ ¢ and f(g,) =€, +¢é,+e;. This map
induces the direct sum of corestriction maps in cohomology.

* g(e,) =1+o0,fori=1,2,3; the fact that g is a I'-module homomorphism then
implies g(e,) = g, + g, where {i,j, k} = {1, 2,3}. This map induces in coho-
mology the sum of restrictions of conjugates: g : ®;_, H"L, > H"M maps
(s by ) to (I ar + L) p + (B

* cor is the augmentation map: cor (1) = cor (6,) = cor (6,) = cor (65) = 1. This
map induces the corestriction map in cohomology.

The exactness of the sequence (4) is easily checked by a straightforward computa-
tion.

The A-vector space A[G] can be identified with its dual by using the canonical
symmetric bilinear form defined by the trace map ¢ : A[G] — A which carries every
element in A[G] to the coefficient of 1. Similarly, (®}_, A[G.)* = ®}_, A[G,]. The
transpose of res : A — A[G] is then cor : A[G] —» A, and the transpose of the funda-
mental sequence (4) is:

res * 4 " cor
0— A — A[G] — @ A[G,] —> A[G] —> A — 0 (5)

i=1

where g*(1) =¢é,+é,+¢;, g*(o)) =e1 te,t+e;, g%0,) =e, + &+ e, g¥03) =
e, +e,+ e and f*(e,) =1+ o, for all i;f*@;) =0, + 0o, where {i,j, k} ={1,2,3}.
The map g* induces in cohomology the direct sum of corestriction of conjugates:

3
g* H'M — @ H"L, maps u to (Ny;, (1)1 <, <3

i=1

and f* induces the sum of restriction maps in cohomology.
Let N denote the cokernel of the map res:

N = coker (res : A — A[G));
by duality, we get

N* =ker (cor : A[G] = A),
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and the exact sequences (4) and (5) yield four short exact sequences:

0— A — A[G] — N — 0 (6)
7 3
0— N— @ A[G,] —— N*—0 (7)
i=1
g* 3 "
0—> N— @ A[G,] — N*—0 (8)
=1
0— N* — A[G] — A — 0, (9)

where 7 and i are the canonical maps.
We further define an exact sequence

cor

h
0 > G > N > A >0 (10)

and its dual: .

res h*

0— 4 > N* > X — 0 (1

where £ is defined by: A(g,) =1+ 0, + res (A) for i =1, 2, 3, and the maps cor and
res are induced by the corresponding maps in (4) (or (5)). The sequences (10) and
(11) are exact sequences of I'-modules, provided G and X are endowed with the
trivial action of I'; we therefore have H"(I',G) =G ® , H'(I', A) = G ® H"F and,
similarly, H*(I', X) = X ® H"F.

Observe that, even though the sequences (7) and (8) are not identical, the
corresponding connecting maps 0 : H(I', N*) — H"*(I', N) are the same, since
there is a commutative diagram:

r 3
0— N— @ A[G,] — N*—0

1= 1

I

0— N, é} AlG] L N* —0

where the central vertical map interchanges e; and ¢é; for all i.
LEMMA 1. The sequence:
H'F = oo, N% = 5o/, Ny S B F

is a zero-sequence for all n 2 0.
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Proof. There 1s a commutative diagram of I'-modules:

N=—m——A

AT

,
0—>N—> @ A[G,] —— N*—0

1=1
corl 11
A =———/

where k(1) =e, + €, + e, + €, + e; + &, (i.e. k induces the direct sum of restriction
maps) and l(e;) = l(¢;) = 1 fori =1, 2, 3 (i.e. /induces the sum of corestriction maps).
The lemma readily follows from the induced commutative diagram in cohomology:

H'F ————= H"F
kl lres
3 B

5 F 2
@ H'L,— H'I,N*) — H"*'(I', N) — @ H"*'L,

=1 g i=1

Hn+1F Hn+lF D

COROLLARY 1. There are natural isomorphisms:
H,(2)~Im (0 : H'(I', N¥) —> H"* (', N)) ~ #"(2).

Proof. The cohomology sequences associated to (7) and (11) intersect at
H"(I', N*):

3
@ H'L,
i=1
lg
res h*
H'"F — H'I',N*) — X® H"F — H"*'F

+
Hn+ l(r’ N)

f

3

@ Hn+lLi

i=1
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By the lemma of the 700th, the homology of
é - res A 3
H"F Hn+l(r’ N) s @ H"+1L,~,
i=1

which is Im (0) since the preceding lemma shows 0 - res = 0, is naturally isomorphic
to the homology of

3 "
@ H'L, 5 XQH'F— H"*'F.
i=1

A straightforward computation shows that #* - ¢ = 8, and that y, is the connecting
homomorphism in the cohomology sequence associated to (11). This proves the
first part of the corollary. To prove the second part, we let the cohomology
sequences associated to (7) and (10) intersect at H"*'(I", N) and argue as above,
using the fact that cor- 0 =0. U

For all n >0, let 0, : H'(I', N)» H"*'F and 0. : H'"F —» H"*'(I', N*) denote
the connecting homomorphisms in the cohomology exact sequences associated to
(6) and (9) respectively.

LEMMA 2. The sequence:
a

2, a,
H"'F —— H"I', N¥) — H"*\(I', N) —— H"*2F

is a zero-sequence for all n 20. (We let H"'F =0 if n = 0).
Proof. Since (\/E,.) e H'L,= H\(I', A[G,)) for i =1, 2, 3, we may consider

(Vay), (Va), (/) € H'(r, @ A[G,-]);

let

3
0— DAG]— U—A4—0
=1
be a corresponding extension of I'-modules (using the natural isomorphism be-
tween H'(I', ®}_, A[G,;]) and Extly;, (A4, @], A[G,])). More explicitly, a base of U
as a A-vector space is given by e,, €, e,, €,, €5, &; and an extra element u on which
I' acts by: t(u) =u + s(tr), where s is a l-cocycle whose cohomology class is

(@), (Vay), (/a3)). Since (f)M+(\/~)M+(\/‘)M—O the image of this

cohomology class in H(I', A[G]) = H'M under f* is trivial; therefore, there is a
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commutative diagram with exact rows:

where the central vertical map carries u to an element 1 € A[G] such that

f*(s(1)) =1(4) — 4 for all T eI'. This diagram yields a commutative diagram in
cohomology:

3
H'F — @ H”+1L,

i=1

L

€,

H"F —— H"+YI', N*)

¢

H"+ Z(F’ N)

from which it follows that ¢ - 6, = 0. To prove d, - d =0, we consider the dual of
the first diagram of this proof:

0— A — A[G] ——— N . 0
A
3

0=s A ——s [T* » @ A[G]—0

i=1

The claim follows from the associated commutative diagram in cohomology:

H"(I', N*)
VL ('§r
H”“(F, N) _— Hn+2F

S/

v

3

@H"+1L,~——>Hn+2F 0O

i=1
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COROLLARY 2. There are natural isomorphisms:
H,(4) ~Im (0 : H(I', N*) — H"* (', N)) ~ #"(4).

Proof. The cohomology sequences associated to (6) and to (7) intersect at
H"+ XTI, N):

3

@ H"L,
Fro=

g
H"(I', N*)

é

res v o,
H'H\F—0, H'H'lM—-—* H”*‘(F, N) — > H"+t2F

lf
3
@ H"+|L,-

i=1
The lemma of the 700th then shows that the homology of the sequence

3 a,-d
@ H'L, - H™I', N*) == H"*°F,

i=1

which is isomorphic to Im (0) since d, - d =0, is canonically isomorphic to the
homology of

res f 3
H'*'F— H"*'M — @ H"*'L,,
i=1

which is #,(4) since f is the direct sum of corestriction maps. The second part of
the corollary follows by the same arguments, letting the cohomology sequences
associated to (9) and (8) intersect at H"(I", N*).

PROPOSITION 1. For all integer n = 0, there are natural isomorphisms:

#,(3) ~ #"(3) ~ Coker (n + h : H"M & (G ® H"F) — H™(I', N))
~Ker (i@h*: H"* (I, N¥) — H"*'M @ (X ® H"* 'F)).
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Proof. We let the cohomology exact sequences associated to (6) and to (10)
intersect at H"(I', N):

GRH"F

h
n A a, res
H'"M —— H™(I', N) —— H"+'F ——, gn+1pg

cor

H"F

G®Hn+lF

The lemma of the 700th then yields a natural isomorphism between the homology of

cor m

H"M > H'F G®H""'F,

which is #"(3), the homology of
¢, h res
G@H”F—*‘* Hn+lF'—-->H"+]M

and the cokernel of 1 + 4 : H"M ® (G ® H"F) - H(I', N). A straightforward com-
putation shows that d, - h =y,, provided G is identified to X by means of the
unique non-degenerate symmetric bilinear form on G, i.e. by letting g, = (a,).
Arguing similarly, using the cohomology exact sequences associated to (9) and to
(11) intersecting at H" ™ (I, N*), one sees further that #,(3) and #"(3) are also
isomorphic to the kernel of i @ h*. O

PROPOSITION 2. For every integer n =0, if #,3)=H#"(3)=0, then
H,(1)=#"(1)=0.

Proof. From the first diagram in the proof of lemma 1, we get a commutative
diagram:

H'F=———=—H"F

NS

.
H'(I', N) —— @ H"L, —— H"(I'. N*)

=1
lh*

XQ®H"F
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which yields an exact sequence:

f+k 3 h* g
H'I',N)® H'F — @®H"L, —> XQ H"F.
=1
As we already noted in the proof of corollary 1, &* - g = 8,. Now, the preceding
proposition shows that if 5#,(3) = #"(3) =0, then the map
n+h: H'M®(GR®H'F)—> H'(I', N)

is surjective; therefore, the image of H"M @ (G H'F)®H"F in @}_, H"L,
under the map (f+ k) - [(m + h) @ 1] is the same as the image of /' + k, which is
the kernel of f,. A direct verification shows that

(f+k) - [(n+h@(,0,Rf, +0,0f + 0, f3, v)

= <NM,L,(u) - (v + Y f,) )

Therefore, the image of this map is the same as the image of «,, hence
H,(1)=0.

In order to show that #”(1) =0, one argues similarly, starting with the
following commutative diagram, also derived from the first diagram in the proof
of lemma 1:

G®Hn+1F
|

7 3
Hn+l(r, N)— G_) Hn+]L,-——i—> H”*‘(F, N*)

i=1

Hn+lF__—Hn+lF
and using the hypothesis that #,(3) = 5#"(3) =0 to see that the map
(i@h*)@—)]:fl”“(l", N*)@H'7+1F———> Hn+]M®(X®Hr1+1F)®Hn+1F

is injective, by the preceding proposition. O
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PROPOSITION 3. For every integer n =0, if #,(3)=#"(3)=0, then
H(5) = H#"(5) =0,

Proof. The diagram involving U* in the proof of lemma 2 yields in cohomol-
ogy:

Hn+lM H’1+I(F,N) r Hn+2F

!

@ Hn+lL, ___‘_’_) H"'*+2F

F= 1
Jg

H"* (I N*)

hence there is an exact sequence:

oy, 3 g@(“;
H"*'M — @ H"*'L,— H"* (I . N*) @ H"* *F.
=}
Proposition | shows that i@ h*: H"*'(I', N*) - H""'M ® (X ® H" " 'F) is injec-
tive. It then suffices to see that (@ h*)DI] - (g D7,) =¢, to complete the proof
that .#,(5) =0. To prove that # "(5) =0, one uses the same arguments, starting
with the first diagram in the proof of lemma 2 and using proposition | to see that
the mapn+h: H'M ®(G® H'F) - H'(I', N) is surjective. ]

Theorem A follows from corollaries 1 and 2, and from propositions 1, 2
and 3.

In closing this section, we observe that Theorem A can also be proved directly
by elementary (but tedious) computations using the exactness of sequence (1)
for quadratic extensions instead of cohomology computations. For example—
and because it yields additional information—we note that the isomorphism
A ,(2) ~ .#"(2) can also be proved by using the following commutative diagram, in
which we denote simply A(k) = H*M @ (H*F)?, for k =n, n + 1:

Ay res

: Bn Vn
An) — @ H'L,— X@H'F— H"''F H"+ 'M
g |

I+()j' }Zcorm/ },/1,, l@rwt/* ll@()

3
cor »,.H fn N ah
H'M —— HnF____)G®Hn+1F____) H’1+‘L,—>A(H+1)

=1
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where the map 4, is defined by

3 3 3 3

An(z (a;) ®fi>= Z o, ®(a) " fi + Z 0, ®(a;) ( Z f,)
i=1 i=1 i=1 j=1

(This map 4,, is induced by the bilinear map X x H"F -G ® H"*'F which carries

. f) to Z}_, ({x,0,>0,) ®((a;) - f)). From this diagram, isomorphisms #,(1)

~ #"(3) and H,(3) ~ #"(1) can also be derived; therefore, we have in fact

H,(1) = H"(3) ~H,(3) ~H"(1).

2. Proof of Theorem B

In view of Theorem A, vanishing of one of the groups 5 ,(2), #"(2), #,(4),
H#"(4) and one of the groups #,(3), #"(3) for some n =0 implies that the
sequences S, and S” are both exact. Of course, the difficulty of proving such a result
increases very rapidly with n. While our main results concern the case where n =2
or 3, we first review the case n =0 (which is trivial) and n = 1.

21. n=0

Since B, =0 and y,: X ® H°F - H'F is the inclusion of X = X ® H°F in H'F,
exactness of the sequence:

3
ﬂ res

@ HL, " XQHF- > H'F - H'M

i=1

readily follows from the definition of X. This shows #,(2) = 5#,(3) =0, hence S,
and S° are both exact.

22. n=1

We first show #,(2) =0: let Z}_, (a;) ® (x;) € Ker (y,); we then have the
following relation between quaternion algebras:

(a1, X)r ® (az, X,)r ® (@3, X3)r =0 in H*F = ,Br (F),
or, taking into account the fact that (a,) + (a,) 4+ (a;) =0:

(ay, x1x3)F = (a3, X X3) .
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The *‘common slot lemma” [22, p. 267] or [1, Lemma 1.7] yields an element y € F*
such that

(ay, x,%3)p = (a), y): = (a, Wi = (ay, X3X3)-
From these relations, it follows that
(@), xi x39)p =(az, ) = (ay, X,X39) = 0,

hence x,x;3y =N, (), x,x39 = N, ,wly) and y =N, () for some [, e L)
(i=1,2,3), and

Y @)®) =Y (@) ®N, ) =i (1), (o), (15)).

1= 1 Foe= ]

This proves #,(2) = 0.

To complete the proof that S, and S' are both exact, it now suffices to show
#(3) =0. Let ue H?F=,Br(F) be such that u,, =0. Then u, is split by
M = Ll(\/aj), hence it is a quaternion algebra:

Uy, = (a,, U)L,
for some v € L. From N, ,(u, ) =0 it follows:
(ay, NL,/F(U))F = 0.

Therefore, by [5, 2.13] or [23, Cor. 2.10] (or lemma 3 below), there exists r € F*
such that

(a,, U)Ll =(a, ) r®L,.

Then u — (a,, r)r is split by L,, hence there exists ¢ € F* such that u — (a,, r), =
(a,, 1), whence

u=(a,, ) ®a,rr=7a) ) +(a) ® ().

This shows #,(3) =0 and completes the proof that S, and S' are both exact.
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23. n=2

In order to prove exactness of the sequences S, and S*, we will need to switch
from Galois cohomology to Milnor’s K-theory and Witt rings of quadratic forms.
For any field F, we simply denote by K, F the Milnor K-groups of the field F, as
defined in [15], and by WF the Witt ring of F (if char. F # 2). The n-th power of
the fundamental ideal IF of WF is denoted by I"F, and we let I"F = I"F/I" ' 'F and
k,F=K,F/|2K,F.

The element in K, F corresponding to a € F* is denoted by {a}, and for
a,...,a,€F>* we let

{a;,....a,}={a,}... {a,} € K,F.
Similarly, for a € F* we denote by €a) the (isometry class of the) quadratic form
{1, —a) = X?—aY? and also its image in the Witt ring WF. If a,, ..., a, € F* we
let

Lay,...,a,»=«La;»...La,»el"F
and

(ay,...,a,) =(a,)...(a,) € H"F.

We recall the homomorphisms:

Rll

k,F H"F

A
S, s e,
vd

I'F

defined by: R,({a,,...,a,}) =(a,,...,a,) and s,({a,,...,a,}) =<Ka,,...,a, >+
I" T 'F. The existence of the map e, for which the triangle commutes is proven for
all n < 4. If n =2, it is given by the Clifford invariant: see [10, Chap. 5]; for n =3
it was proved by Arason [1], for n =4 by Jacob—Rost [8] and Szyjewski [21].

The map R, is known as the residue norm homomorphism; it is an isomorphism
for n <3. This result was proved for n =2 by Merkurjev [11], for n =3 by
Merkurjev—Suslin [14] and by Rost [18§].

The map s, is surjective for all n; since R, is an isomorphism and e, is defined
for n < 3, it follows that s, is an isomorphism for n < 3,

Even though e, is not known to be well-defined for n = 5, it is well-defined on
Pfister forms: for a,,...,a,; and b,,...,b,€ F*, we have (a,,...,a,» =
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Kby, ..., b,» in WF if and only if {a,,...,q,}=1{b,,....b,} in k,F, and any of
these relations implies: (¢, ..., a,) =(b,,...,b,)in H"F: see [1, Satz 1.6] and [4,
Theorem 3.2].

If K= F(ﬁ) is a quadratic extension of a field F of characteristic not 2, there
are zero-sequences analogous to (1):

f ]
vy

N {a)
I i kn ]F knF xanh“F’ knF ——)kn+1F > (]2)

and:

_ ! Lay _ _ N _ Lay _
"—'——‘*I” F [nF InK 71”F 1”+]F~—>"‘ (13)

Since these sequences are related to (1) by the homomorphisms R, and e, (for
n < 4), bijectivity of R, and ¢, for n < 3 implies that sequences (12) and (13) are
exact when they are truncated at k,F and I*F respectively; thus:

00— ko F koK koF e kiF —> k;K — kyF — k,F
(14)
and
0 I°'F I°K I°F—— - — I°F I’K— I’'F—T‘F (15
are exact.

The following lemma generalizes one of the steps in the proof of #,(3) =0
above:

LEMMA 3. Let K/F be a quadratic extension of fields of characteristic not 2, let
keK*andlet fi,....f, e F*.If {fi.....f, s N (K)} =0 in k,F, then there
exists f, € F* such that {f,....f, .k} ={fi.....[,}x in kK.

Proof. 1f n = 1, the lemma is another way of stating that sequence (14) is exact
at k, K.

For n = 2, the lemma readily follows from [5, 2.13] or [23, Cor. 2.10] or [14,
Lemma 2.9]. We include a proof for the reader’s convenience: if f, in a square in K,
then {f,, k} =0 in k, K and we may choose f, = 1 in this case. We may thus assume
K(\/f,) is a field. It is then an elementary abelian extension of F. Let ¢ (resp. 1) be
the non-trivial automorphism which leaves F (ﬁ ) (resp. K) elementwise invariant.
The hypothesis that {f;, Ng,(k)} =0 in k,F means that ko(k) = xt(x) for some
xeF (\//7, ). Certainly, x + t(x) and k + a(k) are not both zero since the preceding



156 A.S. MERKURIJEV AND J.-P. TIGNOL
equation would then yield: k% = x?, which is impossible since k € Kand x € F (\//7,).

Changing x into — x if necessary, we may thus assume k& + a(k) + x + 7(x) # 0. We
may then choose f; = k + a(k) + x + 7(x), since the relation:

(T+xk= " t(1+xk Y=f£k""
shows that f,k ! is a norm from K(\/fl) to K, hence {f},f;k "'} =0 in k,K.
In the case where n > 3, the idea is to reduce to the case n =2, as follows:

switching to quadratic forms, the hypothesis yields: f,, ..., f, 1, Ngp(k)» =0 in
WF; therefore,

Kfis oo s fu D =Ngiplk) > - frs oo fu 1D
hence, by [10, Cor. 10.1.7], Ng (k) is represented by fy,...,f, 1D If Ngp(k)
e F*2, then there exists f, € F* such that k =7, mod K>, by the exactness

of (1) at H'K, hence {fi,....[,_1,k}={fi.....[o}x in k,K If Ny (k)¢ F*2,
let

Ny (k) = x*—f" (16)

where x, /'€ Fand —f" is represented by the pure subform of {f,,....f,_». By
[10, Prop. 10.1.5], we then have

<<f]1'"Lf;z—1>>=<<f,lv"'sf;172ﬁf,>> (17)
for some f1,...,f, € F~. Now, equation (16) yields: {f’, Ny (k)} =0 in k,F,

hence, by the preceding part of the proof (when n = 2), there exists f, € F* such
that

Uk =" Tulx
Multiplying both sides of this equation by {f7,...,f,_,}, we get:
Ui k=0 faa ko e in kK,
hence, by (17):

Voo ok =0, S bk O
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We will also need the following characterization of the elements in K,K which
are fixed under the Galois group of K/F:

LEMMA 4. Let denote the non-trivial automorphism of the quadratic extension

K= F(\/c_z). For n <3, every element u € K,K such that it = u can be written in the
form:

u =UK+ {\/;} * M‘K

for some v e K, F, we K, |F.

Proof. From it =u, it follows that Ny .(u)x =u + @ = 2u, hence the image of
Ny () in k,F is the kernel of the extension of scalars map. By the exactness of
sequence (14), it follows that

Ngjp(u) ={a} -t +2s
for some € K, _,F, s € K, F, hence, extending scalars to K:
2u=2{/a} " tx+ 2.

Since the 2-torsion subgroup in K,K is {—1} - K, _,K, by [13, Theorem 14.2] and
[14, Prop. 6.1], it follows that

u=1{Ja} tx+sx+{-1} x (18)
for some x € K, K. Since {—1} = {\/5} — {——\/;1}, we have:

(1) x={Ja} (x+ %) —({—Ja} x+{a} - D)

= {\/;} “Ngip(X)g — NK/F({“\/;} C X))k

Substituting for {—1} - x in equation (18), we get:

u={\/;} '(t'*‘NK/F(X))K‘*'(S_NK/F({—\/;}’X))K- 0

We now return to the notation set up in the introduction, and aim to prove
H ,(3) =0 for n =2,3. The main idea of the proof of #,(3) =0 above was to

extend scalars from F to L, and work back from there. More generally, this idea
yields the following reduction:
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LEMMA 5. Let n be an arbitrary positive integer. If every v € H"L, such that
(ay) - NL,/F(U) =0
can be written in the form
v="rp, + Ny, ()
for some r € H'F, s € H"M, then #,(3) =0.
(The converse is also true, but will not be needed).

Proof. Let u € H** 'F be such that u,, = 0; then u,  is split by M = L,(\/zz),
hence by the exactness of sequence (1) for the quadratic extension M/L,, we have:

up, =(ay),, v

for some v e H"L,. From N, ,(u,, ) =0, it follows that (a,) - N, ,(v) =0. The
hypothesis then yields r € H"F, s € H”M such that

v=rp, + Ny, (9.
Since (a,) - Ny (s) =0, we get:

U, :(az)L,' rr,

hence u —(a,) - r is split by L,. Using sequence (1) for L,/F, we have
u—(a,) - r=(a,) -t for some t € H"F, hence

u=(a) t+(@a) r=y,(a)®t+(a) ®r). [

PROPOSITION 4. #,(3) =0 for n =2, 3.

Proof. We first show that it suffices to prove, for n =2, 3:

(*) Everyv e K, L, such that N, ,-(v) =N, ,r(w) mod 2K, F for some w € K, L,
can be written in the form: v =r, + N, (s) for some r € K, F, s € K,M.

Indeed, if v € H"L, is such that (a,) - N, ,r(v') = 0, then by surjectivity of R, for
n =2, 3 one can find v € K, L, such that R,(v) =v’. Moreover, bijectivity of R, for
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n = 2,3 and commutativity of the diagram

N
knL2 — knF

T

(
H'L,— H"F

(12)

;Hn+1F

whose bottom row is exact, shows that N, () =N,,,(w) mod 2K, F for some
w e K,L,. By (%), it follows that

v’ =R, (r)L, + Nayr (R,(5))
for some r € K,,F, s € K, M, hence lemma 5 shows that J#,(3) = 0. Thus, it suffices
to prove (*).

In order to do that, we first reduce to the case where 7 =v. Since N, ,r(u) = 2u
for every u € K, F, we may assume, after adding to w an element in K,F, that

Ny, #(®) = Npyp(w). (19)
Then,

NM/L;(UM —Wy) = NL,/F(U)Lz - N'LZ/F(W)L; =0.

From Hilbert’s theorem 90 for K, ([7, Satz 90] for n =1, [13, Theorem 14.1] for
n =2 and [14, Theorem 4.1] for n = 3), it follows that

Uy — Wy =1t — 05(1)
for some ¢t € K, M. We then have

Nain, (03(0) = Npgyp (1) =20 + Ny g (W),
hence, by (19):

Nppip (05(1) = Nppop (1) +7T — 0.

Substituting v — N, (¢) for v, we may thus assume o =v.
Applying lemma 4, we now get:

v=x, 4+ {Va} e
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for some x € K, F, y € K, _,F. From (19), it follows that {a,} - N, (v) € 2K, , | F,
hence

{aZ’ '—al}'yeanﬁ—lF' (20)

If {a,, —a,} € 2K, F (i.e. if the quaternion algebra D = (a,, —a,), is split), then
it follows from lemma 3 that {az,\/a—l} = {a,, f} mod 2K,L, for some fe F*.
Therefore, {a,}, - ({\/a_1 } —{f}1,) € 2K, L, and, by the exactness of sequence (14),
{\/21‘,} — {11, = Nuy,(2) for some ze K M. We then have {\/a‘,} YL, =
({f}- Wi, + Ny, (yuz), hence

v={_(x+ {f} 'Z)L, + NM/Ll(yMZ)s

and the proof is complete in this case.

Suppose then that the quaternion algebra D = (a,, —a,), is not split. If n =2,
then y = {g} for some g € F* and from relation (20) it follows by lemma 3 that
{a,, \/a—,, g} ={a,,b,g} mod 2K;L, for some b € F*, hence, by the exactness of
sequence (14),

{\/a—lag} = {b’g}L, +NM/L,(Z)

for some z € K3 M. Since the left-hand side is {\/a’l Yoy, we get:

v=(x+1{b,g})r, + Nuy (2,

and the proof is complete for n = 2.

Finally, we consider the case where n =3 and D is a division algebra. By [12,
Theorem 2], it then follows from (20) that y lies in the image of the reduced norm
map Nrd: K, D — K, F. Since K, D is generated by symbols of the type {f, d} where
feF* and d e D* (see [16],[17]) and since the reduced norm of such a symbol is
{f, Nrd (d)}, the element y has the form: y =X, {f;, Nrd (d,)}. For all i, we have
{a,, —a,, Nrd (d;)} € 2K, F, hence

{aZ’ —alaf;'a Nrd (dl)} € 2K4F
Lemma 3 then yields an element g, € F* such that

{ay,\/a,,f,, Nrd (d)} = {a,, g, /;, Nrd (d)},, mod 2K, L,.
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By the exactness of sequence (14), we get:

{(Ja, £, Ned (d,)} = {g,, f;, Nrd (d)} + Ny 1, (2,)

for some z, € K;M. Summing over i, we obtain:

Jat v, =Y (g, [ Ntd (d)}, + Ny (2,),

hence

r = (X +Z {gnf;» Nrd (dr)}) + NM;L](Z Zi)' D

L i

To complete the proof of Theorem B, it now suffices to show that #,(2) =0.
We first derive from our proof of #,(2) = 0 above the following general statement,
which shows that #,(2) =0 follows from a kind of *“‘common slot lemma’:

LEMMA 6. Letn = 1. If for all s, t € H"F such that (a,) - s = (a,) * t there exists
u e H'"F such that

(a)) s =(a)) u=(ay) u=(a)-t,
then #,(2) =0.
(The converse is also true, but will not be needed).
Proof. Let £}_,(a,) ®f, € X ® H"F be in the kernel of v, ; then
(@) (i +13) = (@) - (S, +13),
hence, by hypothesis, there exists € H"F such that
(@) - (fi+fi)=(a) u=(a) u=(a) (f+/)
From these relations, it follows that

(@) - (fi+tfitw=(a;) u=(a) (f+fi+u)=0,
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hence f,+fi+u=N, (), L+fi+u=N,, k() and u=N, (l;) for some
e H'L,(i=1,2,3), and

2 @) ®fi= 3 (@) ®N, () =B, L, Iy).

i=1 i=1

This proves #,(2) = 0. O

We now show that the hypothesis of the preceding lemma holds for n =2, at
least when s is a single symbol:

LEMMA 7. If s = (b, ¢) € H*F and t € H*F are such that (a,) - s = (a,) * t, then
there exists u € H*F such that

(@) ~s=(a) u=(a) u=(a) -t
Proof. Under the isomorphism e;, the hypothesis translates to: €a,, b, c»,, =0

in I’L,, hence by the “Hauptsatz” of Arason and Pfister [10, Theorem 10.3.1],
€ay, b, ¢, is hyperbolic. By [10, Theorem 7.3.2], it follows that

ay,,b,cy =Ka,,b’, ¢’y

for some b, ¢’ € F*. Arason’s “‘common slot lemma” [1, Lemma 1.7] yields an
element u, € F* such that

Lay, b,cy =<Ka,,u,c) and <(a,,b',c’ ) =<«a,, u,c’,
hence
Lay, uy, Yy =<Lay, uy, c’y.
Applying again the “common slot lemma”, we get an element u, € F* such that
Kaj,u,cy=~«a,u,u,» and <a,, u;, ¢y =<4a,, uy, u ).
Thus,
ay, b, ¢y =<Ka,,u, uy) =<&a, uy, uy ) =<4a, b’, c"y.

The element u = (u,, u,) € H?F therefore satisfies the required conditions. O
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More generally, repeated use of Arason’s “‘common slot lemma’ [1, Lemma 1.7]
shows that the hypothesis of lemma 6 holds in I"F instead of H"F, at least when s
is represented by a Pfister form.

We aim to show that the hypothesis of lemma 6 holds in general for n =2, by
arguing by induction on the number of terms in a representation of s as a sum of
symbols. The initial step is of course lemma 7. In order to carry out the induction
step, we shall use the following approach: let b,c € F* and let ¢ denote the
8-dimensional quadratic form:

¢ =<ay) L<Kay, b, ¢y,
where (a,, b, ¢)’ is the pure subform of the Pfister form {a,, b, ¢. Explicitly,
¢ =a,x3— ayx? —bx3 — cx3+ a bx}+ a,exi+ bext— a bex?.

Let X = X(¢) be the associated projective quadric and let F(X) denote its function
field. Since the pure subform of {a,, b, ¢ represents —a, over F(X), it follows
from [10, Prop. 10.1.5] that

Ka,,b,cy =Ka,,b’, c"y (21

for some b’, ¢’ € F(X) *. The same arguments show that ¢ is isotropic if and only
if there exists b’, ¢’ € F* for which (21) holds.
For any field E containing F we denote by A(E) the homology of the sequence:

2 B2 3
HE - GQHE —> @ H¥L,QE);

i=1

thus, A(F) = #*(2). The main step of the proof is to show:

PROPOSITION 5. The map h(F) — h(F(X)) induced by the inclusion of F in
F(X) is injective.

Using this proposition, the proof of Theorem B can be completed as follows: in
view of lemma 6, we only have to prove that if s,7e H?F are such that
(a,) s =(a,) - t, then there exists ue H?’F such that (a)) s=(a)) u=
(a,) -u =(a,) - t. Lemma 7 shows that this condition holds if s is a single symbol.
Suppose then s = (b, ¢) +s’, where 5" is a sum of fewer symbols than s. Extending
scalars to F(X), we get from (21):

(al) ) (b’ C) = (a2) ’ (b/, C/)s
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hence (a,) - s' = (a,) * (t + (b’, ¢’)). By induction, we get ¥’ € H*(F(X)) such that
(@) "s"=(ay) " u =(ay) - u'.

On the other hand, by lemma 7 we get u” € H*(F(X)) such that
(a) " (b,c)=(ay) " u"=(ay) " u".

Therefore,
(a)) s =(a) W +u") =(a) W +u") =(a) " . (22)

Consider then o,®(a,) "t +0,®(a,) - s € G ® H?F. Since (a,) - s = (a,) - t, this
element is in the kernel of 2. On the other hand, equation (22) shows that

6, ® (@) 1 +0,®(a)) -5 = y°u’ +u") € G® HY(F(X)),

hence this element represents the trivial element of A(F(X)). By proposition 5, it
follows that this element is trivial in A(F), hence there exists u € H*F such that

0, ®(a) t+0,®(a,) s =y%u).

From this last relation, it readily follows that (a,) s =(a,) "u=(a,) "u=(a,) ' t,
and the proof of Theorem B is complete.

Alternatively, one can repeat the function field construction above to obtain a
field Q containing F such that the natural map A(F) — h(£2) is injective and for every
b,c € Q* there exist b’, ¢’ € 2 such that (a,) - (b, ¢) = (a,) - (b’, ¢’). Using lemma
7, it readily follows that A(Q2) =0, hence A(F) = 0.

We now proceed to prove proposition 5. Consider the following diagram:

-/.2 ﬁz 3
H*F —— GQH?*F @ HL,
i=1

Lo

2 2 3

HY(F(X) — G ® H(F(X)) — @ HY(L,(X))

i=1

where v,, v,, v; are the natural maps, and define a group A4 as follows:

{ue G®H’F|v,(u) € Im 5}

A
Im y2

= Ker (Coker y2 — Coker y3%).



Galois cohomology of biquadratic extensions 165

LEMMA 8. There is a natural exact sequence:
0 — Ker (W(F) — h(F(X)) — A — Ker v;— 0.

Moreover, Ker vy, =0 if ¢ is isotropic and Ker vy is a group of order 2 if ¢ is
anisotropic.

Proof. A theorem of Arason [1, Satz 5.6] shows that, for an arbitrary field E
containing F, the kernel of the natural map H*E — H*(E(X)) is trivial if ¢ is not
a Pfister form and is {0, e5(¢;)} if ¢ is a Pfister form. Since the discriminant of ¢
is a,, the form ¢, is a Pfister form if and only if a, € E *?. Therefore, the kernel of
H*L; —» H*L;(X)) is trivial for i=1,3 and is {0, (a,,b,¢),,} for i=2. Now,
(ay, b, c).,=0if and only if the Pfister form (a,, b, ¢}y becomes isotropic over L,;
this condition is also equivalent to the existence of b’, ¢’ € F* such that

<<al ’ b’ C>> = <<a2’ bla C’>>,

hence to ¢ being isotropic, as we noticed before. This proves the second part of the
lemma.

A chase around the diagram above shows that f? induces a natural map from
A to Ker vy whose kernel is Ker (h(F) — h(F(X))). To complete the proof, it thus
suffices to show that this map is onto. This is clear if ¢ is isotropic, since then
Ker v; =0. If ¢ is anisotropic, then we have seen above that

Ker v3 = {Oa (0’ (ala b’ C)L25 O)}

Consider then ¢,® (a;,b,c) e G ® H>F. From equation (21) and lemma 7, it
follows that there exists u € H*(F(X)) such that

(a;, b, C)F(X) =(a;) ‘u=(a,) " u.
These relations readily yield: v,(o;® (a,, b, ¢)) = y5(4). Moreover,
ﬁ2(03®(a1 ’ b9 C)) = (09 (a] s b, C)Lzs O)a

hence o, ® (a,, b, ¢) represents an element in 4 which is mapped to the non-trivial
element of Ker v;. ]

To complete the proof of proposition 5, it now suffices to show that A injects
into a group which is trivial if ¢ is isotropic and of order 2 if ¢ 1s anisotropic, since
the preceding lemma then implies Ker (h(F) — h(F(X))) =0.

For i =1, 2, let X' denote the set of points of codimension i on X. We denote
by do: H*F(X) > @ cx1 H'F(x) and 0,: @ . x1 H'F(x) > ®, x> HF(y) the
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tame maps (see [3]), by CH*(X) the second Chow group of X and by ch?*(X) the
factor group:

ch¥(X) = CH¥X)2CHX(X).

LEMMA 9. There is a natural zero-sequence:

a a
0— HF —s H*F(X) — @ H'F(x) — @ H°F(y) — ch(X) — 0

xeXx! veXx?
which is exact at every place except at @ .. y1 H'F(x). If ¢ is not an anisotropic
Pfister form, then the homology at this place is isomorphic to H'F.

Proof. Consider the following diagram, where the columns are exact and the
rows are zero-sequences:

0 0 0

3
>

O——»HZF(X)———» D H‘F(x)——+ @ HF(y)— 0

xex! N veX? N
R, R, Ry
0-——»K2F(X)—» D KFx) - @ KF(y)—0
xe X1 A ve X2 N

2 2 2

g a
0— K, F(X) — @ K,F(x) — @ K,F(y) —0

xext veXx?

A

D wFx) 0

xe X!

where p,(F(x)) = {+ 1} < F(x) *. The homology groups of the second (and third) row
are known from the papers [20] and [9] of Suslin and Karpenko: the homology at
K5(F(X)) is the isomorphic image of K, F [20, Theorem 3.6, Cor. 5.6], the homology
at @, x1 K, F(x) is isomorphic to K, F under the map: a € K, F +> a - s where s is
a hyperplane section [9, Theorem 4.1], and the homology at @, . y2 Ko F(y)is CH*(X).
It follows in particular that every element & € @, . 1 K, F(x) such that 2¢ € Im (J,)
can be represented, modulo Im (J,), by an element in @, x1 u, (F(x)).

A chase around the preceding diagram then shows that the homology of the second
row at K, F(X) is mapped onto the homology of the top row at H*F(X), hence

2
Ker ¢, = Coker (K, F — K,F) = H*F.

This shows that the sequence of the lemma is exact at the first two places.
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The diagram also yields a long homology sequence:

2
K,F— K,F—»hom( @ H‘F(x)>

xe X!

2
— CH*¥X) — CH*X) — hom ( @ HOF( y)> —0

yeXx?

from which it readily follows that
2
hom ( @D HOF(y)> = Coker (CH*(X) — CH*(X)) = ch*(X).
ve Xx2

Moreover, if ¢ is not an anisotropic Pfister form, then Karpenko has shown in [9,
Theorem 6.1] that CH*(X) has no torsion, hence

xe X!

2
hom< @D H‘F(x))zCoker(K,Fw—> K,F)=H'F. O

Consider now the following commutative diagram, whose rows are zero-sequences:

0
0 - A — Coker y2 — Coker y%

0GRHF->GRHFX)-> @ G H*F(x)
1

12 5% @

H?*F —— H*F(X) —— @ H'F(x) —— @ HF(y)

1 2

‘ cor @ cor I @ cor
H>M(x) —— @ H'M(x) —— @ H°M(y) — ch®X,; — 0
1 2
o e ]
3

D D H'L(x) > @D HL(y) > D ch*x, 0
1

=1 2 =1 i=1

B

(?B(y) »C » 0
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where B(y) = (G ® H°F(y)) ® H°M(y) and C = (G ® ch*’X) ® ch*X,,. (For E2 F
and x € X', we denote: E(x) = E ®  F(x); thus E(x) is not necessarily a field, but
Deex HE(X) =D XL H'E(2)).

All the columns, except possibly the last one, are exact: this follows from
propositions 1 and 4 for the second column and from exactness of S' and S° (even
in the case of étale algebras instead of fields) for the third and fourth columns. A
diagram chase in the spirit of the snake lemma then yields a map from A to the
homology group of the last column. Moreover, the first row is exact at 4 (by
definition of A), the second at G ® H*F by a theorem of Arason [1, Satz 5.6], the
third, the fifth and the sixth at H*F(X), ®, ®,; H°L,(y) and G ® ch’X respectively,
by the preceding lemma. Since ¢,, is isotropic (and even hyperbolic), the same
lemma shows that the homology of the fourth (resp. third) row at @, H'M(x)
(resp. @, H'F(x)) is isomorphic to H'M (resp. H'F). Since S' is exact, it follows
that every element of the homology group at @, H'M(x) which becomes trivial in
the homology group at @, H'F(x) can be represented by the image of an element
in @,®;_,H'L,(x). Therefore, another diagram chase shows that the map from A4
to the homology group of the last column is injective.

To complete the proof, it now suffices to show that the latter homology group
is trivial if ¢ is isotropic and of order 2 if ¢ is anisotropic. This follows from
Karpenko’s computation of Chow groups [9]: for any field E containing F, if ¢ is
an anisotropic Pfister form, then CH?X,, ~ 7 @ Z/2Z; otherwise CH*X, ~ 7. Now,
@ 18 isotropic and ¢, , ¢, , are not Pfister forms since a, is not a square in L, nor
L5, hence

ch®Xy ~ ch®X ~ ch*X, ~ 727 for i =1, 3.

On the other hand, ¢, , is a Pfister form. If it is isotropic, then it is hyperbolic,
hence €a,, b, c),,=0. It then follows that

<<a] s b’ C>> = <<a29 b/’ C,>>
for some b’, ¢’ € F*, hence ¢ is isotropic. Thus,

2, ~ Z2/27 if ¢ is isotropic
L2772 ®2/22  if ¢ is anisotropic.

The conclusion now readily follows from the description of the maps induced on
Chow groups modulo 2 by @ & and @ 4. O
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Added in proof: Substantial parts of Theorems A and B have been proved by different methods by Bruno
Kahn in his thesis Représentations galoisiennes et classes caractéristiques (Univ. Paris VII, 1987) (see the

......
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