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Galois cohomology of biquadratic extensions

A. S. Merkurjev and J.-P. Tignol*

For a quadratic extension K/F of fields of characteristic différent from 2, there
is a well-known long exact séquence relating the Galois cohomology groups of (the
absolute Galois group of F and K with coefficients in [i2 {± 1} ; if (a) e H &apos; F is the

élément which corresponds to K F(y/â), the exact séquence is:

(a) res cor (a)
• - • &gt; H&quot;~lF H&quot;F &gt; HnK H&quot;F &gt; H&quot; + &apos;F

&gt; • • • 1

where res and cor are respectively the restriction and corestriction maps (see for
instance [1, Cor. 4.6]). This exact séquence plays a crucial rôle in the investigation
of quadratic forms under quadratic extensions: see [1], [2].

In the case of a biquadratic extension M F(^/a~u y/â^* î.e. an elementary
abelian Galois extension of degree 4, there is no such long exact séquence. However,
the kernel of the restriction map H2F^&gt;H2M is known from Brauer group
computations (see for instance [23, Cor. 2.8]); it consists of sums of symbols of the

type (a,, xx) H- (a2, x2) where xux2eFx. Moreover, there is a &quot;common slot
lemma&quot; which gives a criterion for such a sum to be zéro: if {ax,xx)+{a2, x2) — 0,

then there exists an élément y e Fx such that

(a,, xx) (a,, y) (a2, y) (a2, x2).

This information can be encapsulated in the following exact séquence (see [23],
[6, §3], [19]):

© HXL, -^-* X®f2H&apos;F-^ H2F^H2M
l 1

where Lu L2, L3 are the quadratic extensions of F contained in M and X is the

subgroup of H1 F generated by (a,) and (a2); y2 is the cup product and p2 is defined

below. (The corresponding séquence for triquadratic extensions is not exact in
gênerai: see [6, §5], [19, §5]).

* Supportée! m part by F N R S
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The aim of this paper is to extend and generalize this exact séquence, and to
define a kind of &quot;dual&quot; séquence centered around the corestriction map. For each

positive integer n, we define two 7-term zero-sequences Sn and Sn associated to a

biquadratic extension M/F and show that exactness of both of thèse séquences
dépends only on the vanishing of two of their homology groups; we further show
that thèse séquences are exact for n &lt; 2.

To describe more explicitly the results of the paper, we fix the following
notation: M /F is a biquadratic extension of fields of characteristic différent from
2; aua2,a3eFx are such that ala2a3 \ and M F{y/ax, x/a2, y/a*). For

/— V V V
/ 1, 2, 3 we let L, F{-s/al) c M and we dénote by a, the non-trivial élément of
the Galois group G Gai (M/F) which leaves Lt elementwise invariant.
We dénote by (a,)eHlF the image of a,eFx in Fx/Fx2 HlF and we let

X {0, (a{), (#2), (a3)} a H]F. The group Xis naturally identified to the dual of the

Galois group G, by Kummer theory, since it is the kernel of the restriction map
H1 F -&gt; H1 M. For / 1, 2, 3, we also choose a square root y/al eL,x in such a way
that x/^\/^2v//^3= 1&gt; anc* we dénote by {y/a) its image in HlL,. The non-trivial
élément of Gai (LJF), which is the restriction of o} to Ln for any j ^ /, is simply
denoted by: x h-? Je. Finally, as a gênerai rule, if K/E is an extension of fields, the

image of the cohomology class u e HnE under the restriction map H&quot;E -? HnK is

simply denoted by uK\ if K/E is finite and separable, the corestriction map
HnK-*HnE is denoted by NK/E or cor*/£.

We define the following séquences, for n &gt; 0:

Sn: H&quot;M@(H&quot;F)3-^-&gt; 0 HnLt -^U X®HnF-^-+ Hn+lF^-&gt; Hn+lM

and

i i

3

&lt;-^— 0 HnL, ^— HnM®{G® HnF) ®Hn~xF
i i

where the tensor products are over F2 (or Z) and the maps are defined as follows:

• /?„(/,),,,, 3= i (a,)®NLiF(lt)
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M®f.)= Z W&apos;f*

i 1

and, denoting by &lt;, &gt; : Jf x G —? F2 the canonical pairing,

^««iVff Z &lt;(«&apos;), ^HV) sothat

+o2®u2 + a3&lt;8)u3) ((u2 + u3)L{, (wj + w3)L2, (m,

3

(w)= Z ^
3

&lt;5&quot;(/,),,,s3= E (OM
i= 1

• e&quot;(u, Z

(In séquence 5°, we set H~lF 0).

The fact that 5n and Sn are zero-sequences is easily checked. (To see that

sn • Sn 0, observe that

since the square roots hâve been chosen in such a way that {s/ax)M -h

/ + (V«3)a/ 0). Therefore, we may define homology groups:

n( 1) Ker )?„ /Im aw ^f w( 1) Ker a7Im p&quot;

n{2) Ker yw/Im fin tf%2) Ker j8&quot;/Im 7&quot;

w 3) Ker res/Im yw Jf n( 3) Ker y W/Im cor

n(4) Ker ôn /Im res Jfw(4) Ker cor/Im (5W

w(5) Ker ejlm ôn Jf&quot;(5) Ker Ô7
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The results we prove are the following:

THEOREM A. For ail n&gt;0, there are natural isomorphisms: J^n(2) ~
Jf&quot;(2) - Jfn(4) ~ Jf&quot;(4) and J^n(3) ~ ^&quot;(3). Moreover, if J?n(3) Jf &quot;(3) 0,

then Jfn(l) =^f&apos;I(l)= JîfM(5) Jfw(5) =0.

THEOREM B. The séquences Sn and Sn are exact for n &lt; 2. Moreover,

jf3( 1) tf\ 1) jf^(3) Jf\3) ^3(5) Jf 3(5) 0.

In the case where M is not a fîeld but only an étale algebra Galois over the field

F with Galois group G elementary abelian of order 4, the séquences Sn and Sn are

exact for ail «, provided (ya,) g H]Lt is suitably chosen when L, is split: if L, ^ F x F,

one sets (y/a,) — 1), 0) or (0, — 1)) g H1F x H1 F, adjusting the various choices

in such a way that (y/ax)M H- (y/a~2)M -h (y/â^)M 0. Exactness of Sn and Sn in the

completely split case (i.e. when M ^ F4) is easily checked by elementary computations;
in the case where M ~ L x L for some field L quadratic over F, exactness of Sn and
5&quot; follows from the exact séquence (1) for quadratic extensions.

1. Proof of Theorem A

Our method ofproof uses the following easy observation: consider two intersecting
exact séquences:

C

D

f C

e—&gt;z—&gt;h

F

r

G

We then get two zero-sequences:

C _L-&gt; D ~^-&gt; Z -i- H (2)
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and

y s f
F &gt;A &gt;F &gt; G. (3)

We dénote the homology groups of (2) at D and Z by Jtf{D) and

respectively and the homology groups of (3) at A and F by jf(A) and

respectively.

LEMMA (of the 700th&apos;). There are natural exact séquences:

d e@e
0 &gt; 3&lt;F(D) E &gt; F®Z

0 &gt; 3tf{A) -^-&gt; E -^ F0 Z

d+ô e

D®A &gt; E JT(Z) &gt; 0

d+ô e

D@A &gt; E &gt; jf(F) 0.

In particular, there are natural isomorphisms: J^(D) ^ Jf(A) and

The proof is a straightforward vérification, which is left to the reader.

Henceforth, we use the same notation as in the introduction; for simplicity, we
dénote by A the field F2 with two éléments. If F dénotes the absolute Galois group
of F, we then hâve HnF Hn{F, A); moreover, Shapiro&apos;s lemma shows that the

cohomology of F with coefficients in the group algebra A[G] is canonically
isomorphic to the cohomology of M:

HnM Hn(F, A[G]).

For / 1, 2, 3, let Gt Gai (LJF); we dénote by et and ët respectively the trivial
and the non-trivial élément of Gt viewed in ©f= x /t[GJ. Thus, (el9 ël9 e2, ë2, e3, ê3)

is a basis of ®,3=i A[Gt] as a vector space over A. There is a fundamental exact

séquence of F-modules:

0 &gt; A -^&gt; A[G] -^-&gt; 0 A[G,] -^ A[G] -^&gt; A 0 (4)

We thank M.-A. Knus for suggesting this name to us.



Galois cohomology of biquadratic extensions 143

where the maps are defined as follows:

• res (1) 1 + a, + 0-2 + (7v This maP induces the restriction map in cohomol¬

• /( 1) ex + e2 + e3; the fact that/is a T-module homomorphism then implies:

fia]) ex + ë2 + ê,, /(a2) ê, -f e2 -h ê, and /(a3) ê, + ë2 + ^3- This map
induces the direct sum of corestriction maps in cohomology.

* g(ê,) 1 + &lt;rf for / 1, 2, 3; the fact that g is a T-module homomorphism then

implies g(e,) =oJ + ak where {/,7, fc} {1, 2, 3}. This map induces in
cohomology the sum of restrictions of conjugates: g : ©;3=, H&quot;L,-+ H&quot;M maps
(/h&apos;2,/oto(/i)w+(r2)w + (r3)w.

• cor is the augmentation map: cor (1) cor (ox) cor (o2) cor (&lt;r3) 1. This

map induces the corestriction map in cohomology.

The exactness of the séquence (4) is easily checked by a straightforward computa-
tion.

The /1-vector space A[G] can be identified with its dual by using the canonical
symmetric bilinear form defined by the trace map î : A[G] -&gt; A which carries every
élément in A[G] to the coefficient of 1. Similarly, (©^ A[G,])* ©?=, A[G,]. The

transpose of res : A -+A[G] is then cor : A[G] -*A, and the transpose of the funda-
mental séquence (4) is:

res g* -^ f* cor
0 &gt; A &gt; A[G] &gt; 0 A[Gt] &gt; A[G] &gt; A 0 (5)

/= i

where g*(l) ël + ë2 + ë^, g*(&lt;T}) ëi +e2 + e^ g*(a2) ex + ë2 + e3, g*(o3)
el + e2 + ê, and f*(eÊ) \+a, for ail i;f*(ët) =o} + ok where {i,j\ k} {1, 2, 3}.
The map g* induces in cohomology the direct sum of corestriction of conjugates:

g* : HnM &gt; ® HnLt maps u to (NMjLi(u))x *, 3

and /* induces the sum of restriction maps in cohomology.
Let N dénote the cokernel of the map res:

TV coker (res : A -&gt; A[G]) ;

by duality, we get

N* ker (cor :A[G]-+A),
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and the exact séquences (4) and (5) yield four short exact séquences:

0 &gt;A-^+ A[G] -^N &gt; 0 (6)

f 3

0 &gt;N &gt; © A[Gt]-^N* &gt;0 (7)
i i

g*
3 r

i i

0 &gt; iV* —U A[G] -^A &gt;0, (9)

where n and / are the canonical maps.
We further define an exact séquence

h cor
0 &gt;G &gt;N &gt;A &gt;0 (10)

and its dual:

res h*
0 &gt;A &gt;W* &gt;X &gt;0 (11)

where h is defined by: h(a() 1 + al -h res (A) for i 1, 2, 3, and the maps cor and

res are induced by the corresponding maps in (4) (or (5)). The séquences (10) and

(11) are exact séquences of F -modules, provided G and X are endowed with the

trivial action of F; we therefore hâve Hn(F, G)=G ®A H&quot;(F, A) G ® HnF and,

similarly, Hn(F, X) =X®HnF.
Observe that, even though the séquences (7) and (8) are not identical, the

corresponding Connecting maps d : Hn(F, N*) H&quot;+ l(F, N) are the same, since

there is a commutative diagram:

f À, g
0 &gt; N &gt; © A[Gt ] &gt; N* &gt; 0

g*
3 r0 &gt;N &gt; © A[G,] &gt;7V* ^0

/ i

where the central vertical map interchanges el and ët for ail i.

LEMMA 1. The séquence:

HnF -^&gt; Hn(F, N*) -^ Hn + &apos;(r, N) ^-&gt; Hn + lF

is a zéro-séquence for ail n &gt; 0.
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Proof. There is a commutative diagram of T-modules:

/ 3
g0 A[G]
g

A[Gt] &gt;N* &gt;0

where k( 1) ex + ex -f e2 -I- e2 + ^3 H- ^3 (i.e. A: induces the direct sum of restriction
maps) and l(et) l(êt) 1 for / 1, 2, 3 (i.e. /induces the sum ofcorestriction maps).
The lemma readily follows from the induced commutative diagram in cohomology:

H71F H&quot;F

cl f 1
HnL, &gt; Hn(F, N*) &gt; Hn + \r, N) &gt; 0 Hn

D

COROLLARY 1. There are natural isomorphisms:

jTn(2) ^lm(ô: H&quot;{F, N*) &gt; Hn+\F, N)) ~ Jf&quot;(2).

Proof. The cohomology séquences associated to (7) and (11) intersect at
H&apos;XF, N*):

3

© HnL,

HnF Hn(T, N*) &gt; X® H&quot;F Hn+lF
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By the lemma of the 700th, the homology of

H&quot;Fd-^H&quot;+ \r, N) -U ® Hn+lLl9

which is Im (3) since the preceding lemma shows d • res 0, is naturally isomorphic
to the homology of

0 HnLt &gt;X®HnF &gt;Hn+lF.

A straightforward computation shows that h* • g /?„ and that yn is the Connecting
homomorphism in the cohomology séquence associated to (11). This proves the

first part of the corollary. To prove the second part, we let the cohomology
séquences associated to (7) and (10) intersect at Hn+\F, N) and argue as above,
using the fact that cor -3=0.

For ail n &gt; 0, let dr : H&quot;(F, N) -&gt;Hn+lF and dc : HnF~&gt;Hn+ l(F, N*) dénote
the Connecting homomorphisms in the cohomology exact séquences associated to
(6) and (9) respectively.

LEMMA 2. The séquence:

H&quot; ~ lF -X Hn(r, N*) -^-&gt; Hn + l(F, N) —^ Hn + 2F

is a zéro-séquence for ail n ^0. {We let Hn ~ ]F 0 if n =0).

Proof Since {y/a) e HlL{ H\F, /1[G,]) for / 1, 2, 3, we may consider

let

3

0 &gt; ®A[G,] U &gt;A &gt;0

i= i

be a corresponding extension of /&quot;-modules (using the natural isomorphism be-

tween Hl{F, ®L i A[Gt]) and Ext^[7] {A, ©jL { /4[GJ)). More explicitly, a base of U
as a /1-vector space is given by el,ël,e2,ê2,e3, ê3 and an extra élément u on which
F acts by: x{u) u -f s{t), where s is a 1-cocycle whose cohomology class is

((v^)&gt;(\/^)&apos;(\/^))- since (\/^)m+(v/^)a/ + (y/^Kf=0, the image of this

cohomology class in //!(r,/1[G]) HlM under /* is trivial; therefore, there is a
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commutative diagram with exact rows:

147

0

0

1= 1

A[Gl]

A[G]

0

0

where the central vertical map carries u to an élément X g A[G] such that

f*(s(r)) x(À) — À for ail t g F. This diagram yields a commutative diagram in
cohomology:

Hn+lL,H&quot;F

HnF &gt;Hf1+l(r,N*)

from which it follows that d • ôc 0. To prove dr • d 0, we consider the dual of
the first diagram of this proof:

0- A[G] ¦N-

/

0 &gt; A &gt; U* &gt; © A[Gt] &gt; 0

The claim follows from the associated commutative diagram in cohomology:

H&quot;+lL, &gt;Hn + 2F
;= 1
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COROLLARY 2. There are natural isomorphisms&apos;.

jrn(4) c~ Im (d : //&quot;(F, N*) &gt; H&quot;+\r, N)) ~ Jf &quot;(4).

Proof. The cohomology séquences associated to (6) and to (7) intersect at
H&quot;+\r, N):

HnLt

The lemma of the 7OOth then shows that the homology of the séquence

© H&quot;L,
-^-&gt; Hn(r9 N*) -^ Hn + 2F,

i i

which is isomorphic to Im (d) since dr • d 0, is canonically isomorphic to the

homology of

which is Jfn(4) since fis the direct sum of corestriction maps. The second part of
the corollary follows by the same arguments, letting the cohomology séquences
associated to (9) and (8) intersect at //&quot;(J\ N*).

PROPOSITION 1. For ail integer n &gt; 0, there are natural isomorphisms:

Jfw(3) - Jf &quot;(3) ^ Coker (n -h h : HnM ®(G® HnF) //&quot;(F, N))

:Hn+l(f, N*) &gt; Hn + lM 0(X® Hn + lF)).
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Proof. We let the cohomology exact séquences associated to (6) and to (10)
intersect at Hn(F,N):

G®HnF
h

HnM &gt; Hn(r, N) -^-&gt; Hn + lF-^-&gt; Hn+lM

HnF

G®H&quot;+lF

The lemma of the 700th then yields a natural isomorphism between the homology of

HnM ^-? H&quot;F G®Hn + lF,

which is Jfn(3), the homology of

^&gt; H&quot;+lF

and the cokernel of n + h : H&quot;M ®{G® H&quot;F) -&gt; Hn{T, N). A straightforward com-
putation shows that dr-h=yn, provided G is identified to X by means of the

unique non-degenerate symmetric bilinear form on G, i.e. by letting al (al).
Arguing similarly, using the cohomology exact séquences associated to (9) and to

11) intersecting at Hn+X{F, N*), one sees further that Jfn(3) and jf &quot;(3) are also

isomorphic to the kernel of /©/**.

PROPOSITION 2. For every integer n &gt; 0, if Jfn(3) #&quot;(3) 0, then

jrn(i) jrn(i)=o.
Proof. From the first diagram in the proof of lemma 1, we get a commutative

diagram:

HnF HnF

k

[&quot;(F, N) -^ © HnL, -^-&gt; /T(/\ #*)
»= 1

X®HnF



150 A S MERKURJEV AND J P T1GNOL

which yields an exact séquence

f+k JL h* g

H\r, N) ® HnF &gt; © H&quot;L, &gt; X ® HnF
i- i

As we already noted in the proof of corollary 1, h* g fin Now, the preceding

proposition shows that if Jtf&apos;,,(3) #&quot;(3) =0, then the map

n + h HnM ®{G® HnF) &gt; Hn(T* N)

îs surjective, therefore, the image of HnM ®{G ® HnF) ®HnF in ®] H&quot;L,

under the map (f+k) [(n +h)®l] îs the same as the image of /+ k, which îs

the kernel of /?„ A direct vérification shows that

[(n +h)®I](u, &lt;t,®/, +^2®/^ + ^®/», t)

Therefore, the image of this map îs the same as the image of aw, hence

In order to show that J^n(\) 0, one argues similarly, starting with the

followmg commutative diagram, also denved from the first diagram in the proof
of lemma 1

G®Hn+}F

Hn+l(r,N)^~&gt; © Hn+*Lt-^-* Hn+l(ryN*)
i i

Hn+lF Hn+[F

and using the hypothesis that Jfn(3) jfn(3) =0 to see that the map

0 0/?*)©/ Hn+l(F,N*)®H&quot;+lF &gt;Hn + lM®(X®H&quot;+lF)®Hn+]F

îs mjective, by the preceding proposition
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PROPOSITION 3 For etery integer n&gt;Q if Wn{Z) jfn(3) 0, then

tfn(5) #&quot;(5) =0

Proof The diagram involving U* in the proof of lemma 2 yields in cohomology

hence there îs an exact séquence

1

Proposition 1 shows that/©//* H&quot;+l(F N*) -&gt; H&quot;+ ]M ®(X®Hn + &apos;F) îs

tive It then suffices to see that [(/ ©/?*) ©/] (g ®dr) en to complète the proof
that Y,,(5) =0 To prove that #&quot;(5) =0, one uses the same arguments, starting
with the first diagram in the proof of lemma 2 and using proposition 1 to see that
the map n + h H&quot;M © (G ® H&quot;F) -&gt; Hf\T N) îs surjective

Theorem A follows from corollanes 1 and 2, and from propositions 1, 2

and 1

In closing this section, we observe that Theorem A can also be proved directly
by elementary (but tedious) computations using the exactness of séquence (1)
for quadratic extensions instead of cohomology computations For example—
and because it yields additional information—we note that the isomorphism
#,,(2) ~ #&quot;(2) can also be proved by usmg the followmg commutative diagram, m
which we dénote simply A(k) HkM®(HkF)\ for k n, n + 1

A(n)-^-&gt; © HnL,
-^-&gt; X® H&quot;F—U Hn+ ]F —? H&quot;+]M

I ce r / \ i © res / *

cor
HnM &gt; HnF &gt;G®Hn+xF &gt; k£) Hn + XL,—-&gt; A(n + 1)
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where the map An is defined by

(This map An is induced by the bilinear map X x H&quot;F-+G ® Hn+]F which carries

(#&gt;/) to £?= i (&lt;X&gt; °&quot;/)cr/) ®((##)&apos;/))• From this diagram, isomorphisms J^n(l)
~&lt;?fM(3) and Jfn(3) ~ Jf &quot;(1) can also be derived; therefore, we hâve in fact

JTn( 1) ^ jf»(3) - ^fn(3) * Jf&quot;( 1).

2. Proof of Theorem B

In view of Theorem A, vanishing of one of the groups Jfw(2), Jf &quot;(2), Jfw(4),
Jfn(4) and one of the groups ^«(3), Jf&quot;(3) for some « &gt;0 implies that the

séquences Sn and S&quot; are both exact. Of course, the difficulty of proving such a resuit
increases very rapidly with n. While our main results concern the case where n 2

or 3, we first review the case n 0 (which is trivial) and n 1.

2.1. n=0

Since j80 0 and y0 : X ® H°F -&gt; Z/1/7 is the inclusion of X X ® H°F in H1 F,

exactness of the séquence:

© H°Lt &gt;X®H°F &gt;HlF &gt;HlM

i= i

readily foliows from the définition of X. This shows 2F0(2) — J^o(3) — 0, hence So

and 5° are both exact.

2.2. n 1

We first show J^x{2)=^\ let S?=, (a,) ® (x,) e Ker (y,); we then hâve the

following relation between quaternion algebras:

O in ^2^

or, taking into account the fact that (ax) -f (a2) 4- (a3) 0:
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The &quot;common slot lemma&quot; [22, p. 267] or [1, Lemma 1.7] yields an élément y e F*
such that

From thèse relations, it follows that

(ax, xx x^y)t (a,, y)h (a2, x2x3y)i. 0,

hence xxx^y Nl lf,(lx), x2x3y N£ ^h{l2) and y NL ,//.(/3) for some /, e L,x

(/= 1,2, 3), and

3 3

X (a ® c*/) ~ X (^/) ® ^///(O i^i ((A c^)-» (^3))-
/=1 1=1

This proves J^i(2) =0.
To complète the proof that Sx and S1 are both exact, it now suffices to show

^f,(3)=0. Let u e H2F 2Br(F) be such that uM=0. Then wL] is split by
M Lx(y/a2), hence it is a quaternion algebra:

for some v e Lf From A^,//-(&quot;/,) 0 it follows:

Therefore, by [5, 2.13] or [23, Cor. 2.10] (or lemma 3 below), there exists r eF&gt;

such that

Then u — (a2, r)F is split by L,, hence there exists t e F* such that u — (a2, r)f
(«!, /)f, whence

w (al9 t)t ® (û2, r),

This shows ^!(3) =0 and complètes the proof that Sx and S{ are both exact.
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23. n&gt;2

In order to prove exactness of the séquences S2 and S2, we will need to switch
from Galois cohomology to Milnor&apos;s /C-theory and Witt rings of quadratic forms.
For any field F, we simply dénote by KnF the Milnor ÂT-groups of the field F, as

deftned in [15], and by WF the Witt ring of F (if char. F ^ 2). The n-ïh power of
the fundamental idéal IF of WF is denoted by /&quot;F, and we let FF FF/F +

&apos;F and

knF=KnF/2KnF.
The élément in KXF corresponding to a e F* is denoted by {a}, and for

au ,an e Fx we let

{au an} {al} {an} e KnF.

Similarly, for a e Fx we dénote by ^a^&gt; the (isometry class of the) quadratic form
&lt;(1, — a) X2 — a F2, and also its image in the Witt ring WF. If #,,...,#„ g Fx we
let

and

(fl. fl,)=(fl,)...(flfl)6//B

We recall the homomorphisms:

s\
_

/&quot;F

&gt;HnF

defined by: Rn({au. ..,«„})=(«,,.. a„) and ^({a,, ...,«„}) ««,,.. .,#„» -f
/&quot;+ &apos;F The existence of the map en for which the triangle commutes is proven for
ail n &lt; 4. If n 2, it is given by the ClifTord invariant: see [10, Chap. 5]; for n 3

it was proved by Arason [1], for n 4 by Jacob-Rost [8] and Szyjewski [21].
The map Rn is known as the residue norm homomorphism; it is an isomorphism

for n &lt; 3. This resuit was proved for n=2 by Merkurjev [11], for n 3 by

Merkurjev-Suslin [14] and by Rost [18].
The map sn is surjective for ail n; since Rn is an isomorphism and en is defined

for n &lt; 3, it follows that sn is an isomorphism for n &lt; 3.

Even though eM is not known to be well-defined for n &gt; 5, it is well-defined on
Pfister forms: for ax,. a;x and bu bn e Fx, we hâve ^a, ,...,«„&gt;
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«/?,,..., bn &gt; in WF if and only if {#, ,...,#„} {/?,,..., bn } in knF, and any of
thèse relations implies: (a,, an) =(£,,..., /?„) in //&quot;F: see [1, Satz 1.6] and [4,
Theorem 3.2].

If K F(^Ja) is a quadratic extension of a field F of characteristic not 2, there

are zero-sequences analogous to (1):

and:

&gt;/&quot; lF^^F1F &gt;T&quot;K-^-&gt;TnF ^&gt;/&quot;+1F
&gt;• • • (13)

Since thèse séquences are related to (1) by the homomorphisms Rn and en (for
n &lt; 4), bijectivity of Rn and en for ai &lt; 3 implies that séquences (12) and (13) are
exact when they are truncated at k4F and T4F respectively; thus:

(14)

and

0 &gt;PF &gt; PK &gt; PF &gt; • • • &gt; PF &gt; PK &gt;PF &gt;PF (15)

are exact.

The following lemma generalizes one of the steps in the proof of ^f}(3) =0
above:

LEMMA 3. Let K/F be a quadratic extension offields of characteristic not 2, let

k g K* and let f,, /„ g Fx .//{/,,...,/„ NK h(k)} 0 in knF, then there

exists fn e Fx such that {/,,...,/„ i, A:} {/*j ,...,/„ }A in knK.

Proof If n 1, the lemma is another way of stating that séquence (14) is exact

at kxK.
For n 2, the lemma readily follows from [5, 2.13] or [23, Cor. 2.10] or [14,

Lemma 2.9]. We include a proof for the reader&apos;s convenience: if fx in a square in K,
then {/,, k} 0 in k2K and we may choose /2 1 in this case. We may thus assume

K{yJJx) is a field. It is then an elementary abelian extension of F. Let a (resp. t) be

the non-trivial automorphism which leaves F{yJJx) (resp. K) elementwise invariant.
The hypothesis that {/,, NK//(k)} 0 in k2F means that ko{k) xt(x) for some

x g F{^ffx). Certainly, x + x(x) and k + o{k) are not both zéro since the preceding
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équation would then yield k2 x2, which îs impossible since k e K and x e j
Changing x mto — x if necessary, we may thus assume k + o{k) + x + t(x) ^ 0 We

may then choose f2 k + a(k) + x 4- t(x), since the relation

(1+X&amp; &apos;) i(l+xfc ])=f2k l

shows that/2&amp;
*

îs a norm from K(^/]\) to £, hence {f\,f2k [} =0 m k2K
In the case where n &gt; 3, the idea îs to reduce to the case n 2, as follows

switching to quadratic forms, the hypothesis yields ^/i, ,/, NK/f(k)^&gt; 0 in
J^is therefore,

«/i, ,/„ i» &lt;^^)&gt; C/h ,/„ i»,

hence, by [10, Cor 10 1 7], #*,(*:) îs represented by «/j, ,/„ !» If iV^/f(A:)
eFx2, then there exists/neFx such that ^=/,mod^x2, by the exactness

of (1) at HlK9 hence {/,, ,/„ ,,*} {/&quot;,, ,/w}A m *„* If ^F(fc) ^ Fx2,
let

NN,(k) x2-f (16)

where x.f&apos;eF and —/*&apos; îs represented by the pure subform of &lt;^/,, /„ &gt; By
[10, Prop 10 15], we then hâve

«/i, ,/* !&gt; «/&quot;!, ,/; 2,/&apos;» (17)

for some /&apos;,, ,f&apos;n
2 e /rx Now, équation (16) yields {/ NKjt{k)} 0 in k2F,

hence, by the preceding part of the proof (when n 2), there exists fn e Fx such

that

Multiplying both sides of this équation by {/&apos;,, ,f&apos;n 2}&gt; we get

{f\9 J&apos;n 2,f% {k} \fu Jn-lJ% {fn}K ™ knK,

hence, by (17)



Galois cohomology of biquadratic extensions 157

We will also need the foliowing charactenzation of the éléments in KnK which
are fixed under the Galois group of K/F

LEMMA 4 Let dénote the non-trivial automorphism of the quadratic extension
K F(y/a) For n &lt; 3, eiery élément u e KnK such that û u can be wntten in the

form

jor some i e KnF, w e Kn XF

Proof From û u, ît follows that NK f(u)K u + û 2w, hence the image of
NKh(u) in knF îs the kernel of the extension of scalars map By the exactness of
séquence (14), ît follows that

NKh(u) {a] t+2s

for some / e Kn XF, s e KnF, hence, extending scalars to K

2u=2{sfa} tK + 2sK

Since the 2-torsion subgroup in KnK îs { — 1} Kn XK, by [13, Theorem 14 2] and

[14, Prop 6 1], ît follows that

^ tK + sK + {-\} x (18)

for some x e Kn XK Since {— 1} {y/a} — {— y/a}, we hâve

{-1} x {^/a} (x+x)-({-^a} x + {^/a} x)

NKIF(x)K-NKlt({~y/a} x)K

Substituting for { — 1} x in équation (18), we get

We now return to the notation set up in the introduction, and aim to prove
jfn(3) 0 for n 2, 3 The main idea of the proof of Jf ,(3) 0 above was to
extend scalars from F to Lx and work back from there More generally, this idea

yields the followmg réduction
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LEMMA 5. Let n be an arbitrary positive integer. If every v e HnLx such that

can be written in the form

v =rLx +NM/Ll(s)

for some r e H&quot;F, s e H&quot;M, then Jfn(3) 0.

(The converse is also true, but will not be needed).

Proof Let u e Hn+lFbe such that uM 0; then uL{ is split by M L
hence by the exactness of séquence (1) for the quadratic extension Af/L,, we hâve:

for some v e HnLx. From NLl/F(uL{) 0, it follows that (a2) • NL l/f.(v) 0. The

hypothesis then yields r e H&quot;F, s e HnM such that

v rLl+NM/Ll(s).

Since (a2) • NMjLx{s) 0, we get:

hence u — (a2)r is split by L,. Using séquence (1) for LJF, we hâve

w ~ fe) &apos; r (a{) • t for some r g //nF, hence

u=(al)&apos;t + (a2)&apos;r=yn((al)®t + (a2)®r).

PROPOSITION 4. Jfw(3) 0 /or n 2, 3.

Proof. We flrst show that it suffices to prove, for n 2, 3:

(*) Every i? e A^L, such that NLï/F(v) NLl/F(w) mod 2KnFfor some w g AwL2

can be written in the form: # rLl + NM/L](s) for some r g ^wF, s g ÀTnM.

Indeed, if v&apos; g //wLj is such that (a2) • NLxJF(v&apos;) — 0, then by surjectivity of Rn for
n 2, 3 one can find # g KnL} such that i^rt(t;) =v&apos;. Moreover, bijectivity of Rn for
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n 2, 3 and commutativity of the diagram

N (a2)
HnL2 HnF &gt; Hn + XF

whose bottom row is exact, shows that NLi/f(v) NLl/F(w) mod2KnF for some
w eKnL2. By (*), it follows that

for some r e KnF, s e KnM, hence lemma 5 shows that Jfn(3) 0. Thus, it suffices

to prove (*).
In order to do that, we first reduce to the case where v =v. Since NL2JF(u) 2w

for every u e KnF, we may assume, after adding to w an élément in KnF, that

NL]Av)=NL2/F(w). (19)

Then,

Nmil^m -wm)= NLxIF{v)l^ - N.LilF{w)L^ 0.

From Hilbert&apos;s theorem 90 for Kn ([7, Satz 90] for n 1, [13, Theorem 14.1] for
n 2 and [14, Theorem 4.1] for n — 3), it follows that

for some t e KnM. We then hâve

NmlW)) NMILx{t) ~ 2v + NL2/F(w)Li

hence, by (19):

NM Llfa(t)) NM Li(t) +v -v.

Substituting v — NM Lx(t) for v, we may thus assume v v.

Applying lemma 4, we now get:
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for some x g KnF, y g Kn^xF. From (19), it follows that {a2} ¦ NLl/F(v) e 2Kn+xF,
hence

{a29 -ax}-ye2Kn+xF (20)

If {a2, — ax} g 2K2F(i.e. if the quaternion algebra D — (a2, —ct\)t ls split), then

it follows from lemma 3 that {a2, ^fâ\) {a2,f} mod 2K2LX for some/GFx.
Therefore, {a2}L{ • {{yj~âx} — \f}Ll) e 2K2LX and, by the exactness of séquence (14),

Jâ for some z e KXM. We then hâve {y/â[}&apos;yLl

hence

v=(x + {f}- z)Ll -f NM/Ll(yMz),

and the proof is complète in this case.

Suppose then that the quaternion algebra D =(a2, —ax)F is not split. If n 2,

then y {g} for some g e Fx and from relation (20) it follows by lemma 3 that
{a2,yfax,g} {a2,b,g} mod 2K3LX for some b e Fx, hence, by the exactness of
séquence (14),

for some z g K3M. Since the left-hand side is {^/ëh} % yL^ we êet:

and the proof is complète for n 2.

Finally, we consider the case where n 3 and D is a division algebra. By [12,
Theorem 2], it then follows from (20) that y lies in the image of the reduced norm
map Nrd: K2D -*K2F. Since K2D is generated by symbols of the type {/*, d} where

/g Fx and d e D* (see [16], [17]) and since the reduced norm of such a symbol is

{/*, Nrd (d)}, the élément &gt;&gt; has the form: y Z, {/j, Nrd (4)}- F°r ail /, we hâve

{a2, -a,, Nrd (dt)} e 2K3F, hence

{a2,-axjn &quot;Nrd (dt)}e2K4F

Lemma 3 then yields an élément gt e Fx such that

{*2, V^X Nrd (rf,)} s {a29 g,Jn Nrd (rff)}Ll mod 2K4LX.



Galois cohomology of biquadratic extensions 161

By the exactness of séquence (14), we get:

{yfcjn Nrd (rf,)} {gnfn Nrd (rf,)} + NM/Ll(zt)

for some z, e K3M. Summing over /, we obtain:

^,=I({£,X Nrd (dt)}Lx +NM/Ll(zt)),

hence

MLlfc D

To complète the proof of Theorem B, it now suffices to show that Jf2(2) 0.

We first dérive from our proof of Jf x (2) =0 above the foliowing gênerai statement,
which shows that £Fn(2) 0 follows from a kind of &quot;common slot lemma&quot;:

LEMMA 6. Let n&gt;\. Iffor ail s, t e H&quot;F such thaï (ax) • s (a2) • / îhere exists

u g HnF such thaï

(ax) - s (ax) - u ={a2) • u (a2) • /,

then JffI(2) 0.

(The converse is also true, but will not be needed).

Proof. Let Z?Œ (a, ®/ el® //&quot;F be in the kernel of yn ; then

hence, by hypothesis, there exists u e HnF such that

(&quot;i) • (/, +/3) =(«i)-«= («2) • u (û2) • f2 +f3).

From thèse relations, it follows that

(a, ¦ (/, +A + «)=(«,)•«= (a2) ¦ {f2 +f3 + u) 0,
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hence /, +/3 + u NLl/F(lt), f2 +/3 + u NL2/F(l2) and m JVL,/F(/3) for some
/, e tf&quot;L, (i l,2, 3), and

E (a,)®/= I1=1 1=1

This proves Jfw(2)=0. D

We now show that the hypothesis of the preceding lemma holds for n 2, at
least when s is a single symbol:

LEMMA 7. 7/5 (6, c) g #2Fand t e H2Fare such that (a{) - s (a2) • U then

there exists u g H2F such that

(fl,) • 5 (a,) • w (a2) - u (a2) • t.

Proof. Under the isomorphism e3, the hypothesis translates to: &lt;^a}, b, c&gt;L2 0

in 73L2, hence by the &quot;Hauptsatz&quot; of Arason and Pfîster [10, Theorem 10.3.1],
&lt;Ctfi, b, c^Ll is hyperbolic. By [10, Theorem 7.3.2], it follows that

for some b\c&apos;eFx. Arason&apos;s &quot;common slot lemma&quot; [1, Lemma 1.7] yields an
élément ux e F* such that

««,, b, c» iau ul9 c» and «a2, b\ c7» «a2, w,, cr»,

hence

Applying again the &quot;common slot lemma&quot;, we get an élément m2gFx such that

«tfl9 «,, c» «ûfl5 «,, m2» and «&lt;22, ul9 c&apos;&gt; &lt;&lt;«2, «,, w2».

Thus,

««! 6, C &gt; &lt;û,, M,, W2» &lt;&lt;«2, M,, M2» «a2, b\ C&apos;».

The élément u =(uu u2) g //2F therefore satisfies the required conditions.
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More generally, repeated use of Arason&apos;s &quot;common slot lemma&quot; [1, Lemma 1 7]

shows that the hypothesis of lemma 6 holds in TnF instead of H&quot;F, at least when s

îs represented by a Pfister form
We aim to show that the hypothesis of lemma 6 holds in gênerai for n 2, by

argumg by induction on the number of terms in a représentation of s as a sum of
symbols The initial step îs of course lemma 7 In order to carry out the induction
step, we shall use the following approach let b,ceF* and let &lt;/&gt; dénote the

8-dimensional quadratic form

where ((ah b, cy îs the pure subform of the Pfister form ^al9 b, c&gt; Exphcitly,

&lt;/&gt; a2xl — ax x\ — bx\ — cx\ -h ax bx\ + ax cx\ + bcx\ — ax bcx2

Let X X{(f)) be the associated projective quadnc and let F{X) dénote îts function
field Since the pure subform of &lt;ga,, Z&gt;, c&gt; represents — a2 over F(X), ît follows
from [10, Prop 10 1 5] that

«fll,ft,c&gt; &lt;fl2,6/,c/&gt; (21)

for some b&apos;, c&apos; e F(X) x The same arguments show that 0 îs isotropic if and only
if there exists b&apos;, c&apos; e Fx for which (21) holds

For any field E containing F we dénote by h(E) the homology of the séquence

H2E -^ G ® H3E -^-&gt; © H\L, ® E),
/= i

thus, h{F) Jf2(2) The main step of the proof îs to show

PROPOSITION 5 The map h(F)-&gt;h(F(X)) induced by the inclusion of F in

F(X) is injectwe

Usmg this proposition, the proof of Theorem B can be completed as follows in
view of lemma 6, we only hâve to prove that if s, t e H2F are such that
(ax) s=(a2) t, then there exists u e H2F such that (ax) s=(al) u

(a2) u (a2) t Lemma 7 shows that this condition holds if s is a single symbol
Suppose then s (b, c) + s\ where s&apos; is a sum of fewer symbols than s Extending
scalars to F(X), we get from (21)

(ax) (b,c)=(a2) (b&apos;,c&apos;),
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hence (#,) • s&apos; (a2) • (t -h (b\ c&apos;)). By induction, we get u&apos; e H2(F(X)) such that

(fli) -s&apos; (ax) -u ={a2) u&apos;.

On the other hand, by lemma 7 we get u&quot; e H2(F(X)) such that

(a,) -(M) =(&lt;!,) •M&quot; (a2) -m&quot;.

Therefore,

(a,) • 5 =(£!,)• (il&apos; + il&quot;) (a2) • (w&apos; + u&quot;) (fl2) /. (22)

Consider then &lt;r, ®(a2) • t + o2®(a\) &apos; s e G ® //3F. Since (û,) • ^ (a2) • t, this
élément is in the kernel of p2. On the other hand, équation (22) shows that

&lt;J\®(a2) - t + o2®{ax) - s y\u +u&quot;) e G ® H\F(X%

hence this élément represents the trivial élément of h(F(X)). By proposition 5, it
follows that this élément is trivial in h(F), hence there exists u e H2F such that

O\®{a2) -t+o2®(ax) -s=y2(u).

From this last relation, it readily follows that (a^ • s (a,) • u (a2) • u (a2) • t,

and the proof of Theorem B is complète.
Alternatively, one can repeat the function field construction above to obtain a

fleld Q containing F such that the natural map h{F) -&gt; h{Q) is injective and for every
è,c e Qx there exist b\ c&apos; e Q* such that (ax) • (b, c) (a2) • (b\ c&apos;). Using lemma
7, it readily follows that h(Q) 0, hence h(F) 0.

We now proceed to prove proposition 5. Consider the following diagram:

H2F G ® H3F — &gt; © H3Lt

2 «2 3

H2(F(X)) -^G® H\F{X)) -?-&gt; © H\L,(X))

where v,, v2, v3 are the natural maps, and define a group A as follows:

{ueG®H3F\v2(u)eImy2x} 2 „.A
&apos; ^-^ Ker (Coker y2 » Coker y\).

Im v
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LEMMA 8 There is a natural exact séquence

0 Ker (h(F) &gt; h(F(X)) &gt; A Ker v3 &gt; 0

Moreover, Ker v3 0 if 4&gt; is isotropic and Ker v3 is a group of order 2 if 0 is

anisotropit

Proof A theorem of Arason [1, Satz 5 6] shows that, for an arbitrary field E
containing F, the kernel of the natural map H3E -&gt; H3(E(X)) is trivial if (pE is not
a Pfister form and is {0, &lt;?3 (&lt;/&gt;£)} if (j)E is a Pfister form Since the discriminant of &lt;f&gt;

is a2, the form &lt;\&gt;h is a Pfister form if and only if a2 e Ex2 Therefore, the kernel of
H3Ll-*HXLl(X)) is trivial for i l,3 and is {0, (aï9 b, c)Ll) for i=2 Now,
(ax, h, c)Lj 0 if and only if the Pfister form (a,, b, c&gt; becomes isotropic over L2,
this condition is also équivalent to the existence of b\ c&apos; e F* such that

hence to &lt;/&gt; being isotropic, as we noticed before This proves the second part of the
lemma

A chase around the diagram above shows that p2 mduces a natural map from
A to Ker v3 whose kernel is Ker (h(F) -&gt; h(F(X))) To complète the proof, ît thus
suffices to show that this map is onto This is clear if c/&gt; is isotropic, since then
Ker v3 0 If &lt;/&gt; is anisotropic, then we hâve seen above that

Consider then a^®(al,b,c)eG®H2F From équation (21) and lemma 7, ît
follows that there exists u e H\F{X)) such that

(aub,c)HX) {ax) u={a2) u

Thèse relations readily yield v2(o&quot;3(x) (au b, c)) y\{u) Moreover,

P\o,®{aub, c)) (0, (al9b, c)Ll9 0),

hence a3® (al9 b, c) represents an élément in A which is mapped to the non-trivial
élément of Ker v3

To complète the proof of proposition 5, ît now suffices to show that A injects
into a group which is trivial if &lt;fi is isotropic and of order 2 if (/&gt; is anisotropic, since

the preceding lemma then implies Ker (h(F) -&gt; h(F(X))) 0

For i l,2, let X&apos; dénote the set of points of codimension i on X We dénote

by d0 H2F(X)-+©X€X&gt;HlF(x) and 3, 0vexl HlF(x) -&gt; ®vex2 H°F(y) the
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tame maps (see [3]), by CH\X) the second Chow group of X and by ch\X) the

factor group:

ch\X) CH2(X)/2CH2(X).

LEMMA 9. There is a natural zéro-séquence:

0 &gt;H2F &gt;H2F(X)-^-&gt; © HlF(x)-^-&gt; © H°F(y) &gt; ch\X) &gt;0

tel&quot; veX2

which is exact at every place excepî at ®xeXi H]F(x). If(j) is not an anisotropic
Pfister form, then the homology at this place is isomorphic to HXF.

Proof. Consider the following diagram, where the columns are exact and the

rows are zero-sequences:

0 0 0

I 1

0 &gt;H2F(X)-^ © HlF(x)-^-&gt; © H°F(y) &gt;0

eA-2

0 &gt;K2F{X) &gt; © KxF(x) &gt; © K0F(y)
v eX2

0 &gt;K2F(X) &gt; © KxF(x) © K0F(y)
xe A&quot;1

A v e X2

i) 0
xeXl

where n2(F(x)) {± 1} c F(x) x. The homology groups of the second (and third) row
are known from the papers [20] and [9] of Suslin and Karpenko: the homology at

K2(F(X)) is the isomorphic image of K2F [20, Theorem 3.6, Cor. 5.6], the homology
at ®xexi K\F{x) is isomorphic to KXF under the map: a e KXF h-&gt; a - s where s is

a hyperplane section [9, Theorem 4.1], and the homology at ®y e x2 K0F(y) is CH2(X).
It follows in particular that every élément £, e ©ï6A-i KxF(x) such that 2Ç e Im (50)

can be represented, modulo Im (d0), by an élément in ©V€A-i fi2(F(x)).
A chase around the preceding diagram then shows that the homology of the second

row at K2F{X) is mapped onto the homology of the top row at H2F(X), hence

Ker d0 Coker (K2F -^ K2F) H2F.

This shows that the séquence of the lemma is exact at the first two places.
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The diagram also yields a long homology séquence:

KXF &gt; KXF &gt;hom © HlF(x)\

&gt; CH2(X) -^-&gt; CH\X) &gt; hom © H°F(y)\ &gt; 0

from which it readily follows that

/ ^ \ 2

hom © H°F(y) Coker (CH\X) &gt; CH\X)) ch\X).
\veA-2

Moreover, if (p is not an anisotropic Pfister form, then Karpenko has shown in [9,
Theorem 6.1] that CH2(X) has no torsion, hence

/ \ 2

hom © HlF(x) Coker (KxF KxF) =HlF. D
\veA-l /

Consider now the following commutative diagram, whose rows are zero-sequences:

0

0-+A-+ Coker y2 Coker y2x

G ® H3F(X) -&gt; © G®H2F(x)
i

&gt; © H°F(y)
2

© cor © cor

© H°M(y) ch2XM —» 0

3 3

©
2

© HlLt(x) -&gt; © © #%(&gt;&gt;) -+ © c/i2^ -, 0

©e?

© 5(&gt;;) C 0
2
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where B(y) (G ® H°F(y)) ® H°M(y) and C (G ®ch2X)®ch2XM. (For E =&gt; F
and x g X1, we dénote: £&quot;(x) E ®FF(x); thus £&quot;(x) is not necessarily a field, but

k
Ail the columns, except possibly the last one, are exact: this follows from

propositions 1 and 4 for the second column and from exactness of Sx and S° (even
in the case of étale algebras instead of fields) for the third and fourth columns. A

diagram chase in the spirit of the snake lemma then yields a map from A to the

homology group of the last column. Moreover, the flrst row is exact at A (by
définition of A), the second at G ® H3F by a theorem of Arason [1, Satz 5.6], the

third, the fifth and the sixth at H2F(X), ©2 ©, H°L, (y) and G®ch2X respectively,
by the preceding lemma. Since 0M is isotropic (and even hyperbolic), the same
lemma shows that the homology of the fourth (resp. third) row at ©, HxM{x)
(resp. ©, HxF(x)) is isomorphic to HXM (resp. HXF). Since Sx is exact, it follows
that every élément of the homology group at ©, HxM(x) which becomes trivial in
the homology group at ©, HxF(x) can be represented by the image of an élément
in ©, ©f= xHxLt(x). Therefore, another diagram chase shows that the map from A

to the homology group of the last column is injective.
To complète the proof, it now suffices to show that the latter homology group

is trivial if &lt;f&gt; is isotropic and of order 2 if 0 is anisotropic. This follows from
Karpenko&apos;s computation of Chow groups [9]: for any field E containing F, if (f&gt;t is

an anisotropic Pfister form, then CH2XE ~ Z©Z/2Z; otherwise CH2Xt ~ Z. Now,
(j)M is isotropic and &lt;l&gt;Ll,&lt;t)L3 are not Pfister forms since a2 is not a square in L, nor
L3, hence

ch2XM ~ ch2X ^ ch2XLi - Z/2Z for / 1, 3.

On the other hand, 4&gt;Ll is a Pfister form. If it is isotropic, then it is hyperbolic,
hence &lt;C#i, b, c&gt;7

2
0. It then follows that

for some b\ c&apos; e Fx, hence &lt;j) is isotropic. Thus,

2 JZ/2Z if (j) is isotropic
Ll &quot;

(Z/2Z © Z/2Z if (f&gt; is anisotropic.

The conclusion now readily follows from the description of the maps induced on
Chow groups modulo 2 by © s°y and © S°y.
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Added in proof Substantial parts of Theorems A and B hâve been proved by différent methods by Bruno
Kahn in his thesis Représentations galoisiennes et classes caractéristiques (Univ Pans VII, 1987) (see the
chapter Divisibilité du groupe de Brauer)
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