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The characteristic polynomial of a monodromy transformation
attached to a family of curves

DINO J. LORENZINT

Let K be a complete field with respect to a discrete valuation v. Let (x denote
the ring of integers in K, and let k be the residue field. We assume that k is
algebraically closed and we denote by p = 0 the residue characteristic. Let X/K be
a curve of genus g having a K-rational point. Let 4/K denote its jacobian. Let / be
a prime, / # p, and denote by T,(A), or simply by 7, when no confusion may
result, the Tate module of A/K. The Galois group Gal (K/K) acts in a natural way
on the module 7,. In this paper, we describe the characteristic polynomial of a
monodromy transformation attached to the action of Gal (K/K) on the module T,
in terms of the special fiber of a regular model & /0, of X/K.

In the first section of this paper, we introduce a polynomial fy x(x) of degree 2g
attached to the special fiber of a regular model of X/K. In the second section, we
discuss the main result of this paper, Theorem 2.1: a homological interpretation of
a factor ¥k (x) of the polynomial f} x(x). In the third section, we give a description
of the behavior of the polynomial fy x(x) under base change, a description which is
a key ingredient in the proof of Theorem 2.1. In the last section of this work, we
use a variation on the proof of Theorem 2.1 to describe the characteristic polyno-
mial of an automorphism of a curve acting on the first homology group of the
curve.

In a forthcoming article, we will apply Theorem 2.1 to obtain a bound for the
order of the p-part of the group of components of a jacobian variety.

1. The polynomial fy (x)

In this paper, a scheme X/K is called a curve if it is a smooth, proper,
geometrically irreducible scheme of dimension one, and if the following additional
property holds. Let Z /0« denote a regular model of X /K. Let Z, denote the special
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112 DINO J. LORENZINI

fiber of /0 «. The closed subscheme %, is an effective Cartier divisor and, as such,
we write it as

where r; is the multiplicity of the irreducible component C;. We include in our
definition of a curve that

ged(ry,...,r,) =1

This condition does not depend on the choice of . It holds, for instance, if X/K
has a K-rational point.

We say that a regular model /0, of X/K is a good model if the following
conditions are satisfied:

* The components C; are smooth curves of genus g(C,).
* Let (C; - C;) denote the intersection number of the components C; and C;. If
i # J, then

(C:-C) =<1
In particular, the reduced curve (%;),., has normal crossings.

1.1. Let & /0, be a normal model of X/K. Let g(C,) denote the geometric genus
of the component C;. We associate to the special fiber &, a graph G defined as
follows. Its vertices are the curves C; and a vertex C, is linked to a vertex C; if and
only if C,nC; #0. For each curve C;, we define the degree of C, in G to be the
integer

d(C;) = |Ci N (%Zed\ci)‘-

When no confusion may result, we denote the integer d(C;) simply by d;. When &
is a good model, we find that

d(Ci) = Z (Ci ) C])

JAI
Let

P(Z) = first Betti number of G.
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One easily checks that

2B(X) — 2 = Z (d —2).

i=1

Let

(Z)= Y 8(C))

i=1

Denote by f,,(x) the following rational function:

n xh —1 28(C,y+d, -2
f,»/ck(x) e (x _ 1)2a(3r)+2ﬁ(.r) . n ( ) )

=1\ x—1

PROPOSITION 1.2. Let X/K be a curve of genus g and let X |0y be a good
model of X/K.
(1) The rational function fy. (x) is a polynomial of degree 2g. It is independent
of the choice of a good model for X|K. We denote this polynomial by fy,x(x).
(11) The integers o(Z') and P(X) are independent of the choice of a good model for
X/K. We denote these integers by a(X/K) and B(X/K), respectively.
(i) The polynomial fo(x):=T17_,[(x" — 1)/(x — D)% ~2 is independent of the
choice of a good model of X/K.

Proof. To show that f, . (x) is a polynomial in Z[x], it is sufficient to show that

n r,o__ d, —2
km:H(x ﬁ

=i\ x—1

is a polynomial. The fact that f;(x) is a polynomial is proved in [ Lor], Theorem 3.1.
The proof of Theorem 3.1 uses only the algebraic properties of the intersection
matrix M. Note that it is by no means obvious that the rational function f;(x) is
a polynomial, since a curve C; could have multiplicity r; = 2 while d, = 1. Note also
that, in general, f;(x) is not a polynomial if ged (ry,...,r,) > 1.

To show that deg f;,(x) = 2g, we use the following “adjunction formula”:

28 -2=%, (Xt X),
where " is the relative canonical sheaf of 4 /0. Recall that Vi=1,..., n,

28(C;)) —2=C;-(C; + X'),
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and

(C; - Zy) =0.
Hence,

20 -2=F, A .

=Y. 7(C; - )

=Y, r:(28(C)) =2~ (C; - C))

i J#i

=Zri(2g(ci) -2) +Z (Z rj(Ci : Cj))
=Y r(28(C)) =) + L rd,
=Y 22(C)+Y [@d =2+ X (rn— 1) —2) + ¥ (r, — 1)28(C,).

As we already pointed out in 1.1, one easily checks that

20(%) — 2 = Z (d, — 2).

i=1
Hence, deg f#/¢,(x) = 2g.

1.3. We turn now to showing that f,  (x) does not depend on the choice of a
good model. Let Z /0, be a good model of X/K and let %, be a model obtained
from Z by blowing up a closed point P of %,. We call the birational map
n:.%p—>% an elementary blow-up. Let E denote the exceptional curve on %,.
Denote by C, the strict transform of C; = &, in % ,. Since E is a rational curve, and
since g(C,) =g(C,) for all i =1, ..., n, it follows that

(% p) = UX).
Let (C;, r;) and (C;, r;) be two components of Z,. Recall that, if P e (C;,r;) is a

regular point of Z,, then E has multiplicity r, in %, and (E - ;) = 1. Recall also
that, if P=C,nC,, then E has multiplicity r,+r;, in %,, with (E- C) =
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(E-C))=1and (C;- C,) =0. It follows immediately that %, is a good model of
X/K. Using the formula 2(%) — 2 =X7_, (d(C;) — 2), one shows easily that

B p) = B(X).

Let G’ denote the graph associated to the special fiber of #,. If P € C;nC,, then
it is obvious that f (x) = f;(x). If P € C; is a regular point of &, then the degree
of €, in G’ is equal to d; + 1 while the degree of E in G’ is equal to 1. Both
components E and C; have multiplicity equal to r,. Hence, f (x) equals f;(x) in this
case also.

1.4. Let &, and &, denote two good models of . It is well known that there
exists a third model % of X and two maps

Y-, i=1,2
such that each map =; is a composition of elementary blow-ups =, ;:

s, 1

@z'%‘i.sl > )‘%‘i,l ;g‘.

Therefore, we can apply 1.3 to each n, ; and deduce that & is a good model of &
such that

fy,/cr»,( =f03//c»,< =f£’2/df/Ks

and

fG(gr, (%) =fc(9rz) (x).

It also follows from 1.3 that a(Z',) = (%) = (Z',) and B(ZF,) = p(¥) = B(Z,). This
concludes the proof of Proposition 1.2. O

15. Let g be any prime and let r be any integer. Let r@ denote the largest
prime-to-q integer dividing r. Let ord, (r) be defined by the factorization

We let

r®i=r,
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so that the integer r” is defined for all possible values of the residual characteristic

p.
Let
“ no fen® _1\2&(C)+d, 2
D (x) = (x — 1)220) +2B00) '
Fx(=(x = 1) (5
We let

f(,\(()/)K(x) ‘=fX/K(x)’

so that the rational function % (x) is also defined for all possible values of the
residual characteristic p.

COROLLARY 1.6. Let X/K be a curve. Let q be any prime. The rational
function f$(x) is a polynomial with integer coefficients, and is independent of the
choice of a good regular model for X /K.

Proof. Let ®@,(x) denote the minimal polynomial over Z of a primitive s'" root
of unity. Recall that

x"=1)= III P, (x).

Our corollary follows immediately from the fact that
[T =D =0 2= [ ¢ aw, 0
i=1 D(X) | fG (%), gks

Remark 1.7. Let f(x) be a product of cyclotomic polynomials. Let ¢ be any
prime. The prime-to-g part f“(x) of f(x) is defined as follows:

[@(x) = H (@, (x))°rde 0 (/6
¢‘(x)*] f(x)
qts

It follows from this definition that the polynomial f(x) is the prime-to-g part of
the polynomial fy x(x).
2. Homological Interpretation of f¢),(x)

Let X/K be a curve and let 4/K denote its jacobian. Let £ be a prime, £ # p. Let
T,(A) denote the Tate module of 4/K. We denote T,(A) simply by 7, when no
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confusion may result. Fix a separable closure K* of K. The free Z,-module 7, is
equipped with a natural action of the Galois group Gal (K*/K). Note that, under
our hypothesis on K, the group Gal (K*/K) is equal to its inertia subgroup
I.:=I1(K’/K). Let P denote the pro-p-Sylow subgroup of I. The group I acts on
(T, A)" through its quotient

Ix/P =[] Z,.

f#p

Let o be a topological generator of I /P, and let ¢, denote its image in Aut (T7).
We let char (o,)(x) denote the characteristic polynomial of o, acting on (T, 4)°’.

When p =0 and ¢ is any prime, let Q denote the pro-¢g-Sylow subgroup of Ix.
This subgroup Q is normal in I, and, therefore, the module T¢ is Ix-invariant. We
denote by o, , the image in Aut (T 2) of a topological generator o of I,. We let
char(o, ,)(x) denote the characteristic polynomial of o, .

THEOREM 2.1. Let X/K be a curve and let A/K denote its jacobian.
(i) The polynomials f (X’;)K(x) and char(a,)(x) are equal.
(i) If p =0, and if q and ¢ are distinct primes, then f{)(x) = char(o, ,)(x).

COROLLARY 2.2 (T. Saito, [Sai], Corollary 1.6). Under the above hypothesis
and notations,

rank, (T, 4)" = 2u(X/K) + 2p(X/K) + }'i (r$? — D(d(C,) — 2+ 2g(C))).

i=1

Remark 2.3. The automorphism o, may be called a monodromy transformation,
consistent with the terminology used in the complex case. Recall that in the

“dictionary” between algebraic geometry and the theory of complex manifolds, our
situation

Xgs — X o= Z
! I~ i
Spec (K*) — Spec (K) < Spec (Of)

corresponds to a situation

X, - X\X, =X

| L lr
n o 4* <4
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where 4 is a small disk in the plane centered at the origin, A*:=A4\{0}, and
n € 4*. The natural action of m,(4*, ) on H,(X,, Z) corresponds to the action of
Gal (K*/K) on T, A.

Let p :m, —» Aut (M) be a representation of a fundamental group =m, on a
module M. In the classical terminology, the elements of p(n,) are called monodromy
transformations. The interested reader will have no difficulty in adapting the proof
of our theorem to the complex case. Steenbrink has informed us that the analogue
of our result in the complex case can be proven using the tools and methods
introduced in his paper [Ste].

Remark 2.4. Let K be a field of equicharacteristic zero and let X/K be a curve
of genus g. If the special fiber of a good model of X/K is reduced, then X/K has
semistable reduction ([D—M], 2.2), and

fX/K(x) =(x — l)zg-

The semistable reduction theorem for curves ((D—M], 2.4, and [Gro], IX, 3.5) states
that the curve has semistable reduction if and only if the inertia group I, acts on
T,A in a unipotent way. Therefore, when the special fiber of a good model of X /K
1s reduced,

char(o,)(x) = (x — 1)%.

Hence, in this case, fyx(x) = char(o,)(x).

The two main ingredients in the proof of our theorem are the semistable
reduction theorem and the following explicit description of the behavior of fy,«(x)
under base extension.

2.5. Let @,(x) denote the minimal polynomial over Z of a primitive u*" root of
unity. Let g be any prime. Define

P ,(x) if g fu.
T (®,(x) =3[P, ()] " ifq|uq’fu
(D (¥)]* if ¢* | u.

When f(x) =11, &, (x) is a product of cyclotomic polynomials, let

I(f) =[] T,(®,(x).

Let d =q4' - - - q¢ be any integer. Define

Fy=(Ty)" e oo (D)™
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Note that, if the characteristic polynomial char,(x) of an automorphism t of Z?¢ is
equal to a product of cyclotomic polynomials, then the characteristic polynomial of
1 is equal to I'y(char,(x)).

PROPOSITION 2.6. Let X/K be a curve. Let d be any integer prime to p. Let
K, /K denote the unique (cyclic) extension of K of degree d. Then

fod/Kd(x) = Fd(fX/K(x))-

We postpone the proof of this proposition to the next section and turn now to
the proof of Theorem 2.1. We need to recall some standard facts about abelian
varieties and their Néron models. Let 4/K be an abelian variety and let &/ /0
denote its Néron model. The connected component of zero of the special fiber of ¢,
denoted by /) /k, is a smooth connected group scheme. As such, it can be
described by an exact sequence

0-UXT >A>B -0
of smooth group schemes over k, where % is unipotent of dimension ug, J is a
torus of dimension ., and £ is an abelian variety of dimension a.

2.7. Raynaud has shown in [Ray] (see also [BLR], Theorem 4 on page 267 and
Propositions 9 and 10 on pages 248—249) that, if X/K is a curve and 4/K denotes
its jacobian, then

u(X/K) = ag
and
BX/K) = tg.

2.8. Fix a prime ¢ #p and fix a polarization of A/K. Associated to this
polarization is a Galois invariant skew-symmetric separating pairing:

<,>.T/A XT/A""T{Gm;Z/.

When X = T, is any submodule, we let X+ denote the orthogonal complement of
X under the pairing {, >. When M/K is any finite extension, we let

W, = T;M N (T;M) .
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We refer the reader to [Gro], IX, §2 and §3, for a proof of the following facts:

* l'ankz[ (W[,K) - tK‘
* rankg, (TX) = 2a, + 1.
* There exists a finite extension L/K, minimal with the property that

(W, )t =T

2.9. Let g = p or, when p =0, let g be any prime. Let Q denote the pro-¢g-Sylow
subgroup of I. If £ # g, then the image Q, of Q in Aut (T, A) is a finite group, and
|Qo| is invertible in Z,. Therefore, the averaging map

1,4 "*(TJA)Q
x =1/l Y (%)

te€Qp
is well defined. The above map is a section to the inclusion (7,4)2 = T, A. Hence,
the functor which associates to a module X its module of Q-invariants X© is exact.
It is easy to check (see for instance [L—O], 1.1, when Q = P) that the pairing ¢, )
restricts to a nondegenerate pairing on 7%, denoted again by

(T2 xTP-Z,.

When Y = T¢ is any submodule, we let Y% denote the orthogonal complement
of Y under the restricted pairing. If X < T, is any submodule, then

(X9)f=(xH)“.

2.10. Let us now show that the characteristic polynomial char(s,)(x) of o,
acting on T'Z has integer coefficients. The proof of this claim presented here will also
show that the polynomial char(s,)(x) is independent of ¢ (£ # p), but this fact will
not be used in the proof of Theorem 2.1.

Let L/K again denote the extension of K minimal with the property that
(W, )+t = T!t. Let L, denote the maximal tame extension of K in L. Consider the
inclusions

3 P
Wi, cTHocT,.

Let fu, Lo(x) and frlLe(x) denote the characteristic polynomials of o, restricted
respectively to W, , and T!to. Since

TZ /T /o is isomorphic to W, , ,
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it follows that, in order to prove our claim, we need only to show that the
polynomials fy,, Lo(x) and fr/.,(x) have integer coefficients and are independent of
¢ (¢ # p). Grothendieck showed, in [Gro], IX, Théoréme 4.3, that the characteristic
polynomial of any element t of I acting on T, has integer coefficients. His proof
can be modified to give a proof of our claim, as we shall now sketch for the
convenience of the reader.

Let o/,  denote the Néron model of 4, /L,. Let &9 , denote the connected
component of zero in the special fiber of ./, . The smooth group scheme .&/ 7 ok 18
an extension of an abelian variety 4 by the product of a torus .7 and a unipotent
group %

0-UxT —A] ,—B—0.

Any element ¢ of I induces two automorphisms

and
Oy . B>

Both automorphisms, ¢, and ¢, induce automorphisms of the corresponding Tate
modules,

o T(T)>TAT)
and
oy:1T,(B)—>T,(A).

Grothendieck shows in [Gro], IX, 4.2, that T,(7) and W,, are isomorphic
I-modules. He also shows that T,(#) and T/to /W, , , are isomorphic Ix-modules.
It was proven by Weil (see [Mil], 12.9) that the characteristic polynomial of g4
acting on T,(Z#) has integer coefficients and is independent of ¢ # p. Grothendieck
shows in the proof of Théoréme 4.3 of [Gro], IX, that the characteristic polynomial
of 6, on T,(7) has integer coefficients and is independent of ¢ # p. Therefore, our
claim is proved.

2.11. Proof of Theorem 2.1, Part (i). We proceed by induction on the integer
AMX/K) defined below. Let /0, be a normal model of X/K. Write 24 = JC,,
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where C; is an irreducible component of multiplicity r; and genus g(C;). Let d(C;)
denote the degree of the vertex C; in the associated graph G(&). Set

Az, +=lcm (r$? Ig(C,-) >0 or d(C;) > 2).
Let
MX/K)=min {Ay, | Z /0 is a regular good model of X/K}.

The properties of A(X/K) needed in the proof of our theorem are summarized in the
following proposition, whose proof is postponed to the next section.

PROPOSITION 2.12. Let X/K be a curve. Let d be any integer prime to p and
let K;/K denote the unique extension of K of degree d. Then
(1) AM(Xg,/K,) divides A(X[K) and, if d divides A(X/K), then M( X, /K,) divides
d~'AMX/K).
(i) If MX/K) =1, then o(Xg,/K;) = (X [K) and p(Xk,/K;) = B(X/K).

2.13. Assume now that A(X/K) = 1, so that ) (x) = (x — 1)2X/F+2BXIK) e
claim that in order to prove Theorem 2.1 under this assumption, it is sufficient to
show that

3 !
We . =Tx

Indeed, the automorphism o, acts trivially on 77X and on W, . Hence, when
W3 x = T7%, it also acts trivially on

T;’/T;K =T Wik =W,k

Therefore, all the eigenvalues of o, on TZ are equal to one and the characteristic
polynomial of o, is equal to

(x _ I)ZaK +2t,<.

Raynaud’s result quoted in 2.7 implies that a, = a(X/K) and that ¢, = (X/K),
which proves our claim.

Let us now show that W%, = T/* when A(X/K)=1. Let L,< L denote the
extension of K corresponding to the inertia group I, :=1I, - P. The extension Ly/K
1s tame and cyclic. Therefore, Proposition 2.12 implies that

MXp,/Lo) = MX[K) =1,
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and that
ap,=u(X,,/Ly) =UX/K) = ay,
and that
gy = ﬂ(XLO/Lo) = ﬁ(X/K) = Ig.

Hence, T'% and T’/to have the same rank. Since 7’*o contains T'X, the group
T/-o/T'K is finite, from which one easily deduces that

Tx !
T/K = T/LO.
In particular,
W, k= W/,LO'

Note that, by definition of L,, the group P is equal to the pro-p-Sylow subgroup
of I, . Hence, the operation (—)% is the same for both ground fields K and L,.
Therefore, to prove that W3 , = T’%, it is sufficient to show that

W?.Lo = T'vo.
Note that

W, )" =T} n(TH”
=(TH n(TH"
= T,-on(T7+0)"
= T/on(T/o)*

= W/,Lo .
Therefore,

(W/,LQ)§ = [(W/.L)P]§
= [(W/,L)l]P
- (T’L)P — T[LO,

This concludes the proof of our theorem when A(X/K) = 1.
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2.14. The proof of our theorem in general, by induction on the integer A(X/K),
proceeds as follows. If d divides 4:=A(X/K), then

o is a topological generator of I /P.
By construction,
char(¢¥) = I' j(char(a,)).
Proposition 2.6 implies that, if d divides 4, then

£ k0 = Lo fL0).

Proposition 2.12 implies that, if d divides A and d # 1, then A(Xg, /K,) strictly
divides A(X/K). Hence, by induction,

S8 k(%) = char(c)(x)

for all d|A, d#1. It also follows from Proposition 2.12 that A(Xx, /K;)=1.
Therefore, by induction, it follows that

P () = (x — 1)™™*2. 7 = char(a7)(x).

Lenstra and Oort have shown in [L—0O]}, 1.3, that the multiplicity of the integer
one as eigenvalue of g, on T? is equal to 2ax + 2tx. Raynaud’s Theorem quoted in
2.7 implies that 2ay + 2t is equal to 2a(X/K) + 2B(X/K). Therefore, it follows
from the definitions of f{%(x) and char(s,)(x) that the multiplicity of (x — 1) in
Fx(x) is equal to the multiplicity of (x — 1) in char(s,)(x). Hence, in order to
conclude the proof of Theorem 2.1, we need only to prove the following lemma.

LEMMA 2.15. Let f(x) and g(x) be two polynomials in Z[x] whose roots are
roots of unity of order dividing A. Suppose that
(1) If d divides 4 and d # 1, then I ;( f(x)) =T ;(g(x)).
(ii) The multiplicity of the integer one as root of f(x) is equal to the multiplicity
of the integer one as root of g(x).

Then f(x) = g(x).

Proof. Without loss of generality, we may assume that A is minimal with the
property that

I (f(x) = (x = Dee.
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Let B,(f) (resp. B,(g)) denote the set of roots of f(x) (resp. of g(x)) having order
dividing r. By hypothesis,

B,(f) = By(g),
and, if r # 1, then
B,(f) = multiplicity of (x — 1) in I',(f) = B,(g).

Let P.(f) (resp. P,(g)) denote the set of primitive r-th roots of unity in B,(f)
(resp. in B,(g)). Clearly,

1B,(N)] =2 |Pa(f)]-

dir

Applying the Mobius inversion formula, we find that

It follows that

P.(N)]=|P.(g)], Vr|i

Since f(x) and g(x) have integer coefficients, we conclude that the multiplicity of
®,(x) in f(x) is equal to

|P.(f)|/deg &, (x).

Therefore, the multiplicity of @,(x) in f(x) is equal to the multiplicity of @,(x) in
g(x). U

2.16. Proof of Theorem 2.1, Part (ii). Assume that p =0, and let ¢ be any
prime. One can prove Part (ii) in virtually the same way as Part (1), proceeding by
induction on the integer u(X/K) defined as follows. Let

W [Og) :=lem (r{® | g(C;) > 0 or d(C;) >2),
and define

WX /K) =min {(Z/0x) | X /O is a regular good model of X/K}.
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We leave the details of such a proof to the reader and turn now to a different proof

of Part (i1). We will show that, in fact, Part (ii) follows from Part (i).
We need to show that

Char(“t,g)(x) =f(/\(’l/)K-
Recall that, in the terminology of Remark 1.7, the polynomial f{),(x) is equal to
the prime-to-q part of the polynomial fy «(x). Recall also that Part (i) implies that
fxx(x) = char(a,)(x). Therefore, we need only to show that

char(s, ,)(x) = prime-to-¢g part of char(s,)(x).

Let L/K denote the extension of K minimal with the property that A4, /L has
semistable reduction. Let L, /K denote the unique subfield of L such that

[L L] qord ([LK])

Consider the inclusions

Taking the Q-invariant submodules of these modules, we obtain

W,, ST/t TO
Let gy, (x) and g(x) denote respectively the characteristic polynomial of o,
restricted to W, , and to T, /|W, . Similarly, let Ay, , (x) and h(x) denote respec-

tlvely the characteristic polynomial of o, restricted qto Wi, =(W,,)? and to
S| W, 'L, = (T'L /W, ;)€. Note that, as in the proof of Part (1) one can show that

Wi, =T"
Therefore,
char(a, o )(x) = (/tW/‘Lq(x))Z - h(x).

Hence, to prove Part (ii), it is sufficient to show that

() =&, ()
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and
h(x) = g'“(x).

Since Iy acts on the modules W, , and T ;L /W, , through the finite cyclic quotient
Ix/1,, our claim follows from our next lemma.

LEMMA 2.17. Let G be a cylic group of order m generated by an element t. Let
q be a prime and denote by G, the q-Sylow subgroup of G. Let X be a free Z,-module
on which t acts and assume that the characteristic polynomial of t has integer
coefficients. Then the characteristic polynomial of t restricted to X% has integer

coefficients and is equal to the prime-to-q part of the characteristic polynomial of T on
X.

Proof. Let a and b be two integers such that am'? + bg°9¢™ = 1. Clearly,
ged (g, a) = 1 = ged (b, m@). Let

yi=(t"")¢ and & = (9% ™)L,

We find that t =y - 6. Let F be an algebraic closure of Q,. Since y and 6 commute,
we can find a basis for X°¢ ®_,, F such that both y and ¢ are in diagonal form in
that basis. Similarly, we can find a basis for (X/X%) ®g, F such that both y and ¢
are in diagonal form in that basis. Since y is a generator of G,, the operator y has
no eigenvalues equal to 1 when restricted to X/Xs. Therefore, the eigenvalues of
the characteristic polynomial of yd restricted to X/X s are roots of unity of order
divisible by g. Since y is the identity when restricted to X7 and since the eigenvalues
of & restricted to X« are roots of unity of order prime to g, we conclude that the
characteristic polynomial of 7 restricted to X has integer coefficients and that it is
equal to the prime-to-¢g part of the characteristic polynomial of 7.

3. Behavior of fx,x(x) under base change

Let /0x be a good model of X/K. Fix a prime g # p. Let K, /K denote the
unique extension of K of degree ¢. In order to prove Proposition 2.6 and
Proposition 2.12, we need to recall how to obtain a good model Z /¢ K, of X X, /K,
from a good model of X/K. The assumption that the extension K, /K is tame is
essential in this section.

Let % /0y, denote the normalization of the scheme

& X spec () SPEC ((qu)-
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Let n : % > % denote the composition of the natural maps
W —> X X spec (¢ x) SPEC ((OK(,) - %.

Let
p.Z->%

denote the minimal desingularization of %. To recall the descriptions of the maps
p and 7, we need the following definition. Let & /0, be any regular model of X/K.
Let C,, ..., C,, be irreducible components of the special fiber Z,. The divisor

is said to be a Hirzebruch—Young string if:

cg(C))y=0 Vi=1,...,m.

*(C,-CH< =2 Vi=1,...,m.

(G- C)=1 if|i—j|=1

* (G- C)=0 iffi—j|>1.
We state the following well known facts without proof (see for instance [BPV],
Theorem 5.2, when Z'/C is a surface).

Facts 3.1. Let /O be a good model of X/K and g be a prime, g # p.

* The map n : % - % is ramified over the divisor
R= Y .
ng (q*rl) =1

In particular, R < & has normal crossings. A point P € % is singular if and
only if n(P) is a singular point of R.

* If Pe% is a singular point, then the divisor p ~'(P):=X"% E, is a Hirze-
bruch-Young string. Let P € D, D;, where D, and D, are irreducible compo-
nents of %,. Write D, for the strict transform of D, in &. Then:

(p~'(P)- ﬁ,) =(E, - ﬁz) =1=(E.p - D~,) =(p~'(P)- D~,)
Moreover, if D is an irreducible component of %, and D # D, or D~,, then

(p~'(P)- D) =0.
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Using the facts recalled in 3.1, one easily proves the following proposition. The
integer Ay, 1s defined as in 2.11.
q

PROPOSITION 3.2. If /0Oy is a good model for X/|K, then Q"/(qu is a good

model for Xx [K,. Moreover, the following invariants attached to & can be computed
on %:

(1) (Z) = (%) and P(Z) = p(¥),
(11) f:z*/a,(q(x) :kaq/xq(x) =f.ﬂ//c,<q(x)a and
(iii) }“:!/(’Kq = )vy/cr K,

Facts 3.3. Let Z/0x be a good model of X/K and let g # p be a prime. Let C;
be any component of 4, having multiplicity r;, and degree d.. Let b(C;) = b, denote
the number of components C, adjacent to C;, and such that ged (r;, r;) is prime to
q.

* Assume that ¢ fr,. Then D,:==n"'(C,) is irreducible and the restricted map

nlD’ . Dl i C,
is an isomorphism. The multiplicity of D, in % is equal to r,. The degree of D,
in G(%) is equal to d;, = d(C,).

* Assume that ¢ | r; and b, > 0. Then D,:==n ~'(C) is irreducible. The restricted
map

TCIDI : Dl _—’Ci

has degree g and is ramified over b, points of C;. The degree of D, in G(%) is
equal to b, + q(d, — b;). The genus g(D;) of D, is given by the formula

2¢(D;) =2g(C,) - q + (g — 1)(b; — 2),
obtained using the Riemann—Hurwitz formula. The curve D; has multiplicity
r,/qg in %.

* Assume that ¢ | r; and b, = 0. Then either D,:=xn~'(C;) is irreducible and

Tp, - D; = C;

is an étale map, or else = ~'(C;) is equal to the disjoint union of g curves D;
and each restricted map

Tp, D, - C,
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is an isomorphism. In either case, each irreducible component of 7 ~'(C;) has
multiplicity r;/q in %,.
The following lemmas follow immediately from the facts recalled above.

LEMMA 3.4. If q divides r;, then

Y (2g(D;) +d(D;) —2) = q(28(C;) +d(C,) —2).

D,cn—(C))

LEMMA 3.5. Let D; be an irreducible component of n~'(C;). If g(C;) =0 and
d(C;) £2, then g(D;) =0 and d(D;) = d(C,).

Remark 3.6. The integer (2g(C;) +d(C;) —2) is equal to the “topological”
Euler—Poincaré characteristic EP(C;) of the open curve

Ci=C\C;nZ\C).
Let
Di=n"YC)H\~ (C:) n¥ \n~(C,)).

Since the restricted map n : D; - C; is ¢tale of degree g prime to p, Lemma 3.4
simply states that

EP(D;) = q EP(C?).
Proof of Proposition 2.6. We want to prove that
Fq(fX/K(x)) =fx,<q/1<q(x)-

Let us first check that the multiplicity of the factor (x — 1) is the same in both
polynomials. We keep the notations introduced in 3.3. It follows from the defini-
tions of I', and of fy x(x) that

orde. 1 (I'y(fxx(x))) = 20(X) + 2(X) + lZ (g — 1)(28(Ci) +d; = 2).

It follows from the definition of fy, ,Kq(x) that
q

ord, _y (foq/Kq(x)) = za(XKq) + ZB(XK,,)-
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Recall that Part (1) of Proposition 3.2 shows that a(Xx,) = (%) and B(Xk ) = p(¥).
Recall also the following formula for the Betti number of a graph G:

2W(G) ~2= 3 @(C) 2.
Therefore,
(Xg,) + (2B(Xx) —2)= ). 2g(D;)+d(D)) -2
D,cn—NC))

It follows immediately from Lemma 3.4 that

20(Xy,) + 2B(Xk,) — 2 =20(X) + 2B(X) =2+ ) (g — 1)(28(C;) + d; - 2).

gl

Hence,

Ord(\' 1 (foq/Kq(X)) = Ord(vc—— ) (rq(fX/K(x)))'

Let d > 1 be any integer. To finish the proof of Proposition 2.6, we need to
show that

Ord(pdm (I',(fxx(x)) = Ord(bd(x) (fXKq/K,,(x))-

Let us first state a lemma.
LEMMA 3.7. Let q be prime, and let d and r be any integers. Then

0 ifandonly ifdfrorq|d|r dqjr.
ordg o (I,(x"— 1)) ={1 ifand only ifd|r, q}r.
q ifand only if dq |r.

Proof. The first two cases are obvious and we leave them to the reader. With
regard to the third case, let us note that if dg |r, then @, @, divides (x” — 1).
Therefore, when ¢ | dg, then I' (®,,) = (®,)¢ and when g }d, then I' (P, P,,) =
@ (D). O

Using the above lemma and the definition of fy x(x), we can write:

ordg, o (I, (fxx (X)) = 3. (28(C)) +d(C,) =2) + ). q(2g(C;) +d(C)) —2).

d|r, dq|r,

qtr
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On the other hand,

ords, o (fxy 1k, (X)) = Zl (2¢(D;) +d(D;) —2)
D,cn-\(C,)
dlr, qkr;

+ Y (2g(D)) +d(D;) - 2).
b= .‘,"C"

It is then easy to check, using the facts recalled in 3.3 and Lemma 3.4, that

ordg, v (I (fx/x(x)) = Ordzpd(x) (fXKq/Kq(x))-

This concludes the proof of Proposition 2.6. |

Proof of Proposition 2.12. Let g be a prime, g # p. Part (i) of Proposition 2.12
states that A(X, X, /K,) divides A(X/K) and that, if ¢ divides A(X/K), then A(X X, /K,)
divides ¢ ~'A(X/K). Choose a good model /O, of X/K such that

Let % denote the normalization of & X gpec 0,y SpPec (Ok,) and let Z denote the
minimal desingularization of %. Proposition 3.2 shows that

/lgm,(q = A@/@xq-
Therefore, in order to prove Part (i) of Proposition 2.12, we need only to show that
Ayjo, divides Ag o,
and that
'1@/01% divides ¢ ~'Az/0, if ¢ divides A4/0,.
These two facts follow immediately from the facts recalled in 3.3 and from Lemma
3.5.
Part (ii) of Proposition 2.12 states that, if A(X/K) =1, then a(Xy /K;) =
a(X/K) and B(Xg,/K;) = B(X/K). Choose a good model Z' /O of X/K such that

MX/K) = Ag)0, = 1. Let g be a prime. Proposition 3.2 shows that

(X, K,) = (Z |0k ) = (¥ |Oy,),
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and that
BXy,IK,) = B(Z[0x) = B@ [0y ).

Let us now show that (¥ [Ok,) =o(Z|Ox). Let C; be a component of 2. If
d(C;) >2 or g(C;) >0, then, by hypothesis, r{” =1. Therefore, C,; is in the
ramification locus of

n.Y->x.
Hence, n~!'(C;) =: D, is irreducible and
TC‘DI : D,‘ g C‘

is an isomorphism. In particular, g(D;) = g(C;). If d(C,) <2 and g(C,) =0, then
Lemma 3.5 implies that

g(D,)=0 if D;en !(C)).

Therefore, (Z’) = a(#). To show that ﬂ(@/(qu) = B(Z|0), let us first recall that

n

(&) —2= ) (d(C;)) —2) =} (d(C;) —2) + 3 (d(C;) - 2).

i=1 qlr, ‘/‘rl

We claim that if ¢ divides r;, then d(C;) =2 and g(C;) = 0. Certainly we must have
g(C;) =0 and d(C,) <2 since 4, , = 1. Let us assume, ab absurdo, that C; is such
that ¢ divides r; and d(C,) = 1. Recall that a vertex C of G is called a node if
d(C) > 2. Since ged (ry,...,r,) =1, the existence of C;, with ¢ |r, implies the
existence of a node in G. It is then easy to check that g must divide the multiplicity
of the node C of G closest to C; (we assume that an edge of G has unit length). This
is a contradiction since our assumption As., =1 implies that all nodes have
multiplicity prime to ¢q. Therefore, d(C;) =2 if ¢ divides r;. Hence, the above
formula for p(Z) simplifies and reads:

2B(%) — 2=}, (d(C;) —-2).
qtr,
We can compute 2(%#) — 2 in the same way:

2p(%) - 2= ) (d(D;) —2) + ) (d(D;) —2).

D,en—UC)), qfr, D,en—UC,), q]|r,
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As we have shown above, if ¢ divides r;, then g(C,;) =0 and d(C;) = 2. Therefore,
we can apply Lemma 3.5 to C; and conclude that d(D,) =2 if D, € n ~'(C;). Hence,

2p(%) —2= ) (d(D;) -2) = ; (d(C;) —2) = 2B(F) - 2.

D,en =1(C,). gkr,

This concludes the proof of Proposition 2.12. O

4. The characteristic polynomial of an automorphism

Let ¢ be an automorphism of order r of a compact Riemann surface X of genus
g(X). Let Y denote the quotient of X by the cyclic group (o) generated by o. Let

n:X->Y

denote the quotient map and let B < Y denote the branch locus of n. The
Riemann-Hurwitz formula applied to n reads:

28(X) —=2=r(2g(Y) =2) + Y | Y(P)|(r/|]n " (P)| - 1).

PeB

To motivate our next theorem, let us rewrite this formula in the following form:

2g(X) =2g(Y) + (2g(Y) +|B] = 2)(r — 1) - PZB(IN"‘(P)l —1).

Let

X" — 1\2&(Y)+ 8| -2 xIF e\ !
fa(x)==(x—1)2g”’-(x_ ) 1 (—-———) -
PeB

1 x—1

THEOREM 4.1. Let X be a compact Riemann surface and let ¢ be an automor-
phism of order r. Assume that gcd (|n~'(P)|, P € B) = 1. Then the rational function
[f-(x) is a polynomial of degree 2g(X) and this polynomial is equal to the characteristic
polynomial char(a)(x) of ¢ acting on H,(X, Z).

Remark 4.2. Much has been written on automorphisms of curves. This theorem
may well follow from the Lefshetz trace formula. We did not, however, find it
stated in the literature. Our proof is a variation of the proof of Theorem 2.1. It uses
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little more than the Riemann-Hurwitz formula. Note that the assumption
ged (jm = '(P)|, P € B) =1 holds when ¢ has a fixed point.

LEMMA 4.3. Assume that gcd (|n ~'(P)|, P € B) = 1. Then the rational function
f,(x) is a polynomial of degree 2g(X).

Proof. Our lemma will follow from Theorem 3.1 in [Lor]. To be able to apply
Theorem 3.1, we need to associate an arithmetical graph G to the integers r and
|z ='(P)|, P € B. We proceed as follows. Let R be the ramification locus of 7 and fix
£ e X\R. Let n =n(¢). Then

n:X\R- Y\B
is étale and we have an exact sequence of fundamental groups
07, (X\R, &) = 7,(Y\B, n) — (o) —0.

Let B:={P,, ..., Py} and set 5;==|n ~'(P;)|. Let y, be a “loop around P,” passing
through #», and such that

i can be lifted to X\R.

In particular, there exist |B| integers m;, with the property that ged (m,, r/s;) =1,
and such that

p(p;) =™

The path p, - - - yp 1s equal to a product of commutators in x,(Y\B, n). Therefore,
its image in the abelian group <o) is trivial:

p(py - .“[31) =id =g**".
In particular,

r divides ) s;m;.

Let r,:=s,m;, with gcd (r, r;) = s,. For each pair (r, r;), we can construct a terminal
chain T; of an arithmetical graph using Euclid’s algorithm as in 2.4 of [Lor]. The
terminal vertex on the terminal chain T, has multiplicity s;. The graph G needed to
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apply Theorem 3.1 of [Lor] is obtained by attaching the terminal chains T},

i=1,..., (BI, to a single vertex C, given multiplicity r. The “self-intersection” of C
in G is then equal to

Since ged (sy, - . ., 55) = 1, we can apply Theorem 3.1 in [Lor] to show that

x"—1 |B|—2 |B] x5 — 1 —1
fG(x)::<x—]) -il___:ll<x_]>

is a polynomial. Since

f,(0) = (x = D= - [(x" = D (x = D]* - fi:(x),
our lemma follows. J

Proof of Theorem 4.1. The proof of Theorem 4.1 is a variation on the proof of
Theorem 2.1. We proceed by induction on the integer r. If r =1, our claim is
obviously true. Therefore, we may assume by induction that, if d divides r and
d <r, then

£, «(x) = char(c¥)(x).

Theorem 4.1 will follow from Lemma 2.15 once we have proven Lemma 4.4 and
Lemma 4.5 below. Indeed, Lemma 4.4 shows that

ord(, _, (f,(x)) = ord(, _ , (char(a)(x)).

Therefore, to apply Lemma 2.15 to our situation, we need only to know that
I',(f;(x)) =f,4(x). This is the statement of Lemma 4.5.

LEMMA 4.4. The kernel of the map
o—id:H((X,Z)->H,(X,Z)

has rank equal to 2g(Y).
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Proof. This lemma is certainly well known. It follows for instance from V.2.2.3
in [F-K], where it is shown that the kernel of

o —id: H'(X, Qy) » HYX, Q)
has dimension g(Y). O

LEMMA 4.5. Let q be any divisor of r. Then I ,( f,(x)) =f,4(x).

Proof. The proof is straightforward but rather tedious. We leave it to the
reader. O
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