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Finiteness obstructions and cocompact actions on S” x R”

DouGLAS R. ANDERSON! AND FRANCIS X. CONNOLLY?

We recall that an action of the group I' on the space X is properly discontinuous
if for every compact set K in X the family {yK |y € I'} is locally finite and that the
action is cocompact if the orbit space X/I' is compact.

The question of which groups I' can act freely, properly discontinuously, and
cocompactly on $” x R" has gained interest in recent years. (If the action is not
required to be cocompact, this problem is solved for a very large class of groups in
[C-P].) This paper studies the following aspect of this question: Suppose I' acts
freely, properly discontinuously, and cocompactly on S x R" and that G is a finite
subgroup of the group I'. What restrictions does this impose on G?

It is a classical result of Cartan—Eilenberg [C—E] that in this situation G has
periodic cohomology of period d and that m = —1 (mod d). Furthermore, it is
natural to expect that any additional restrictions on G will depend on m and n. For
example, a well known result of Milnor [Mi] shows that if n =0, G cannot contain
a dihedral subgroup; while a recent result of Hambleton—Pedersen [H—P] shows
that if n = 2, then this restriction on G is no longer necessary. So the restrictions on
G depend on n. Another such example arises out of the work of Lee [Le] and
Madsen—-Thomas—Wall [M-T-W]. In [Le], Lee gives examples of finite groups G
with periodic cohomology of period 4 and not containing a dihedral subgroup that
do not act freely on S@*+D4-1 for any r = 0. On the other hand, the results of
[M-T-W] show that such groups G do act freely on S*“~! for any r > 1. So the
restrictions on the finite subgroups of I' also depend on m.

The main results of this paper are Theorems I and II below. Since the examples
of Lee play a central role in Theorem II, we describe them in more detail. Following
Lee [Le; p. 195], we let Q(29, p, 1) be the group with presentation

1

{6, y, 2| x2=()?=y¥ ", 2=l xzx ' =z, yzy ' =z}

! Partially supported by the National Science Foundation under grant number DMS88-03149.
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where p is an odd prime. Notice that since there is a split short exact sequence
1-C,-Q(2%p, 1) > 0(2) - 1,

Q(2% p, 1) is the semidirect product C, > Q(2%) where C, = {z) is the subgroup
generated by z and Q(2%) is the generalized quaternion group with presentation
(%, 7| 2= (%))2=75%""}. We embed Q(27) in Q(2¢ p, 1) via the homomorphism
that sends x and y respectively, to x and y. This group acts linearly and freely on
S8 ~1 for any r = 1. On the other hand, Lee [Le] proved the following theorem:

THEOREM (Lee). If the finite group G contains a copy of Q(24, p, 1) with q > 4,
then G cannot act freely on S* *3 for any r 2 0.

Lee proved this theorem using a semicharacteristic invariant. This result was
sharpened in subsequent work by Davis [Da]. He used the Swan—Wall finiteness
obstruction to prove the following theorem:

THEOREM (Davis). Let G be a finite group containing Q(29, p, 1) with q =2 4
and p an odd prime with p # — 1 (mod 29~ ") and p # 1 (mod 8). Then G does not act
freely and cellularly on a finite CW complex having the homotopy type of S *3 for
any r = 0.

We recall that a Hadamard manifold is a simply connected, complete Rieman-
nian manifold of non-positive sectional curvature. For the purposes of this paper,
a discrete subgroup I' < Iso (H), where Iso (H) is the group of isometries of H, is
called a lattice if the orbit space H/I" is compact although this is slightly nonstan-
dard terminology. A group I is called lattice-like if it is virtually torsion free and
admits an epimorphism onto a lattice with finite kernel. (Recall a group is virtually
torsion free if it contains a torsion free subgroup of finite index.) For example,
crystallographic groups, discrete, uniform subgroups of a matrix group, and finite
groups are lattice-like. Notice that the natural action of a lattice-like group on H is
properly discontinuous.

Unless otherwise stated, in this paper the symbol I' will denote a lattice-like
group and the letters G, H, etc will denote finite groups.

In Section 2 we define an additive category €, (&I, Z;Z) and the transfer
homomorphism

tr: Ko(ZG) — Ko(%(ET, Z, 7))

which appears in the following theorem.
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THEOREM 1. Suppose the lattzce like group I' acts freely, cellularly, and
cocompactly on the CW complex X and that for every finite subgroup H of T, X /H
is a ﬁnztely dominated CW complex. Let G be a fixed ﬁmte subgroup of I' and
oG (X |G) be its finiteness obstruction. Then tr O'G(X /G) =0 in KO(‘gG (6T, X; 7)).

A group I has finite virtual cohomological dimension if it contains a finite index
subgroup I, with finite cohomological dimension. In this case we write ved I' = s,
if I'y has cohomological dimension s. If G is a subgroup of I', then Z,.(G) denotes
the centralizer of G in I'.

The following theorem, which will be derived from the stronger Theorem 5.1 in
Section 5, is a generalization of the result of Lee and Dauvis:

THEOREM I1. Let I' be a lattice-like group. Suppose that I' contains a copy of
Q(2%, p, 1) with g = 4 and for which p is an odd prime p with p #1 (mod 8) and
p # —1 (mod 2/~ ') and that Z,(C,) is finite. If either

(1) 3 <ved Z,(Q(29); or

(2) vedT <3,
then I' cannot act freely, cellularly, and cocompactly on a CW complex X homotopy
equivalent to S% 3 for some r 2 0. In particular, T cannot act freely, properly
discontinuously, and cocompactly on S¥ *3 x R" for any r 2 0.

Notice that if I is itself finite, then Z;-(C,) must be finite and ved I' = 0. Hence
(2) holds and we recover Davis’s theorem. This is not an independent proof of his
theorem, however, since we use his proof in the one given here.

Recall that C, acts freely on Z[{,] where {, is a p-th root of unity. To show that
Theorem II contains new information, we prove the following corollary:

COROLLARY III. Let g 24 and p be an odd prime with p # 1 (mod 8) and
p#—1 (mod2¢~"). Let I' be a crystallographic group of the form I =
A><Q(29, p, 1) where A =ind% (4,), O = Q(2%, p, 1), C = C,, and A, = (Z[{,)*.
If p=3, assume that rank; (A,) #2. Then I' cannot act freely, cellularly, and
cocompactly on a CW complex X homotopy equivalent to S¥*3 for any r 20. In

particular, TI' cannot act freely, properly discontinuously, and cocompactly on
S¥+3 x R" for any r 2 0.

We remark that the group I' of Corollary III acts on A ® R = V in such a way
that 4 acts as translations. In addition, I'/4 = Q(2¢, p, 1) acts freely and linearly on
S8 +7 for each r 2 0. Hence I' acts freely, properly discontinuously and cocom-
pactly on S8 *7 x V via the diagonal action. Thus the ‘“‘geometric period” of I is
8, even though its ‘““algebraic period” in the sense of Farrell cohomology [Fa] is 4.
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Section 1 of this paper contains the key geometric result underlying the proof of
Theorem I; while Section 2 defines the transfer map mentioned above and gives the
proof of Theorem I. Sections 3 and 4 contain the main new technical tools used in
this paper. Section 3 introduces the equivariant geometric module theory needed for
the proof of Theorem II; while a spectral sequence for calculating this theory is
described in Section 4. The proofs of Theorem II and Corollary III are given in
Section 5 with the proof of one lemma deferred until Section 6.

The reader who is most interested in Theorem II and its proof should read
Sections 1, 2, and 5 first and refer back to Sections 3 and 4 only as need dictates.

It is a pleasure for the authors to thank Bruce Williams for several very helpful
conversations about this paper and Jim Davis for his assistance in clarifying the
material in Section 6. In addition, the first named author would like to thank the
Department of Mathematics at the University of Notre Dame for providing a
stimulating atmosphere for him during the period in which this paper was written.

1. The key geometric result

Let I' be a lattice-like group. Throughout this paper the Hadamard manifold on
which I' acts by isometries will be denoted by &I". In this section we study the
spaces &I" and &I that play a basic role in this paper and derive their properties.
The notation &T for these spaces was introduced in [C—K] where they were studied
in a more general context. The main result of this section is Proposition 1.5. It is the
key geometric ingredient in the proof of the Theorem I.

LEMMA 1.1. Let I" be a lattice-like group. Then I' contains a normal torsion
free subgroup I' of finite index. Furthermore the left action of I' on &I has the
following properties:

(1) &I admits the structure of a finite dimensional, contractible CW complex on

which I’ acts cellularly;

(2) For each cell o € &I, the stabilizer of o fixes a pointwise,

(3) For each point x € &TI', the isotropy subgroup I, is finite;

(4) For each finite subgroup G of T', (6I')€ is contractible; and

(5) There is a normal subgroup I'y of I for which the orbit space EI'|T',, is a

closed manifold.

Proof. Let I'; be a torsion free subgroup of finite index in I' and I', be the
intersection of the (finitely many) conjugates of I',. Then I, is still torsion free and
of finite index but is also normal.

Since I' acts properly discontinuously on &I', each isotropy subgroup I, is
finite. Thus if I'; 1s a normal torsion free subgroup of finite index, I', acts freely,
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properly discontinuously, and cocompactly on &I'. Hence the orbit space &I'/T', is
a closed manifold. Since I' acts smoothly on &T, the finite group G =TI/, acts
smoothly on &I'/I'y and &I'/T"; has a an equivariant cell decomposition. The lifting
of this decomposition to &I" endows &I" with a finite-dimensional CW structure on
which I' acts cellularly. Thus (1), (2), (3) and (5) follow.

We now show that (4) holds. Let H=6&T and G = I be a finite subgroup. By
a theorem of E. Cartan [He; Theorem 13.5, p. 75 (cf. also p. 72)], H® # . Since
I' acts by isometries, HY is totally geodesic. Choose x € H®. Then it follows from
[Ch-E; Cor. 1.34, p. 37] that exp,: TH,—>H is a diffeomorphism which is
G-equivariant. Hence H® is homeomorphic to (TH, ) © which is obviously contractible.

We recall that a group I' has finite virtual cohomological dimension (vcd) if it has
a finite index subgroup I'; of finite cohomological dimension and that vcd I is
defined to be the cohomological dimension of any such subgroup.

LEMMA 1.2. Let I be a lattice-like group. Then ved I' = dim &I’ and for any
finite subgroup G of I', ved Z,-(G) = dim (£1)°.

In this lemma, Z,(G) is the centralizer of G in I'; that is Z(G) ={y e |
vgy ' =g for all g € G}.

Proof. That vecd I' =dim &' follows trivially from 1.1(5). Let Z. (G) =
Z(G)nT,. Then Z; (G) has finite index in Z-(G) and acts freely on (8)°. Let
n:I'/T'y be the natural homomorphism. By [C-K; Lemma 2.2], ((S’I’)G/ZFO(G) is a
component of (1" /I'y)™ under the action of I'/T’, on the closed manifold &I'/T,.
Hence it is also a closed manifold and ved Z(G) = ved Z (G) = dim (6N as
claimed.

LEMMA 1.3. The space &I has a compactification ET =& U X with the
following properties:
(1) The action of T on I extends to an action of I' on éT:
(2) For any finite subgroup G of T, &T is a G-homeomorphic to the unit disk in
a k-dimensional representation of G; and
(3) For any compact set C = &T, the sets {yC |y € I'} get small near X.

To say that the sets {yC |y € I'} get small near X means that for any point z € 2
and any neighborhood U of z in &I, there is a neighborhood V' of z such that if
yC NV # &, then yC < U.

Proof. The proof given here is essentially that in [F—H; pp. 206-207].
Let H = &T and fix a point x € H. Choose an orthogonal framing for TH,. This
determines an identification fo R* with TH, for which the exponential map
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exp,: R* > H is a distance non-decreasing diffeomorphism by [Ch—E; Cor. 1.34, p.
37]. Let H be the compactification of H obtained by adjoining an end point to each
geodesic ray in H emanating from x. Under exp, the geodesic rays correspond to
linear rays so exp, extends to a homeomorphism é,: D* —»H for which i exp, =é, j
where j: R* - D* is a radial embedding. That (1) holds follows from the argument
of [F-H; pp. 206—207]. The same argument also shows the following: If I"_ is the
isotropy subgroup of x under the I' action on H, then I', is finite, R*=TH, is a
linear representation of I', and &, : D(TH,) » H is a I' -equivariant homeomor-
phism. Since this observation is independent of the choice of x € H and H® # ¢ for
any finite subgroup of I', (2) follows.

Let C be a compact set in H. Since I' acts by isometries on H and exp, is
distance non-decreasing, the sets {exp;'(yC)} (y e I') have uniformly bounded
diameters in R*. Hence for every z’ € S*~! and every neighborhood U’ of z’, there
is a neighborhood ¥V’ = U’ so that if exp; '(yC)n V'’ # &, then yC’ < U’. Since é,
is a homeomorphism, (3) now follows.

A space over &T is a pair (X, p) where X is space and p : X — &T is a continuous
map. A mapf: (X, p) = (Y, q) between spaces over &I is continuously controlled
at infinity (or simply, continuously controlled or cc) if for every z € 2 and every
neighborhood U of z in &T there is a neighborhood ¥ of z so that fp ~ (V) = ¢ (V).
If we set (X, p) x I = (X x I, pn) where = is projection on the first factor, there is an
obvious notion of a cc homotopy between cc maps f, g : (X, p) = (Y, g) and of f'being
a cc homotopy equivalence. If these maps and these homotopies are also I'-equivari-
ant, we say that f is a cc I'-homotopy equivalence.

LEMMA 1.4. Let (X, p) and (Y, q) be spaces over &I'. Suppose I acts on X and
Y, that p and q are I -equivariant, and that f : X — Y is a I -equivariant map. If X|I'
is compact, then f is cc.

Proof. Let D be a fundamental domain for &I (i.e. D is compact and
&I =J{yD |y e I'}) and consider E = D uqfp (D). Since p is proper, p~'(D) is
compact. Hence so is E. Let z € 2 and U be a neighborhood of z in &I'. By 1.3(3)
there is a neighborhood V of z so that if yEN V # & for some y € I, then yE < U.
Suppose now that xep~'(V). Since D is a fundamental domain for &T,
x € p~Y(yD) c p~'(yE) for some y. Hence yENV # & and by the choice of V,
yE < U. Suppose x =yd with d € p~'(D). Then qf(x) =yqf(d) € yqfp (D) =
vE < U since ¢ and f are I'-equivariant. Thus f(x) € ¢ —'(U) as required.

A space (X, p) over &I for which X is a CW complex is called a CW complex
over . A CW complex (X, p) over &I is continuously controlled at infinity (or
simply either continuously controlled or cc) if for every z € X and every neighbor-
hood U of z in &T there is a neighborhood ¥ of z so that if e is a cell in X for which
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ple) "V # &, then p(e) < U. All CW complexes over &I" considered in this paper
are assumed to be cc. If p is proper, (X, p) is called a finite cc CW complex over &T.

Let X be any CW complex on which I' acts freely and cellulary. Then there is
an equivariant map J: X €T, unique up to equlvarlant homotopy, that classifies
this action (cf. [C-K]). If X/F is compact, (X J) is a finite cc CW complex over
&T. Let p,: X x &' - &I be projection on the second factor. Then (X x &I, p,) 1s
a (usually non-finite) cc CW complex over &1.

PROPOSITION 1.5. Let X be a CW complex on which I' acts freely, cellularly,
and cocompactly. Suppose that for every finite subgroup G =T, X|G is finitely
dominated. Then ¥ = (1, J) (X J) —+(X x &I, py) is a cc I'-homotopy equivalence.

Proof. Let I', be a torsion free subgroup of I', as in 1.1, for which there is a
short exact sequence 1 » I'y— ' 5 H — 1 with H a finite group and so that &I'/T,
is a finite complex. We break the proof into two cases.

Case 1. We assume that for every finite subgroup G < I', X /G has the homotopy
type of a finite complex. In this case consider the diagram

- ¥ ~
X/Ty—— X x; 6T

T

&7 Ty —— &L,

where ¥, J and p,, respectively, are induced by ¥, J and P, respectively. The map
Dy X X, , 6T /Iy is an H-fibration. For any cell ¢ € 6I' /Ty, let Y, = p5 '(0). Then
H, acts freely on Y,_, where H, is the isotropy subgroup of ¢. Let 6 € &I be a cell
in &I' having p(6) = o where p : 6 - &I /T, is the orbit map and let I'; be its
isotropy subgroup The map p restricts to an isomorphism I'; - H, and the map
X x &M ->X x;, 61 restricts to a cellular, p-equivariant homeomorphism
X x G—Y,. Smce X /T'; has the homotopy type of a finite complex by the
assumption above, so does Y, /H, and Y, has the H -homotopy type of a finite
complex on which H, acts freely and cellularly.

By induction on the skeleta of §I'/I',, we can now construct a diagram of
H-maps

X x; 6 — E

]

& Ty —> &TJT,
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with the following properties: E is a finite CW complex on which H acts freely and
cellularly; g : E—>&T'/I'; is a map so that for each cell ¢ € I'/T,, the block
E, =¢q (o) is a finite H,-complex; &(Y,) < E, and @ : Y, - E, is an H,-homo-
topy equivalence. It follows that @ : X x ro 6 > E is an H-equivariant block
fibration homotopy equivalence. (That is @, its homotopy inverse, and the homo-
toples preserve the blocks Y, and E, for each ¢.) Hence the lift b : (X x &, p,) >
(E g) of @ to I'y-covers is a cc homotopy equivalence. Notice that since @ is
H-equivariant, ®is - -equivariant. In addition, since @V : X /F 0——>E is an H-homo-
topy equivalence between finite CW complexes DY : (X J) —»(E q) is also a cc
I'-homotopy equivalence by 1.4. Hence 7 (X J) —-»(X x &I, p,) is a cc I'-homo-
topy equivalence as claimed.

Case 11 (The general case). Let Y=XxS",TactonY by acting only on the
first factor, and J y == =J xPT_ where J % - : X > &T is the classifying map for the I" action
on X and pr: XxS'>Xis projection on the first factor. Then for each finite
subgroup G of I, Y /G = (X /G) x S' has the homotopy type of a finite complex.
Hence (1,J y) (Y J Y) —>(Y x &I, p,) 1s a cc I'-homotopy equivalence by Case 1.
It follows that the induced map on infinite cyclic covers

(1, Jypr) : (X x R, Jypr) » (X x R") x &T, p,)

1S also acclrl- homotopy equivalence. Since the projections maps ()? x R, J D)
-)(X JX) and ((X x RY) x &T, pz)—~>(X x &T, pz) are obviously cc I'-homotopy
equivalences, it follows that (1, JX) (X JX) —»(X x &I, p,) 1s a cc I'-homotopy
equivalence. This completes the proof of 1.5.

2. Transfers, finiteness obstructions, and the proof of Theorem I

In this section we shall introduce the additive category %;(&T,2;Z) of
equivariant geometric modules over &I' with continuous control at infinity. This
category is a variation on the category %, (Z) considered by Hambleton and
Pedersen in [H-P] and has the advantage of being a topological invariant of &T.
In particular, it does not depend on the metric on &I". This extra flexibility plays an
important role in Section 5 and in particular, in Theorem 5.2. We use this category
to define a transfer homomorphism tr: IEO(ZG) —+I€0((€G(<‘5a_f, 2; 7)) and to prove
Theorem 1 of the Introduction.

Let I' be a group, G be a finite subgroup of I', and R be a commutative ring
with unit. Let (€T, 2; R) be the additive category in which an object is a pair
(M, p) where M is a left RG-module and p : M - #,(E) is an equivariant map



Finiteness obstructions and cocompact actions on S x R” 93

where Z,(E) is the collection of finite subsets of E. It is required that (M, p) satisfy
the following conditions:

(1) For each x e &I', M, ={me M |f(m) < {x}} is a finitely generated free
R-submodule of M;

(2) As R-modules M = @D M_;

(3) p(m +m") < p(m) up(m’) for all m, m’ e M,

(4) For each compact set K < E, {x € K M, # 0} is finite.

A morphism f: (M, p) - (N, ¢) is an RG-homomorphism f: M — N with the follow-
ing property: If we write f as a family of R-module homomorphisms {f: M . — N, |
x,y € &I'}, then for every point z € 2 and every neighborhood U of z, there is a
neighborhood V of z with V' = U and so that if x € V and f} #0, then y € U. We
describe this by saying that f is continuously controlled at infinity. The operation
(M, p) ®(N,q) =(M®N, p®q) makes 4,(&T, Z; R) into an additive category.

EXAMPLE 2.1. Let C,(&T'; R) be the n-th cellular chain group of &I' with
coefficients in R and G be a finite subgroup of I'. Let {e,|i € I} be a family of
representatives for the G-orbits of n-cells in 6T". If x € C,(6T'; R), then x = X r, ,ge,
where the r,; are elements of R, only finitely many of which are non-zero, and
g € G. Define p : C,(8T; R) > P,(6T) by setting p(Z r,,ge;) = {gx, | r,; # 0} where
x, is any point of e, (i € I). Then (C,(£T; R), p) is an object in %.(&T, Z; R).
Although p depends on the choice of the x,, it follows from 1.3(3) that any two
such choices yield isomorphic objects in % (&T, Z; R).

Let €,(&T, Z; R) be the full subcategory of 4, (T, X; R) with objects the pairs
(M, p) for which M is a free RG-module and M, is a free RG -module for each
x € &I', where G, is the isotropy subgroup of x.

In this case when &7 is a metric space on which G acts by eventually Lipschitz
maps, the categories %;(&T, 2; R) and %.(&, X; R) are very similar to the
categories 9, (R) and €4, ;(R) respectively, of [H-P]. In many cases €4, s(R) is
actually a subcategory ¥, (&I, £; R) with the only difference being that the hom
sets in €5 (&T, Z; R) are bigger than those of %, (R).

Let €(RG) be the category of finitely generated, free RG-modules. The tensor
product over R defines a bifunctor

® : 4(RG) x G (El, X; R) »%€,(&T, Z; R).
More concretely ® sends (F, (M, p)) to (F® M, q) where ® = ®, and ¢ is such

that (F® M), =F® M,. Since F® M, is a finitely generated, free RG-module for
every x e ', (FQ® M, q) is in €,;(8T', 2; R). Then ® extends to a bifunctor
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® : €(RG) x 4. (éT, ; R) > €,(&T, 2; R)

where &/ denotes the idempotent completion of «/ (cf. [Fr]). Using this bifunctor,
we define a pairing

Ko(RG) ® Ko(%5(ET, Z; R)) —» Ko (% (¢T, Z; R)),

denoted by juxtaposition, by setting [P][M, p] =[P ® M, q]. Here P € ‘é(RG) (which
is isomorphic to the category of finitely generated pI'O]CCtIVC RG-modules),
(M, p) € %,(8T, Z; R), and for any additive category <, KO(&I) is the cokernel of
the obvious homomorphism K,(=/) — K,(o/ /). A pairing similar to this one was first
investigated in [An].

Let y(6I'; R) =X (—1)"[C,(6T; R)] € Ko(%,(&T, Z; R)) and define

tr: K,(RG) > Ko(€5(ET, Z; R))

by setting tr (y) = yy(&I; R).

We now recall some results of Ranicki [Ran]. Let # be an additive category, ¥
be a full subcategory, and F, = {F,,d, |n 2 0} be a chain complex whose objects
are in & . We shall say that F_ is €-finitely dominated if there exist a chain complex
C,={C,, 0,} of objects in €, only finitely many of which are nonzero, chain maps
r:F,-»C,andi:C, - F,in %, and a chain homotopy 4 : 1 ~irin #. If F_ is
% -finitely dominated, Ranicki shows there is chain complex P, = {P,,0J,} in €
having P =0 for all » <0 and all n sufficiently large and a cham equivalence
P, —»F # where F is the chain complex image of F, in Z, ie. the chain
comp]ex {( s 1), (0, 1)}. He also shows that o(F,) =X (— 1)"[P,,] € K(%Z) is a well
defined invariant of F, that depends only on the chain homotopy type of F,. This
invariant is called the €-finiteness obstruction of F, and vanishes if and only if F_
is & -chain equivalent to a finite chain complex in €.

Let % (&T, Z; R) be the category containing % (&I, Z; R) whose objects are
pairs (M, p) with M a free RG-module, p a function satisfying conditions (1)—(3)
above, and having M, a free RG, -submodule for each x € &I'; and whose mor-
phisms f'= {f}} are those that are continuously controlled at infinity.

EXAMPLE 2.2. Let (Y, q) be a cc CW complex (respectively, finite cc CW
complex) over &I' on which I' acts cellularly and freely and for which ¢q is
I'-equivariant. Then for any finite subgroup G of I', the cellular chain complex
C,.(Y;R) can be regarded as a chain complex in Z (&I, £; R) (respectively,
%;(&l, Z; R)). A function g, :C,(Y;R) - /(6I') can be defined in a manner
similar to that of 2.1. Namely, one chooses a family {e; | i € I} of representatives for



Finiteness obstructions and cocompact actions on S™ x R” 95

the G-orbits of n-cells in Y and a point x; e e;. If x € C,(Y; R), then x =X r, ge,
where the r,; are elements of R, only finitely many of which are nonzero. Then
qn(Z rg,igei) = {gq(xl) | ng,i 7& 0}

Proof of Theorem I. By 2.2, C*(X x &I'; Z) is a chain complex of objects in
Z(ET, Z; Z). We show that this chain complex is € (6T, 2; Z) -finitely dominated
and evaluate its €;(&I, 2; Z)-finiteness obstruction in two ways. Let C *(X) be the
cellular chain complex of X regarded as a chain complex of free ZG-modules and
C,.(8r'; Z) be the chain complex of 2.1. Then C (X x &I';Z) is & (éT, X; Z)-chain
equlvalent to C (X) ® C,(6T; Z). Since X /G is a finitely dominated CW complex,
C (X) is ZG-finitely dominated, say by C,. Then C (X) ®C,(EI';Z) is
(6T, Z; 7)-finitely dominated by C,®C, (é”F Z). Let P —{P,,,a } a chain
complex of finite length with P, in (g(RG) for which there is a ZG -chain equivalence
f:P,—> C*(X). Then

f®1:P,®C,(EI;2) - C,(X)®C,(ET;2)

is a (€T, 2; Z)-chain equlvalence Since aG(X /G) =2 (—1D"[P,], a straightfor-
ward calculation shows that in KO(%G (6T, ;7)) we have

0(Co(X x ET;2)) = o(C o (X) ® C,(ET;2)) =a(P, ® C,(ET;2)) =trog(X/G).

On the other hand, since (X, J)is a ﬁnite cc CW complex over 6T on which I' acts
freely and Jis I'- equlvarlant C (X Z) is a €.(&T, T; Z)-chain complex by 2.2.
Since ¥ = (1, J) (X, J)—»(X x 6T, p,) is a cc homotopy equlvalence by 1.5, 17
induces a €, (&I, X; Z)-chain equivalence C (X X &l Z) ~C (X Z). Hence

o(C (X x ET; 7)) = a(C (X;2)) =0

since the latter chain complex is a finite €;(&T, Z; Z)-chain complex. By combining
this with the equation above, we see that tr 6;(X/G) = 0. This completes the proof
of Theorem 1.

3. An equivariant reduced homology theory

The section begins the development of the algebraic tools needed to prove
Theorem II. The reader who is most interested in the proof of Theorem II can

proceed directly to Section 5, referring back to this section and the next only as the
need arises.
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The main result in this section is Theorem 3.4, which describes a reduced
homology theory defined on the category € ¥, of finite G-CW complexes for G a
finite group. We begin by generalizing some of the discussion of Section 2.

Let & be the category with objects pairs (E, 2) with E a compact Hausdorff
space and 2 a closed subset. Let E=FE — X. A morphism in & is a set-theoretic
function f:(E,,X,) —(E,, L,) which is continuous at every point of X,, has
f~'(2,)=2Z,, and for which f| E, > E, is proper in the sense that if K < E, is
compact, then f~'(K) has compact closure in E,. Here E, = E, — X,.

Let G be a group and &; be the category with objects pairs ((E, X), p) where
(E, %) is an object in & and p:G —Auts(E, X) is a homomorphism where
Aut, (E, 2) is the group of automorphisms of (E, X) in &. Thus an object in & is
an object of & equipped with an action of G via automorphisms in &. A morphism
in & is a G-equivariant &-morphism f: (E,, Z,) = (E,, Z,).

EXAMPLE 3.1. If G is finite, we let ¥#; be the category of finite CW
complexes equipped with a cellular action of G. Taking the closed cone defines a
functor ¢ : €¥%; — &, that sends X to (cX, X). Here cX is the quotient space
X x[0, 1]/X x {0} and X is the image of X x{1} in cX. Such pairs (cX, X) give
many examples of objects in &.

An additive category € (E, Z; R) analogous to €4(&I", Z; R) can be defined for
any pair (E, Z) € &;. An object is a pair (M, p) where M is a free RG-module,
p:M—>Z(E)is a G-equivariant map where % (E) is the set of finite subsets of E,
and (M, p) satsifies conditions (1)—(4) of Section 2 and has M, a free RG,-module
for each x € E. The morphisms are defined as in Section 2 except that &I is
replaced by E.

REMARK 3.2. If G acts trivially on the pair (F,2) then the functor
J:%G(E,Z; R)>%(E, X; RG) that sends (M,p) to J(M)={M,|xeE} is an
isomorphism of categories. Here €(E, Z; RG) is the category of geometric RG-mod-
ules on (E, X) with continuous control at infinity introduced in [A—C—-F—-P]. Notice
that if (E, 2) =(cQ, &), then 4(E, X; RG) = 4(RG) is the category of finitely
generated free RG-modules.

Following the notation in [A—C-F-P], for any category </, we let o/ denote its
idempotent completion [Fr] and if o is additive, we let .o/ be the classifying space
BA ~'4 where 4 = Iso (=/) is the category of isomorphisms in &/ and 4 ~'4 is the
category of [Gr].

For any object X € €%, let KS(X; R) = QK% (cS"+'X, S"*'X; R) where
S**+' is the (n+ 1) (unreduced) suspension of X (n =0). Let I~(G(X ; R) =
{KS(X; R) |n 2 0}.
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LEMMA 3.3. For any space X € 6%, the sequence of spaces ITIG(X i R)
has the structure of an Q-spectrum; that is, there are homotopy equivalences
g, KS(X: R) > QKS, (X; R). Furthermore the correspondence X +— K¢ (X;R)
defines a functor Ko(_; R) from €H; to the category of Q-spectra.

The category of Q-spectra has objects Q-spectra and morphisms f: {4,, a,} —
{B,,B,} families of maps {f,:A4,—B,|n =0} with f,_ ,a, pointed homotopic
to p.f,. For any Q-spectrum A ={4,,a,}, let 4, ,=n3A be the stable homo-
topy of A. The functor 4, takes values in 4./ the category of graded abelian
groups.

THEOREM 3.4. The functor KS(_;R)=nSK( _;R):6W;>%od is an
equivariant reduced homology theory on the category €. That is,
(1) K~§:( _; R) is a homotopy functor.
(1) For any pair (X, A) in €W, there is an exact sequence

> KS(4; R) > KS(X; R) > KS(X Uvd; R) > KS(4; R) -
(ii)) KS(pt; R) =

REMARK 3.5. If G acts trivially on the CW complex X, the functor J of 3.2
induces a natural isomorphism 2 : IZG(X ; R) - K «(X; RG) where K «(X; RG) is the
homology theory of [A—-C-F-P]. In partlcular if X = ¢, there are isomorphisms

KG(Q R) - K «(J; RG) and 7 : K «(J; RG) - K (RG) where n is induced by
the isomorphism of categories J : €(c &, &J; RG) - €(RG) of 3.2.

If (X, A) is a pair in €4, let K¢(X, 4; R) = IZE(XUUA; R) where the union is
over A and vA is a disjoint basepoint if 4 = .

COROLLARY 3.6. The functor (X, A) — K$(X, A; R) is an equivariant homo-
logy theory on €.

Proof. This is an elementary formal consequence of 3.4.

Proofs of 3.3 and 3.4. An examination of the proofs of the corresponding

statements in [A—C—F—P; Section 4] shows that 3.3 and 3.4 will follow once we
have proved the following propositions:

PROPOSITION 3.7. Let G be a finite group, X € €¥; and vZ be the closed cone
on X with vertex v. Then K€ ;(c(vY), vZ; R) is contractible.
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PROPOSITION 3.8. Let X be the pushout of the diagram X, X,— X, of
inclusions of spaces in €. Then the square

K% (cXy, Xo; R) —— KG(cX,, X,; R)

L

K% (cXy, Xoi R) — KGG(cX, X; R)

is a pullback up to weak homotopy. Hence there is a long exact sequence
T nn+ I(K(gG) _’nn(K(gGO) _)nn(K(gGl) @Tcn(K(gGZ) —*nn(K(gG) —=hTe

(n = 0) where K€, = K@G(cXi, X;;R)(i=1,2, ) and K€, = K%?G(CXO, Xo; R).

In this proposition, €. (cX;, X;; R) (i = 1,2, &) is the idempotent semicomple-
tion of €;(cX;, X;; R) with respect to €;(cX,, X,; R). We recall that if £ is a full,
additive subcategory of the additive category ./, then the idempotent semicomple-
tion (or simply,Asemicompletion) of o/ with respect to # is the full, additive
subcategory of &/ containing those objects (A, p) isomorphic to (B, q) @ (C, 1) with

(B, q) € # and C € U. The semicompletion is denoted by .o/.
Proposition 3.8 is a consequence of the following stronger result:

PROPOSITION 3.9. Let (E,, Z,) —— (Ey, Z4) —2 (E,, X,) be a diagram of

inclusions in & and let (E, X) be its pushout. If X, is an eventual G-neighborhood
retract in E, then the square

K% (Ey, Zo; W) — KEG(E,, Z,; M)

S

KG(Ey, 2 W) — KEG(E, Z; )

is a pullback up to weak homotopy. Here the semicompletions are with respect to
C;(Ey, 2o; N). Hence there is a long exact sequence

o, (KE) » 7w, (K€g) » 1, (K€g)) @7, (K€G,) >, (K€g) - -
(n 2 0) where K€, = K@G(Ei, 2W (=12, ) and K€ = K@G(Iz“o, 2o W).

The requirement that X, be an eventual G-neighborhood retract in E means that
there is a G-invariant neighborhood N of X, in E and a G-equivariant func-
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tion r : (N — X) U E,— E, with r ~'(Zy) = Z, and r | £, = id and with the property
that if W is a G-invariant open neighborhood of £ — %, in E—E,, ryp=r | :
(N =2 —=W)UE,, Z,) > (Ey, Zy), and iy (Ep, Zo) > (N = Z — W) UE,, Z,) is
the inclusion, then for every point p in X, and every G-invariant neighborhood
U of pin (N—Z—W)UE,, there is a G-invariant neighborhood V of p in
(N — 2 — W) UE, with (iyry) (V) < U. The map r is called an eventual G-neigh-
borhood retraction. An obvious extension of the argument used to prove [A—C-F-P;
Lemma 1.6] shows that if 2, is a G-neighborhood retract in X, then X, is an eventual
G-neighborhood retract in cX.

Proof of 3.7. The proof is identical with the proof of [A-C-F-P; Corollary
2.5]. The ingredients of that proof are [A—C—-F-P; Theorem 2.3] and the fact that
b5 (R) 1s flasque. Here 6,5 (R) is the category of geometric R-modules over
O(vX) and bounded morphisms defined in [P-W1] and O(vZ) = 2 % [0, 00)/Z x {0}
is the large open cone on vZX.

Let X e €%, and observe that the cone action on cX repsects the radial
direction. Since the proof of [A-C-F-P; Theorem 2.3] uses only ‘“annular”
regions, this observation shows that Theorem 2.3 carries over to the present
equivariant setting without change. It is also easy to see that the proof that
€ wx)(R) 1s flasque given in [P-W2; Lemma 4.1] respects the G-equivariance and
shows that the equivariant analogue €5 ¢(R) of €45 (R) is also flasque. Thus
the proof of [A—~C-F-P; Corollary 2.5] holds in the present setting and proves 3.7.

Proof of 3.8. This follows from essentially the argument given in [A—-C-F-P;
Sections 3 and 4]. The only change needed to adapt that argument to the present
equivariant setting is to require that the neighborhoods U that appear in the
partially ordered set A of [A—C-F-P; Lemma 3.3] be G-invariant.

Proof of 3.9. This also follows from the argument of [A-C—F-P; Section 3]
modified by the same changes as were needed in the proof of 3.8.

4. A spectral sequence

This section derives a spectral sequence that will be used in the next section. The
main result is Theorem 4.2. Before stating it, we recall some definitions and notations.

Let G be a finite group. Let ¢ be the category of canonical orbits of G;
i.e. the category of all G-sets of the form G/H where H is a subgroup of G. A
coefficient system is a covariant functor from (/; to the category of abelian groups.
Such systems are called simple coefficient systems in [Br].
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Let X be a GW complex. Following [Br], we define the reduced Bredon
homology of X with coefficient system F as follows: Let C, be the discrete G-set of
p-cells of X. Let A, =X F(G/G,) where the sum runs over o € C, and write
elements of A4, in the form o.x, +-- -+ g,x, with x; € F(G/G,). Let B, be the
subgroup of A, generated by all elements of the form (go)x —o(g~'x). The
quotient group A,/B,=C$(X; F) is called the group of equivariant p-chains
on X. The boundary map 0,: CJ(X; F) - CS_,(X;F) sends the chain ox to
2 1]t : 0]F?(x) where [1: 0] is the incidence number and F? = F(G/G, - G/G,).
Notice that there is also an augmentation d,: C§(X; F) —» F(G/G) that sends ox to
F(G/G,— G/G)(x). We set C% (X; F) = F(G/G). The homology of the augmented
chain complex {CS(X; F);0d,} is called the reduced Bredon homology of X and is
denoted H S(X; F).

REMARK 4.1. If P >0, then HY(X;F)=HS(X;F) is the usual Bredon
homology of X. In addition, H® ,(X; F) = F(G/G)/im Ind where Ind is the sum of
the homomorphisms F(G/G, — G/G) over the set of 0-cells of X. In general this
group is non-zero.

THEOREM 4.2. Let X € $#; and {G, |0 € X} be the family of isotropy sub-
groups of the cells o in X. Then there is a spectral sequence {E’, d"} converging to
KS(X; R) with E}, = HS(X; K,_(RG,)) for all p and q. Here K, ,(RG,) is
coefficient system that sends G/H to K, ,(RH).

Proof. To simplify notation in this proof, we shall suppress mention of the ring
R and will write I?‘j(X ) instead of kg(x ; R).

Suppose dim X = n and consider the exact couple obtained by applying IZg to
the filtration

gCX(O)C"'CX(p—l)CX(p)C'"CX(n)::X.

For p >0, this exact couple has E) = KS, (XPUpX®-D) and D,, =
KS, (XP). If p=—1, D}, = KS_,(Q). Since KS_ (&) = K, _,(RG) #0, to get
a convergent spectral sequence we redefine this exact couple by setting E' | , =
KS_ (@) =K,_»(RG), D}, =0if p < —2, and letting D} — E}, be the identity
if p < —1. Then {E’, d"} is the spectral sequence associated with this exact couple.

The careful examination of the homology version of the argument in [Br;
p. IV. 6ff] shows that the E*-term of this spectral sequence is ﬁf(X ; 125;) where
125 : O — AR is the coefficient system that sends G/H to IE,?(G /H*). To complete
the proof of 4.2, it now suffices to identify this coefficient system. That is the
content of the next lemma.
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LEMMA 4.3. There is a natural equivalence of functors u :IZ?(G/H *;R) —

K, (RH).

q

Proof. The map p is the composite
~ (A)"" ~ 4~
K¢(G/H*; R) —— K (S°; RH) — K, _,(; RH) — K, _,(RH)

where # is the isomorphism of 3.5; J is the connecting homomorphism in the exact
sequence obtained by applying 3.8 to the diagram v_ « J— v, of spaces in €¥#;
and is an isomorphism since the other terms in the exact sequence vanish by 3.7;
and 4, ‘K (S0 RH)—»KG(G/H+ R) is an isomorphism induced by a map of
spectra A K(SO RH) -»KS(G/H*; R).

Let X be a based H-space and set Y =G xyzX/G xy{x,}. If
M={M/|xecX—X}eb,(cX,X;R),let M=RGR®M =32 RGR® M, where ®
is tensor over RH. As R-modules, RG@ M, =X g;M where {g;|j=1,...,r}isa
set of representatives for the cosets of H in G with g, = e. Define p : M - Z.(c(Y))
by setting p(rm) = {[g,, x]} if m € g, M, and “extending linearly.” That is, if m =

my+---+m, with 0£m, e RGRM, (i=1, ,8) and m; -—m,,l+' +m,hm
with 0#m,, eg M, (k=1,..., 1), then pm) ={lg,.x1li=1,...,s;
k =1,...,1(i)}. The conditions that f must satisfy to be cc imply thatfis cc. It is

now easily verified that the correspondence that sends M to (M, 5) and fto fis a
functor 1% : 6,,(cX, X; R) »%,(cY, Y; R).

In particular, we may apply this construction to the pointed space S"(S°)
(n 2 0) with trivial H-action to obtain a functor B, :%,(cS"(S%, S"(S%; R) —
€;(cS"(G/H™), S"(G/H™"); R). Let J be the isomorphism of 3.2. The sequence of
functors

A, =B,J " €(cS"(S°), S(S®; RH) >€;(cS"(G/H™"),S"(G/H*); R)

induces a map of Q-spectra A4 :K(S°% RH)—>KSG/H*;R). A straightforward
adaptation of the “germs of infinity” argument of [A—M]; Lemma 8.7 ff] shows
that A4, induces an isomorphism

A,y K, (6(cS"(S°), S"(S°); RH)) - K (6:S"(c(G/H*), S G/H"); R) (4.49)

for ¢ = 1. It then follows directly from (4.4) that 4, : Iz'q(SO; RH) -»IZf(G/H*; R)
is an isomorphism for all q.

For the reader’s convenience, we indicate more completely how to make this
adaptation. We make the following interpretations of the categories that appear in
the diagram at the beginning of the proof of 8.5 in [A-M; p. 594]: (W) =
€(cS"(S?), S"(S°); RH); #(N) is the full subcategory of #(U) whose objects are
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are the geometric G-modules M = {M, | there is a neighborhood N of S"{+1} in
cS"(S°) such that M, =0 for all x e U}; and 4, (M) is the full subcategory of
(W) /B(U) whose objects M ={M,} have M, =0 if x € cS"{—1}. Similarly,
U(A) =6(cS(G/H™), S"(G/H™); RH); %#(A) is the full subcategory of #(A4)
whose objects are the geometric G-modules M = {M, | there is a neighborhood N
of S"{+1} in ¢S"(G/H™") such that M, =0 for all x € U}; and %, (A4) is the full
subcategory of %(A)/%#(A) whose objects M = {M,} have M, =0 if x € ¢S"{+}.
With these interpretations, the proofs of [A—M; Lemmas 8.7 and 8.5] carry over
without change to prove (4.4).

5. The proofs of Theorem II and Corollary III

This section gives the proofs of Theorem II and Corollary III. Theorem II will
be deduced from the sharper Theorem 5.1 below. Let I' be a group and
6T =& UX be the compactification of &I' given in 1.3. Then for any finite
subgroup G of I', by 1.3(3), there is a G-homeomorphism f: (&I, 2) - (cZ, %)
where X is a G-linear sphere.

THEOREM 5.1. Let I' be a lattice-like group. Suppose that I acts freely,
cellularly, and cocompactly on a CW complex X homotopy equivalent to S¥ *+3 for
any r 2 0. If I contains a copy of Q(24, p, 1) with q = 4 and p an odd prime satisfying
p %1 (mod8) and p # —1 (mod 297 "), then either

(1) Z,(C,) is infinite; or

(2) HS(Z; K_(ZG,)) #0 where HS(X; K_,(ZG,)) is the Bredon homology of X

with coefficient system the functor that sends G|/H to K_,(ZH).

Let f: G - Q(29) be the homomorphism that sends x, y, and z, respectively, to
X, y, and 1, respectively. Then there is an exact sequence

p
1 }Cp > C > 0 > 1

where Q = Q(29) is the quaternion group. This sequence is split by the monomor-
phism j : Q — G that sends X to x and y to y where we have followed the notation
of the introduction. We shall use this notation throughout the next two sections.

Some preliminary results are needed to prove this theorem. Let f: (&I, ) —
(cZ,2) be the G-homeomorphism above. Then f induces an isomorphism of
categories f, : €c(6I, 2; R) > €5(cZ, 2; R).

THEOREM 5.2. Let I' be a lattice-like group and G be a finite subgroup of I.
Suppose there is a G-homeomorphism f: (6", 2) - (cX, X). Then there is a commuta-
tion diagram with exact row
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Ko(RG) — Ky( (8T, Z; R))

LT

d ~ i, o~
HY((Z; K_,(RG,)) — Ko(RG)/im Ind — Ky(cZ, Z; R))

Here n is the natural quotient homomorphism and Ind is the sum of the homomor-
phisms Indg : K, (RG,)— K, _(RG) over the O-cells o € Z.

Proof. A standard argument, using 4.1, allows us to extract the exact sequence
HS(Z; K_,(RG,)) = Ky(RG)/im Ind —— KS(Z; R) (5.3)

from the spectral sequence of 4.2. Let o be a 0-cell £ and G, be its isotropy group.
Note that K,(RG)/im Ind = K,(RG)/im Ind; while an examination of the definitions
shows that K§(Z; R) = K,€;(cZ, Z; R)). Since there is an exact sequence

Ko(%5(cZ, 25 R) — KoG(cZ, 25 R) — Ko (cZ, Z; R)) >0
and K (€;(cX, 2; R)) =0 by [Pe; Remark 1.6],
Ko(€s(cZ, Z; R) ~ Ky(€5(cZ, Z; R)).

Thus the exact sequence (5.3) reduces to the exact row in the diagram. That the
square commutes follows by the argument used to prove Theorem 6.3 in [H-P].
When we apply 5.2, Z will play the role of R.

PROPOSITION 54. Let G =Q(2% p, 1) withq=4,p %1 (mod 8) and p # — 1
(mod 27~ Y). Suppose G acts freely and cellularly on the finite dimensional CW
complex X homotopy equivalent to S *3. Then 4(X/G) #0 in I?O(ZG)/j*(IZO(ZQ)
where aG()? /G) is the finiteness obstruction of X /G.

Proposition 5.4 is an easy consequence of a result of [Da]. Its proof is given in
the next section.

Proof of 5.1. Suppose Z,-(C,) is finite. We show that HY(Z; K_,(ZG,)) #0.
Since i, n(os(X/G)) =tr (GG(A~’ /G)) =0 by 5.1 and Theorem I and the row in the
diagram of 5.2 is exact, i,7(0s(X/G)) eimd. On the other hand, by 1.2
dim (8I')» = ved Z(C,) = 0. Since (€T, %) is G-homeomorphic to (¢Z,X) by
1.3(2), it follows that C, acts freely on X and that every isotropy group of the
action of G on X is conjugate to a subgroup of Q. Hence the natural homo-
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morphism K,(ZG) - Ky(ZG)/j ,Ko(ZQ) factors through K,(ZG)/imInd and
(o (X/G)) #0 in IE'O(ZG)im Ind. Hence d is not trivial and HY(2; K_,(ZG,)) #0.

Some additional results are needed to prove Theorem I1. Although the following
result is well known to the experts, we have not found a proof of it in the literature.

LEMMA 5.5. The group K_,(ZO(8)) = 0. If k = 4, then K_ (ZQ(2%)) = F,, the
group with 2 elements, and Indg +1 : K_(ZQ(2°)) - K_(ZQ(2** ")) is an isomor-
phism. Here Q, = Q(2).

Proof. 1t follows from [Ca; Theorem 3] that we can analyze K_,(ZQ) by using
the following exact sequence

0 Ko(2) — Ko(2,0) ® Ko(QQ) —— Ko(@,0) — K_(ZQ) — 0.

It is well known that KO(ZQ) is free abelian of rank 1. The decomposition of
QQ into simple factors is (Q)*@® X M,(Q(4,)) ® Q(Ay-1){—1, —1) where the
last factor is 4 quaternionic algebra, i=1,...,9 -2, 4,,={,+{,, and {, is a
primitive k-th root of unity. Over each of these factors there is a unique simple
module and K,(QQ) is free ablian on these simple modules. Since 2 is totally
ramified in @(52,) for any j, the decomposition of @2Q into simple factors is
(@2)4@-)2 Mz(@z(lz,))@@z(/lzq i){—1, —1) and KO(GZDzQ) is again free abelian
on the unique simple modules over the factors. Hence rk K,(Q,0) = rk K,(Q,0)
and rk K_,(ZQ) =0. Under the homomorphism p, except for the last factor,
the simple module over a factor of QQ maps to the simple module over the
corresponding factor of @2 Q. If k <3, the same is true of the simple module over
the last factors and K_,(ZQ) =0. If kK =4 however, the simple module over
Q(Ayg-1){—1, —1) is the free module of rank 1 while @2(lzqh1)<~ 1, —1) splits
(i.e. is the matrix algebra M,( Q,(A1¢™")). Hence p maps this generator of K,(QQ)
to twice the corresponding generator of Ko(dsz Q). In this case, then K_,(ZQ) = F,.
Finally, since IndS* +' Ko(QQ(2¥)) - Ko(QQ(2** ")) preserves the last factors of the
above decompositions, this map is the identity if & > 4.

PROPOSITION 5.6. Let q =4 and p be an odd prime. Suppose that
G =Q(2% p, 1) acts linearly on the sphere X such that the cyclic subgroup C, acts
freely. Suppose that either dim X <2 or dim X2 > 2. Then H¢(XZ; K_,(ZG,)) = 0.

REMARK 5.7. Proposition 5.6 also holds under the assumption that for all
Hc Q, either L¥ = or dimL”>2 and {H < Q |dim ¥ > 2} has a unique
maximal element. We do not need this result in this paper.

Proof. Suppose dim Z < 2. Since C, acts freely on X, dim 2 < 1. If dim X < 1,
clearly HY(Z; K_,(ZG,)) =0. So suppose dim X =1. Let p : G- 0(2) be the
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linear representation given by X. Since the only finite subgroups of O(2) are
cyclic or dihedral and C, is acting freely, im p = D is dihedral of order 2‘p for
some ¢t and N =kerp is a normal subgroup of order 2° for some s. Hence
H¢(Z; K_(ZG,)) =HP(Z; K_,(ZG,)) and we may compute this group by look-
ing at a D-equivariant cellular decomposition of X. This decomposition has a single
I-cell 7. If N =G, is either cyclic or Q(8), then K_,(ZG,) =0 by [Ba; Theorem
10.6, p. 695] and 5.5. Hence H{(Z; K_,(ZG,)) =0. If N =G, = Q(2°) for some
s = 4, then by 5.5 the coefficient system K_,(ZG,) is the constant system with value
F, and HP(Z; K _,(ZG,)) = HP(X;F,) = H,(X/D; F,) = 0 since the orbit space is
an interval.

Suppose dim X¢ > 2. Since C, acts freely on X, Q = G/C, acts on L = X/C, and
there is an isomorphism

HS(L; K_(ZQ,)) - HS(Z; K_\(ZG,)).

Let I be an isotropy subgroup for the Q action on L. Then [ is either cyclic
of order 2¥ with k <q —1 or quaternionic. If I is cyclic, then K_,(ZI) =0
by [Ba; Theorem 10.6, p. 695]; while K_,(ZQ) is given by S5.5. Hence
H?(L; K_,(ZQ,)) = H?(4; F,) where A is the union of the subspaces {L” | H is a
quaternionic subgroup of Q of order >8} and the coefficient system F, is constant.
We claim that H2(4; F,) = 0. To prove this, let Q = Hy, H,, ..., H, be a set of
conjugacy class representatives for [H = Q | H is quaternionic of order > 8}
ordered so that if H, is conjugate to a subgroup of H;, then ;j<i For
k=0,1,...,tset L, =J{X"|i <k} where X’ ={x e X |(H) =(G,)}. Then

HclP=Lyc---cL, \clL,c---cL, =4

is a filtration of 4 by Q-invariant subspaces. We assert that H¢(L,; F,) = 0 and that
HP(L,,L, ,;F,)=0fori<2and every k > 0. Assuming this, a simple induction
argument shows that H2(L, ; F,) = 0 for every k. Since 4 = L,, the claim will follow.

Since L =X /C, is a mod 2 homology sphere, each L is a mod 2 homology
sphere. Since Q acts smoothly on L, each L is a manifold. Furthermore dim L >
dim L¢ > 2. Hence each L is connected and H,(L”;F,)=0. In particular
H9(L,; F,) = H,(Ly; F,) =0 as asserted above. Furthermore, since L, =L, _, U
L") and H acts trivially on L, there are isomorphisms

HiW(H)(LH, LHﬂLk« 15 Fa) "’H?/(H)(LH, LHnLk— 15 F2) —’HiQ(Lk, L, ;)

where W(H) = N(H)/H and the F, in the leftmost term is the trivial F, W(H)-mod-
ule. A standard induction argument using Mayer—Vietoris sequences, shows that if
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B is any union of the sets {L” | H is a quaternionic subgroup of Q of order >8},
then B is connected and H,(B;[F,) =0. Hence the cellular chain complex
C, (LY, L"nL,_;F,) is acyclic for * <2. Since this is a chain complex of free
F, W(H)-modules, the chain complex C (LY, L"NL,_,;F,)®F, is also acyclic
for * < 2. Here ® is tensor over F, W(H). Hence H¥WX(L¥, L¥~L, ;F,) =0 for
i <2, the second assetion above holds, and the claim is established.

Proof of Theorem II. The proof is by contradiction. So suppose that I' acts
freely, cellularly, and cocompactly on a CW complex X homotopy equivalent
to S¥*? for some r>0. Since Z.(C,) is finite, HY(Z; K ,(ZG,)) #0 by
5.1. In addition, since 0 =ved Z,(C,) =dim (6I')“» by 1.2, C, acts freely on 2.
Hence if either dimZ =vedI' —1<2 or 2<ved Z,(Q) —1=dim 29, then
H¢(Z; K_,(ZG,)) =0 by 5.6. This is a contradiction and Theorem II follows.

Proof of Corollary III. Let C, act on Z[{,] by multiplication by a p-th root of
unity and 4, = (Z[{,])* for some k > 1 (or if p =3, k 2 2). Then rk 4,=(p — k.
Let A =1Ind% A4, and I be the semidirect product 4 >a G. We show that I satisfies
the hypotheses of Theorem II. Since I' is crystallographic, it is lattice-like. A simple
Mackey double coset argument shows that C, acts freely on 4. Hence Z,-(C,) is
contained in G and is finite. Another double coset argument shows that

Resg A = Res Indg 4, = Ind§, 27~ V* = (2Q)» ~ M~

Since (p, k) eitherhasp = Sandk > lorhasp =3andk = 2,ved (Z,(Q)) =1k 49 =
(p — 1)k =4 and (1) also holds. Corollary III now follows from Theorem II.

6. The Proof of 5.4

After proving some preliminary results, this section gives the proof of Proposi-
tion 5.4. The authors want to thank Jim Davis for several discussions about the
material in this section that have greatly clarified its presentation.

Let H be any finite group and p be any prime. Let

im {K,(M,) - K, (Q,H)}

Lbz,H) = (K\(Z,H) - K,(Q,H)}

(6.1)

where Yﬁlp is any maximal Z,,-order in @,,H. This group is called the p-local defect
group of H. By choosing M, to contain Z,H, we see that the numerator contains the
denominator. On the other hand, the numerator is well defined for suppose M, ; and
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IR, , are two maximal Z orders in @ H. Then by [Re; Theorem 17.3] there is a unit
ue (@ H)* such that uSJI 9]3 . Hence there is a commutative diagram
K\(M, ) — K\(Q,H)

Dus Cux

K, (gjnp.z) - Kl(@pH)

where ¢, : @,,H—»@,,H is conjugation by u and ¢, =c, |ipr‘1. Since c,, is the
identity, the numerator is well defined.

In the sequel it is convenient to denote the images in the numerator and
denominator of (6.1) by K’,(iﬁl,,) and K’,(ZH) respectively.

Lemma 6.2. The correspondence that sends H to LD’(?I,H ) is a functor from
finite groups to abelian groups.

Proof. Let g : H — H, be a homomorphism and g,,= Kl((fD H)) —+K,(@ H,) be
the induced homomorphlsm Let M, be a maximal Z order in @ H,. We claim
there is a maximal Z -order I, with g(IM,)eM,; for L = Z H® 9]21 is a Z -lattice
inQ ,H, where ® is tensor over VA ,H;. Let O,(L) = {Ae @ L H, | LA < L}. It is well
known (cf. [Re; p. 109]) that © (L) 1s a Z -order in @ H and it is clear that
g(M,) =« O,(L). Let M, be a maximal Z -order in GZD H, contammg O,(L). Then
g.K1(M) < K1 (IM,). Smce it is clear that 2. K (Z Hl)eK’(Z H,), g induces a
homomorphism g, : LD (Z H,)—-> LD’ (Z H,). The rest of the proof is trivial.

Let D(H) = ker {Ky(ZH) - K,(M)} where M is a maximal Z-order in QH
containing ZH and let K{(M) =im {K,(M) - K,(QH)}.

LEMMA 6.3. There is an exact sequence
K{(M) — Y. LD(2,H) —— D(H) — 0
where the sum runs over all primes p dividing |H|. Hence 0 induces an isomorphism
d:Y LD'(Z,H)/im K{ (M) - D(H).
Proof. Consider the diagram

ZH — MM — QH

L

ZH——%?ﬁI——HfDH
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in which 9t is a maximal Z order in @QH containing ZH, ZH =11 Z,,H, M =11 m,
where ‘.ﬁip = 2,, @M, QH =11 @,,H, and all products run over all primes p dividing
|H|. Since the left hand square in the above diagram maps into the outer square,
there is an induced map of Mayer—Vietoris sequences. Swan’s theorem that
projective modules over ZH are locally free shows that the following commutative
diagram has exact rows

KM@Y K(Z,H) — Y K(M,) — DH) —0

l l

5

K(QH)®Y K, (Z,H) — Y K,(Q,H) —> K,(ZH)
Here the sums are again over all primes p | | H|. Hence there is an exact sequence
~ N 0
Ki(M) @) Ki(Z,H) — Y Ki{(M,) —> D(H) — 0,

where K7 (M) =im {K,(M) - K,(QH)}, from which the given exact sequence is
easily derived.

REMARK 64. If g : H, —> H, is a homomorphism, then the following diagram
commutes

Y LD'(Z,H,) —> D(H,) — 0

[, |

-~ 0
Y LD'(Z,H,) —> D(H,) — 0

We now specialize the discussion to the case when G = (Q(29 p,1). Let
p : D(G) —» LD'(Z,G)/im K| (M) be the composite of d ' and projection on the
indicated factor.

THEOREM 6.5 (Davis). If g 24, p# 1 (mod 8) and p # — 1 (mod 29~ "), then
p(og(X/G)) #0.

Proof. Since this result does not appear explicitly in [Da], we indicate how it
follows from the results that are there. In particular, by using the decomposition of
Z,G into blocks (i.e. two sided ideals that are direct summands), Davis constructs
another projection p that fits into a commutative diagram
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D(G) — LD(Z,G)/im K\(M)
1
LD(B,_,)® Z[;]

PO =K@, e Ki(®, )

(The denominator in the lower right term arises since 9 is also decomposed in blocks
of which only the indicated pieces map non-trivially into LD’(B, _,).) Since [Da;
Proof of Theorem 6.1, p. 47] shows that p’(5(X/G)) # 0, the stated theorem follows.

Proof of 5.4. We show first that p factors through D(G)/j, D(Q) and then that
this group is a subgroup of Ky(ZG)/j, Ko(ZQ). To see the first statement, consider
the commutation diagram ‘

LD(2,0) ’ » D(Q)
l , o |
K{(M) - LD (Z,G)® LD’(ZPG) — D(G)

lpmj p ln

LD(Z,G)  D(G)
im Ky (M) J,D(Q)

Since Q = Q(27) 1s a 2-group, the map at the top is onto. Since j,, maps into the first
factor and proj is projection on the second factor, projj, =0 and the first claim
follows. A simple chase of the diagram

D(Q) — Ko(ZQ)

Al

D(G) K,(ZG)

using the fact that f, j, is the identity shows that j_ D(Q) = D(G) r\j*(IEO(ZQ)
establishing the second claim and completing the proof of 5.4.
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