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Inequivalent frame-spun knots with the same complement

ALEXANDER I. Suciu!

1. Introduction

One of the basic questions of knot theory is: Is every n-knot determined by its
complement? For n = 1, Gordon and Luecke [11] have recently given an affirmative
answer to this question. For n = 2, there are at most two n-knots with the same
complement [9], [4], [17], [15]. A knot which is determined by its complement is
called reflexive. Knots that are spun [9], superspun [5], 2-twist-spun [10], [13],
simple [18], stable [8], [22], and some others [21], [7], are known to be reflexive.
Cappell and Shaneson [7] gave the first examples of knots which are not determined
by their complements. Their method works for each n > 2, as long as certain
integral, unimodular (n + 1) x (n + 1) matrices exist; such matrices have been
found only for n =2, 3, 4 and 5. Shortly thereafter, Gordon [10] proved that
odd-twist-spun n-knots with closed fiber covered by R”*' are non-reflexive. His
method is known to yield examples only for n = 2. Other examples of 2-knots which
are not determined by their complements were given in [20], [21], [13].

The main result of this paper is the following theorem.

THEOREM 1.1. There exist non-reflexive n-knots for every n =3 or 4 (mod 8).

We construct these n-knots by frame-spinning the 2-knots of Gordon. In doing
so, we reprove Gordon’s theorem under slightly more general conditions (Corollary
6.2), thus giving a new proof of the non-reflexivity of his 2-knots. The basic idea is
to translate the question of reflexivity of the frame-spun knots into a question about
homotopy groups of spheres, via a generalized Pontrjagin—Thom construction.

The process of frame-spinning was introduced by Roseman in [23]; it general-
izes previous notions of spinning that go back to Artin. If K is an n-knot and M*
is a framed submanifold of S”** with framing ¢, one can spin K about M* to
get an (n+k)-knot o%,(K). This is done by removing at each point of
Mk c (S"+k+2 §r+k) the transverse disk pair determined by the framing and
gluing back the knotted disk pair determined by the n-knot.

! Partially supported by a Northeastern University Junior Research Fellowship.
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The question we investigate in this paper is: Is a frame-spun knot determined by
its complement? Quite often, the answer is yes. Suppose M* =S¥ standardly
embedded in S$”* %, with framing given by a smooth map ¢ : S¥ - SO(n). For k > 2,
let 1, be a generator of m, , ,(S¥). Given an n-knot K, n = 2, we prove the following
(Theorems 4.2 and 4.3): If either K is reflexive, or [@] oy, is zero, then a%«(K) is
reflexive. This generalizes a result of Cappell [95].

In general though, the answer to the above question is no. For an arbitrary
framed manifold (M*, ¢) = S"**, the Pontrjagin—Thom construction yields an
element o of 7, . .(S™). Suppose K is a fibered n-knot, n = 2, with aspherical closed
fiber and odd order monodromy (such knots are known to exist only for n = 2). We
then prove the following (Theorem 6.3): If the suspension of o on, . is non-zero,
then 6%,(K) is not reflexive. For k = 1 or 2 (mod 8), there are such o’s in n, , ,(S?),
by deep work of Mahowald [19]. This produces non-reflexive frame-spun (k + 2)-
knots by surjectivity of the Pontrjagin—Thom homomorphism.

Let us briefly sketch the proof of Theorem 6.3. In §5, we introduce the notion
of spinning a closed manifold W™ about a framed manifold (M*, ¢). This is done
by removing at each point of M* = S™** a transverse n-disk and gluing back a
punctured copy of W™. An essential feature of this construction is the existence of
a “Pontrjagin—Thom’ map, ¢%,(W) — W, that may be used to differentiate among
the various frame-spins of W. Now, as noticed by Roseman [23], the process of
frame-spinning takes fibered knots to fibered knots. In our terminology, if K has
closed fiber F*, then o%,(K) has closed fiber the stabilized frame-spin of F¢. In case
F¢ is aspherical, we are able to distinguish between the closed fibers of two
frame-spins of K, provided the two manifolds we spin about are not stably framed
bordant (Theorem 5.2). In particular, if E(x o7, ) #0, the two S'-spins of the
closed fiber of o%,(K) are distinct. On the other hand, if K has odd order
monodromy, so does a%,(K), and therefore ¢¢,(K) cannot be reflexive, for other-
wise the two S'-spins of its closed fiber would be equal.

In view of the above results, we venture the following

CONIJECTURE. The knot ¢%,(K) is reflexive if and only if either K is reflexive,
or 2 on, .. =0.

If the forward implication were true, one could produce examples of non-reflexive
knots in the missing dimensions by frame-spinning the Cappel-Shaneson knots
instead of Gordon’s knots.

I wish to thank J. Klein and M. Mahowald for valuable conversations. An early
version of Theorem 5.2 dealt only with homology spheres. I am grateful to the
referee for pointing out a gap in a subsequent generalization, and for suggesting the
use of Lemma 2.1 to arrive at the right level of generality.
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2. Knotted spheres

We start with some definitions and notation. All manifolds are to be compact,
connected, oriented, and smooth; closed manifolds are those without boundary.
Diffeomorphisms are denoted by =, homotopy equivalences by =, reduced suspen-
sions by X, and homotopy classes by [ ]. $” is the n-sphere, and D" the n-disk, with
center 0.

An n-knot is a smooth submanifold K of S"*? diffeomorphic to S". Two
n-knots K and K’ are equivalent (K = K’) if there is a diffeomorphism of S”*2
taking K to K’.

Each knot K has a tubular neighborhood K x D? The exterior of K is
X(K)=S8"t?— K xint D% It is a compact (n + 2)-manifold, whose boundary is
diffeomorphic to S” x S, and whose interior is diffeomorphic to the knot comple-
ment S”*? — K. Equivalent knots have diffeomorphic complements, and thus, by
uniqueness of tubular neighborhoods, diffeomorphic exteriors.

For n = 2, let the Gluck twist 1, ,:S"x S'—> 8" x S' be the involution given
by T, 1(%, 0 =(p, 41 (D), 1), where p,,,:S'->SO(n + 1) is a smooth essential
map. Consider the manifold Z"+? = X(K) u, ,, §" x D? It is easily seen to be a
homotopy (n + 2)-sphere. Thus X"+? is homeomorphic to $”*2. For n > 2, we
may assume it is in fact diffeomorphic to S"*?2, by changing the smooth structure
at a point if necessary. For n =2, all the knots K we shall consider will have the
property that X* is diffeomorphic to S*. The image of S” x {0} in S"*? is a knot
K*, called the Gluck reconstruction of K.

By construction, the knot K* has the same exterior as K. Gluck [9], Browder [4],
Lashof and Shaneson [17], and Kato [15] showed that if K|, is another knot with
X(K,) = X(K), then K, is equivalent to K or K*. Furthermore, K is equivalent to
K* if, and only if, there is a diffeomorphism of X(K) which restricts to vz, , on
0X(K) = 8" x S', where v belongs to the group generated by orientation reversals
of the factors. In this case we say the knot K is reflexive.

An n-knot K is fibered if there is a smooth fibration 7 : X(K) — S restricting on
the boundary to pr,: S” x S' - S'. The inverse image of a point is a Seifert surface
F*+! for K called the fiber. The bundle is determined by the isotopy class of the
monodromy, which is a diffeomorphism 6 of the fiber that restricts to the identity on
the boundary S”. For n > 1, the fiber depends on the choice of fibration; it is
well-defined up to an s-cobordism. The closed fiber is the closed, smooth (n + 1)-
manifold F¢= F*+*'uD"*!; the closed monodromy is 8¢ =0 uid. The closed fiber
depends on the choice of boundary identification; it is well-defined up to connected
sum with an exotic sphere.

A well-known way of creating fibered knots is by twist-spinning. If K is a knot
in $”*2, then the r-twist-spin of K, K, is a fibered knot in $”*3, with fiber the
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punctured r-fold cyclic branched cover of (S"* 2, K) and monodromy the canonical
branched covering transformation [27]. The Gluck reconstruction of K is a knot
in a smooth $"+3 [10].

We conclude this section with a proposition about the equalizers of degree one
maps from closed-up Seifert surfaces. For that, we need the following result of Jeff
Smith, communicated to us by the referee.

LEMMA 2.1. Let F be a Seifert surface for an n-knot, and i : S” - F be the
inclusion of the boundary. Then X i is nullhomotopic.

Proof. Let j: F — F° be the inclusion into the closed-up Seifert surface. We then
have a cofiber sequence

i J k i zj Tk
S"——*F—-—*Fc—>Sn+l—)ZF—>ch——>Sn+2

(see [25, p. 27]). The relative Pontrjagin—Thom collapse S"*+2 - X (F/0F) ~ X F¢
provides a section to X k. Thus £ F°~X F v §"*2, and we get a retract Z FC—»X F
of £j. As £ j o X i is nullhomotopic, it follows that Z i is nullhomotopic. O

PROPOSITION 2.2. Let F be a Seifert surface for an n-knot, and q : F*— S"*!
be a degree 1 map. Suppose f, g :S"*'—>Z are two maps such that foq~goq.
Then f~g.

Proof. Since g has degree 1, it is homotopic to k, the cofiber of j. In a general
cofiber sequence A »B 5 C—>X A —- -, the group [Z A4, Z] acts transitively on
the fibers of the function y*: [C, Z] —[B, Z] (see [25, Proposition 2.48]). In our
case, since X i ~ %, the action of [X F, Z] on the fibers of ¢* is trivial, and so g* is
injective. O

The proposition also holds for degree one maps ¢ : X — S™, where £™ is an
arbitrary homology m-sphere. For then ¢ is an acyclic map, and we can quote
Hausmann and Husemoller [12, Theorem 2.6]. In fact, the above proof closely
follows theirs.

3. Framed manifolds v

In this section we review some standard facts about framed manifolds and the
Pontrjagin—Thom construction. More details can be found in [16], [3], [25].

Let M* be a closed, smooth submanifold of S$”**. A framing ¢ on M* consists
of a set of unit vectors ¢,(x),..., ¢,(x) varying smoothly with x € M* and
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providing a basis for the normal space of M* in §”** at x. Corresponding to the
framing ¢ there is a uniquely defined trivialization M* x D" of the unit normal
bundle of M* in S"** The Pontrjagin—-Thom construction yields a smooth map
p(M, @) : S"**— 8", sending S"** — M* x D" to the lower hemisphere D" and
M* x D™ to the upper hemisphere D”.. The homotopy class of this map depends
only on the framed bordism class of (M, ¢). The assignment (M, ¢) — [p(M, ¢)]
establishes an isomorphism between the group of framed bordism classes of framed
k-submanifolds of S"** and the homotopy group =, (S").

Given a fixed framing ¢ of M* = S"**, another framing  determines a smooth
map Y : M* - SO(n). The trivialization M* x D" corresponding to y depends up to
isotopy only on the homotopy class [] € [M*, SO(n)].

In the case where M* = S*, standardly embedded in S”**, there is a canonical
choice of framing: the trivial framing 1 = (e;, ,,. .., €, x), Where ¢, is the i-th basis
vector of R **. The framings of S* then correspond to smooth maps ¢ : $* - SO(n),
and the isotopy classes of trivializations of the normal bundle to homotopy classes
[¢] € 7, (SO(n)). Moreover, [p(S*, )] = J[p], where J : n,(SO(n)) - n, . (S™) is the
Hopf-Whitehead homomorphism.

The Freudenthal suspension homomorphism

E:m, 1 (S") >y ("),

given by E[ f] =[Z f], has the following geometric interpretation. Let a € 7, , . (S”)

be represented by a manifold M* in §” ** with framing ¢ = (¢,, . . ., ¢,). Then Ex
is represented by the manifold M* embedded in S"+*+! with framing o @1 =
(@15 -+ Pns €4y k1) In fact, T p(M, ) =p(M, ¢ D 1).

Given B emn, .. ,(S"*%), the composition map
oB Ty k(S") 27y e (ST

can be interpreted as follows. Let B be represented by a manifold N/in S”+**+/ with
framing y, and let N’ x D"** be the corresponding trivialization of the normal
bundle. Let « € m,, ,(S™) be represented by a manifold M*c D"+* < §"** with
framing ¢ and trivialization M* x D". We get an embedding N/ x M* x D" <
N'x D"+** < §"**k+! The manifold N’ x M* with the respective framing y * ¢
represents o o f € 7, . . (S™). In fact, p(M, @) o p(N, ¥) = p(N x M, y * @).

4. Frame-spun knots

We now describe the process, due to Roseman [23], of spinning an n-knot K
about a framed submanifold (M*, ¢) of S"**. The resulting (n + k)-knot ¢%,(K)
will be called the (M, ¢)-spin of K.
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Let M* x D" be the trivialization of the unit normal bundle of M* correspond-
ing to ¢. Let (D"*2, D") be a standard disk pair embedded in (S”*2, K). Set
(D"*2, D" )=(S"*%, K) —(D"*2%, D"). Consider the unknot S”**k=g§7"+kx
{0} c S"tk+2=8"+kx D2UD"+*k*+1 x S'. The knot ¢%,(K) consists of the
(n + k)-sphere

(Sn+k_Mk X intD") Ukasn—l Mk X Dt_l*.
embedded in the (n + k£ + 2)-sphere
(S"H5+2 — M* xint (D" x D?)) Upgi  sn+1 M¥ x D"+2,

In other words, at each point of M* < (S"**+2, §”*+*%) we remove a transverse
disk pair (D" x D? D") and glue back the knotted disk pair (D"*2, D" ) to get
o$,(K). See Figure 1.

The disk D" has exterior D"*? — D" x int D? diffeomorphic to X(K), with
boundary (D", uD" ) x S' = K x S'. Therefore, the exterior of the (M, ¢)-spin of
K is

X(6%,(K)) = (D"+*+1 — M* xint B**1) x 8" Upse s pn 51 M* x X(K),

where B"*! is a standard disk in D" x D? with boundary D"u D" .

Figure 1
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Some remarks on the construction are in order. First, notice that the manifold
Dr+k+1_ M* xint B"*! is contractible. Therefore, by Van Kampen’s theorem,
7, (X (6% (K))) = n,(X(K)). This means the group of the (M, ¢)-spin of K is
determined by that of K alone; it does not depend on the framed manifold (M, ¢).
Also, the homotopy type of X(o%,(K)) depends only on the homotopy type of X(K)
and that of M¥; it does not depend on the framing. In other words, for any two
framings ¢, Y of M*, X(6%,(K)) ~ X(c%,(K)); but, as we shall see in §5, there may
be no homotopy equivalence preserving the boundaries.

Second, it should be noted that the (M, ¢)-spin of K depends only on the
isotopy class of the trivialization M* x D" associated to the framing ¢. If ¢ is
another framing of M*, let y : M* - SO(n) be the map it determines by comparison
to ¢. The exterior of ¢%,(K) is obtained from that of ¢%,(K) by splitting along
M*x D" x S' and gluing back by the map (x, y, ) — (x, Y(x)(»), £). Thus, if
[/] =0, then o¥% (K) is equivalent to ¢%,(K).

Finally, let us record the fact that in general a frame-spun knot depends on the
given framed manifold, not just on the framed bordism class of that manifold.
Indeed, if M is the surface of genus g, standardly embedded in S° and K is a
non-trivial fibered classical knot, then M is framed null-bordant, yet aMg(K) *
o, (K) for g # h. In fact, the two frame-spun knots are fibered, with the fibers
having non-isomorphic second homology groups (see [23] for the case K = trefoil
knot, and [24] for the case g =0,h =1).

The effect of iterated frame-spinning can be described as follows. Let (N/, i) be
a framed submanifold of S$”***/ with normal bundle N’ x D”**. Consider the
(N', ¥)-spin of the (M*, ¢)-spin of the knot K. It consists of the (n + k + [)-sphere

(Sn+k+[—N1X intDn+k)

Unixsntk—1 N'X[(D* 5 — M* x int D") Upgx x sn—1 M* x D" ]

> (S" AT N x M* xint D™) Upiy pric x sn—1 N x M* x D",
embedded in the (n + k + / + 2)-sphere

(S"HrE+1+2 Nl xint (D" % x D?)) Uyt sntk+1 N
X [(D"+5+2 — M¥ x int (D" X D?)) Upgicxc snv1 M¥ x D"+ 7]
~ (S"HEHIH2 N x M* x int (D" X D?)) Unix pkx snt1t NUx M* x D%+2,
The framing of N’/x M*¥c< S"+*+! corresponding to the trivialization N’ x

M* x D" obtained above is the product framing y * ¢. Thus the resulting knot is the
(N’ x M*,  *¢@)-spin of K. We have proved
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PROPOSITION 4.1. The iterated frame-spun knot c% (6%,(K)) is equivalent to
o %5 (K). 0

As mentioned in the introduction, we are primarily interested in the following
question about frame-spun knots: Given a knot K and a framed manifold (M, ¢),
is the knot 6¢,(K) determined by its complement? We conclude this section with
two situations — one involving K, the other (M, ¢) — where the answer is affirma-
tive. We will come back to this question in §6 with a situation where the answer is
negative.

Consider the case M* = S*, standardly embedded in S"**, with framing given
by a smooth map ¢ : S¥ — SO(n). The resulting frame-spun knots, ¢ ¢ (K) = o % (K),
first appeared in Hsiang and Sanderson [14]. When ¢(x) = id, i.e. the framing is
trivial, we get the superspin, or k-spin, o, (K), of Cappell [5]. The exterior of the
(k, @)-spin of K is

X(@2(K) = D¥*' x D" X S Ugi pn x 51 8 x X(K),

with gluing map (x, y, ) = (x, @(x)(»), 0).
Now let K be an n-knot, n > 2. The following result establishes the relationship
between (k, ¢)-spinning and Gluck reconstruction.

THEOREM 4.2. The knot o{(K*) is equivalent to o{(K)*. Thus, if K is
reflexive, a{(K) is also reflexive.

Proof. Recall K* is a knot in S$”*2, with exterior X(K); the ambient sphere
is obtained by attaching S” x D? to X(K) by the Gluck twist 1,,,(y, ) =
(0, +1((»), t). The (k, ¢)-spin of K* has exterior

X(@02(K*) =D*+' x D" x 8" Ugix pn x 51 5¥ x X(K),

with gluing map (x,y, ?) — (x, (x)(p,(1)(»)), £). There is a diffeomorphism
X0 (K*)) - X(a%2(K)) given by id x 1, uid.

The ambient sphere S"**+2 of ¢f(K*) is obtained by attaching S"** x D?
to X(o¢(K)) along D*+'x §"~'x S'USkx D" x S'=S"**¥x S! by the map
iduid x 1, =1, .. It follows that ¢f(K*) = o (K)*. O

A frame-spin of K may be reflexive even though K is not. Indeed, Gluck [9]
showed that 1-spun knots are always reflexive. This was generalized to k-spun knots
by Cappell [5]. The following theorem, based on Cappell’s method, extends their
results to certain (k, ¢)-spun knots. First, some notation: 1, = J[p,] is the generator
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of n5(S?) = Z given by the Hopf map, and, for k > 2, n, = E*~?n, is the generator
of m, ., 1(S*) =7Z,. To keep things compact, we shall let #, stand for 1,, the usual
generator of n,(S").

THEOREM 4.3. Let K be an n-knot and ¢ : S*— SO(n) a smooth map. If
[@] o, =0, then ¥ (K) is reflexive.

Proof. Define a smooth map f,:D¥+*!'x D" xS'->D*+*!'x D" x S' by
Jo(x, ¥, 8) = (P41 (D(x), , ). Let y : X(K) = S' be a smooth map which represents
a generator of [X(K), S'] =~ H'(X(K); Z) = Z and which restricts on the boundary
to pry: 8" x S'— S'. Then define a smooth map f; : $¥ x X(K) - S§* x X(K) by
J1(x, y) = (P 1 (Y(M(x), ).

On S*x D" x S', both f; and f, restrict to (x, y, t) — (0, 1()(x)), y, 1). In
order for this map to be compatible with the gluing determined by ¢ we must have

P(px 1 (D) = (x), forxeSk reS". (%)

Let 1, ,: 8% x S'—> 8% x S! be the Gluck twist and pr, : $¥ x S' — S* the projec-
tion map. Then () is equivalent to @ opr, ot ., =@ ° pr,.

If K =1, then [p] =0, and we may assume, by homotoping ¢ if necessary, that
(%) holds. Otherwise, the only obstruction to a homotopy ¢ opryot,, =
@opr, is the class of the difference cocycle d(¢ oprict,,, @ opr,)€
H*+1(S* x S, 7, ,(SO(n))) = ;. , ,(SO(n)). By naturality, the obstruction equals
[@] o d(pr,ote 1, pry). Since d(pr, ot 1, pri) = ni (see [9]), the obstruction van-
ishes, and again we may assume that (*) holds.

This permits us to glue the maps f, and f; to get a smooth map
f:X(6?(K)) » X(6?(K)). On the boundary S"**x S! the map f restricts to
T,+k+1- Thus af(K) is reflexive. O

As suggested in §1, the above theorems should generalize to arbitrary frame-
spun knots. Namely, one should prove:

(1) 0% (K*) =af (K)*.
(i) If [p(M, @)] o1, .« =0, then o%,(K) is reflexive.

The difficulty one runs into is finding appropriate “Gluck twists” over
(Dr+ +1 _ M* x int B**1) x S

S. Frame-spun fibers

In this section we introduce the notion of frame-spinning a closed manifold and
use it to study the closed fiber of a frame-spun knot.
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Let W™ be a closed, smooth m-manifold, m = 1. Let B™ be a fixed embedded
disk in W™ and let W7 = W™ —int B™. Let (M*, ¢) be a framed submanifold of
Sm+k with unit normal bundle M* x D™. The (M, ¢)-spin of W™ is the closed,
smooth (m + k)-manifold

6% (W™ =(S"*+% — M* xint D™) Uk gm—1 M* x W2, &)

That is to say, at each point of M* = S™*+* we remove a transverse disk D™ and
glue back the punctured manifold W7'. Notice the frame-spin of S™ is just S™*+*,

If M*= S* with framing ¢ : S¥ > SO(n), the resulting frame-spun manifold
is of(W™)=D**'x §™" 1 Ugiysm—1 S¥x W5, with gluing map (x,y)+—
(x, (x)(»)). In case the framing is trivial, we get the k-spin, a,(W™), of Cappell
[5]. In case k = 1,m = 3, there are two possible S'-spins, o,(W™) and o[ (W™),
corresponding to the framings 1 and p,, (Plotnick [20]). The two pieces of a{(W™)
get glued along S' x S$” ! by the Gluck twist. Thus, if the Gluck twist extends to
a diffecomorphism of S' x W' (for example, if W™ admits a smooth S'-action with
codimension 2 fixed-point set), then o,(W™) is diffeomorphic to o (W™).

Frame-spinning behaves nicely with respect to fundamental groups. If m = 3,
then n,(S™** — M* xint D™) =0, n,(W?7) = n,(W™), and so, by Van Kampen’s
theorem, n,(a$,(W™)) = n,(W™).

The Pontrjagin—-Thom construction can be extended to frame-spun manifolds.
Indeed, the decomposition (1) yields a smooth map

p(W, M, ) :05,(W") > W™

that sends S™** — M* x int D™ to B™ and M* x W7 to W Clearly, p(S™, M, ¢)

is just p(M, @). Moreover, p(W, M, ¢) o p(6$,(W), N, ) = p(W, N x M,y * @).
The frame-spinning construction enjoys the following naturality properties. Let

V'™ be another manifold with a fixed embedded disk. Let f: W™ — V™ be a degree

1 smooth map preserving the chosen disks. Define the (M, ¢)-spin of f to be the
(degree 1) smooth map

o4 (f) o5 (W) > af, (V")

obtained by piecing together the maps idgm« _ psk x ine pm and idpx X f|p. Then
fop(W, M, ¢) =p(V, M, ¢) oc%,(f). Moreover, if g : ¥ — U™ is another degree 1
smooth map preserving base disks, then 6§,(g o f) =06%(g) - a4 (f).

Having defined the process of frame-spinning a knot, respectively a manifold,
we now relate the two notions in case the knot we start with is fibered. Unlike
twist-spinning, the process of spinning doesn’t create essentially new fibrations. But
it does the next best thing. As recognized by Andrews and Sumners [2], k-spinning



Inequivalent frame-spun knots with the same complement 57

takes fibered knots to fibered knots. This was generalized to frame-spinning by
Roseman [23, Lemma 1]. Let us identify the frame-spun fiber and monodromy in
our terminology.

Let K be a fibered n-knot, with fibration of the exterior n : X(K) — S, fiber F,
and monodromy 6. Denote by F¢ the closed fiber of K (so that F§= F). Let M* be
a submanifold S”** with framing ¢. The exterior of the (M, ¢)-spin of K admits a
corresponding frame-spun fibration pryum o pr, : (D" t*+! — M* x int B"*1) x S
Uk x pn x st M¥ x X(K) = S*. Tts fiber is

F(o%(K)) = (D"+*+1 — M* x int B"* ') Upgux pn M* x F,
and its monodromy is id Uid x 0. The closed fiber of ¢¢,(K) is

F(0%/(K)) = F(0%/(K)) Usnse DTTEH!
=_~_[(Dn+k+l__Mk x int Bn+l)
Usn+k_ pmkxinpn (DTHEFT = M  xint BT D] Upk o sn M* X F

=(S§" Tk _M*xint D"*Y) Uk 5o M* X F,

where D"*'= B"*' U,, B?* ! (see Figure 2). The trivialization M* x D"*+! of the
normal bundle of M* in S"***1! corresponds to the stabilized framing ¢ @ 1. We
thus have proved

Dn

Figure 2
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PROPOSITION 5S.1. If K is a fibered knot, then c%,(K) is also fibered, with
closed fiber 62" (F°) and closed monodromy 42" (6°). O

We now address the following question: Given a closed m-manifold, W™, and
two framed k-submanifolds of S™** (M*, ¢) and (N*, ), are the corresponding
frame-spins, a%,(W™) and ¢%(W™), homotopy equivalent? As the case W™ = S™
illustrates, the answer may be yes. But in general, the expected answer is no. If
M* £ N*, one can often distinguish between the two frame-spins by means of their
homology or the homology of their universal covers. For example, if W? % S?3,
then og(W?) % 05, sk-1t(W?) (see [24] for a proof and generalizations). If
M* ~ N*, the difference between the two frame-spins of W™ is more subtle. The
next theorem shows that we still may tell them apart, provided W™ is the closed
fiber of a knot, its universal cover is contractible, and (M*, ¢ @ 1) is not framed
cobordant to (N*, y @ 1).

THEOREM 5.2. Let K be a fibered n-knot, n = 2, with aspherical closed fiber.
Let (M*, ¢) and (N*,\y) be two framed k-submanifolds of S"** such that
E[p(M, ¢)] # E[p(N, ). Then F<(a%(K)) # F(s%(K)).

Proof. Suppose F(6%,(K)) ~ F°(c%(K)). Let F° be the closed fiber of K. By
Proposition 5.1, there is a homotopy equivalence g : 6 §®'(F) - o %®'(F°). Let g,
be the induced automorphism on n =m;(F¢). Since F° is a K(m, 1), g, extends
to a homotopy equivalence h:F°— F¢. Moreover, hop(F'\,M,p®1)~
p(F, N,y @1) o g, again by asphericity of F¢.

Now let g : F*— S"*! be the map sending F"*! to D"*' and B"*! to D"+
Changing the orientation of $”*! if necessary, we see that g has degree 1. Hence
there is a homotopy equivalence A : S”* ' — §”*+! such that 4 o g = q o h. The maps
%2 (q) and 6%®'(q) also have degree 1, so there is a homotopy equivalence
g:Srtk+tl,gn+k+1 guch that g 0042 (g) =a%®(g) - g.

We thus have the diagram
SA81pey KENVeD g

n+k+l n+l
PM,p®1)
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with the top and side squares commuting up to homotopy. Hence p(M, o @ 1)
o4 q) ~p(N, Yy ®1) o 6§®'(q). Since 62 '(F°) is the closed fiber of 6¢,(K), and
%2 1(g) has degree 1, Proposition 2.2 implies p(M, ¢ @ 1) ~p(N, Y @ 1). This is a
contradiction, and we are done. O

REMARK. The knot exteriors X(c%,(K)) and X(¢%(K)) are not homotopy
equivalent (rel. boundary). This follows from the preceding theorem by a stan-
dard argument: Suppose there is a homotopy equivalence (rel. ) of the knot
exteriors. It lifts to a homotopy equivalence (rel. d) of the infinite cyclic covers
F(o%,(K)) x R~ F(6%(K)) x R. This yields a homotopy equivalence F(c%,(K)) —
F(c%(K)), which is the identity on the boundary S”**, and thus extends to a
homotopy equivalence of the closed fibers. For example, if K is a 2-knot with
aspherical closed fiber (see [10], [13] for such knots), and ¢ : S$'— SO(2) has odd
degree, then X(6{(K)) # X(o,(K)) (rel. 9). Or, if K is a Cappell-Shaneson 3-knot
with closed fiber the 4-torus [7], and ¢ : S*— SO(3) satisfies J[p] #0, then
X(0:(K)) # X(o,(K)) (rel. 0).

COROLLARY 5.3. Let K be a fibered n-knot, n = 2, with aspherical closed fiber
F¢. Then o,(F°) % a((F°). O

REMARK. For 3-dimensional manifolds, more is true. With some additional
work, we can show that given any aspherical W3, the two S'-spins of W? are
homotopically distinct. This result was first proved by Plotnick [20, Theorem 3.1],
using intersection forms on universal covers. He also showed [20, Theorem 5.1] that
there is no “special” homotopy equivalence between the two spins of W3, provided
not all summands of W? are §2 x S! of X3/n, where 23 is a homotopy 3-sphere, =
is a finite group acting freely on X3, and all Sylow subgroups of = are cyclic. We can
sharpen this last result in some cases. For example, o,(23/I*) & ¢;(Z3/I*), where
I* is the binary icosahedral group.

6. Non-reflexive knots

We now return to the problem of reflexivity of knots, more specifically, of
frame-spun fibered knots. Under certain assumptions on the fibering and on the
framing, these knots will prove to be non-reflexive. We start with the following
necessary condition for reflexivity. The idea of the proof is similar to that of [10,
Proposition 4.2] and [20, Theorem 6.2].

PROPOSITION 6.1. Let K be a fibered n-knot, n = 2, with odd order mono-
dromy. If K is reflexive, then o,(F‘(K)) = ¢(F¢(K)).
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Proof. Let 0 be the monodromy of K, and r its order. Since K =~ K*, there is a
diffeomorphism f of the exterior F x , .S' which restricts on the boundary to vz, . ,,
where 7, ; is the Gluck twist and v is a composite of orientation reversals of the
factors of S” x S'. Lift f to a diffeomorphism f of the r-fold cover F x S*. Since r
is odd, f restricts on the boundary to vT, ;. It is now a simple matter to extend f
to a diffeomorphism a,(F¢) — o {(F°). O

This proposition, together with Corollary 5.3, implies

COROLLARY 6.2. Let K be a fibered n-knot, n = 2, with aspherical closed fiber
and odd order monodromy. Then K is not reflexive. U

This result was first proved by Gordon [10] under the extra assumptions that K
be a twist-spun knot and the universal cover of F¢(K) be R"*'. He used it to
produce examples of non-reflexive 2-knots as follows. Let p, ¢, r be integers greater
than 1, with p and g coprime, r odd, and 1/p + 1/g + 1/r < 1. Denote by K, , the
(p, g)-torus knot in S°. The r-twist-spin K}, is a knot in S* with closed fiber the
aspherical Brieskorn 3-manifold X(p, ¢, r) and monodromy of order r. Therefore
K©) is not reflexive. (In fact, according to Hillman and Plotnick [13], no r-twist-
spin of a non-trivial prime, simple classical knot with r > 2 is reflexive).

For n > 2 this method doesn’t work, as there are no known examples of
aspherical (n + 1)-manifolds that are cyclic branched covers of a knotted pair
(8"*+!, 8"~ 1. Consequently, a stronger result is required in order to produce
high-dimensional non-reflexive knots.

THEOREM 6.3. Let K be a fibered n-knot, n = 2, with aspherical closed fiber
and odd order monodromy. If E[p(M*, )] o, x +1# 0, then 6%,(K) is not reflexive.

Proof. Consider F<(o$,(K)), the closed fiber of 6¢,(K). By Propositions 5.1 and
4.1, its two S'-spins are

01(F(%/(K)) = Fi(o5i % (K)) and o {(F{(a%(K)) = F(o’si < 4 (K)).

As [p(S'x M, 1% 9] =0 and [p(S' x M, p, , * ¢)] = [p(M, 9)] > 1, x, Theorem
5.2 implies a,(F(6%,(K)) # o7(F(c%(K)).

Let 0 be the monodromy of K. Since # has odd order, the monodromy
iduid x 0 of 6§,(K) also has odd order. It follows from Proposition 6.1 that
%,(K) is not reflexive. O

We now can prove Theorem 1.1. Let K be a fibered 2-knot with aspherical
closed fiber and odd order monodromy, e.g. one of the twist-spun knots mentioned
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above. To find a non-reflexive n-knot, n > 3, it is enough to find an element
a € m,(S?) such that

annn+l¢0'

For if (M"~2, ¢) is a framed submanifold of S” such that [p(M"~2, )] = a, then
c%,(K) is a knot in S"*2 which, by Theorem 6.3, is not reflexive.

We will show that such elements a of n,(S?) exist, provided that n =3 orn =4
(mod 8). A search through Toda’s book [26] produces the following table:

no o Exon,,,

3 jmp,jodd  mamy

4 N2M3 N3Nals =2V’
11 N2€;3 N3€aMyr = 2€’
12 N2 M3 N3tathz =24
19 N2l14304 N3KaO 13020 = 21014
20 H2l3 N3flally = 2(1

The classes ¢, u;, fi; are certain Toda brackets defined in [26], a5 is the generator
of n,5(S®) given by the Hopf map, and o, = E* 2%g5. It is readily seen that the
elements in the right-hand column are all non-zero (they have order exactly 2). This
proves our claim for n < 20.

For higher values of n, we must appeal to deeper results in homotopy theory.
Let o = 1,8, where B® € n,,(S?) is defined inductively by Adams periodicity [1]:
BV =¢;, BU?P =p,, and B™ is the Toda bracket {f"~®, 21, 4, 80,_5}. At the
level of the E,-term of the unstable Adams spectral sequence (mod 2) for S3, the

elements B appear at the beginning of two periodic families of “lightning flashes”
[19, p. 107]:

Bn’
Bn
B

It follows from a fundamental theorem of Mahowald that f®™y,n, . , is essen-
tial; it is detected by the composite of the bo-Hurewicz map with the Snaith map
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n,_(238% > n,_(QRP?) - n,_,(Q*(RP? A bo)) [19, Theorem 1.5]. An elemen-
tary computation using [26, Proposition 3.2] and the injectivity of E : x,, »(S?)

—x,, 5(S* shows By, n, .1 =n30 EB®on,, . Hence Ea o n,, , # 0. This finishes
the proof of Theorem 1.1. O

For each n =3 or 4 (mod 8), there exist infinitely many distinct non-reflexive
n-knots. We can show this two ways. First, we may choose infinitely many triples
(p, g, r) as in the paragraph following Corollary 6.2 so that the manifolds X(p, ¢, r)
have pairwise non-isomorphic fundamental groups. Thus, if (M"~2, @) is as in the
proof of Theorem 1.1, the n-knots ¢§,(K(),) are non-reflexive and have distinct
groups. Second, we may fix a triple (p, g, r), with r not coprime to p; then the
manifold Z(p,q,r) is not a homology 3-sphere. For n>3 and i>0, let
M2 =M""2#!S'x S"3; it is a framed submanifold of S", with framing ¢,
equal to ¢ on the first factor and the trivial framing on the other factors. The knots
a‘,f;i(K,(,’, ), i=1,2,..., are non-reflexive, have isomorphic groups, but are pairwise
non-equivalent: they can be distinguished by the homology of their fibers.
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