
An asymptotic formula for the eta invariants of
hyperbolic 3-manifolds.

Autor(en): Meyerhoff, R. / Neumann, Walter D.

Objekttyp: Article

Zeitschrift: Commentarii Mathematici Helvetici

Band (Jahr): 67 (1992)

Persistenter Link: https://doi.org/10.5169/seals-51082

PDF erstellt am: 02.05.2024

Nutzungsbedingungen
Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in
Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss
Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung
übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot
zugänglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

https://doi.org/10.5169/seals-51082


Comment. Math. Helvetici 67 (1992) 28-46 0010-2571/92/010028-19$1.50 + 0.20/0

© 1992 Birkhâuser Verlag, Basel

An asymptotic formula for the eta invariants of hyperbolic 3-manifolds

Robert Meyerhoff and Walter D. Neumann

Let M be an orientée! complète finite-volume hyperbolic 3-manifold with one

cusp. Suppose that an orientée basis 1, m, for the first homology at the cusp has

been chosen, so that we can speak of M(p, q), the resuit of (/?, #)-Dehn filling the

cusp - that is, we replace the cusp by a solid torus in which the class pm + q\ is

null-homologous. Thurston&apos;s hyperbolic Dehn surgery theorem (see [T], [NZ]) tells

us that M(p, q) has a hyperbolic structure for p2 + q2 sufficiently large. In [Y] T.
Yoshida proves a formula for the eta invariant rj(M(p, q)) in terms of Thurston&apos;s

analytic Dehn surgery parameter u(p, q) and additional structure on M (various
frame fields). For M equal to the figure-eight knot complément he gives a simpler
and more explicit version of the formula which does not invoke the extra structure.
The purpose of this note is to show that a formula of this simpler type can be

derived in gênerai from Yoshida&apos;s resuit. Our basic resuit is that:

THEOREM 1. Suppose that the basis m, 1 at the cusp is chosen so that \ is a
&apos;&apos;longitude99, that is, it is null-homologous in M. Then, with ingrédients to be described

below, for p2 + q2 sufficiently large:

-2 Vol (M(/&gt;, q)) + 3àf(Af(p, q)) f(u(p, q))
Tt Lit-2 Vol (M(/&gt;, q)) + 3àf(Af(p, q)) =f(u(p, q)) -± l{y{p, q)) - il(p, q).
Tt Lit

f(u) is, up to an imaginary constant, the complex analytic function (of the

analytic Dehn surgery parameter u) which arose in the main results of [Y] and

[NZ]. /(/?, q) is an integer depending only on p and q which we describe explicitly
below. Finally, y(p, q) is the géodésie core of the Dehn filling and X{y(p, q)) is its
&quot;complex length&quot; X(y) length (y) 4- i torsion (y). We must, however, be careful
about the branch of torsion (y) that we use hère, since torsion (y) is only well
defined modulo 2n. For p2 + q2 large, some branch of torsion (y) is close to Inq&apos;jp,

where q&apos; satisfies

0£ — &lt;1 and w&apos;s-l
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and this is the branch of torsion (y) which we choose. In fact (cf. [Mh] and

[NZ]), an appropriate branch of torsion (y) — 2nq&apos;/p is the restriction of a real

analytic function of u which vanishes at u 0, namely (notation as in Sect. 4 and

[NZ])

*
q&apos; v In u

torsion (y) —2n— — arg- arg-
p p pq q

With q&apos; as above, I(p, q) can be given by the formulae

/(/&gt;, &lt;7) =-(3 def(/7;&lt;7,l)+&lt;?-&lt;?&apos;) ifp&gt;0,

I(p,q)=I(-p,-q) ifp&lt;09

where

def (p; q, 1) -^ cot — cot^
*«i P P

is the Hizebruch defect (H], [H-Z]).
Alternatively, if p/q &gt;0 is given by a continued fraction

with 6, S: 2 for i S 2, then

k

1 1

while if p/q &lt; 0 then /(p, 9) can be computed from:
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The formula for /(/?, q) in tenus of a continuée fraction is équivalent to the

récurrence relations

I(bq -p, q) I(q,p) + 3 - b if p,q,bq-p&gt; 0,

Thèse and other relations follow easily from the properties of the Hirzebruch
defect discussed in [H] and [H-Z]. For example

I(p - bq, -q) I(q,p) -3-6 if p, q,p - bq &gt; 0,

/(/&gt;, bp + q) b + 2 - I(q, p) if p,q&gt; 0.

The latter gives the fastest computation of /(/?, q) in practice.
We prove Theorem 1 in Section 1 and generalize it to several cusps in Section

2 (Theorem 2). In Section 3 we deduce that the eta invariants of Dehn fillings of a

given hyperbolic M are dense in R.

It is worth remarking that in [N] a simplicial formula for/(w) is given in terms
of the Rogers dilogarithm function R(z), analogous to Yoshida&apos;s formula in the

spécial case of the figure-eight knot complément. In Section 4 we give explicit
formulae for the compléments of the figure-eight knot (Yoshida&apos;s case) and the
Whitehead link.

The formulae of Theorems 1 and 2 are presumably valid throughout hyperbolic

Dehn surgery space, rather than just for p2 + q2 large, but out proof, which
uses nothing but équation (1.1) below and some gênerai considérations, does not
show this.

A note on orientations. We chose (1, m) to be an oriented basis for the first
homology of the cusp torus with its inherited complex structure. This is because

if 1 and m are a standard longitude and meridian of a hyperbolic knot complément

then they hâve this orientation. In the discussion of Dehn surgery on the

figure-eight knot complément in [T] the opposite orientation convention was
used, due to the cusp torus being viewed from inside the manifold rather than
outside. This non-standard convention was used also in [NZ] and [Y] (m is drawn
with standard orientation in Fig. 18 of [NZ], but this was inconsistent with the

text). Thus (p, #)-Dehn surgery in those discussions would be (p, —q)-Dehn
surgery in the convention which we follow hère, affecting some signs in some
formulae.
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1. Proof

Our starting point is a formula involving the Chern-Simons invariant
CS (MO, q)) which was conjectured in [NZ] and proven in [Y]:

-2 Vol (M(p, q)) + 2i CS (M{p, q)) f(u(p9 q))
n In2Vol(M(p,q))+2iCS(M(p,q))=f(u(p,q))- — X(p9q)) (mod iZ). (1.1)

For any closed Riemannian (4k — l)-manifold N, it is known [APS] that

3rj(N) 2 CS (iV) (mod Z), 1.2)

so (1.1) can be rewritten:

^ Vol (M(p, q)) + 3in(M(py q)) =f(u(p9 q)) -^ %(/&gt;, q)) - il(p, q; M) (1.3)

where I(p,q; M) is an integer that dépends on p, q, and M.
We shall prove Theorem 1 in two steps:

Step 1: For p2 + q2 large, /(/?, q; M) ï(p, q) -h C(M), for some integer valued

function /(/?, q) of p and q and some function C(M);
Step 2: the function /(/?, #) is as described in the Introduction.

This will prove Theorem 1, since for fixed M the constant C(M) can be absorbed

into the analytic part /(m).
Step 1. It suffices to show that I(p, q; M) has the form

(1.4)
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since the fact that /(/&gt;, q; M) — I(p, q) is intégral forces the o(l) terni to vanish for
p2 + q2 large. The imaginary part of (1.3) can be written:

-I(p, q; M) 3rf(M(p, q)) + — torsion (y(p, q)) + g(u(p, q))

3f](M(p9 q)) + — torsion (y(p, q))

+ g(0)+o(l) asp2 + q2-+ao9 (1.5)

where g(w) is the real analytic function equal to the imaginary part of -/. As
mentioned in the Introduction, by [Mh] or [NZ] we hâve

torsion (y(p, q)) In — -h o( 1 (1.6)
P

so

-/(/&gt;, q; M) 3fi(M(p9 q))+-+g(0) + (7(1) as p2 + q2-* oo. (1.7)

We need to analyze rj(M(p, q)).
Recall from [T] that M[o&gt;£) is the &quot;thin part&quot; of M consisting of ail points which

lie on some essential curve of M of length less than e. If e is sufficiently small
(e &lt; 0.1 suffices) then one of the components of M[Oc) is a neighborhood N of the

cusp. The boundary of M — N is a flat torus. If this flat torus has area ô, then it is

not hard to see that e &lt; l.l^/ô. Thus, by specifying a small value of ô we détermine

an e which gives a neighborhood N as above. We fix such a value of d and dénote

Mo M — N. Also, let N, be the smaller neighborhood determined by boundary
area Ô/2 and put Mx M - Nu so MoczMx, Dénote K Mx — int (Mo).

Figure 1

For p2 + q2 sufficiently large, M(p, q) has a hyperbolic structure almost isomet-
ric to the union of M{ and a suitably metrized solid torus T(p, q; M). Thus on
M(p, q) x I we can find a metric which is almost a product metric, and which has

M(p, q) and M, u T(p, q\M) as its two boundary components, and has product
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metric in a collar neighborhood of each boundary component. Dénote M(p, q) x /
with this metric by Yo.

Let T be a Riemannian solid torus with boundary isometric to d(Ml and with
a neighborhood of the boundary isometric to K, as indicated in the very schematic

Fig. 2. The &quot;longitudinal&quot; homology class 1 in K should represent 0 in T.

Figure 2

Tu T(p, q;M)is the lens space L(p, q) with a Riemannian metric on it. Put the

product metric on L(p, q) x /. Let Yx be the resuit of pasting Yo to L(/?, q) x /
along the copy of T(p, q; M) in the boundary of each.

M(p,q)

il
T

T(p,q;M)

manu
T(p,q;M)

L(p,q)xl

Figure 3

Let Y(p, q) be Yx modified in a small neighborhood U of the boundary
component Mx u T to make that boundary component smooth with product metric
in a neighborhood of it. This modification should be done independently of p and

q. Call the resulting Riemannian boundary component Mf.

M(p,q)

Up,q)
Figure 4
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If px is the first Pontryagin form on Y(p, q), then the définition of the

rç-invariant says that

fl(dY(p9q)) f ^-sign Y(p,q). (1.8)

This can be re-written

tt(M(p9 q)) fimp9 q)) - if(Af&apos;) + f §¦ - sign F(/&gt;, 0. 1.9)

Since the metric on F(/?, q) is almost a product outside the neighborhood U, p{
almost vanishes outside U, so

ÙY{p,q) ^ JC/ ^

Moreover, it is easy to compute (e.g. using WalPs formula [W]) that
sign Y(p, q) 0, so (1.9) becomes

ri(M(p, q)) rt(L(p9 q)) -f Q(M) + o(l), (1.11)

where C0(M) is independent of p and #. Thus formula (1.7) becomes

-/(/&gt;, ?; M) 3i|(L(/&gt;, ?))+- + C,(Jlf) + ^(1), (1.12)
P

3C0(M)+g(0).
For fixed p and ^, the metric on L(p9 q) may be taken to dépend only on the

original shape t of the cusp torus of M (and to dépend continuously on this x). To
complète the proof of (1.4) we must show that 3tj(L(p9q)) has the form
—I(P&gt;&lt;Ù — (q&apos;Ip) + C2(r) + o(1). In [Mh; Section 3.1] it is shown, in a context
similar to ours, that

3rj(L(p9 q)) - 2 CS (L(/&gt;, q)) - I(p9 q; t)

\ Q ~ 2n(torsion W^ 9)) - torsion (y)) - I(p, q; x), (1.13)

where /(p, q; x) is some integer and F is an orthonormal frame field on L(p, q)
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which is singular at the (/?, q) core and at the core y of the torus T. Moreover, the
frame field F hardly dépends on p and q for p2 -f q2 large, so, by (1.6), (1.13) can
be written

3«(L(p9 q)) C2(t) + o(l) - q- - I(p, q; t). (1.14)
P

Up to o(\), équation (1.14) equates the integer valued function /(/&gt;, q; t) of t with
a continuous function of t, so I(p,q; t) is independent of t, completing the proof
of Step 1.

Step 2. We must show that, up to a constant, the function /(/?, q) can be given
by the formulae claimed in the Introduction. Yoshida&apos;s calculation (in [Y, Theorem
3 and subséquent discussion]; recall that his q is the négative of ours) for the

figure-eight knot complément gives

3ti(M(p9 q)) -- (3 def (p; q, 1) + q) + o(l), (1.15)
P

so the resuit follows by inserting this in équation (1.7).

2. Several cusps

In Theorem 1 we chose the basis élément 1 to be a &quot;longitude.&quot; This was used

to see that sign Y(p9q) =0 in the step from équation (1.9) to équation (1.11).
Without this choice of 1, the formula of Theorem 1 must be corrected by
3/ sign Y(p,q):

=f(u(p, q)) - ~ My(P, 4)) ~ #(/&gt;, q) ~ 3/ sign Y(p, q). (2.1)

The analytic function f(u) in this formulation differs from the one in Theorem 1 by
a constant which dépends on the choice of basis. The ingrédient sign Y(p9 q) is 0 if
any two of longitude, 1, pm -h q\ are linearly dépendent, and otherwise we hâve

longitude a\ -h b(pm + #1) for some a,beQ and then sign Y(p, q) sign abp.

If M is a complète finite-volume hyperbolic 3-manifold with several cusps, then
there is, in gênerai, no natural choice of &quot;longitudes&quot; at the cusps, so the analog of
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Theorem 1 must be stated in the form corresponding to équation (2.1). Suppose M
has h cusps and a basis of homology m, has been chosen at they-th cusp for each

j. Let (p, q) (/&gt;!, q{;... ;ph9 qh) and let M(p, q) dénote the resuit of Dehn filling
ail the cusps of M to kill the class /^m, + q3\ at the j-th cusp for each y. Essentially
the same proof as in Section 1 shows:

THEOREM 2. If each p) + q) is sufficiently large then

=/(u(p, q)) - 3/ sign 7(p, q) - £ Q- A(y,(p, q)) + il(pj9 qA

Hère 7(p, q) is the resuit of pasting L{p}, q}) x / to M(p, q) x / for each j,
as in Section 1. Its signature sign 7(p, q) can be computed by WalPs formula [W]
and dépends only on Ker (i^ (cusps) -+HX(M)) and the éléments ll9...,lA,
px\x + qxmu...,ph\h+qhmh, of Hx (cusps).

On the other hand, Theorem 2 can be derived as a formai conséquence of
Theorem 1. This implies that the Wall non-additivity term sign 7(p, q) can be

computed in terms of the function /(/?, q). Such formulae are known, see [M] and

[M-S].
An amusing conséquence of our resuit, probably of little use, is that if one

knows tj(M(j&gt;, q)) for ail sufficiently large p]+q)&lt;&gt; then one can compute
Ker (//,(cusps) -+HX(M)). We leave the proof of this to the reader.

3. Density of eta

Let M be a hyperbolic 3-manifold with one cusp.

THEOREM 3. tj(M(p, q)) takes on a dense set of values in R as p2 4- q2 -? oo.

Proof. By (1.7) and our first formula for /(/?, q),

V{M{p, q)) G(p, q) -£ def (p; q, 1) ~|L, (3.1)

where G(p, q) approaches a constant value G as p2 + q2 -&gt; oo.
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That /(/?, q) is an integer (see also [H-Z], Section 5.1, formula (19))
implies

T f (mod|Z) (3.2)

where q&apos; satisfies 0 ^ q&apos;jp &lt; 1 and qq&apos; — 1 (mod |/?|). It follows that by judicious
choice of q and /? we can achieve a dense set of values for (l/p) def (p; q, 1) -f qj
(3p) in the circle R/(}Z), and in fact we can do this while assuming that p2 + q2 is

large (compare with Section 5.3 of [Mh]). This easily proves density for r\ in
R/(|Z), but to get density in R we need a little more work.

By the reciprocity formula for Dedekind sums (see [H-Z], Section 5.1, Theo-

rem 1) we hâve the formula (équivalent to the last recursion formula for /(/?, q) in
the Introduction)

-1. (3.3)
jq opq

Of course, we also hâve that

def (p; q, 1) def (p; q + tp, 1) for ail t e Z. (3.4)

To prove the Theorem, for given e &gt;0 and real b we must find (Po9qo) with
pi + ql large so that \rj(M(p0, q0)) - b)\ &lt; e.

Since G(p,q)-+G as p2 + q2-+oo, we can find NeZ+ such that for
p2 + q2&gt;N we hâve |G — G(p, #)| &lt;£/6 and l/|/?^r|&lt;e/6 and M(p,q) is hyper-
bolic.

Choose positive integers p and q with p2 + q2&gt; N so that

with |&lt;5| &lt; e/4 and w g Z. Note that, by (3.2),
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with v eZ. Let t — u + v. Then by (3.1) and the lat two formulae,

r,(M(p,q))+--b

&lt;L\G(p,q)-G\ r q j.&quot; hG — — +- — O
3p 3

Suppose t is négative. Then by (3.1) and (3.4)

ri(M(p, q)) + - - ri(M(p, q - tp))

- G(p, q-tp)-1- def (p; q - tp, 1) -

\G(p, q) - G(p, q-tp\&lt; \G(p, q)-G\ + \G- G(p, q - tp)\

e e e

&lt;6+6&lt;2-

Thus

\rf(M(p,q-tp))-b\&lt;e,

so in this case we take p0 p and qo q — tp.
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If t is positive then p2 + (q — tp)2 might not be greater than N9 so we

must modify the above argument. Formulae (3.1) and (3.3) are used at the first

step.

G(p, q) - G(p

\G(p, q)-G\ + \G- G(p + tq, q)\ + — -

1

3pq

+ tq,

-&apos;9,D

9)| +

1

+ tq)q

1

3pq

1

Xp

1

1

+ tq)q

e e e e

Thus

tq,q))-b\&lt;e9

so in this case we take po=p H- tq and #0 ^r, completing the proof.

4. Examples

The figure-eight knot complément. The standard idéal triangulation of the

figure-eight knot complément m (see e.g., [T] and [NZ]) has two idéal 3-simplices
with parameters z and w satisfying the consistency relation

log z 4- log 1 - z) -I- log w -h log 1 — w) 0. (4.1)

(Hère log will always dénote the standard branch of natural log on the complex
plane split along —oo,0].) The usual analytic Dehn surgery parameter is

u log w + log 1 — z). (4.2)
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However, z and w (constrained by équation (4.1)) are analytic fonctions of w, so

we shall write the analytic part of the équation of Theorem 1 as a function of z

and w. The real Dehn surgery parameter (p, q) is determined from z and w by the

équation

pu+qv= 2ni with v -log z2( 1 - z)2. (4.3)

(The sign of v is opposite to that used in [T], [NZ], and [Y], to conform with
standard orientation conventions.) Let R(z) dénote the Roger&apos;s dilogarithm

l*(z)=ilogzlog(l-z)+Li2(z)

1 fz
- log z log (1 - z) - log (1 - i)d log t. (4.4)
1 Jo

The ingrédients in Theorem 1 in this case are

f(u) 4^ (r(z) + R(w) - Çj9 (4.5)

My(p,q))=-2ni + -v9 (4.6)
P P

so the formula of Theorem 1 becomes

~ Vol (M(p, q)) + 3itl(M(p,q))

z) + R(w) - j) -h^ log z2( 1 - z)2 - i (3 def (p;q9 1) + (4.7)

Indeed, the imaginary part of this eqtiation is Theorem 3 of Yoshida [Y] (with sign
of q reversed - see above), while the real part reduces easily to the usual simplicial
formula for volume (see [T], [NZ], [N]),. Note that in this case Yoshida shows that
the formula is valid for ail coprime p and q (other than the ones that do not give
a hyperbolic structure: (/?, ±1) with \p\ ^ 4, and ± 1, 0)).
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The complément of the Whitehead link. In [T] Thurston describes how to obtain
the complément W of the Whitehead link (Fig. 5) by identifying faces of an idéal
octahedron in pairs. The identification matches face A with A\ B with B\ etc., in
Fig. 6, so as to respect the labelling of the edges.

Figure 5

Figure 6
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By subdividing the octahedron (Fig. 7), we obtain an idéal triangulation of W
with four simplices.

Figure 7

By cutting off the ends of W one obtains a compact manifold-with-boundary W
which can be obtained by identifying truncated tetrahedra as in Fig. 8. The two
boundary tori of W are triangulated as in Fig. 9, where the vertices are labelled

according to the edges of the triangulation of W. Careful inspection shows that
the standard topological meridian and longitude of each component of the White-
head link are as indicated in Fig. 10, where we hâve also included labels for the

complex parameters of the four tetrahedra.
We can read off from Fig. 10 the consistency relations at the four edges:

log w&quot; + log z&apos; + log x&quot; -f log w&apos; + log x&quot; + log y&apos; + log w&quot; -f log x&apos; 2ni9

log w + log x -f log y 4- log z 2ni,

log z&quot; + log w&apos; + log/&apos; + log z&apos; -f log y1&apos; + log x&apos; H- log z&quot; + log y&apos; 2ni,

log w + log x -f log z + log y 2ni.



Eta invariants of hyperbolic 3-manifolds 43

Figure 8

Figure 9

Since x&apos; (x — l)/x and x&quot; 1/(1 - x) and similarly for w, y9 z, thèse simplify to
the two relations:

log w + log x + log y + log z 27ri,

log (1 - w) -h log (1 - x) - log (1 -y) - log (1 - z) 0.
(4.8)
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w y w z

Figure 10

Similarly, we can read off the parameters uu vx, u2, v2, which describe the

holonomy of the meridians and longitudes ml9 ll9 m2, 12, at the two cusps:

ux log y&quot; + log z&apos; + log z&quot; + log w&apos; - ni,

v{ log /&apos; -h log y + log x -h log x&apos; -h log w&quot; + log z&apos; H- log x&quot;

+ log x + log jy H- log j&apos; + log z&quot; + log w&apos; - 4tu,

u2 log z&quot; + log y&apos; + log /&apos; + log w&apos; - Tri,

v2 log z&quot; + log z + log x + log xf + log w&quot; -h log &gt;&gt;&apos; -h log x&quot;

+ log x H- log z -h log z&apos; -H log y + log w&apos; — 4;r/.

Expressed in terms of x, y, z, w and simplified using (4.8) this gives:

w, log (w ~ 1) -h log x -h log y - log j&gt; - 1) - ni,

vx 2 log x -f 2 log j&gt; — 2tt/,

m2 log (w — 1) + log x + log z - log (z — 1) — ni,

v2 2 log x ¦+- 2 log z — 27ri.

(4.9)

(t*!, u2) can be taken as the analytic Dehn surgery parameter, in which case w,

xf y, z, constrained by équations (4.8), become analytic functions of this parameter,
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but we shall give the formula of Theorem 1 in terms of the tetrahedral parameters
w, jc, y, and z. The real Dehn surgery parameters (px,qx) and (p2, q2) are
determined by the équations

p2u2 + q2v2 2ni.

The term —3/ sign F(p, q) of Theorem 2 vanishes in this case (this happens for
any link complément whose components hâve pairwise linking numbers zéro if one
chooses the m, and \ to be topological meridans and longitudes for the link
components). The analytic function / of Theorem 2 in this case is

¦2i, (4.11)

and the complex lengths of geodesics are given by

%(P, q)) ^ 2*i + - vJ9 j 1, 2. (4.12)

Indeed, up to an imaginary constant (4.11) follows from [N] (it suffices to check

that the real part of the formula of Theorem 2 gives volume correctly). The value
2/ of the imaginary constant was determined numerically by noting that

W(l,l;p,q) is (/?, #)-Dehn surgery on the figure-eight knot complément, so

r}W(\,l;p,q) —rjW(\,\9p,—q). Using known values of the Chern-Simons
invariant, e.g., for the Whitehead link complément itself or for the figure-eight knot
complément, it was easy to see that the constant had to be a multiple of //2, so the

numerical experiments did not hâve to be accurate.
In fact the formula has been programmed to over 50 digit accuracy. In most

cases the eta invariant appears to be irrational (however, it is not proved irrational
in any example - the same holds for volume). In many cases one expects rational
eta invariant for géométrie reasons (some cover has an orientation reversing
self-homeomorphism), and the computation bears this out. As a sample computa-
tion: for N W(3, —2: 6, —1) the formula gives

Vol (N) + 3m 2ri(N)

% 1.01494160640965362502120255427452028594168930753029979 -I- 0/.

Note that its volume is that of a regmlar idéal tetrahedron - half that of the

figure-eight knot complément; N is presumably arithmetic over the field Q(v^~^)«
Jeff Weeks has informed us that this manifolds admits an orientation-reversing
diffeomorphism, explaining the computed vanishing of eta.
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