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An asymptotic formula for the eta invariants of hyperbolic 3-manifolds

ROBERT MEYERHOFF AND WALTER D. NEUMANN

Let M be an oriented complete finite-volume hyperbolic 3-manifold with one
cusp. Suppose that an oriented basis I, m, for the first homology at the cusp has
been chosen, so that we can speak of M(p, g), the result of (p, g)-Dehn filling the
cusp — that is, we replace the cusp by a solid torus in which the class pm + ¢l is
null-homologous. Thurston’s hyperbolic Dehn surgery theorem (see [T], [NZ]) tells
us that M(p, q) has a hyperbolic structure for p? + ¢? sufficiently large. In [Y] T.
Yoshida proves a formula for the eta invariant n(M(p, ¢)) in terms of Thurston’s
analytic Dehn surgery parameter u(p, ¢) and additional structure on M (various
frame fields). For M equal to the figure-eight knot complement he gives a simpler
and more explicit version of the formula which does not invoke the extra structure.
The purpose of this note is to show that a formula of this simpler type can be
derived in general from Yoshida’s result. Our basic result is that:

THEOREM 1. Suppose that the basis m,1 at the cusp is chosen so that 1 is a
“longitude”, that is, it is null-homologous in M. Then, with ingredients to be described
below, for p* + q* sufficiently large:

1 1
—3 VOl(M(p, 9)) + 3in(M(p, q)) =f(u(p, 9)) — 5 A(¥(p, 9)) — il(p, ).

f(u) is, up to an imaginary constant, the complex analytic function (of the
analytic Dehn surgery parameter u) which arose in the main results of [Y] and
[NZ]. I(p, g) is an integer depending only on p and g which we describe explicitly
below. Finally, y(p, q) is the geodesic core of the Dehn filling and A(y(p, q)) is its
“complex length” A(y) =length (y) + i torsion (y). We must, however, be careful
about the branch of torsion (y) that we use here, since torsion (y) is only well
defined modulo 2z. For p? + ¢? large, some branch of torsion (y) is close to 2rng’/p,
where ¢’ satisfies

’

Os%<1 and ¢¢’= -1 (mod |p)),
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and this is the branch of torsion (y) which we choose. In fact (cf. [Mh] and
[NZ]), an appropriate branch of torsion (y) — 2ng’/p is the restriction of a real

analytic function of u which vanishes at ¥ = 0, namely (notation as in Sect. 4 and
[NZ])

. ’ 2
torsion (y) — 2n LI arg AL arg “ .
P P9 q

With ¢’ as above, I(p, q) can be given by the formulae

1 )
1(p, q)=;(3 def (p;9, 1) +q9—9q) ifp>0,
I(p,q) =I(—p, —q) if p <0,
where

r! k k
def(p;q,1)=— ) cot = cot 4~
k=1 P p

is the Hizebruch defect (H], [H-Z]).
Alternatively, if p/q > 0 is given by a continued fraction

b

with b, = 2 for i = 2, then

k
I(pg)=—1+ 3% (3—b),

i=1

while if p/qg <0 then I(p, g) can be computed from:

I(p,q) = —1—1I(p, —q) if p>1,
I(1,9) =gq.
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The formula for I(p,q) in terms of a continued fraction is equivalent to the
recurrence relations

I(bqg —p,q) =1g,p) +3—b  if p,q,bg —p >0,

I(p,1)=2-p.

These and other relations follow easily from the properties of the Hirzebruch
defect discussed in [H] and [H-Z]. For example

I(p—bq, —q) =1(q,p) —3—b  if p,q,p—bg >0,

I(p,bp +q) =b+2—1(q, p) if p,q > 0.

The latter gives the fastest computation of I(p, q) in practice.

We prove Theorem 1 in Section 1 and generalize it to several cusps in Section
2 (Theorem 2). In Section 3 we deduce that the eta invariants of Dehn fillings of a
given hyperbolic M are dense in R.

It is worth remarking that in [N] a simplicial formula for f(«) is given in terms
of the Rogers dilogarithm function R(z), analogous to Yoshida’s formula in the
special case of the figure-eight knot complement. In Section 4 we give explicit
formulae for the complements of the figure-eight knot (Yoshida’s case) and the
Whitehead link.

The formulae of Theorems 1 and 2 are presumably valid throughout hyper-
bolic Dehn surgery space, rather than just for p2 + ¢? large, but out proof, which
uses nothing but equation (1.1) below and some general considerations, does not
show this. :

A note on orientations. We chose (1, m) to be an oriented basis for the first
homology of the cusp torus with its inherited complex structure. This is because
if 1 and m are a standard longitude and meridian of a hyperbolic knot comple-
ment then they have this orientation. In the discussion of Dehn surgery on the
figure-eight knot complement in [T] the opposite orientation convention was
used, due to the cusp torus being viewed from inside the manifold rather than
outside. This non-standard convention was used also in [NZ] and [Y] (m is drawn
with standard orientation in Fig. 18 of [NZ], but this was inconsistent with the
text). Thus (p, g)-Dehn surgery in those discussions would be (p, —gq)-Dehn

surgery in the convention which we follow here, affecting some signs in some
formulae.
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1. Proof

Our starting point is a formula involving the Chern—Simons invariant
CS (M(p, q)) which was conjectured in [NZ] and proven in [Y]:

1 1
—5 Vol (M(p, 9)) +2i CS (M(p, 9)) =f(u(p, 9)) — - (p, ) (modiZ). (1.I)

For any closed Riemannian (4k — 1)-manifold N, it is known [APS] that
3W(N) =2CS(N) (mod Z), (1.2)

so (1.1) can be rewritten:

1
7—:—2 Vol (M(p, q9)) + 3in(M(p, 9)) =f(u(p, q)) — 7 Ay(p, @) —il(p, q; M) (1.3)

where I(p, g; M) is an integer that depends on p, ¢, and M.
We shall prove Theorem 1 in two steps:

Step 1: For p2 + ¢? large, I(p, q; M) = I(p, q) + C(M), for some integer valued
function I(p, q) of p and ¢ and some function C(M);
Step 2: the function I(p, q) is as described in the Introduction.

This will prove Theorem 1, since for fixed M the constant C(M) can be absorbed
into the analytic part f(u).
Step 1. It suffices to show that I(p, ¢; M) has the form

I(p,q; M) =I(p,q) + C(M) +0(1)  as p*>+q*— o, (1.4)
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since the fact that I(p, g; M) — I(p, q) is integral forces the o(1) term to vanish for
p? + q? large. The imaginary part of (1.3) can be written:

1
~1I(p, q; M) =3n(M(p, 9)) + o= torsion (y(p, q)) + g(u(p, 9))

1 .
=3n(M(p, q)) + 55, torsion (p, 9)
+ g(0) +o(1) as p?>+q*— oo, (1.5)

where g(u) is the real analytic function equal to the imaginary part of —f. As
mentioned in the Introduction, by [Mh] or [NZ] we have

torsion (y(p, q)) =2n % + o(1), (1.6)

SO
—I(p, q; M) = 3n(M(p, 4))+q;+g(0)+0(1) as p?+q*— oo. (1.7)

We need to analyze n(M(p, q)).

Recall from [T] that M, is the “thin part” of M consisting of all points which
lie on some essential curve of M of length less than ¢. If ¢ is sufficiently small
(€ <0.1 suffices) then one of the components of M, is a neighborhood N of the
cusp. The boundary of M — N is a flat torus. If this flat torus has area J, then it is
not hard to see that ¢ < 1.1,/6. Thus, by specifying a small value of 6 we determine
an ¢ which gives a neighborhood N as above. We fix such a value of § and denote
My,=M — N. Also, let N, be the smaller neighborhood determined by boundary
area 0/2 and put M, =M — N,, so M,c M,. Denote K = M, — int (M,).

For p? + ¢? sufficiently large, M(p, q) has a hyperbolic structure almost isomet-
ric to the union of M, and a suitably metrized solid torus T(p, g; M). Thus on
M(p, q) x I we can find a metric which is almost a product metric, and which has
M(p, q) and M, UT(p, q; M) as its two boundary components, and has product
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metric in a collar neighborhood of each boundary component. Denote M(p, q) x I
with this metric by Y,.

Let T be a Riemannian solid torus with boundary isometric to d(M,) and with
a neighborhood of the boundary isometric to K, as indicated in the very schematic
Fig. 2. The “longitudinal” homology class 1 in K should represent 0 in T.

U=

Figure 2

TuT(p,q; M) is the lens space L(p, q) with a Riemannian metric on it. Put the
product metric on L(p, q) x I. Let Y, be the result of pasting Y, to L(p,q) x I
along the copy of T(p, q; M) in the boundary of each.

M(p.9)
Yo
M T(p,q;M)
1
L1111
T T(p,q;:M) Lo X1
Figure 3

Let Y(p,q) be Y, modified in a small neighborhood U of the boundary
component M, u T to make that boundary component smooth with product metric
in a neighborhood of it. This modification should be done independently of p and
g. Call the resulting Riemannian boundary component M".

M(p,q)

L(p.9)
Figure 4
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If p, is the first Pontryagin form on Y(p, q), then the definition of the
n-invariant says that

nOY(p, ) = f B —sign ¥(p, 9) (18)

Y(p.q)

This can be re-written

n(M(p, @) =n(L(p, q)) —n(M’) + j 33—’ — sign Y(p, q). (1.9)

Y(p.9)

Since the metric on Y(p, ¢q) is almost a product outside the neighborhood U, p,
almost vanishes outside U, so

J %=J%+o(l). (1.10)
Y(p.q) U

Moreover, it is easy to compute (e.g. using Wall’'s formula [W]) that
sign Y(p, q) =0, so (1.9) becomes

n(M(p, @) =n(L(p, 9)) + Co(M) + o(1), (1.11)

where C,(M) is independent of p and ¢. Thus formula (1.7) becomes
~K(p, 4 M) = 30(L(p, @) + -+ C (M) + (1), (1.12)

with C,(M) =3Cy(M) + g(0).

For fixed p and ¢, the metric on L(p, g) may be taken to depend only on the
original shape 1 of the cusp torus of M (and to depend continuously on this 7). To
complete the proof of (1.4) we must show that 3n(L(p,q)) has the form
—I(p,q9) —(q'/p) + C,(1) + o(1). In [Mh; Section 3.1] it is shown, in a context
similar to ours, that

3n(L(p, q)) =2CS (L(p, q)) — I(p, q; 1)

= L 0 - % (torsion (y(p, q)) — torsion (y)) — I(p, q; 1), (1.13)

where I(p, g; 7) is some integer and F is an orthonormal frame field on L(p, q)
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which is singular at the (p, q) core and at the core y of the torus 7. Moreover, the
frame field F hardly depends on p and g for p? + g2 large, so, by (1.6), (1.13) can
be written

’

3In(L(p, 9)) = C(7) +o(1) —q; —1(p, q; 7). (1.14)

Up to o(1), equation (1.14) equates the integer valued function I( p, gq; 1) of T with
a continuous function of t, so I(p, ¢; 1) is independent of t, completing the proof
of Step 1.

Step 2. We must show that, up to a constant, the function I( p, g) can be given
by the formulae claimed in the Introduction. Yoshida’s calculation (in [Y, Theorem
3 and subsequent discussion]; recall that his g is the negative of ours) for the
figure-eight knot complement gives

1
3In(M(p, q)) = -1—)(3 def (p; g, 1) +q) + o(1), (1.15)

so the result follows by inserting this in equation (1.7).

2. Several cusps

In Theorem 1 we chose the basis element 1 to be a “longitude.” This was used
to see that sign Y(p, q) =0 in the step from equation (1.9) to equation (1.11).
Without this choice of 1, the formula of Theorem 1 must be corrected by
3i sign Y(p, q):

1
—3 Vol (M(p, q)) + 3in(M(p, 9))
1
=/f(u(p, 9)) — 5 M(p, 9)) — il(p, g) — 3i sign Y(p, g). (2.1

The analytic function f(u) in this formulation differs from the one in Theorem 1 by
a constant which depends on the choice of basis. The ingredient sign Y(p, q) is 0 if
any two of longitude, 1, pm+ gl are lénearly dependent, and otherwise we have
longitude = al + b(pm + gl) for some a, b € Q and then sign Y(p, q) = sign abp.

If M is a complete finite-volume hyperbolic 3-manifold with several cusps, then
there is, in general, no natural choice of “longitudes” at the cusps, so the analog of



36 ROBERT MEYERHOFF AND WALTER D. NEUMANN

Theorem 1 must be stated in the form corresponding to equation (2.1). Suppose M
has A cusps and a basis of homology 1,, m; has been chosen at the j-th cusp for each
J- Let (p, @) =(p1, 915 - - -; Prs q) and let M(p, q) denote the result of Dehn filling
all the cusps of M to kill the class p;m; + g;1; at the j-th cusp for each j. Essentially
the same proof as in Section 1 shows:

THEOREM 2. If each p} + q} is sufficiently large then

(;—:—2 Vol + 3in)(M(p, q)

h

1
= f(u(p, q)) — 3i sign Y(p,q) — ), (:,_——7; A(;(p, @) + i(p), q,-))-

Jj=1

Here Y(p, q) is the result of pasting L(p;, q;) x I to M(p,q) x I for each j,
as in Section 1. Its signature sign Y(p, q) can be computed by Wall’s formula [W]
and depends only on Ker (H,(cusps) » H,(M)) and the elements 1,,...,1,,
pl+qmy,...,p. 1, +q,m,, of H (cusps).

On the other hand, Theorem 2 can be derived as a formal consequence of
Theorem 1. This implies that the Wall non-additivity term sign Y(p, q) can be
computed in terms of the function I( p, g¢). Such formulae are known, see [M] and
[M-S].

An amusing consequence of our result, probably of little use, is that if one
knows n(M(p,q)) for all sufficiently large p;+gq;, then one can compute
Ker (H,(cusps) - H,(M)). We leave the proof of this to the reader.

3. Density of eta

Let M be a hyperbolic 3-manifold with one cusp.

THEOREM 3. n(M(p, q)) takes on a dense set of values in R as p* + q>— .
Proof. By (1.7) and our first formula for I(p, q),

_ _1 oon_ 4
n(M(p, q)) = G(p, q) pdef(p,q,l) 3’ (3.1

where G(p, q) approaches a constant value G as p? + g2 — oo.
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That I(p,q) is an integer (see also [H-Z], Section 5.1, formula (19))
implies

1 q q’ 1
—def(p;q,1)+—=— (mod3Z (3.2)
Jdef (pig. )+ 5L =T (mod}z)

where g’ satisfies 0 < ¢’/p <1 and gq’ = —1 (mod |p|). It follows that by judicious
choice of ¢ and p we can achieve a dense set of values for (1/p) def (p; g, 1) + ¢q/
(3p) in the circle R/(GZ), and in fact we can do this while assuming that p2 + g2 is
large (compare with Section 5.3 of [Mh]). This easily proves density for n in
R/(3Z), but to get density in R we need a little more work.

By the reciprocity formula for Dedekind sums (see [H—Z], Section 5.1, Theo-
rem 1) we have the formula (equivalent to the last recursion formula for I(p, q) in
the Introduction)

1 q 1 P
—def(p;q, 1)+ —=——def(g;p, 1)) ————+ 1. (3.3)
p P3¢ 3p q ¢ 3¢9 3pg
Of course, we also have that
def(p;q,1) =def(p;q +1p, 1) for all t € Z. (34)

To prove the Theorem, for given ¢ > 0 and real b we must find (p,, g,) with
p3+ g3 large so that [n(M(po, 90)) — b)| <e.

Since G(p,q)—»G as p*+q*—> o0, we can find NeZ, such that for
p*+q*>>N we have |G — G(p, q)| <¢€/6 and 1/|[pg| <€/6 and M(p, q) is hyper-
bolic.

Choose positive integers p and q with p? + g% > N so that

4 0 Y
3p+(b G) 3+5,

with |8| < ¢/4 and u € Z. Note that, by (3.2),

4

q qg 1 v
= 4 —def(p;q,1) —=



38 ROBERT MEYERHOFF AND WALTER D. NEUMANN

with v € Z. Let t = u + v. Then by (3.1) and the lat two formulae,

u-+v
3

t 1
n(M(p, q) +=—b|=|G(p, g) —= def (p; g, 1) — - + _b
3 4 3p

" u
=|G(p, q)—g-l; +§—-bl

g  u
<|G(p,q9 —G|+|G——+=—
|G(p, 9) |+| 3513 b'
€ €
<6+'5’<—2‘.
Suppose ¢ is negative. Then by (3.1) and (3.4)

|n(M (p,9) + % —n(M(p, q — tp))|

1 q t
=(G(p,q) —= def(p; g, 1) =L 4+ 2

1 q-—1p
—| G(p,q —tp) ——def(p;q —1p, 1) — )
( q p piq—1p 3

=|G(p, q9) — G(p. g — tp| < |G(p, 9) — G| +|G — G(p, g — tp)|

<S4+ic
6

o
(SR

Thus

In(M(p, g — tp)) —b| <,

so in this case we take p,=p and ¢, =q — tp.
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If ¢+ is positive then p?+ (g —tp)> might not be greater than N, so we
must modify the above argument. Formulae (3.1) and (3.3) are used at the first
step.

‘(n(M(p, D) +5—nM(p +14, q))‘

t

1 p 1 )
=(G(p,q) +-def(g;p, ) + —+— — 1 +=
'( (p,9) p (g;p, 1) 37 3 3

1 p+1iq 1
—|G(p+1tq,q) +-def(g;p +1g,1) + + —1)'
(p 71 q “PT A 3g  3(p+1tg)q

1 1
= G( ’ ) - G( + 1q, ) + - l
‘ b4 P 3pg  3(p +1t9)q

1 1
<|G(p,q9) —G|+|G—G(p+1g,9)|+|7=— ‘
|G(p, 9) | +] (p+14,9)| |3pq 3(p+tq)q‘

S<4ot
676

- YK
e

Thus

In(M(p + tq, q)) — b| <¢,

so in this case we take p, = p + tq and g, = ¢, completing the proof.

4. Examples
The figure-eight knot complement. The standard ideal triangulation of the

figure-eight knot complement m (see e.g., [T] and [NZ]) has two ideal 3-simplices
with parameters z and w satisfying the consistency relation

logz +log(1—2z)+logw+log(l—w)=0. (4.1)

(Here log will always denote the standard branch of natural log on the complex
plane split along ( — o0, 0].) The usual analytic Dehn surgery parameter is

u=logw +log (1 —2). (4.2)
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However, z and w (constrained by equation (4.1)) are analytic functions of u, so
we shall write the analytic part of the equation of Theorem 1 as a function of z

and w. The real Dehn surgery parameter (p, q) is determined from z and w by the
equation

pu+qu=2mni with v = —logz*}1—2z)% (4.3)

(The sign of v is opposite to that used in [T], [NZ], and [Y], to conform with
standard orientation conventions.) Let R(z) denote the Roger’s dilogarithm

1
R(2) =~2-10g zlog(1—2z)+Li,(2)

1. . z
Elogz log (1 —2) ——J‘ log (1 —1tdlogt. (4.4)
0

The ingredients in Theorem 1 in this case are
fw = (R@) + Row) =% (4.5)
AN YI=% ) :
1(p, ) =L 2mi + 2o (46)
’ P p’ .

so the formula of Theorem 1 becomes

1
- Vol (M(p, ¢)) + 3in(M(p, q))

2 ’

1 /4 qg . 1 3 2 .
—nzi(R(2)+R(W) 6) pl+2nplog2(1 z)*—il(p, q)

1 2 1 ;
= (R(z) +R(w) "‘%) + 575108271 = 27— (3def (34, 1) +). (47)

Indeed, the imaginary part of this equation is Theorem 3 of Yoshida [Y] (with sign
of g reversed — see above), while the real part reduces easily to the usual simplicial
formula for volume (see [T], [NZ], [N]),. Note that in this case Yoshida shows that
the formula is valid for all coprime p and ¢ (other than the ones that do not give
a hyperbolic structure: (p, +1) with |p| <4, and (1, 0)).
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The complement of the Whitehead link. In [T] Thurston describes how to obtain
the complement W of the Whitehead link (Fig. 5) by identifying faces of an ideal
octahedron in pairs. The identification matches face 4 with 4°, B with B’, etc., in
Fig. 6, so as to respect the labelling of the edges.

Figure 5§

Figure 6
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By subdividing the octahedron (Fig. 7), we obtain an ideal triangulation of W
with four simplices.

Figure 7

By cutting off the ends of W one obtains a compact manifold-with-boundary W
which can be obtained by identifying truncated tetrahedra as in Fig. 8. The two
boundary tori of W are triangulated as in Fig. 9, where the vertices are labelled
according to the edges of the triangulation of W. Careful inspection shows that
the standard topological meridian and longitude of each component of the White-
head link are as indicated in Fig. 10, where we have also included labels for the
complex parameters of the four tetrahedra.
We can read off from Fig. 10 the consistency relations at the four edges:

logw” +1logz' +log x" +logw’ +log x" + log y’ + log w” + log x” = 2ni,
log w + log x + log y + log z = 2ni,
log z” +log w” + logy” + log z” + log y” + log x’ + log z” + log y’ = 2ni,

logw +log x + log z + log y = 2mi.
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g d

V
h
a
4
f c
Figure 8
Figure 9

Since x’ = (x — 1)/x and x” = 1/(1 — x) and similarly for w, y, z, these simplify to
the two relations:

log w + log x + log y + log z = 2ni, (4.8)
log (1 —w) +log(l—x)—1log(l—y)—log(l—2)=0.
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Figure 10

Similarly, we can read off the parameters u,, v,, u,, v,, which describe the
holonomy of the meridians and longitudes m,, 1,, m,, 1, at the two cusps:
u, =logy” +logz’' +logz" +logw’ — mi,
v,=logy” +logy +log x +log x” + log w” + log z" + log x"
+logx +logy +logy +logz” +logw’ — 4ni,
u,=logz"+logy +logy” +logw’ — mi,
v,=logz" +1logz +log x +log x” +log w” + log y” + log x”
+logx +logz +logz +logy” +logw’ —4ni.

Expressed in terms of x, y, z, w and simplified using (4.8) this gives:

u,=log(w—1)+1logx+logy —log(y —1) — mi,

vy=2logx +2logy — 2mi,

_ . (4.9)
uy=log(w—1)+logx +logz—log(z—1) — i,

v,=2logx +2logz —2nmi.

(u,, u,) can be taken as the analytic Dehn surgery parameter, in which case w,
x, y, z, constrained by equations (4.8), become analytic functions of this parameter,
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but we shall give the formula of Theorem 1 in terms of the tetrahedral parameters
w, x, y, and z. The real Dehn surgery parameters (p,,q;) and (p,,q,) are
determined by the equations

plul+qlvl=2ni, (4.10)
Pruy + qr,0, = 2ni.

The term —3i sign Y(p, q) of Theorem 2 vanishes in this case (this happens for
any link complement whose components have pairwise linking numbers zero if one
chooses the m, and 1, to be topological meridans and longitudes for the link
components). The analytic function f of Theorem 2 in this case is

f(u)=L2_(R(w)+R(x)+R(——L—)+R( : )>+2i, (4.11)
v 1—y 11—z

and the complex lengths of geodesics are given by

‘ 1
Ay @) =L omi+—v, j=1,2. (4.12)
Pj Dj

Indeed, up to an imaginary constant (4.11) follows from [N] (it suffices to check
that the real part of the formula of Theorem 2 gives volume correctly). The value
2i of the imaginary constant was determined numerically by noting that
W(l,1;p,q) is (p,q)-Dehn surgery on the figure-eight knot complement, so
nw(l,1;p,q) = —qW(1,1,p, —g). Using known values of the Chern—Simons
invariant, e.g., for the Whitehead link complement itself or for the figure-eight knot
complement, it was easy to see that the constant had to be a multiple of i/2, so the
numerical experiments did not have to be accurate.

In fact the formula has been programmed to over 50 digit accuracy. In most
cases the eta invariant appears to be irrational (however, it is not proved irrational
in any example — the same holds for volume). In many cases one expects rational
eta invariant for geometric reasons (some cover has an orientation reversing
self-homeomorphism), and the computation bears this out. As a sample computa-
tion: for N = W(3, —2: 6, —1) the formula gives

Vol (N) + 3in*n(N)
~ 1.01494160640965362502120255427452028594168930753029979 + 0i.

Note that its volume is that of a regular ideal tetrahedron — half that of the
figure-eight knot complement; N is presumably arithmetic over the field Q(\/:g).
Jeff Weeks has informed us that this manifolds admits an orientation-reversing
diffeomorphism, explaining the computed vanishing of eta.
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