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A toroidal compactification of the Fermi surface for the discrète
Schrôdinger operator

D. BÂTTIG

1. Introduction

Z © a2Z © a3Z be a lattice in IR3 and q a real valued square-integrable
function on the torus U\r. For each &lt;J (£,, Ç29 £3) e S1 x S1 x S1 the self-adjoint
boundary value problem, called the independent électron approximation of solid
state physics (see [1]),

has discrète spectrum, denoted by

The (physical) Fermi surface for energy k is the set

/W;i(?)î= {teSlxSlxSl\ En(O X for some » * 1}.

In [3] one defines the complex Fermi surface by

F;(q) := {({,, {2&gt; £3) g C* x C* x C* | there exists a non-trivial function \j/ in

Ffoc(IR3) solving the above boundary value problem}.

Clearly F;(q) contains ail points that can be reached by analytic continuation of
^Phys,;.(#)- Using regularized déterminants (see [7]) it can be shown, that Fx{q) is a

complex analytic hypersurface in C* x C* x C*. In [3] it was shown that for
potentials q{x) of the form px{xx) +p2(x2) +^3(^3) or P\(xx)+p2{x2&gt;x3) the
surface F;(q) is irreducible, i.e. in this case FphyM(#), if it is a nonempty set of
dimension two, détermines Fk{q) uniquely.
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In this paper we consider a discrète version and show that for each (complex)
potential q, the Fermi surface is always irreducible.

So let V : Z3 -+ C an arbitrary function periodic with respect to the lattice F.
Furthermore let A be the discrète Laplace operator defined by

(A\l/)(m, n,p) ${m -l,n,p) + ^f{m + 1, «,/?) + i//(m, n-l,p)
+ {//(m,n + l,p) + \l/(m,n9p- 1) + \l/(m,n,p + 1)

for functions \j/ : Z3 -&gt; C.

We are interested in the spectral problem

with boundary conditions

{//(m + ûi w, /&gt;) - &amp; *K™&gt; «, /&gt;), &lt;A(™, n -h tf2, p) {2^(m, «, /?),

{//(m, n,p + a3) &lt;^3^(w5 w» /&gt;)

for functions i^:Z3-^C and (A, £lf Ç2, &lt;J3) g C x C* x C* x C*, and define as

above the complex Fermi surface FX(V) for this discrète problem (see [4]). Furthermore

we assume that al9 a2 and a3 are relatively prime, positive natural numbers

greater to two.
Due to the boundary conditions the spectral problem can be written in terms of

the values i//(m, n,p) with 1 £ m £ al9 1 £ n £ a2, l £ p £ a3. The Fermi surface

FX(V) is then given by the vanishing of the déterminant of a certain axa2a3x
a1a2a3-matrix, or concrète, it is the zero-set of a polynomial P in the variables
£i&gt; £f\ t&gt;iAïx and £3, Çïl, where the coefficients dépend on A:

_|- (_ l)fll«2(«3- 0^fll«2 -f — l)ala2(fl3- 0^-aia2-|- •

lower order terms, i.e. an algebraic surface in C* x C* x C*.
For potentials V C constant, FX{V) can be calculated explicitly, using

discrète Fourier analysis. Namely let \iQi be the multiplicative group of at -th root of
unity. Then for p (p,, p29 p3) g /*ai x ^fl2 x fia3 consider the set

uz29zs) g C* x C* x C* | X ((p^)-1 + (pfz,)) X -
Now /iai x \iai x /ifl3 acts on Fk{V C) by p • z (PiZl5 p2z2, p3z3). Then one has

^A(F C)liiax x /ifl2 x pa3, and so FA(K) is irreducible.
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It is well known, that the one-dimensional Bloch variety B(W), defined by (see

[4], [8])

B{W) {(£, X) 6 C* x C | there exists a non-trivial function ^ : Z-+C solving

- Mm - 1) + iKm + 1)]

where W : Z-*C has period a, is a hyperelliptic curve of arithmetic genus a — 1,

which can be compactified by adding two smooth points.
In this paper we construct a compactification Fx(V)comp of FX(V)9 such that the

generic points of FA(V)comp are smooth points of FÀ(V)comp.

THEOREM 1. Fx(V)comp — FX{V) is the union of twenty algebraic curves due to

twenty one-dimensional spectral problems:
(i) eight rational curves Qx,.. Q% with (ax — \)(a2 — l)(a3 —1)4-

EI#7 (at — \){aj — 1) ordinary double points. Thèse curves do not dépend on
the potential V.

(ii) Twelve hyperelliptic curves HtJ : Hl2, H34, H56, Hn (resp. Hi4iH5%,
H23, H67; resp. Hl5, H26, H37, H4S) of arithmetic genus ax - 1 {resp. a2 - 1,

resp. a3— 1), each isomorphic to the one-dimensional Bloch variety B(W),
where W is the averaged potential

resp.
1 a\ a3 a2I V(i,k,)\

(iii) Fx(V)comp is smooth on ail smooth points of Fx(V)comp — FX(V).
(iv) Ail the above curves intersect transversally, only on smooth points of

Fk{V)comp and the intersection pattern is given by the following picture:
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As an immédiate conséquence we get

THEOREM 2. The Fermi surface FÀ(V) is irreducible.

Naively one could try to compactify FÀ(V) by embedding C* x C* x C* in
P1 x P1 x P1 and closing the Fermi surface in there. This doesn&apos;t work, since the

new points added to Fk{V) are highly singular. Instead we construct (as in [2] and

[8]) a compact three-dimensional torus embedding Xz, such that

Fx(V)cC* xC*xC*aXI.

A torus embedding XE is a scheme such that algebraic torus C*xC*xC* can be

embedded in Xz in a way, that the action of the algebraic torus can be extended

to the whole torus embedding Xz. Information and facts about torus embeddings

can be found in [5], [6] and [9]. The closure of FX(V) in this space Xz (after
resolution of certain singular points of Xz) is the compactified Fermi surface

Furthermore we not only construct the torus embedding Xz, but also an
infinite-dimensional vector bundle Y, the vectorspace F of ail functions ^ : Z -? C as

fiber, on Xz. On C* x C* x C* x F c F we hâve four commutating operators:

- A + V - X1, S(&quot;i &apos;°&apos;0) - £, 1, 5(0&apos;û2&apos;°) - £21, S(0&apos;°&apos;a3&gt; - £31,

for (&lt;*!, £2, £3) g C* x C* x C* (hère S(*^y) dénotes the shift operator in direction
(a, p, y)). The Fermi surface is then the support of the bundle

{(£i&gt; £2* £35 *A) e C* x C* x C* x F | the above four operators hâve a

common kernel $}.

By extending this bundle to the whole Xz the rational and hyperelliptic curves
mentioned in Theorem 1 will appear in a straightforward way.

Let us close by mentioning, that a similar construction was worked out in détail
for the two-dimensional Bloch variety in [2].

2. The construction of the toroidal octahedron

In this chapter we construct the three-dimensional torus embedding, in which
lie. Consider the eight vectors 1, 2,..., 8 in R3 given by
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1 := (ax, a2, a3), 2-.= (-aua2, a3),

3:=(-a1? -a2,a3\ 4&gt;=(au -a2, -a3\
5-=(aua2, ~a3), 6&apos;-=(-aua2, -a3),

7»=(—a,, -a2, -a3), 8:=(a,, -a2, -a3).

We introduce the following notation:

a1 means the strongly convex polyhedral cône generated by the vector i.

So for example &lt;rl2 {t{au a2, a3) +s(— au a2,a3) \s, t e U^o}9 where IR^0 de-

notes the non-negative real numbers.
We define the fan I to be the collection of the six three-dimensional cônes o-1256,

a2367, cr3478, ex1458, (T5678 and a1234 and ail it&apos;s faces. There are two-dimensional faces

as g12 or a15, one-dimensional faces as a1, a2 and one zero-dimensional face
(t° {0}. We call the torus embedding Xz associated to this fan toroidal octahe-
dron. It is compact (see [5]). Explicitly Xz is given by a coordinate covering
C*a)*er- The (JQ&apos;s are (quasi)-affine varieties defined by

where C[..., ^ï1^2^?,... ] is the algebra generated by the polynomials Éï1^?^?
with (rl9 r29r3) in Z3 such that &lt;(rl5 r2, r3), a} ^ 0.

If aa and ap are two cônes in I, then the charts Xff&lt;x and XaP are patched
together along XaanXap. So, for example Xan and ^13 are glued together on
Xa 12 n A^ 13 A^ 1.

Clearly we hâve Xao Spec CK,, É f &apos;, £2» ÉF&apos;, £3, ES&quot;&apos;] C* x C* x C*. So we
embed the Fermi surface FX{V) by the inclusions

F^V) c C* x C* x C* Xa0 c Zr

in the toroidal octahedron.
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In the following we analyze XE.
Since the action of the algebraic torus C* x C* x C* on itself can be extended

to Xl9 the toroidal octahedron is a disjoint union of C* x C* x C* orbits. There is

now a one-to-one correspondence between thèse orbits in XE and the cônes a e E;
so we can label an orbit by a cône a : Off. Furthermore we can organize this

labeling such that (see [5]):

Off c Xl9 dimc Oa 3 — dimR (j,

and Off C*xC*xC*- Xb(0), where A6(0) is the point

lim Xa{i) Jim Spec C[..., €?«?«?,... ]U»g*,-,*„

where è (bu b2, b3) € 1? is a point in the interior of a.
It is easy to draw a schematic picture of the toroidal octahedron Xx (compare

with [2] and [7]):

Qr.rt

The &quot;interior&quot; of this
octahedron represents Q &apos;

&lt;0)o C* x C* x C*. \

Using the symmetry of the fan I we can restrict to the orbits Off0, Offi, Oai2 and
Off 1234. Let y0, z0 be integers with a2y0 + a3z0 1.

LEMMA 1. (i) ^0 Spec CK,, {f1, £2, ^\^, ^l] C* x C* x C*.
(ii) Xal SpecCKf1 «?{?)-, €,«?{!»)-&apos;, {{•{?, €2-&quot;3€?, i!3^-&quot;2], »•«•

Xai is isomorphic to C* x C* x C* with local coordinates

6C* Pi»=«K?6C and w,.= {2-*{?6C*.
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Furthermore Qax {(uu h&apos;1)gC*x C*, vx 0}.
(iii) Xffn SpecC[^r1^^^3O)%^l(^O^o)%^o^O^-a3^2^«3&lt;.3-a2] ie XaX2

isomorphic to Spec C[jc, y, w, z, z-1]/&lt;x7 w2ai}. Offi2= {z g C*, x =j&gt; h&gt; =0},
//rt 0/ Q*12 is singular of type A2ax _ i.

Proof
(i) Trivial.
(ii) Clearly the three vectors (1, — axy0, —axz0), (0,j0, z0), (0, — a3, a2) form a

Z-basis of Z3. So each (rl9 r2, r3) g Z3 can be written as

(ri,r29r3) =r,(l, -a^o, -a^o) + s(0,y0, z0) + t(0, -a3,a2) (1)

with 5, t g Z. Now &lt;(rj, r2, r3), a1) ^ 0 exactly if axrx + a2r2 4- a3r3 ^ 0. But 5 is

equal to axrx + a2r2 + a3r3 by (1). Therefore Xa\ is given as stated in the lemma.

Computing O^i is straightforward.
(iii) We hâve two Z-bases of Z3; first the three vectors (1, — axy0, —axz0)9

(Q,yo,zo), (0,-a39a2) and second the vectors (1, axyo, axz0), (0,yo,zo),
(0, — a3, a2). So for each (rl9 r2, r3) g Z3 we can write

rur2,r3)=rx(l, -axy0, -axz0)+s(0, y0, z0) + t(0, -a3,a2), (2)

r\,r2, r3) rr(l, axy09 axz0) +s(0,yo, zo) + F(0, -a3, a2), (3)

with s, t, s, Te Z. Since &lt;(r1? r2, r3), &lt;r12&gt; ^ 0 if and only if axrx + a2r2 + a3r3 ^ 0 and
0 it follows with (2) and (3) that

axrx + a2r2 + a3r3 s 2axrx -h 1 ^ 0,

J —2fljr, -f ^ ^ 0.

Let first be rx ^ 0, then both inequalities are fulfilled exactly if s ^ 0. Secondly let

rx ^ 0, then the necessary and sufficient condition is s ^ 0. This proves (iii) (again
Offi2 is easy to calculate).

We do not need the chart ^1234 since we hâve:

LEMMA 2. The closure FÀ(V) ofthe Fermi surface FX(V) in Xz doesrCt intersect
the zero-dimensional orbits.

Proof It is enough to show that Oai2MnFx(V) 0. Since dimc Oan3A 0 the

(singular) point 0^1234 has coordinates (in ^1234) ^ï1^?^33==0 for ail
(rx,r29 r3) g Z3 with &lt;(rx,r2, r3), a1234&gt; £ 0.



8 D BÂTTIG

Clearly £3 e C is a coordinate of Xa 1234, so the polynomial P, defining FÀ(V), has

a pol in £3 of order axa2. On the other hand since P ZlyA: aljk(À}^\^J2^ w^h (due
to the boundary conditions defining the Fermi surface) ax |i| -f a2\j\ + a3|fcj ^ «1a2a3

it follows that each summand Ç&apos;i&amp;Ç**01&quot;2^ 1 of the polynomial {f^P is a

coordinate of A&quot;ffi234.

Therefore the closure of FÀ(V) in Xz lying in the chart ^1234 is given by the

équation

But ^lfl2P|O|r.234 (-l)fllû2(a3-l)^0.
Motivated from this lemma we are only are interested in the closure Fk{V) of

Fk(V) in

XE — {union of the zero-dimensional orbits}.

3. The compactification

We consider the compactified Fermi surface as the solution of a spectral
problem on a vectorbundle Y of infinité rank on X%.

We define by F the infinite-dimensional vector space of ail functions \j/ : Z3 -? C.

The vectorbundle n : Y -*X% will be trivial over each affine part Xa of X%

On Y\Xff0 Xao x F C* x C* x C* x F we hâve four commutating operators

T-U.= -A + F-Al, 5(a&quot;°&apos;0)-^l, S(o&apos;a2&apos;°&gt;-£21,

DEFINITION. The (uncompactified) Fermi surface FÀ(V) is the support of the
bundle

{(i\9 &lt;^2» ^3» Jo) e X&lt;t&lt;&gt; x ^ | the above four operators hâve a common kernel ^0}.

By symmetry and lemma 2 (since we want the closure Fk(V) of FX(V) in J^f to
coïncide with the support of bundle on X%) it is enough to extend the vectorbundle
Y\xaQ on Xa\ and Xan. We give the transition functions, using lemma 1:

(i) X91 Spec C[ux, uî *, i?j, wx, wf!], i.e. the coordinates are {uuvuwx) e
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C* x C x C*. We now identify (Çl9 Ç2, £3, &lt;Ao) eX^oxF with (ul9vl9 wu ^,) e

Xa\ x F on Xa\C\Xao Xao (or equivalently on vx # 0) by

(this is the coordinate change on X^ from JfffO to A^i) and

^0(m, w,/&gt;) v? + n+pil/{(m, n,p).

(ii) On Jfai2 we hâve coordinates (x, j, w, z) € C3 x C* with xy w2aK Identify
({,, ^2, {3, iAo) e J^o x F with (x, y, w, z) € Xan x F on X^nnX^ (i.e. onw/0) by

and

Dénote by /^(F) the closure of FÀ(V) in

PROPOSITION 1. (FX(V) - FA(K)) njrff 12 is ^ union oftwo rational curves Qx

and Q2 with the following properties;
(i) Qt (i 1, 2) fau (fll - \){a2 - l)(a3 - 1) + £J#y (a, - lXa, - 1) ordinary dou¬

ble points. Qt does not dépend on the potential V.

(ii) Q\(^Q2 is a point (=:/&gt;i2)- Pn ^es on ^e singular orbit ®an.
(iii) FX{V) is smooth on ail smooth points of QiKjQ2 — {Pu}-

Remark. Since Pl2 is singular, we will résolve this point. The strict transformation

of FÀ(V) on the exceptional divisor is then one of the hyperelliptic curves
mentioned in theorem 1 of the introduction.

PROPOSITION 2. Qx is given on the chart Xa\ as the support of the bundle

(hi,i&gt;i, Wi,^i)e Y with

with vx 0.

We first prove Proposition 2, then Proposition 1 will follow easily.
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Proof ofproposition 2. The spectral problem on Xaox F

can be written alternatively as

since the shift operators are invertible and the vectors (— al9 0,0), (0, a2yQy

a3zQ), (0, — a3a2, a3a2) are also a basis for the lattice F.

By the construction of the vectorbundle Y thèse four équations transform to

on Zffi xF.
But A^i — A^o {v{ 0} and on the open set I^ul^o Xff0 by the continuity

of the transition function the spectral problems on Y\XaQ and Y \XaX coincide.
Therefore (FÀ(V) —FÀ(V))nXai is the support of the following spectral problem

which leads immediately to proposition 2.

Proof of proposition 1. (i) Clearly gj does not dépend on V. To calculate the

genus of this curve, we consider a covering of Qx with axa2a3 sheets, as in [4].
Let fiai (resp. jtffl2a3) be the multiplicative group of axth (resp. a2a3th) root of

unity and (zffl&gt;, zi~fl2fl3) i= («j, w,). Then the functions ep(z)(m, -n,ri)
(pïzi)m(P2^2)n with p =(Pi,p2) e/*ai xi&quot;fl2û3 fortn a ^as*s °f ^e vectorspace of
functions

+ : Z2-*C, (m, ~n, n)-+\l/(m, -n, n) with S(-^&apos;°&apos;°Vi «i^i,
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The operator S^-^o^o) + 5&lt;o.«2*&gt;- i.«3*o) + s^^o^o- o diagonalizes in this ba-

sis and considering the covering

c :C* x C*-&gt;C* x C*,(z1?z2)-&gt;(zr^,z2-^3) =(Ml? Wl)

âfi^-&apos;OSi) isgiven by

U {{zuz2) e C* x C* | {pxzx)~x + (p2z2)^o- i + (p2z2)^o 0}.
p

This means (^ is rational. Let Cp {(pxzx)~l + (p^)&quot;^0&quot;i + (p2z2)a2y» 0}. Per-

form the changes of coordinates

zx y~a^x ~a32°, z2 yx

Cp transforms to

-hpa22y°y 0.

Since a2 and a3 are relatively prime we hâve /xa2fl3 lia2®PLa3 i-e- each P2 g jua2a3 can
be written as p2pïx with p2 e \iai, p3 e \iar Therefore Cp C^^^^ is given by

For p e /ifll x jufl2 x /xa3 the action on Qx is given by p • (x, y) (prlp2x, Pïxfay\
and we hâve p • Cp&gt; Cpp&gt;. Now by Bézout&apos;s Theorem C1 and Cp intersect

transverse in C* x C* in exactly one point, given by

if p is not of the form (1, 1, p3), (1, p2, 1), (pl5 1,1). In this second case we hâve

C, nCp n(C* x C*) 0. To prove (i) it remains to show that

(x(p), y(p)) ± (x(p% y{p&apos;)) for p * p&apos;,

because then g, has exactly

a^^ - 1 - {ax - 1) - (a2 - 1) - (a3 - 1)

ordinary double points.
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Observe that argx(p) =a angle in p^1 of the triangle px~l ,p2&quot;1 pf1.

mI9 AWj 6 {0,..., #, — 1}. One shows

a3 ax\

so if x(p) jc(p&apos;) then a3(w, ±m&apos;,) =ax(m3 ±m3). Since «j and a3 are relatively
prime it follows that

(ml±m[,m3±m3) e {(0,0), ±{aua3)}.

In the first case we get either Pi pi, p3 P3 or pj =p/1~1, p3 p/3~1. If
P\ ~ Pu f&gt;3 ~ Pi using x(p)=x(p&apos;) we hâve p2 P2- If on the other hand

Pi P&apos;\~XiPi P3~! by assuming argy(p) argy{p&apos;) it follows p2 p2~*, i.e. x(p)
is real, so a € {0, ri) and therefore px p3 1 which contradicts j(p) e C*. The

cases mt ±m&apos;, ±at are treaten similarly.
(ii) The spectral problem on Xa n x F is given in the coordinates (x, y, w, z) of

By the construction of the vectorbundle the last three équations transform to

The first équation gives (on x &gt;&gt; w 0), using

i.e. ^°&apos;-1&apos;1V12=-^2.

It follows S(°&apos;-«2fl3,«2«3tyl2 (_ 1)*2«^12? which leads to z (-l)°2a3. This
means i^(^) ^0^12 one point (Pi2) with coordinates x ^ w 0,

(iii) On Xffi,FÀ(V) is given as the zéro set of polynomial
P(uuur\wl,wr\vl)^Q(ul9ur\wlJj^)^vlR(ul9ur\wl,wr\vl)9 where
the zéro set of Q describes Qx. So Fk(V) is smooth on the smooth points of
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Now we résolve the singular point PX2 of type A2ai_x. Its coordinates are

x==y w Q9 z=(-l)a2fl3.

Blowing up this point in C4 ax -times, the exceptional divisor is the transverse union
of ax hyperplanes Et (i 1,..., ax), where the E, is the exceptional divisor of the
zth blowing up.

PROPOSITION 3. The blowing up of FX{V) at the point PX2 intersects only the

exceptional divisor Eai. The strict transform ofFk(V) {on Eai) is a hyperelliptic curve

of arithmetic genus ax — 1. The blowing up of FÀ(V) is smooth on ail smooth points
of this curve. Furthermore the curve is déterminée by the following one-dimensional

spectral problem

-\l/(m - 1, n,p) - {//(m + 1, n,p)

zil/(m, n, p)

where the coordinates z, xai are defined by resolving the point PX2&apos;.

w ix, x na*xai, y=vaxyav

(1 + (_ i)«2«3- iz) a2a3(- l)^oM(z~ _ A)

(hère ju 0 is the exceptional divisor Eai)
Due to the shift operators si°&apos;°2yo&apos;a3Zo) and 5(0&gt;&quot;&quot;!fl) the curve on Eai is already

determined by the values of {//(m, n, p) on the line spanned by the vector
(al90, 0). Therefore Proposition 3 and Proposition 2 prove the theorems in the
introduction.

Proof. We first calculate the strict transform of FX(V) on Eai. Blowing up PX2

ax -times, we get the coordinates
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Dénote by U the chart generated by the coordinates Qi, xai9yai,z)9 i.e.

U {(i*,xai9yai9z) eC x C* x C* x C\xaiyai 1}.

Now XffoC\ U Xffo and define the transition fonction for the vectorbundle Y by

^o(m, n, p) \xn+pty(m, n, p).

The spectral problem on Xao x F is given in the coordinates of C/ by

(1)

(2), (3)

{ - l)a2yo(z - A)iAo (4)

Using the transition fonction the équations (1), (2) and (3) transform to

and

Therefore on £ai {/4 0} we hâve

To explore (4) observe that

a2a3 - 1

1 -f — l\a2a3 - lg{0,-a2a3,a2a3) Y _ l)»(5»(0,-l,l) 4. 50+0(0,-1,1))
i 0

On the other hand we hâve form (1)
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Thus

-1,1 + 2),/, i c(O,-i

% n — i, /? 4-1 + 0

So on /i 0 (4) transforms to

,n—i9p 4-1 H- 0
o

Since Si0--lAty -^ we get

-oziia^-1-0^ ~ a2a3S«Mty - Xa2a3S^0^ +^ V(m, n-i,p
i 0

a2a3( - l)^o(f _ A)S(0^-!ty.

But 5(°&apos;o&apos;-1) Js(°&apos;-fl2&gt;&apos;o»-û3^)5&apos;-(o,-a2&gt;&apos;o^2&gt;&apos;o) and We hâve

F(w, n-i,p + W #.
1 0

Now a2 and a3 are relatively prime, therefore we get the desired spectral problem as

in proposition 3.

Let now nl be the ith blowing up of the point Pl2 and Et the exceptional divisor.
So we hâve

w =A1, x fi%9 y n%9 (1 + - l)fl2fl3~ ^)

Let C7, {Ou, xnynz)eC4\ xtyt ^2ai &quot;

2|} be the new chart. On Ut n Xa0 Xao
define the transition function i/fo(fn9n9p) fin+pil/t(m9 n,p). The spectral problem
on Xao x Fis given by the équations (1), (3), (4) and

(-a,,,)5(, X,2.V0.30ty — ^ ^
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The last two équations give on the exceptional divisor Et {ju 0}

*, Ji 0 for i # ax, i.e.

- Pl2) nEt (£,)singular

Dénote by Hl2 the above hyperelliptic curve. Now FÀ(V)comp is smooth on the

smooth points of Hl2 — (Hl2r^Q\(^ Qi) as in proposition 2. Observe that Qx c Xan
lies in the plane x 0, so by the blowing-ups g, intersects Hl2 transversally at

xai 0 (and similarly g2 intersects Hl2 at xai y~* oo), i.e. on (see the introduction)

a smooth point of Hl2. This proves proposition 3.
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