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A toroidal compactification of the Fermi surface for the discrete
Schrodinger operator

D. BATTIG

1. Introduction

Let®°yF a,Z @ a,Z ® ayZ be a lattice in R* and ¢ a real valued square-integrable
function on the torus R3\I'. For each & = (¢, &,, &) € S x S! x S! the self-adjoint
boundary value problem, called the independent electron approximation of solid
state physics (see [1]),

(=4 + gy =4y,

Yx +7) =E1EREPY(x) Vyel,

has discrete spectrum, denoted by

E\(&) SEO)<SEQ)<--

The (physical) Fermi surface for energy 4 is the set
Foysi(@):={¢ € S'x S' x S'| E,(&) = 4 for some n > 1}.
In [3] one defines the complex Fermi surface by

Fi(q):={(&,, &, &3) € C* x C* x C* | there exists a non-trivial function ¥ in

H{,.(R%) solving the above boundary value problem}.

Clearly F,(g) contains all points that can be reached by analytic continuation of
Fohys.2(q)- Using regularized determinants (see [7]) it can be shown, that F;(g) is a
complex analytic hypersurface in C* x C* x C*. In [3] it was shown that for
potentials g(x) of the form p,(x,) +pa(x;) +p3(x3) or py(x,) + pa(x;, x3) the
surface F,(q) is irreducible, i.e. in this case F,(g), if it is a nonempty set of
dimension two, determines F;(q) uniquely.



2 D. BATTIG

In this paper we consider a discrete version and show that for each (complex)
potential ¢, the Fermi surface is always irreducible.

So let ¥V :Z®>—>C an arbitrary function periodic with respect to the lattice I
Furthermore let 4 be the discrete Laplace operator defined by

(A‘//)(ms nap) = W(m - 19 n’P) + ‘/’(m + 19 n’p) + ‘/’(m’ n-— lap)
+ym,n+1,p) +y(m,n,p—1) +y(m,n,p +1)

for functions y : 7> > C.
We are interested in the spectral problem

(=4+VN =4
with boundary conditions

lﬁ(m +a,n, p) = él‘l’(m, n, p)a ‘//(ma n + a,, P) = éZ‘p(m’ n, p)a
ll/(m, n,p+ a;) = 63'//(’"9 n, p)

for functions  : Z*—>C and (4,¢,,¢&,,&)eC x C* x C* x C*, and define as
above the complex Fermi surface F,(¥V) for this discrete problem (see [4]). Further-
more we assume that a,, a, and a; are relatively prime, positive natural numbers
greater to two.

Due to the boundary conditions the spectral problem can be written in terms of
the values y(m,n,p) with 1<m <a,,1<n<a,, 1 <p <a;. The Fermi surface
F,(V) is then given by the vanishing of the determinant of a certain a,a,a; x
a,a,a;-matrix, or concrete, it is the zero-set of a polynomial P in the variables
ELETY, &, E5 and &5, E51, where the coefficients depend on A:

P = (.._ 1)“2“3(01 - l)éfllzas + ( — 1)0203("1 - 1)6 923
+ ( _— ])0103(02— l)églas . ( —_ l)alas(az— 1)62—0103
+ ( - 1)“102(43— 1)&‘;1“2 e ( _ 1)“1“2(03— 1)63—“1“2 4+

lower order terms, i.e. an algebraic surface in C* x C* x C*.

For potentials V' = C = constant, F;(V) can be calculated explicitly, using
discrete Fourier analysis. Namely let u, be the multiplicative group of a;-th root of
unity. Then for p = (py, p2, p3) € pa, X Ka, X Y., consider the set

3
Fv=C)= U {(zls 2y,23) € C* x C* x C* l _Zl (pizi) "+ (pizi)) =4 — C}-

Now u,, X p,, X p,, acts on F. (W =C) by p-z=(p,z;, p223, p323). Then one has
F,(V) =F,(V =C)[p,, X fa, X Ha,, and so Fy(V) is irreducible.
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It is well known, that the one-dimensional Bloch variety B(W), defined by (see
(4], [8])

B(W) = {(¢, 1) € C* x C | there exists a non-trivial function y : Z— C solving
—[(m = 1) + Y(m + D] + W(m(m) = Ap(m), Y(m + a) = y(m)},

where W : Z — C has period a, is a hyperelliptic curve of arithmetic genus a — 1,
which can be compactified by adding two smooth points.

In this paper we construct a compactification F;(V).omp Of F;(¥), such that the
generic points of F;(V).omp are smooth points of F;(V )comp-

THEOREM 1. F;(V)eomp — F1(V) is the union of twenty algebraic curves due to

twenty one-dimensional spectral problems:
(1) eight rational curves Q,,...,Qs with (a;— 1)a,— 1)a;—1)+
%, . ;(a, — 1)(a; — 1) ordinary double points. These curves do not depend on

the potential V.

(i) Twelve hyperelliptic curves H,; . H,y, Hy,, Hss, H;3 (resp. H,, Hsg,
H,,, Hy,; resp. H,s, Hy, Hy;, H,g) of arithmetic genus a, — 1 (resp. a, — 1,
resp. a; — 1), each isomorphic to the one-dimensional Bloch variety B(W),

where W is the averaged potential

> 3w

a3 ;=1 k=1
(resp Z Z V(i,-, k); resp 2 ZZ Vi, k,-)).
=1k=1 i=1lk=1

(iii) F;(V)comp is smooth on all smooth points of F;(V)comp — Fi(V).
(iv) All the above curves intersect transversally, only on smooth points of
F;(V)comp and the intersection pattern is given by the following picture:

w()=

08 JH;’
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As an immediate consequence we get

THEOREM 2. The Fermi surface F,(V) is irreducible.

Naively one could try to compactify F;(}) by embedding C* x C* x C* in
P! x P! x P! and closing the Fermi surface in there. This doesn’t work, since the
new points added to F,(V') are highly singular. Instead we construct (as in [2] and
[8]) a compact three-dimensional torus embedding X, such that

F (V) cC*xC*xC*c X;.

A torus embedding X is a scheme such that algebraic torus C* x C* x C* can be
embedded in X; in a way, that the action of the algebraic torus can be extended
to the whole torus embedding X . Information and facts about torus embeddings
can be found in [5], [6] and [9]. The closure of F,(¥) in this space X; (after
resolution of certain singular points of X;) is the compactified Fermi surface
Fy(V)eomp-

Furthermore we not only construct the torus embedding X, but also an
infinite-dimensional vector bundle Y, the vectorspace F of all functions y : Z— C as
fiber, on X;. On C* x C* x C* x F = Y we have four commutating operators:

—A4+ V=21, S@0O_¢g1,  §Oe0_gq 5§00 _¢

for (§,,&,, &) € C* x C* x C* (here S@# denotes the shift operator in direction
(o, B, 7)). The Fermi surface is then the support of the bundle

{(¢,, &, &3, ) € C* x C* x C* x F| the above four operators have a

common kernel ¥ }.
By extending this bundle to the whole X, the rational and hyperelliptic curves
mentioned in Theorem 1 will appear in a straightforward way.

Let us close by mentioning, that a similar construction was worked out in detail
for the two-dimensional Bloch variety in [2].

2. The construction of the toroidal octahedron

In this chapter we construct the three-dimensional torus embedding, in which
F;(V) will lie. Consider the eight vectors 1,2,...,8 in R* given by
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1:=(a,, a,, a5), 2:=(—ay,a,, a3),
3:=(_a19 —da,, a3)9 4:=(a1’ —a,, —a3)a
5:=(a,, a,, —as), 6:=(—a,, a,, —as),

Ti=(—a,, —a,, —a,), 8:=(a,, —a,, —as).

We introduce the following notation:
o' means the strongly convex polyhedral cone generated by the vector i.

So for example ¢'2={t(a, a5, a;) +s(—ay, a5, a;) | s, t € Ry}, where R, de-
notes the non-negative real numbers.

We define the fan ¥ to be the collection of the six three-dimensional cones a'%°S,
2367 53478 1458 55678 and ¢'%3* and all it’s faces. There are two-dimensional faces
as ¢! or o', one-dimensional faces as o', 6> and one zero-dimensional face
0% ={0}. We call the torus embedding X; associated to this fan toroidal octahe-
dron. It is compact (see [5]). Explicitly X; is given by a coordinate covering
(X,)sc - The (X,)’s are (quasi)-affine varieties defined by

o

X, =8pecC[...,L1¢%¢%, .. ],

where C[..., ENERER, ... ] is the algebra generated by the polynomials &1 ER2E%
with (r,, r,, r;) in Z3 such that {(r,, r,,r;), 0> 20.

If 6% and ¢# are two cones in X, then the charts X,. and X,; are patched
together along X,.n X,s. So, for example X,:.. and X,; are glued together on
X,120X013= gl

Clearly we have X,o = Spec C[{,, é71, &5, &5, &5, E51] =C* x C* x C*. So we
embed the Fermi surface F,(V) by the inclusions

F,(V)cC*xC*xC*=X,0oc Xy

in the toroidal octahedron.
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In the following we analyze X.

Since the action of the algebraic torus C* x C* x C* on itself can be extended
to X5, the toroidal octahedron is a disjoint union of C* x C* x C* orbits. There is
now a one-to-one correspondence between these orbits in X; and the cones g € 2;
so we can label an orbit by a cone ¢ : O,. Furthermore we can organize this
labeling such that (see [5]):

@a CX:, dimc @6 =3—d1mR g,
and O, = C* x C* x C* - 1,(0), where 4,(0) is the point
}1“(1) Xo(t) = }“% Spec C[ cv ey é?é?é?a se . ”setting & =tbis

where b = (b,, b,, b;) € Z’ is a point in the interior of o.
It is easy to draw a schematic picture of the toroidal octahedron X; (compare
with [2] and [7]):

The ““interior” of this

octahedron represents
0,0=C* x C* x C*.

0-4
- 00.423‘1'

Using the symmetry of the fan £ we can restrict to the orbits Q,0, 0,1, 0,1 and
O, 1234. Let y,, z, be integers with a,y, + a;z, = 1.

LEMMA 1. (l) Xa°= Spec C[ély 61_19 623 C{ls 53’ é;‘] =C* x C* x C*.
(i) X, =Spec C[{7'(£508)™, &, (E50850) ~ ™, E308Y, £50E%, £52852), e
X, is isomorphic to C* x C* x C* with local coordinates

wp=¢r(EEP)m e Y, p=¢ptPeC and wi=¢; ¢ e C.
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Furthermore O, = {(u;, w;) € C* x C*, v, =0}.

(iii) X,12 = Spec C[&1 ' (£40850)™, &1(E30E5)™, £308%, £ 4%, E585 %] e, X,z
isomorphic to Spec C[x, y,w, z, z7']/{xy =w?*). Q,u={zeC* x=y=w=0},
i.e. each point of O°'2 is singular of type Ay, _,.

Proof

(i) Trivial.

(i1) Clearly the three vectors (1, —a,y,, —a,2), (0, ¥o, 20), (0, —a;, a,) form a

Z-basis of Z3. So each (r,, r,, r;) € Z* can be written as

(ri,r2,r3) =n (1, —a,y, —a,zy) + (0, yo, zo) + (0, —as, a,) N

with s, 1 € Z. Now {(ry,r;,1r3),6'> 20 exactly if a,r,+ a,r,+asr; 2 0. But s is
equal to a,r, + a,r, + a;ry by (1). Therefore X, is given as stated in the lemma.
Computing O, is straightforward.

(ili) We have two Z-bases of Z3; first the three vectors (1, —a,yy, —a,2),
(0, ¥9,29), (0, —as,a,) and second the vectors (1,a,y,,a125), (0, o, 20),
(0, —as, a,). So for each (r, r,, r;) € Z> we can write

(r1, r2, r3) =i (1, —ayye, —a,2o) +5(0, yo, 2o) + t(0, —as, ay), (2)
(r1, 72, r3) = (1, a1yo, a1z0) + 5(0, yo, 20) + ;(09 —as, a,), (3)

with s, 1, §, t € Z. Since {(r,, 15, 3), ¢'2) = 0 if and only if a,7; + a,r, + asr; = 0 and
—a,r;+ a,r, + ayr; 2 0 it follows with (2) and (3) that

ar, +a2r2+a3r3=s =2a1r1 +§ 20,

alrl +azr2+a3r3 =S~= -—2a1r1 +S = 0.
Let first be r; = 0, then both inequalities are fulfilled exactly if § = 0. Secondly let
r, <0, then the necessary and sufficient condition is s = 0. This proves (iii) (again

0,12 is easy to calculate).

We do not need the chart X, .34 since we have:

LEMMA 2. The closure F,(V') of the Fermi surface F,(V') in X5 doesn’t intersect
the zero-dimensional orbits.

Proof. 1t is enough to show that O, 2. F;(V) = . Since dimg O, 123 = 0 the
(singular) point O3« has coordinates (in X,123) EPEREP=0 for all
(rl, rp, r3) € Z3 WIth <(rla ry, r3), 01234> P2 0
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Clearly &, € C is a coordinate of X 1234, so the polynomial P, defining F,(V), has
a pol in &; of order a,a,. On the other hand since P = X, a,; (A)¢} E5¢E5 with (due
to the boundary conditions defining the Fermi surface) a, |i| + a,|j| + a;|k| < a,a,a,
it follows that each summand &iELE5+@192£1 of the polynomial ¢(412P is a
coordinate of X, 234.

Therefore the closure of F;(V) in Xy lying in the chart X .4 is given by the
equation

Ep@p =0.
But £512Plo, 133 = (— 1)1~ D 2 0.

Motivated from this lemma we are only are interested in the closure F,(V) of
FA(V) in

X¥ = X; — {union of the zero-dimensional orbits}.

3. The compactification

We consider the compactified Fermi surface as the solution of a spectral
problem on a vectorbundle Y of infinite rank on X¥.

We define by F the infinite-dimensional vector space of all functions y : 7> - C.
The vectorbundle n:Y — X¥ will be trivial over each affine part X, of X%
(0 ed).

On Y| x,0=Xz0 X F=C* x C* x C* x F we have four commutating operators

T—Ali=—A4+V -1, S@0O_¢1  §Ou0_g 1 §O0a)_g
for (él’ 62’ 63) € Xa'o'

DEFINITION. The (uncompactified) Fermi surface F, (V) is the support of the
bundle

{(¢1, &5, &3, ¥0) € X,0 x F | the above four operators have a common kernel y,}.

By symmetry and lemma 2 (since we want the closure F,(V) of F,;(V) in X% to
coincide with the support of bundle on X'%) it is enough to extend the vectorbundle
Y|x,, on X,: and X,... We give the transition functions, using lemma 1:

(i) X,1=Spec Clu,,u; ', v,,w;, wi'], i.e. the coordinates are (u,,v,, w,) €
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C* x C x C*. We now identify (&, &,, &, ¥,) € X0 X F with (uy, v, w, ¥,) €
X,1 X Fon X,1nX,o= X,o (or equivalently on v, # 0) by

w = ¢ (€ L), v, =& L%, wy=¢; BEP
(this is the coordinate change on Xy from X,, to X,:) and
l/’O(m’ n, p) = U’In+n+pwl(m9 n, p)

(i) On X, .. we have coordinates (x, y, w, z) € C*> x C* with xy = w??1. Identify
(&,,&,,&,¥0) € X,0x Fwith (x, y,w, z) € X,12x Fon X120 X,0 (i.e. on w # 0) by

x =& (EpEP)M,  y=&(ENEP)T, w=EREP, z=¢(790P,
and

!/’O(ma n, p) = wm+n+px——m/a1!lll2(m’ n, p)'

Denote by F,(V) the closure of F,(V) in X¥%.

PROPOSITION 1. (F,(V) — F,(V)) n X, 12 is the union of two rational curves Q,
and Q, with the following properties,
(i) Q;(i=1,2) has (a, — 1)(a, — 1)(a; — 1) + X, (a; — 1)(a; — 1) ordinary dou-
ble points. Q, does not depend on the potential V.
(i) @10 Q, is a point (=:Py,). Py, lies on the singular orbit O, ..
(iii) F,(V) is smooth on all smooth points of Q, v Q,— {P,,}.

Remark. Since P,, is singular, we will resolve this point. The strict transforma-
tion of F,(V) on the exceptional divisor is then one of the hyperelliptic curves
mentioned in theorem 1 of the introduction.

PROPOSITION 2. Q, is given on the chart X, as the support of the bundle
(1,01, wi, ¥,) € Y with

(S(——l,0,0) + S(O,——I,O) 4 S(O,O,—l))'l,l — 0,

S('“"O’O)tlll =y, ‘/’1 , S(O,—azaa,azas)ll,l =w, ‘/’1 , S(O,azyo’aszo)d,l — ‘l’l
With v, = O.

We first prove Proposition 2, then Proposition 1 will follow easily.



10 D. BATTIG
Proof of proposition 2. The spectral problem on X,o X F

T = Ao, S@0MYyy = &y, SOa20y o = &,,, SO0an, = &3y,

can be written alternatively as

TS ©-a250. aﬂo)./,o = Aémé O‘I/Oa S(_al’o'o)lllo — él—lll’o’
SOavoaszolfy, = EEPY,, SO maaay, = EaERyY,,
since the shift operators are invertible and the vectors (—a,,0,0), (0, a,y,,

a,z,), (0, —asa,, aza,) are also a basis for the lattice I'.
By the construction of the vectorbundle Y these four equations transform to

___(S(- l,az}’o,aszo)‘/,l + D%S(l,az)’oﬂzzo)llll + S©.az2y0— 1’4320),1,1

+ U%s(o,a2y0+ l,a3zo)‘ll1 + S(O,azyo,a3zo— l)'/’l ' U%S(O’“Z.VO"‘BZO -+ 1)!//1)

+ v, VS(Oyazyo,aszo)‘l,l =0, A S(O,azyoﬂﬂo)d,l ,

S(—al»o,o)wl = ul‘l’l , S(O,az)'o,aﬂo)l/,l = %, S(U»—azas,azas)wl = w1|/,1 ,

on X, x F.

But X, — X,0 = {v, =0} and on the open set X, U X, 0= X,0 by the continuity
of the transition function the spectral problems on Y |y , and Y |y , coincide.

Therefore (F (V) —F,(V))nX,. is the support of the following spectral problem

(S(— Layyo.a3zg) + S ©.a2y0 — Lazzo) + S ©.a2y0.a320 — 1)),!,1 =0,

S(—an,O,O)llll =y, ./,1 , ,S'(O,azyo,aszo)./,l = d’l: S(O,—azas,azﬂs)d,l =w, ‘/’ls

which leads immediately to proposition 2.

Proof of proposition 1. (i) Clearly Q, does not depend on V. To calculate the
genus of this curve, we consider a covering of Q, with a,a,a; sheets, as in [4].

Let p,, (resp. p,,,,) be the multiplicative group of a,th (resp. a,a,th) root of
unity and (z“,z;“%):=(u;,w,). Then the functions e,(z)(m, —n,n)=

(P121)™(p222)" with p = (py, p;) € Ha, X Ys,,, form a basis of the vectorspace of
functions

.l/ : Zz"’ C’ (ms —n, n) —)'I,(ms —n, n) with S(nal,o,O)!l’l = ul‘/’l’

SO-@amaaN, =y y,.
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The operator S¢~19270:a3%) 4 §O.a2y0 — Lasz) 4 §(0.azv0.4320 - 1) djggonalizes in this ba-
sis and considering the covering

c:C*xXC*->C* xC*, (2y,25) > (27, 23 2%) = (uy, wy)

0, =c(Q,) is given by
U {(z1,22) e C* x C* [ (py2) 7' + (p222) 0~ ' + (p22,) 2% = O}.
p

This means Q, is rational. Let C, = {(p,z,) ™' + (p22,)2*° ' + (p,2,)*>** = 0}. Per-
form the changes of coordinates

Zl =y_a2J’0x‘a3ZO, 22 =yx_l
C, transforms to

pilxy +pyBx +psPoy =0.

Since a, and a, are relatively prime we have p, ,, = u,, ® U, i.€. each p, € y, ,, can
be written as p,5; ' with p, € p,,, 5 € 4,,. Therefore C, = C,, ;, 5, is given by

pirlxy+py'x+p5ly=0.
FOT p € Hy, X Hay X Ha, the action on @, is given by p - (x, ) = (o7 ' f2x, p 1" B3),

and we have p-C,=C,,. Now by Bézout’s Theorem C, and C, intersect
transverse in C* x C* in exactly one point, given by

~_1 ~_ 1 ~—1 ~—1
P3 — P2 P —P3

x(p)=——F"7, MVWp)=-—"T"TFT"7F77
Pll—l)z1 Pll—Psl

if p is not of the form (1, 1, g5), (1, g5, 1), (p,, 1, 1). In this second case we have
CiNnC,N(C* x C*) = F. To prove (i) it remains to show that

(x(p), y(p)) # (x(p"), y(p'))  for p #p’,
because then Q, has exactly
ama;—1—(@—1)—(a—1)—(@a—1)

ordinary double points.
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Observe that arg x(p) = a = angle in ;! of the triangle p; ', 55", 55 !. Put

~—1

pl——l == e21tim1/a1, pi_l — e21tim‘l/a1’ pil= eZnim3/a3 and ﬁ;«l —_ e21tim'3/a3 with
m;,m; €{0,...,a;—1}. One shows

m; m

a; a

=1

bl

so if x(p) = x(p’) then a;(m, + m}) = a,(m; + m3). Since a, and a, are relatively
prime it follows that

(ml i m,l’ ms -'t mé) € {(O’ O)a i(ala a3)}'

In the first case we get either p,=pi, ps=p3 or py=pi~ L, p3=p5""'. If
p1=pi,P;= P35 using x(p) =x(p") we have p,=p5. If on the other hand
pr=p1"", Py = P37~ by assuming arg y(p) = arg y(p’) it follows p, = p5~ ', i.e. x(p)
is real, so a € {0, ) and therefore p, = p; =1 which contradicts y(p) e C*. The
cases m; + m; = +a, are treaten similarly.

(ii) The spectral problem on X, . x F is given in the coordinates (x, y, w, z) of

X,,lz by

TS(O"’Z”O’“3Z")I//0 = Awy,, S(=a100y, = xw =y,

S(O,az)’o,aszo)ll, 0= w‘/’o: S(O,—azas,azas)ll,o = le,o.
By the construction of the vectorbundle the last three equations transform to
S0, = xw =, S(o’azyo’a3z‘{)'/’12, SO b, = 2,
The first equation gives (on x =y = w = 0), using S©9220-23200 , = ,,,
(SO-10 4 5Oy, =0,

ie. SOy, = —yy,.

It follows S©—%2a3.@3)y, = (—1)%2%y,,, which leads to z = (—1)%%. This
means F,(V)nO,.=one point (P,,) with coordinates x=y=w =0,
z =(—1)%%,

(i) On X, F,(V) is given as the zero set of polynomial
P(ul’ ul—.lawl’ Wfl, vl) = Q(ul, ul_ls wl_a_wi_l_) + le(ul’ u;ls Wi, wl—l’ vl)s WhCrC
the zero set of Q describes Q,. So F;(V) is smooth on the smooth points of
Q1= (X,1n{v, =0}).
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Now we resolve the singular point Py, of type 4,,, ;. Its coordinates are
x=y=w=0, z =(—1)%2%,

Blowing up this point in C* g,-times, the exceptional divisor is the transverse union
of a, hyperplanes E; (i =1, ..., a,), where the E, is the exceptional divisor of the
ith blowing up.

PROPOSITION 3. The blowing up of F,(V) at the point P,, intersects only the
exceptional divisor E, . The strict transform of F,(V) (on E, ) is a hyperelliptic curve
of arithmetic genus a, — 1. The blowing up of F,(V) is smooth on all smooth points
of this curve. Furthermore the curve is determined by the following one-dimensional
spectral problem

S(—-al,o,o)‘ll _— xa , S(O,azyo,a:;Zo)lp — lp, S(O,-—l,l)lﬁ oo _w,
1

—'//(m - l’nﬁp) —lll(m + l’n’p)

1 ay aj
+ (z > Vim, i,j))wm, , p)

Qa3 \;j=1j=1

= ZY(m, n, p)

where the coordinates Z, x,, are defined by resolving the point P,,:

w=p,  x=p%%,, y=ply,,

(1+ (=125 12) = gya;(— 1)*ou(Z — 1)
(here p =0 is the exceptional divisor E, ,

Due to the shift operators S©®2704%) and §© 'Y the curve on E, is already
determined by the values of y(m,n,p) on the line spanned by the vector

(a;, 0,0). Therefore Proposition 3 and Proposition 2 prove the theorems in the
introduction.

Proof. We first calculate the strict transform of F;(V) on E, . Blowing up P,
a,-times, we get the coordinates
w=H,  X=p%%,, y=py,,

(14 (=1)2%"12) = aya,(— 1)*?°u(Z — 1)
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Denote by U the chart generated by the coordinates (u, x,,, y,,, 2), i.e.
U={(u,Xs,,a,»2) €CxC*xC*x C|x,,y,, =1}

Now X,on U = X,o and define the transition function for the vectorbundle Y by
Yo(m, n, p) = p"*"Y(m, n, p).

The spectral problem on X, o x F is given in the coordinates of U by

TSOa220.93700 = piwy, (1)
S0, = x, Yo, §Oarroaszonfy, = i, (2),(3)
p {1+ (D)2 SO amamly, = g a,( = 1) (2 — Do (4

Using the transition function the equations (1), (2) and (3) transform to
_ S(O,azyo— 1,a3zo)|/, — S§©.azy0,a320 — 1)‘/,
4 ”{ _S(—‘l,az,\’o,aszo)‘ll — S(l,azyo,aazo)l/, + VS(O,az)’o’“szo)ll,}
_ uZ{S(O’az}'O‘f 1,0320)l// + S©.a2y0.a370 + 1),!,} = M!ﬁ
and
S=a ,0,0)‘/, =X, V¥, S(o-az)’()saszo),/, =y.
Therefore on E, = {u =0} we have
S(O,~1,1)4I = “‘/” S(~a|,0,0)¢ — xa, , S(O’a2y°’a3z°)\ll = ‘l’

To explore (4) observe that

azaz — 1
14 (=1)25- 150 -aan.ae) - Zi (=1)¥(SO=1D 4 §G+1X0,~1.D)
=0

1

On the other hand we have form (1)

(Si(O,»l,l) + S(i+ 10, — l’l))‘/’o - _S(-l,—i,i+ l)wo — S(l,—i,i+ l)"l’0

— S(O,-—i,i+ Z)l/l0 . S(O,—-H— 1,i+ 1)¢0 + (V(m, n— l,p - i 3 1) _ i)s(0,~i,i+ l)‘llo
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Thus

azay — 1

7 —‘1{1 +(_ 1)0203 = 1S(0,~02a3,a203)}|‘[/0 = U -1 Z ( . l)i{—/,t"+p+ I(S(—l,—i,i+ l)w
i=0

+ S(l,—i,i+ l)vl) _ Nn +p+2(S(0,—i,i+ 2),/, + S(O,—-i+ 1,i + l)ll,)

+y”+”+‘(V(m, n—ip+ 1+ i) —A)S(O’—i’i+l)lll}

So on u =0 (4) transforms to

azasz — 1

Z (__ l)i{__(S(—l,—i,i+ D __ S(l,—i,i+ 1) + (V(m, n— i,p + 1 + l)
i=0
— DSOHOY ) = aya3( 1)z — DY

Since SO~y = —y we get

azaz— 1

—a,a; ST — 4,0, ST — Aa,a, SO + Y Vimn —i,p+i)Y
/=0

4

= ayay(— 1)z — J)S©%- Dy
But S(O,O,—l) — S(O,—azJ’o,—aazo)S—-(0,—02)’0’02)’0) and we have

1 azas — 1

— SO0y — §A00Y, 4 —— N V(mon—i,p+iW =2Y.
a,a, =0

i

Now a, and a, are relatively prime, therefore we get the desired spectral problem as
in proposition 3.

Let now =; be the ith blowing up of the point P,, and E, the exceptional divisor.
So we have

w=p, x=p%, y=py, (1+(=1)22""2)=aa,(—1)"uE - A).

Let U, = {(u4, x;, y;, %) € C*| x,y, = p**~ %} be the new chart. On U,nX,o= X,o0
define the transition function Y,(m, n, p) = u"*?y,(m, n, p). The spectral problem
on X,o x F is given by the equations (1), (3), (4) and

Y

S(—4a1,0,0)g(a; ~ i)(0,az)'o,a3zo)¢0 = x;Y

$(21.0.0) g(a; —~ i)(O,az.Vo,a:;Zo)l/,o = yi‘llo
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The last two equations give on the exceptional divisor E; = {u = 0}
x;=y;=0 fori#a,ie.

n“(Fz(V) - Plz) ('\E,' = (El )singular

Denote by H,, the above hyperelliptic curve. Now F;(¥V).omp is smooth on the
smooth points of H,, — (H,,nQ, " Q,) as in proposition 2. Observe that Q, < X,
lies in the plane x =0, so by the blowing-ups Q, intersects H,, transversally at
x,, = 0 (and similarly Q, intersects H,, at x,, =y, ]‘ = o0), i.e. on (see the introduc-
tion) a smooth point of H,,. This proves proposition 3.
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