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On the semicontinuity of curvatures
ERwWIN LUTWAK*

Dedicated to Prof. Dr. Kurt Leichtweiff on the occasion of his Sixty-fifth Birthday

In this article, a convex hypersurface is the boundary of a convex body
(compact, convex subset with non-empty interior) of Euclidean n-space, R”, Let €”
denote the space of convex hypersurfaces, endowed with the topology induced by
the Hausdorff metric (see, for example, Busemann [1] or Leichtweil3 [4]). Let €%
denote the subset of €” consisting of the regular C*-hypersurfaces with everywhere
positive principal curvatures. For Q € €3, and x € Q, let K(Q, x) denote the Gauss
curvature of Q at the point x, and let

K*(Q) = maé( K(Q,x) and K (Q) = mig K(Q, x).

A special case of the main result of this article is that,
K* :€4%—-(0,0) is lower semicontinuous,

while
K~ :4%-(0,00) is upper semicontinuous.

Let r,(x), ..., r,_(x) denote the principal radii of curvature at the point x € Q.
The normalized j-th elementary symmetric function of the principal radii of
curvature at x will be denoted by s;(x); i.e.,

—1
(n J )Sj(x) = il Z ril(x) vu "i,-(x)-

-<1an—-l
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For Q € €7, define

CH Q) = mag s;(x) and C;(Q) = mig 5;(x).

Thus, 1/C_,(Q) = K~(Q), and 1/C_,(Q) = K+(Q). It will be shown that the

n—1

functionals C;" and C;” may be extended to all of €” in such a manner that
C/r :4"—-[0, 0] is lower semicontinuous,
and

C;7 :4"—[0, 0] is upper semicontinuous.
More general results will be established along the way. One of these results will
establish a conjecture of Wm. J. Firey (see [2, p. 257]) regarding the upper
semicontinuity of a certain functional for convex hypersurfaces.
Some preliminary notation and results will be helpful. Let C*(S" ') denote the
set of positive continuous functions on the unit sphere $S”"~!. For fe C*(S" "),
and « € R, such that a # 0, define

1/
Mh=d~ |  fadsw
K t]

n Jsn—1

where the integration is with respect to spherical Lebesgue measure, S, on S" !,
and «, = S(S" ') denotes the surface area of $”~'. From the Hélder inequality it
follows that,

|fle, <|fl.,  whenever a; < a,. (1)

For fe C*(S"~ "), and pu a Borel measure on S” ', let

Siwd=2 | re) dut).

Kn sn—1

For Q e ¢%and u € "~ !, write (Q, u) € Q for the point of Q at which the outer
unit normal is u. Let r,(Q, v), . . ., r,_(Q, u) denote the principal radii of curvature
at (Q, u), and let 5,(Q, u) denote the normalized j-th elementary symmetric function
of the principal radii of curvature at (Q, u). It will be convenient to view s;(Q, -) as
a function on S"~ 1.
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Suppose Q@ €¥5. Forj=1,...,n—1, and a € R, such that « # 0, define

‘/’7(Q) = |Sj(Q’ ‘)'a'

When o =1 the superscript will be suppressed. The y,(Q) are just the classical
integrals of mean curvature of Q. For « = — o0, 0, or oo, define

¥;(Q) = lim y7(Q).

r—o

Thus,

VP (Q = max s5(Q1)=Cj(Q),
while

V=@ = min 5(0,1)=Cj(Q)

For arbitrary convex hypersurfaces there are well-known extensions of the
(indefinite integrals of the) elementary symmetric functions of the principal radii of
curvature. Specifically, for each Q € ¥”, and each j, there exists a Borel measure
S;(Q, ) on §"~ 1, such that if Q € €3, then S;(Q, -) is absolutely continuous with
respect to spherical Lebesgue measure, and

ds;(@,) _ _
T = Sj(Qs )’ (2)

where the derivative is a Radon—Nikodym derivative.
As will be seen, the functional ¥}, on €3, can be extended to a functional ¥?,
defined on all of €”. For a = 1, define

70 = #/Q ~ | 450,

n

Thus, x, ¥, _,(Q) is the surface area of Q, and the ¥;(Q) are essentially the classical
Quermassintegrals Q (see, for example, Leichtweil3 [4]).
For a <1, and a # 0, define ¥} (Q) by

Y3 (Q) =inf {<g, S;(Q, )>/Igluya-n: g €CH(S" N}, (3a)
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and for a > 1, define ¥?7(Q) by
P (Q) = sup {<g, S;(Q, *))/|gluyx—1y: g€ CH(S" N} (3b)
For Q € ¢”, and all j,
YH(Q) < ¥Y7(Q), whenever «; < a,. (4)

To see this, note that if &, < 1 < «,, then (4) follows from taking g to be a constant
function in (3a) and (3b). If «; <a, <1, or 1 <a, <a,, then (4) follows directly
from (1) and definitions (3a) and (3b).

For a = — 0, or oo, define ¥} on €” by:

¥7(Q) = lim ¥;(0),
and define

¥)(Q) = lim ¥;(0).

Thus (4) shows that

¥ (@)= sup ¥7(0), (5a)

Pi(Q) = inf_ ¥j(Q), (5b)
and

¥)(Q) = inf ¥;(0) (5¢)

PROPOSITION. For j=1,...,n—1,and —o0 <a < 0,
Y2(Q) =¢7(Q), whenever Q € €. (6)

To see this first note that from (2) it follows that for Q € €3 and g e C*(S" 1),

(& 5,0, )y =— j 2()s,(Q, u) dS(). )
sn—1

Kn
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The case a =1 of (6) follows by taking g = 1 in (7). Suppose that —o0 <a < 1, and
a #0. From (7), and the Holder inequality [3, p. 140], it follows that

l//}x (Q) = Isj(Q’ ')la s <g’ Sj(Qa ’))/lgla/(a— 1)»

with equality if and only if the function g/s;(Q,-)*~' is a constant function on
S”~1. This proves (6) when —c0 <a <1, and « #0. The case 1 <a < o0 of (6) is
established in exactly the same way. The cases of (6) where a = — 00, 0, or co now
follow since in these cases both ¥{(Q) and y7(Q) were defined as limits of
Y7(Q) = y;(Q), for real r #0.

THEOREM. For all j=1,... ,n—1, the functional

Vi :.:6"—[0, ], is upper semicontinuous when —oo <o <1,
while the fuctional

Y7 :€"—[0, ], is lower semicontinuous when 1 < o < co.

Proof. From the weak continuity of the measures S; (see for example, Schneider
[8]), it follows that for fixed g € C*(S"~ '), the function I',: ¥” — (0, o), defined
for Q e €” by

Fg(Q) = <g’ Sj(Q’ ')>/|g|a/(a— 1)

is continuous. For 1 <a < oo, the functional ¥ is lower semicontinuous, on €,
since it is just the supremum of the continuous (on €”) functionals I',. The case
a = oo now follows since by (5a), the functional ¥ * is just a supremum (over all
r > 1) of the lower semicontinuous functionals ¥;. The cases where — o0 <a <1
follow in exactly the same manner.

For a =n/(n + 1), the upper semicontinuity of y%_,: €% — (0, c0) was estab-
lished in [7]. The case of the Theorem where n =3, a = —1, and j=n — 1, was
conjectured by Wm. J. Firey at the 1974 Oberwolfach meeting on convex bodies
(see [2, p. 257)). The case where « =n/(n + 1) and j =n — 1 is due to Leichtweil [5]
(see also Leichtweif3 [6]).
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