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On the semicontinuity of curvatures

Erwin Lutwak*

Dedicated to Prof. Dr. Kurt Leichtweifi on the occasion of his Sixty-fifth Birthday

In this article, a convex hypersurface is the boundary of a convex body
(compact, convex subset with non-empty interior) of Euclidean «-space, R&quot;, Let &lt;&amp;&quot;

dénote the space of convex hypersurfaces, endowed with the topology induced by
the Hausdorff metric (see, for example, Busemann [1] or LeichtweiB [4]). Let #2
dénote the subset of c€n consisting of the regular C2-hypersurfaces with everywhere
positive principal curvatures. For ge^» an^ x € Q, let K(Q, x) dénote the Gauss

curvature of Q at the point x, and let

K+(Q) max K{Q, x) and K~(Q) min K(Q, x).
xeQ xeQ

A spécial case of the main resuit of this article is that,

K+ : ^2&quot;~*(0, oo) is lower semicontinuous,

while

K~ : ^2~*(0, °°) is upper semicontinuous.

Let rx (x),..., rn _, (x) dénote the principal radii of curvature at the point xeQ.
The normalized y&apos;-th elementary symmetric function of the principal radii of
curvature at x will be denoted by Sj(x); i.e.,
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For Qe^, define

C + (g) max $ (x) and C7(g) min j?. (je).
xeQ xeQ

Thus, l/C+_!(0=A:-(0, and l/C^g) K+(Q). It will be shown that the
functionals C/ and C~ may be extended to ail of (€n in such a manner that

Cj+ : #&quot;-?[0, oo] is lower semicontinuous,

and

C7~ : #w-»[0, oo] is upper semicontinuous.

More gênerai resuits will be established along the way. One of thèse results will
establish a conjecture of Wm. J. Firey (see [2, p. 257]) regarding the upper
semicontinuity of a certain functional for convex hypersurfaces.

Some preliminary notation and results will be helpful. Let C+(Sn~l) dénote the

set of positive continuous functions on the unit sphère S&quot;1&quot;1. For fe C+(Sn~l),
and a e R, such that a # 0, define

f 1 f
1/1.= - 11/a

f(u)&apos;dS(u)\

where the intégration is with respect to spherical Lebesgue measure, S, on Sn~\
and Kn — S(Sn~x) dénotes the surface area of Sn~ l. From the Hôlder inequality it
follows that,

|/|ai&lt;|/|a2 wheneverai^a2. (1)

For/e C+(Sn~l)9 and ju a Borel measure on Sn~\ let

- f /(«)
Kn J5&quot;-1

For Q g^2 and u e Sn~l, write (2, u) e Q for the point of g at which the outer
unit normal is u. Let rx{Q, m), rM_ j(g, u) dénote the principal radii of curvature
at (g, m), and let Sj(Q9 u) dénote the normalized y-th elementary symmetric fonction
of the principal radii of curvature at (Q, u). It will be convenient to view Sj (g, • as

a fonction on Sn~l.
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Suppose Q e ^I- F°r 7 U •. • » w — 1, and a e R, such that a ^ 0, define

When a 1 the superscript will be suppressed. The \j/j(Q) are just the classical

intégrais of mean curvature of Q. For a — oo, 0, or oo, define

Thus,

while

max

min
U€ Sn~ *

For arbitrary convex hypersurfaces there are well-known extensions of the

(indéfinite intégrais of the) elementary symmetric functions of the principal radii of
curvature. Specifically, for each Q e (€n, and each j\ there exists a Borel measure

Sj(Q9 - on Sn~ \ such that if Q e ^l » then Sj(Q,) is absolutely continuous with
respect to spherical Lebesgue measure, and

where the derivative is a Radon-Nikodym derivative.
As will be seen, the functional ^J, on ^^ can be extended to a functional

defined on ail of €€n. For a 1, define

^(0=- f dSj(Q9u).

Thus, Kn Wn _ (G) is the surface area of Q, and the Wj (Q) are essentially the classical

Quermassintegrals Q (see, for example, LeichtweiB [4]).
For a &lt; 1, and a #0, define ¥7(ô) by

«-i):geC+(5w-1)}, (3a)
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and for a &gt; 1, define ¥f(Q) by

^(fi) =sup «g, Sj(Q9-)&gt;l\sU-xy g e C+OS&quot;-1)}. (3b)

For Q e &lt;€n9 and ail j9

*7!(G) ^ ¥72(G)&gt; whenever a! &lt; a2. (4)

To see this, note that if a! &lt;&gt; 1 ^ a2, then (4) follows from taking g to be a constant
function in (3a) and (3b). If a, &lt; a2 &lt; 1, or 1 &lt; olx &lt; a2, then (4) follows directly
from (1) and définitions (3a) and (3b).

For a —00, or 00, define WJ on (én by:

r -*&lt;x

and define

yy°(G)= lim y;(0.

Thus (4) shows that

ÎP7°°(0= sup ^;(0, (5a)
1 &lt; r &lt; 00

y/w(G)= inf y; (G). (5b)
— x&gt; &lt; r &lt; 0

and

J
0&lt;r&lt;1

^

PROPOSITION. For; 1,. n - 1, aMrf -oo &lt;; a &lt;: oo,

*FJ(Q) i/tJiQ), whenever Q&amp;&lt;€\. (6)

To see this first note that from (2) it follows that for Qe&lt;€\ and g e C+(S&quot;~&apos;)&gt;

&lt;S, 5,(2, • )&gt;
J- [ giu)Sj{Q, u) dSiu). (7)
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The case a 1 of (6) follows by taking g 1 in (7). Suppose that — oo &lt; a &lt; 1, and
a 7*0. From (7), and the Hôlder inequality [3, p. 140], it follows that

with equality if and only if the function g/sJ(Qi •)a~1 is a constant function on
Sn~l. This proves (6) when - oo &lt; a &lt; 1, and a # 0. The case 1 &lt; a &lt; oo of (6) is

established in exactly the same way. The cases of (6) where a — oo, 0, or oo now
follow since in thèse cases both *Pf(Q) and ij/j(Q) were defined as limits of
y;(g)«^;(0, forrealr^O.

THEOREM. Forallj=l,... /* - 1, thefunctional

*P* : ^&quot;-?[0, oo], is upper semicontinuous when — oo ^ a ^ 1,

while the fuctional

Wj : c€n-*[0, oo], is lower semicontinuous when 1 ^ a ^ oo.

Proof. From the weak continuity of the measures S, (see for example, Schneider

[8]), it follows that for fîxed g e C+(Sn~*), the function rg: &lt;#n-+(0, oo), defined
for Q g &lt;tfn by

is continuous. For 1 &lt;a &lt; oo, the functional *Pya is lower semicontinuous, on (€n,

since it is just the supremum of the continuous (on #&quot;) functionals Tg. The case

a oo now follows since by (5a), the functional !Py°° is just a supremum (over ail

r &gt; 1) of the lower semicontinuous functionals !PJT. The cases where —oo ^ a ^ 1

follow in exactly the same manner.
For a =«/(« + 1), the upper semicontinuity of \j/n-\ • #2-*(0, °°) was established

in [7]. The case of the Theorem where n 3, a — 1, and j n — 1, was

cdhjectured by Wm. J. Firey at the 1974 Oberwolfach meeting on convex bodies

(see [2, p. 257]). The case where a n/(n + 1) andy* n — 1 is due to LeichtweiB [5]
(see also LeichtweiB [6]).
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