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On the volumes of hyperbolic 5-orthoschemes and the Trilogarithm

RUTH KELLERHALS*

Introduction

The purpose of this paper is to calculate volumes of certain five-dimensional
hyperbolic orthoschemes. Orthoschemes in a space X of constant curvature are
simplices whose vertices P,, ..., P, (n = 2) are such that

span (Py, ..., P,) L span (Py,..., P,) for1<k<n-—1. (1)

These are the most basic objects in polyhedral geometry: They generate the scissors
congruence groups Z(X) of polytopes in X (see 1.4). In addition, orthoschemes are
characterized by nice metrical properties, e.g., they have at most » non-right
dihedral angles «,, ..., a,, and all their faces and vertex figures are orthoschemes.
It is therefore natural to restrict the volume problem to orthoschemes. In doing so,
Lobachevsky found a volume formula for hyperbolic 3-orthoschemes (see 2.2),
which, for a 2-asymptotic (i.e., P,, P, are points at infinity) orthoscheme R(a) with
angles o, = /2 — a, = a3 =:a, reduces to

1
vol; (R(2)) =5 JI(@). (2)

Here, JI(a) denotes the classical Lobachevsky function related to Euler’s Diloga-
rithm Li, (z) =X, z7/r3,z € C, |z| £ 1, by

1 .
Ji(@) = 5 Im (Li; (¢*)).

Since, for even-dimensional orthoschemes, volumes are expressible in terms of those
of certain lower (odd) dimensional orthoschemes (see, e.g., [K, §14.2.2]), the next

* This work was partially supported by the Swiss National Science Foundation.
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step is to look for a volume formula for hyperbolic orthoschemes of dimension five.
In this context, Dehn [B, p. 308] raised the question whether this can still be done
by means of a function in one variable. This problem was solved affirmatively by
Bohm [B] resp. Paul Miiller [M] using different approaches; they showed that —
apart from logarithms of lower orders — the Trilogarithm Li, (z) = X2, z"/r? is
sufficient to express the volume of a compact resp. 1-asymptotic S-orthoscheme.
However, their volume formulae are very difficult to survey involving dozens of
Trilogarithms with rational arguments in trigonometrical expressions of the di-
hedral angles.

By results of Dupont and Sah (see 1.4), the hyperbolic scissors congruence
groups of dimensions =2 are isomorphic to the scissors congruence groups of
polytopes in extended hyperbolic space which, for odd dimensions, are generated by
the 2-asymptotic orthoschemes (i.e., P,, P, are points at infinity). Focussing on
2-asymptotic orthoschemes, we can derive a comparatively simple volume formula
for a certain subclass among them. Let R(x, f,7) denote a S-orthoscheme with
angles a, = a,=:a, a, = as=:f, a;=:y satisfying

cos? a + cos® f + cos?y = 1. 3)

Then, R(a, B, y) is 2-asymptotic, and its volume is given by
1 1 T
vols (R(a, B, 7)) = 2 J3(e) + JI5(B) — 5 I, 37 Y

1 T i 3
——E{H3<§+a+ﬂ)+ﬂ3<-2—-—a+[3)}+EZC(3), (4)

where JI;(w) denotes the Lobachevsky function of order three (see Section 2)
related to the Trilogarithm by

1 .
T (w) = : Re (Li; (¢**)), w€R.

The proof of formula (4) is based on Schldfli’s theorem about the volume
differential (see 3.1) and the results of Lobachevsky in dimension three (see 2.2).
Together with some dissection properties for regular cross-polytopes, equation
(4) enables us to compute, among other things, the volumes of the three Coxeter
orthoschemes (i.e., all dihedral angles are submultiples of m) of dimension five (cf.
3.2). It turns out that the corresponding reflection groups have commensurable
covolumes being rational multiples of {(3). Hence, by passing over to torsionfree
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subgroups, we obtain examples of hyperbolic cusped S-manifolds whose volumes are
rational multiples of {(3). This result gives a first glimpse into the structure of the
volume spectrum for hyperbolic 5-space forms which, by a theorem of Wang [W],
forms a discrete subset of R .

1. Orthoschemes in hyperbolic space

1.1. Let X denote either the n-dimensional euclidean space E”, the n-sphere S”
or the n-dimensional hyperbolic space H”. An n-orthoscheme in X is a simplex in X
whose vertices Py, ..., P, are labelled in such a way that

span (Py, ..., P,) Lspan (Py,..., P,) (5)

for 1 <k <n — 1. The initial and final vertices P,, P, of the orthogonal edge-path
P,P,,...,P,_,P,are called principal vertices and play a distinguished role. E.g. in
extended hyperbolic space H” = H"UdH" (see, e.g., [K. §14.1.1]), only the two
principal vertices may be points at infinity in which cases the orthoscheme is called
1- or 2-asymptotic. Moreover, an orthoscheme has at most » non-right dihedral
angles (hyperbolic orthoschemes have exactly n non-right dihedral angles «,, .. ., «,
all of them being acute, i.e., «; < 7/2, and they form a complete system of invariants).

Since orthoschemes are characterized by many orthogonality conditions, they are
most conveniently described by means of weighted graphs or schemes. First, we

observe that an n-orthoscheme R is a simplex bounded by hyperplanes H,, ..., H,
such that
H, 1 H; for 2<|i —j| <n, (6)

where H; denotes the bounding hyperplane of R opposite to P,. Every hyperplane
H,,0 <i<n, can be described by a unit normal vector e, in the ambient space
directed outwards with respect to R, say, i.e.:

H,.:e'.l::{XEH"]<x,e,->=0} with <eiaei>=1‘

Then, the scheme X(R) of R is the linear weighted graph (describing R up to
congruence) whose nodes i correspond to the hyperplanes H; = e;- of R. The weights
between adjacent nodes i — 1, i equal a;, where cos a; = —<e,; _,, €; )y, While non-
adjacent nodes, associated to orthogonal hyperplanes, are not joined:

Xy Ap

Q e ® V8 O

Z(R) :o

o .

Frequently, we shall think of orthoschemes in terms of their associated graphs.



Hyperbolic 5-orthoschemes and the Trilogarithm 651

Rank, determinant and character of definiteness of Z(R) are defined to be the
corresponding ones of the Gram matrix G(R) = ({e;,€,)x)o<ij<,- In particular,
Z(R) is said to be either elliptic, parabolic, or hyperbolic if the n-orthoscheme R is
either spherical, euclidean, or hyperbolic, which is equivalent to X(R) being either
positive definite, positive semidefinite of rank n, or of signature (n, 1) (cf. [K,
§14.1.2]). Every vertex P;,,0<i<n, of Rc X is described by an (n — 1)-dimen-
sional vertex orthoscheme r; formed by the vectors e,,0<k <n, k #i. X(r;) is
obtained from X(R) by discarding the node i and the edges emanating from it. If
P, e H” is an ordinary vertex of R, then X(r;) is elliptic. If P, e 0H" is a vertex at
infinity of R implying that i =0 or n, then X(r;) is connected and parabolic.

1.2. For the graphs of orthoschemes whose dihedral angles are commensurable
with ©, we use the standard notations: If two nodes are related by the weight
(pr/q), p, q € N coprime with 1 < p < g, then they are joined by a (g — 2)-fold line
for p =1 and ¢ =3, 4, and by a single line marked ¢/p, otherwise. From now on,
let X = H". Hyperbolic Coxeter orthoschemes ( p =1, ie., all dihedral angles are
submultiples of ) were classified by Coxeter (cf. [C1]). His list ends for n = 5 with
the three examples

° (7)

Coxeter orthoschemes are characteristic simplices for regular honeycombs. Ortho-
schemes whose dihedral angles are commensurable with 7 are related to character-
istic simplices for regular star-honeycombs (cells and vertex figures are regular
star-polytopes); in case of finite density (covering the space a finite number of
times), they were completely enumerated by Coxeter (cf. [Cl1, p. 161 ff]) and exist
only up to n =4. If one allows infinite density, the one finds among the regular
star-honeycombs all of whose cells and spherical vertex figures are regular star-poly-
topes and whose characteristic simplices are 2-asymptotic orthoschemes exactly five
examples; they are given by the schemes

5 5/2 5
l’tl el ¢} [¢] [} o o

5 52 5 5/2
Ho .o o o o o o

5/2 5 5/2
“3 e o o o o o (8)

5 5/2 5 5/2 5

5/2 5 5/2 5 5/2
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That these schemes are the only 2-asymptotic ones, is easily seen using list 14.14 in
Coxeter’s classification of regular star-honeycombs of finite densities (see [C2, §14]).

1.3. Let 2(X) denote the n-th scissors congruence group of polytopes in X (see
[Sa, §1]). Then, for n = 2, (H") is isomorphic to 9’(?) (see [DS, Theorem 2.1,
p. 162]), and, for d =3 odd, 9’(37‘) is generated by the classes of 2-asymptotic
orthoschemes (see [Sa, Remark 3.10 and p. 199]). This latter property was re-
proved by Debrunner [D, p. 125] using a certain dissection of a d-orthoscheme into
d + 1 orthoschemes (d = 2 arbitrary). This dissection process will be helpful later
(cf. 1.4, 3.2).

1.4. Consider a five-dimensional 2-asymptotic orthoscheme R = P, - - - P5 with
vertices P,, ..., Ps and with graph

31 Ay x3 x4 As

Z(R):o o o [} o o,

It is characterized by three independent dihedral angles a,, a5, a4, say, while o, as
are given by the relations (cf. 1.1)

4 % x3 X 2%] a3 x4 x5

det (o : o o o M o) =det(o o o o o) = (. (9)

An angle o, (1 <i<5) is formed by the facet orthoschemes R, ,=H, ,nR=
Po---P/,j, ++-Psand R,=H,AR=P,---P,--- P; it is attached to the apex
orthoscheme F,=R,_,nR, =P, - - P:\,Pi - -+ Ps, and, by the orthogonality con-
ditions (5), can be seen as planar or spatial angle (cf. Figure 1).

Moreover, the following angular relation will be of use later.

LEMMA. Let

2 % asy x4 As

Z(R):o o o o o o

denote the graph of a 2-asymptotic hyperbolic 5-orthoscheme R. Then,
tan o, tan o, = tan a, tan os. (10)

Proof. Denote by P,, ..., Ps the vertices of R satisfying (5). Consider the
l-asymptotic face orthoscheme P,P,P,P, of dimension three and its spherical
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Figure 1

vertex orthoscheme at P, with angles a,, a, (cf. Figure 1) whose hypotenuse of
length o satisfies

cos a = cot a; cot .
But « is also the parallel angle in the orthoscheme P,P,P,, i.c.,
cos a = tanh /,

where / denotes the length of the edge P,P;. On the other hand, this edge belongs
to the 1-asymptotic 3-orthoscheme P,P,P,Ps whose spherical vertex orthoscheme
at P, has angles a4, as. If f denotes the parallel angle in P, P, P5, we deduce that

cos f§ = cot a, cot a5 = tanh /.
Hence, tanh / = cot o, cot a, =cot agcot as. Q.E.D.

For the subsequent volume investigations, we are interested in the graphs X(F;)

of the apices F; to a; (1 < i <5). First, we observe that F,, F; resp. F,, F;, F, are 1-
resp. 2-asymptotic. Moreover, it is easy to see (cf. Figure 1) that
/2 — ay oy as oy /2 — oy oy

Z(F]) e) [¢] o o, Z(F4) pe) (o) o [o)

as 11’/2—'(!5 x5 o 25 7[/2—12

E(FZ) .o o} o o, E(FS) .o o [¢] o,

(11)
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To determine the scheme X(F;), we define first the following auxiliary angle:

DEFINITION. Let o4 € (0, ©/2) be such that the graph

) as ag as %6
Z el [¢) o] [} o [}

is the graph Z(Q) of a 2-asymptotic orthoscheme Q < H°, implying that

o3 as x5 e 73

det (o B . e o) =0. (12)

Now, the apex orthoscheme F; associated to a is given by

n/2 —ag ag n/2 — ag

2(F3) 1o o 0 o. (13)

This follows from (12) written in the form

sin® a3 sin ag —cos® a,
cot” a,

cot? o = 3 5
cos? a5 cos? ais

which satisfies Bohm’s general formula (4.4) relating apex angles to angles of R (see
[B, p. 303—304]). It can also be seen by the following dissection comparing R with
0 (see Definition above): A set of vertices Q,, . .., Qs for Q can be constructed as
follows. Choose Qs = P, and Q, as the point at infinity on the ray from P, = Q;
through P,. Let H denote the four-dimensional plane through Q, orthogonal to the
line through P,P; and set (cf. Figure 2)

Q;=HAPP,,,, i=1...,4

Then, Q, - - - Qs is a 2-asymptotic orthoscheme (cf. [D, Theorem (2.6) (i)]) whose
(euclidean) vertex orthoscheme at Qs = P, € R coincides with (cf. 1.1)

25} o3 -7 x5

Z("o) o o o o o,

By (12), Q, - - - Qs is therefore described by the graph

o x3 a4 xs xg
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Figure 2

Since o= Q0,0:0s= 0,0,0; (cf. Figure 2), and because the plane through
Qo, O3, Q, 1s orthogonal to Py Ps in F;, the scheme X(F;) of F; = P, P, P,Ps is given
by (13).

The orthoschemes R, Q take part of the following dissection which will be useful
for later volume computations. Form the simplices

Ro=Qo- Qo Pe-Ps,  k=1,....5, (14)

in H5. Then, by a result of Debrunner (see [D, Theorem (2.6) (1)]), one has
that

(a) R, is a 2-asymptotic orthoscheme;
(b) On the scissors congruence level, there is the relation [R] +[R,]=

[Q] + Z7-, [R,].

Moreover, by the above Lemma (see also Figure 2), one can deduce that

Z(R) =Z(R), 2(Q) = Z(Rs), (15)
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ie, R, R, and Q,Rs are congruent, and, since o,=0,0,0s=0,0,0,,
s = 0403 Ps,

2ay x1 »1 o4 s

Z(Rz) .0 o o o o o

a2 x2 Y2 2y as

2(R3) : (o] [e] o o o o (16)

5] x3 y3 Zy n— 2“6

Z(R4) .o o o o o o,

Here x,, y;, z; € (0, n/2) satisfy

tan X, = cot (2(1,) tan (X4 tan Os, xl +x2 =05,
tan z, = cot a5 tan a, tan x,, (17)

tan z, = cot (m — 2u¢) tan o, tan as,
and y; are such that the parabolicity conditions (cf. (9)) are satisfied. Hence,
2[R] =2[Q] + [R,] + [Rs] + [R4]. (18)

1.5. Among the set of 2-asymptotic orthoschemes in H>, there is a particular
family of orthoschemes R given by graphs

o B a B
S(R) : o " i . " (19)
with
cos? o +cos? B +cos?y = 1. (20)

Condition (20) guarantees that R is 2-asymptotic, and it implies that the auxiliary
angle o (see Definition 1.4) satisfies ag = 7.

By a result of Gordan (cf. [C2, p. 109]), the only solutions (a, 8, y) of (20) with
ingredients commensurable with n are — up to permutations — (n/3, n/3, n/4) and
(n/3, /5, 2rn/5) yielding five different orthoscheme realizations in H®, namely, 6,, 7,
and p,, u,, p3 (see (7) and (8)). The connected subschemes of (19) of order four
were studied by Schlifli and Coxeter (cf. [S, p. 281 ff] and [C2, §6.7]); they occur
as characteristic simplices of the three-dimensional spherical regular honeycombs
and regular star-honeycombs of finite density.
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2. Polylogarithms and higher Lobachevsky functions

2.1. Let z € C, |z| < 1. Then,

Li,,(z)=2§;, n=12..., 1)
r=1

denotes the Polylogarithm function with the properties (cf. [L, §7.1 and 7.3]), for
nz2,

m@=rﬁiﬂa (22)

0 t

Li, (1) ={(n), Riemann’s zeta function, and

Li, (z¥) = Li, (z) + Li, (wz) + - - - + Li, (w* ~ '2) for w =", k 2> 1.
(23)

1
kn—-l

2.2. The Dilogarithm Li,(z) at arguments z =e?®, § real, leads to the
Lobachevsky function

[’]
JI(0) = % Im (Li, (¢%%)) = — J log |2 sin 1| dt, (24)

0

which is known to represent volumes of polyhedra in hyperbolic 3-space: If R
denotes a hyperbolic 3-orthoscheme with graph

%y x2 %3

Z(R):o e} e} o,

then, Lobachevsky showed that (cf. [K, Introduction and Theorem 14.5])

vol; (R) = % {H(al +60) —J(a; — 6) + H(§+ oy — 9) +H(—g—— oy — 0)

+ JT(as + 0) — oy — 0) + 211(% - 9)} (25)

where

2 ) P 1/2
cos® a, — sin® o, sin” a; n
OS()==arctan< S—?:.

cos? a; cos? a
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The Lobachevsky function is closely related to the Clausen function (see [L, §4])

R 4
sin — | dt

2

Cl, () = i sinr(er) _ J‘e

re=1

log

0

according to
JI(6) = Cl2 (20), Vo e R.

Analogous to the case of higher Clausen functions Cl, (0) (see [L, §7.1.4]), we define
higher Lobachevsky functions as follows:

DEFINITION. For m > 1, § € R, the higher Lobachevsky functions are defined
by

i, () = 22m_1 i sin (2r0)

r=1

1
(26)
1 ® cos (2rf
I, 1(0) = Re (L12m+1(92’6)) "53,,‘ Z —7,,%‘2

It follows that

0

(2m +1) — j I, () dt.  (27)

0

0

JL,,,(0) = J I, 1 (0) dt, I +1(0) =

o 22m

Moreover, J1,,(0) is n-periodic, even for m odd and odd for m even, respectively.
By means of (23) (see also [L, (7.46)]), one deduces the following distribution
law

1 k-1 rn
—JI,(k0) = > JI,{0+— (28)
k —n k
and, as a particular case, the duplication formula

1

= In(20) = 1,,(6) + T, (0 + g) (29)
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2.3. In connection with volumes of five-dimensional hyperbolic polytopes, we are
mainly interested in the Lobachevsky function of order three. By the above, we
obtain the following results for JI,(6):

1 3
115(0) = 5 {3) n(ﬁ—) - L) n3(§> = —={(3); (30)
‘n T 1
(g) ——c(3) 113(—3->= —5{3); (D
I/

3
o —) +J13< )= —55103). (32)

3. The volume formula and applications

3.1. In order to derive volume formulae for orthoschemes in terms of their angles,
we make use of the hyperbolic analog of Schldfli’s volume differential representation:
For a family of orthoschemes R in H” (n > 2) with dihedral angles «; attached to the
apices F; (1 <i < n), the volume differential d vol, (R) can be represented by

d vol, (R) = ~—-1— Y. vol,_,(F,)da,, voly(F,)=1. (33)

nh,=

Schlifli proved the spherical version of this formula for arbitrary simplices. For a
proof of both, the spherical and hyperbolic case, we refer to Kneser [Kn]. Plainly,
formula (33) is still valid for a family of orthoschemes in H", n # 3, with one or two
of the principal vertices at infinity. With these preliminaries, we are ready to prove
the following

THEOREM. Let R denote the 2-asymptotic S-orthoscheme given by

a B 14 o B
Z(R) : o & o o 0——o0 with cos? o« + cos? B + cos?y = 1.

Then,

1
vols (R(x, B, 7)) = l{ns(a) + I8 ——~H3(5—y)}

3
—lié{ﬂ3(2+a+ﬁ>+ﬂ3(g—a+ﬂ)}+—6-zé'(3), (34)

where JI,(w), w € R, denotes the Lobachevsky function of order three.
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Proof. We use Schléfli’s volume differential (33) for a family of 2-asymptotic
orthoschemes R given by graphs

3] o o3 o4 xg . 2 2 2
Z(R):o ° ° 0 ° o with cos® a; + cos” a, + cos® a; = 1.

(35)

Then, by the asymptoticity conditions, a; = a,=:a, a, = as=: . Moreover, we see
that o3 = ag=:y. Now, assume that f is constant and that « is the independent
variable, i.e., y =y(x). In order to determine the coefficients of du, = da, = da,
do, = dy in (33), we observe that the corresponding apex orthoschemes F,, F;, F,
are characterized by the graphs (see (10), (13))

n/2 —a a B
Z(F]) .o o o ¢}

n/2—y Y n/2—y
Z(F3) .0 [¢] [¢] [e]

o n/2 —a o
Z(F4) .0 o} o o,

Therefore, by Lobachevsky’s formula (see 2.2, (25)), their volumes are given by

1 1 T T

vol; (Fy) = 5]1(0:) + 2 {H(E —a+ ﬂ) - H(E + o+ ﬂ)},
1 _/[n

vols (F5) = 3 H(§ . v),
1

V013 (F4) = 5 H(a).

Hence, Schlifli’s formula (33) yields

1
(—4)d vols (R) = JI(a) do +Z{H<g—-a +B)—H(%+a +ﬂ)} do
1 _/=n
where y = p(a). Since JI;(w) =3{(3) — ¢ JI(¢) dt is an even function, and since a

volume formula for Z(R) has to be symmetric in a, f§, we obtain the following
expression

2

—%{Hg(g+a+ﬁ)+ns(%—“+ﬁ)}+c- (36)

1
4vols (R) = JI;(®@) + J;(B) — 3 na(f - v‘)
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Here, ¢ denotes the constant of integration which can be computed by evaluating
(36) in the degenerate case of an orthoscheme Ry, in H” satisfying (35) such that
vols (Ryg) = 0. For this, we consider the following class of orthoschemes R, . < H?
given by

4 nf2 —¢ n/2 —¢ 4 w2 —¢
Zee’:o o} ¢} o ¢} o

with 0 <¢ < /6, ¢ <&’ <m/2 and sin? ¢’ = 2 sin? &. Then, property (35) is satisfied,
and R,, is 2-asymptotic. Since, for ¢ -0, ¢’(e) 0 and det (Z,,) = —sin’¢ -0,
R.. converges to an orthoscheme R, with vols (Ry,) =0. This implies that
¢ =(3/16){(3) which finishes the proof. Q.E.D.

3.2. The above Theorem combined with certain dissection properties of ortho-
schemes (cf. 1.4) enables us to compute explicitly the volumes of the three Coxeter
orthoschemes (7) as well as the volumes of the characteristic simplices (8) associ-
ated to certain regular star-honeycombs (being necessarily of infinite density) in H®
(cf. 1.2).

The two Coxeter orthoschemes a,, g5 (see (7)) satisfy the conditions of the
Theorem. Using 2.3, we get for their volumes vols (0;), i =2, 3:

7
vol, (0,) = §E71_6 ((3) =0.000913,  vols (63) = 72 {(3) ~0.001826.  (37)

Before we compute the volume vols (a,) of the remaining Coxeter orthoscheme o,
(see (7)), which is 1-asymptotic, we make the following remark.

REMARK. Let «,:=arccos 1/\/; € (0, ®/2), n = 3, and consider the schemes

pi(@):e

of order n +1,i €[0,n], which describe either spherical, euclidean or compact
hyperbolic n-orthoschemes if either a, <a <7 —0a,, a =a,, or o, _, <a <a, (see
[D, (7.9))). In the spherical case, Schléfli (cf. [S, p. 270]) derived the following
volume relations

vol, (p (a)) = (’l') vol, (p3(®),  i€[0,n), (38)



662 RUTH KELLERHALS

which were generalized by Debrunner (cf. [D, Theorem (7.8)]) to all three cases
using a dissection argument: The orthoschemes p7 («) tile the regular cross-polytope
with dihedral angle 2a.

But by continuity, we see that (38) holds even in the hyperbolic (asymptotic)
limiting case a =, ,; in particular, for n =5 (i.e., « = n/3), where pj(n/3) = o,,
p3(n/3) =0, and p3(n/3) = o;, we obtain the relations (see (37))

1
vol (a,) = ¢ vols (d,) =

: Tg Vols (03) = 72525 £(3) = 0.000183. (39)

46080

Hence, the volumes of the three Coxeter orthoschemes in H? are rational multiples
of {(3) and therefore commensurable. Considering the associated reflection groups
and passing over to torsionfree subgroups of finite index, which, by a result of Borel
(see [Bo, Theorem B(ii), p. 345]), always exist, we obtain hyperbolic cusped
manifolds of dimension five whose volumes are rational multiples of {(3).

Finally, consider the orthoschemes pu,, u,, us, v,, v, presented in (8). Since
cos? (n/3) + cos? (n/5) + cos? (2n/5) = 1, we can use our Theorem to calculate the
volumes of the first three schemes yu,, u,, u; making use of 2.3:

£3)
1200

1 £(3) 1 T\  2{(3) )
vols (u,) = 1 44{H3<5) 5} m{—n (5>+—5—5—} 0.000339;  (40)

vol (i3) =T:T4{ﬂ ( 5)+C(53 )} 0.001998.

For the computation of the values vols(v,), vols (v,), we use the orthoscheme
dissection presented in 1.4 and the above results. Let R denote the orthoscheme
with graph Z(R) =v,, which we take as starting simplex with respect to the
dissection 2[R] = 2[Q] + [R,] + [R;] + [R,] (see Definiton, (15) and (18) of 1.4).
Then, Q is the 2-asymptotic orthoscheme given by the graph X(Q) = v,. Using the
Lemma, (16) and (17) of 1.5, we obtain the following identities between the
schemes of R,, R,, R,.

volg (i) = ~ 0.001002;

Z(R;) = 2(R3) = Z(Ry) = p»,

which, by (18), imply that

3
vols (v;) = vols (v;) + 2 vols (u2). (41)
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Repeating this process by starting with the orthoscheme R given by Z(R) = u,, we
deduce that X(Q) = u;, and that

2(Ry) = 2(R3) = vy, 2(Ry) = 5.

Therefore, we have

3
vols (¢,) = vols (v,) + 3 vols (u43), (42)

which together with (40) and (41) yields

L N AN (CNY :
vols (v;) = 9% J'I3<5> + 200 = 0.001996; .

1
vol (v,) = g2 m(%) ~ 0.000493.
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