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On the volumes of hyperbolic 5-orthoschemes and the Trilogarithm

Ruth Kellerhals*

Introduction

The purpose of this paper is to calculate volumes of certain five-dimensional

hyperbolic orthoschemes. Orthoschemes in a space X of constant curvature are

simplices whose vertices Po,.. Pn (n &gt; 2) are such that

span (Po, ...,Pk)± span (Pk,. Pn) for 1 &lt; k &lt; n - 1. (1)

Thèse are the most basic objects in polyhedral geometry: They generate the scissors

congruence groups 0&gt;(X) of polytopes in ^(see 1.4). In addition, orthoschemes are
characterized by nice metrical properties, e.g., they hâve at most n non-right
dihedral angles al9..., aw, and ail their faces and vertex figures are orthoschemes.

It is therefore natural to restrict the volume problem to orthoschemes. In doing so,

Lobachevsky found a volume formula for hyperbolic 3-orthoschemes (see 2.2),

which, for a 2-asymptotic (i.e., Po, P3 are points at infinity) orthoscheme R(ol) with
angles olx n/2 — a2 a3=:a, reduces to

vol3 (*(«)) =^JI(a). (2)

Hère, JI(a) dénotes the classical Lobachevsky function related to Euler&apos;s Diloga-
rithm Li2 (z) Z~. x zr/r2, z e C, \z\ ^ 1, by

Since, for even-dimensional orthoschemes, volumes are expressible in terms of those

of certain lower (odd) dimensional orthoschemes (see, e.g., [K, §14.2.2]), the next

This work was partially supportée by the Swiss National Science Foundation.



Hyperbolic 5-orthoschemes and the Trilogarithm 649

step is to look for a volume formula for hyperbolic orthoschemes of dimension fîve.

In this context, Dehn [B, p. 308] raised the question whether this can still be done
by means of a function in one variable. This problem was solved affirmatively by
Bôhm [B] resp. Paul Mùller [M] using différent approaches; they showed that -
apart from logarithms of lower orders - the Trilogarithm Li3 (z) Z^L, zr/r3 is

sufficient to express the volume of a compact resp. 1-asymptotic 5-orthoscheme.

However, their volume formulae are very difficult to survey involving dozens of
Trilogarithms with rational arguments in trigonometrical expressions of the di-
hedral angles.

By results of Dupont and Sah (see 1.4), the hyperbolic scissors congruence
groups of dimensions &gt;2 are isomorphic to the scissors congruence groups of
polytopes in extended hyperbolic space which, for odd dimensions, are generated by
the 2-asymptotic orthoschemes (i.e., Po, Pn are points at inflnity). Focussing on
2-asymptotic orthoschemes, we can dérive a comparatively simple volume formula
for a certain subclass among them. Let R(cc, /?, y) dénote a 5-orthoscheme with
angles a! a4=:a, a2 a5=:j5, (x3=-y satisfying

cos2 a + cos2 // + cos2 y 1. (3)

Then, R(&lt;x, j8, y) is 2-asymptotic, and its volume is given by

vol5 CR(a, jS, y)) -
&apos; ~ ~ &quot;~

*

c(3), (4)

where Jl3(co) dénotes the Lobachevsky function of order three (see Section 2)
related to the Trilogarithm by

Jl3 (œ) I Re Li3 (e 2lw)\ œ e R.

The proof of formula (4) is based on Schlàfli&apos;s theorem about the volume
differential (see 3.1) and the results of Lobachevsky in dimension three (see 2.2).

Together with some dissection properties for regular cross-polytopes, équation
(4) enables us to compute, among other things, the volumes of the three Coxeter
orthoschemes (i.e., ail dihedral angles are submultiples of ri) of dimension five (cf.
3.2). It turns out that the corresponding reflection groups hâve commensurable
covolumes being rational multiples of Ç(3). Hence, by passing over to torsionfree
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subgroups, we obtain examples of hyperbolic cusped 5-manifolds whose volumes are
rational multiples of Ç(3). This resuit gives a first glimpse into the structure of the
volume spectrum for hyperbolic 5-space forms which, by a theorem of Wang [W],
forms a discrète subset of R+.

1. Orthoschemes in hyperbolic space

1.1. Let X dénote either the w-dimensional euclidean space En, the «-sphère S&quot;

or the /i-dimensional hyperbolic space Hn. An n-orthoscheme in X is a simplex in X
whose vertices Po,..., Pn are labelled in such a way that

span (Po, ...,Pk)± span (Pk9..., Pn) (5)

for 1 ^ k ^ n — 1. The initial and final vertices Po, Pn of the orthogonal edge-path
POPU Pn_lPnSLTQ calledjwincipal vertices and play a distinguished rôle. E.g. in
extended hyperbolic space Hn HnudHn (see, e.g., [K. §14.1.1]), only the two
principal vertices may be points at infinity in which cases the orthoscheme is called
1- or 2-asymptotic. Moreover, an orthoscheme has at most n non-right dihedral
angles (hyperbolic orthoschemes hâve exactly n non-right dihedral angles olx aw

ail of them being acute, i.e., a, &lt; rc/2, and they form a complète System of invariants).
Since orthoschemes are characterized by many orthogonality conditions, they are

most conveniently described by means of weighted graphs or schemes. First, we
observe that an w-orthoscheme R is a simplex bounded by hyperplanes Ho,..., Hn
such that

Ht 1 Hj for 2 &lt; |i -j\ &lt; n, (6)

where Ht dénotes the bounding hyperplane of R opposite to Pt. Every hyperplane
Hn0 &lt; i &lt; n, can be described by a unit normal vector et in the ambient space
directed outwards with respect to R, say, i.e.:

Ht eï «={x € H&quot; | &lt;x, 0 0} with &lt;&lt;?„ O 1.

Then, the scheme I(R) of R is the linear weighted graph (describing R up to
congruence) whose nodes / correspond to the hyperplanes Hl ef- of R. The weights
between adjacent nodes / — 1, i equal a,, where cos a, — &lt;e,_,, O*&gt; while non-
adjacent nodes, associated to orthogonal hyperplanes, are not joined:

Frequently, we shall think of orthoschemes in terms of their associated graphs.
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Rank, déterminant and character of definiteness of I(R) are defîned to be the

corresponding ones of the Gram matrix G(R) =({eneJ)x)0^lJ^n. In particular,
I(R) is said to be either elliptic, parabolie, or hyperbolic if the «-orthoscheme R is

either spherical, euclidean, or hyperbolic, which is équivalent to I(R) being either
positive définite, positive semidefinite of rank «, or of signature («, 1) (cf. [K,
§14.1.2]). Every vertex Pn 0 &lt; / &lt; n, of R c X is described by an (n - l)-dimen-
sional vertex orthoscheme r, formed by the vectors ek, 0 ^ k ^ «, k # /. I(rt) is

obtained from I(R) by discarding the node i and the edges emanating from it. If
Pt e Hn is an ordinary vertex of R, then I(rt) is elliptic. If Pt e dHn is a vertex at
infinity of R implying that i 0 or «, then I{rt) is connected and parabolic.

1.2. For the graphs of orthoschemes whose dihedral angles are commensurable
with tu, we use the standard notations: If two nodes are related by the weight
(pn/q), p,qeN coprime with 1 ^ p &lt; q, then they are joined by a (q — 2)-fold Une

for p — 1 and q — 3, 4, and by a single Une marked q/p, otherwise. From now on,
let X — Hn. Hyperbolic Coxeter orthoschemes (p 1, Le., ail dihedral angles are
submultiples of n) were classified by Coxeter (cf. [Cl]). His list ends for n 5 with
the three examples

(J, \ o o o o nz=r= o o

(J2 ; o o o o o o (7)

Coxeter orthoschemes are characteristic simplices for regular honeycombs.
Orthoschemes whose dihedral angles are commensurable with 7r are related to characteristic

simplices for regular star-honeycombs (cells and vertex figures are regular
star-polytopes); in case of fini te density (covering the space a finite number of
times), they were completely enumerated by Coxeter (cf. [Cl, p. 161 ff]) and exist

only up to n 4. If one allows infinité density, the one finds among the regular
star-honeycombs ail of whose cells and spherical vertex figures are regular star-poly-
topes and whose characteristic simplices are 2-asymptotic orthoschemes exactly five

examples; they are given by the schemes

5 5/2 5

l| • O O O O O O

5 5/2 5 5/2

5/2 5 5/2

jA^ &apos;. o o o o o o (8)
5 5/2 5 5/2 5

Vi &apos;. ° ° ° ° ° °

5/2 5 5/2 5 5/2
y • o o o o o o
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That thèse schemes are the only 2-asymptotic ones, is easily seen using list 14.14 in
Coxeter&apos;s classification of regular star-honeycombs of finite densities (see [C2, §14]).

1.3. Let 0&gt;(X) dénote the w-th scissors congruence group of polytopes in X (see

[Sa, §1]). Then, for n ^ 2, ^(//w)js_isomorphic to 0&gt;(H~n) (see [DS, Theorem 2.1,

p. 162]), and, for d &gt; 3 odd, 0&gt;(Hd) is generated by the classes of 2-asymptotic
orthoschemes (see [Sa, Remark 3.10 and p. 199]). This latter property was re-

proved by Debrunner [D, p. 125] using a certain dissection of a rf-orthoscheme into
d + 1 orthoschemes (d &gt;2 arbitrary). This dissection process will be helpful later
(cf. 1.4, 3.2).

1.4. Consider a five-dimensional 2-asymptotic orthoscheme R Po- • P5 with
vertices Po,.. P5 and with graph

al a2 a3 a4 a5

I(R) : o o o o o o.

It is characterized by three independent dihedral angles a2, a3, a4, say, while al5 &lt;x5

are given by the relations (cf. 1.1)

OC 1 OL&apos;y (X-j OLa OCy OCi (Xa OC5

det (o o o o o) det (o o o o o) 0. (9)

An angle a, 1 ^ i &lt; 5) is formed by the facet orthoschemes Rl_ï Hl_lnR
Po &apos; &apos; &apos; Pt- i

* • • P5 and Rl HlnR=P0&quot;Pl&apos;-P5; it is attached to the apex
orthoscheme Ft Rl_lnRl Po- - - Pl_lPl - - P5, and, by the orthogonality
conditions (5), can be seen as planar or spatial angle (cf. Figure 1).

Moreover, the following angular relation will be of use later.

LEMMA. Let

a, a2 a3 a4 a5

dénote the graph of a 2-asymptotic hyperbolic 5-orthoscheme R. Then,

tan a, tan a2 tan a4 tan a5. (10)

Proof. Dénote by Po,.. ,P5 the vertices of R satisfying (5). Consider the

1-asymptotic face orthoscheme P0P]P2P3 of dimension three and its spherical
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00 p

00 P

Figure 1

vertex orthoscheme at P3 with angles a,,a2 (cf. Figure 1) whose hypoténuse of
length a satisfies

cosa =cot olx cot a2.

But a is also the parallel angle in the orthoscheme P0P2P3, i.e.,

cos a tanh /,

where / dénotes the length of the edge P2P3. On the other hand, this edge belongs
to the 1-asymptotic 3-orthoscheme P2P3P4P5 whose spherical vertex orthoscheme
at P3 has angles a4, a5. If /? dénotes the parallel angle in P2P3P5, we deduce that

cos /? cot a4 cot a5 tanh /.

Hence, tanh / cot a1 cot a2 cot a4 cot a5. Q.E.D.

For the subséquent volume investigations, we are interested in the graphs I(Ft
of the apices Ft to a, (1 &lt; i &lt; 5). First, we observe that Fl9 F5 resp. F2, F39 F4 are 1-

resp. 2-asymptotic. Moreover, it is easy to see (cf. Figure 1) that

n/2 - &lt;x4 a4

Z(F2):o-
n/2 - &lt;x5

Z(F4) :

I(F5) :

al n/2-

&lt;x2

n
n/2

al

-«2
(11)
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To détermine the scheme I(F3)9 we define first the following auxiliary angle:

DEFINITION. Let a6 e (0, n/2) be such that the graph

a2 a3 a4 a5 a6

is the graph E(Q) of a 2-asymptotic orthoscheme Q a H5, implying that

a3 a5 a5 a6
det(o o o o o) =0. (12)

Now, the apex orthoscheme F3 associated to a3 is given by

n/2 — oc6 a6 n/2 — &lt;x6

Z(F3 : o o o o. (13)

This follows from (12) written in the form

sin2 a3 sin2 a&lt; — cos2 &lt;x4 -cot2 a6 —z —5 cot2 a3,
cosz a3 cosz a5

which satisfies Bôhm&apos;s gênerai formula (4.4) relating apex angles to angles of R (see

[B, p. 303-304]). It can also be seen by the following dissection comparing R with
Q (see Définition above): A set of vertices Qo,. Q5 for Q can be constructed as

follows. Choose Q5 Po and Qo as the point at infinity on the ray from Po Q5

through Px. Let H dénote the four-dimensional plane through Qo orthogonal to the

line through P0P5 and set (cf. Figure 2)

Then, Qo • • • Q5 is a 2-asymptotic orthoscheme (cf. [D, Theorem (2.6) (i)]) whose

(euclidean) vertex orthoscheme at Qs P06 R coincides with (cf. 1.1)

a2

By (12), Qo - - - Q5 is therefore described by the graph

a2 a3 a4 a5 a6
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00

Figure 2

Since %6 Q4Q3Q5 Q0Q4Q3 (cf Figure 2), and because the plane through
2o&gt; Ô3&gt; (?4 1S orthogonal to P0P5 in F3, the scheme Z(F3) of F3 P0PlP4P5 îs given
by(13)

The orthoschemes R, Q take part of the followmg dissection which will be useful
for later volume computations Form the simphces

P5&gt; ,5, (14)

in H5 Then, by a resuit of Debrunner (see [D, Theorem (2 6) (i)]), one has

that

(a) Rk îs a 2-asymptotic orthoscheme,

(b) On the scissors congruence level, there îs the relation [^]-h[^i]

Moreover, by the above Lemma (see also Figure 2), one can deduce that

(15)
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i.e., R, Rt and Q,R5 are congruent, and, since a2 Q2Q\Qs Qo

2oti x\ y\ (X4 0C5

Z(i£2) I o o o o o

zl a5
o o (16)

0C2 ^3 y$ z2 &quot;¦ — à

Hère xnyn z, e (0, te/2) satisfy

tan jct cot (2a! tan a4 tan a5, ^ + x2 a2,

tan Z! cot a5 tan a2 tan x29 (17)

tan z2 cot (71 — 2a6) tan a2 tan a3,

and ^j are such that the parabolicity conditions (cf. (9)) are satisfied. Hence,

2[R]=2[Q]+[R2]+[R3]+[R4]. (18)

1.5. Among the set of 2-asymptotic orthoschemes in H5, there is a particular
family of orthoschemes R given by graphs

a fi y a fi
I(R) : o o o o o o (19)

with

cos2 a + cos2 P + cos2 y 1. (20)

Condition (20) guarantees that R is 2-asymptotic, and it implies that the auxiliary
angle a6 (see Définition 1.4) satisfies a6 y.

By a resuit of Gordan (cf. [C2, p. 109]), the only solutions (a, j9, y) of (20) with
ingrédients commensurable with n are - up to permutations - (tt/3, tt/3, n/4) and

(tt/3, 7r/5, 2tt/5) yielding five différent orthoscheme realizations in H5, namely, o2, o3

and ^,,^2,^3 (see (7) and (8)). The connected subschemes of (19) of order four
were studied by Schlâfli and Coxeter (cf. [S, p. 281 ff] and [C2, §6.7]); they occur
as characteristic simplices of the three-dimensional spherical regular honeycombs
and regular star-honeycombs of finite density.
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2. Polylogarithms and higher Lobachevsky functions

2.1. Let zeC, \z\ &lt; 1. Then,

U.(*) I ~n&gt; 11 1,2,..., (21)
r 1 r

dénotes the Polylogarithm function with the properties (cf. [L, §7.1 and 7.3]), for
n &gt;2,

(22)

Liw(l) £(«), Riemann&apos;s zêta function, and

^ LiM (z*) Un (z) + Lin (coz) + • • • + U, (cofc - &gt;z) for œ ^27t^, A: ^ 1.

(23)

2.2. The Dilogarithm Li2 (z) at arguments z e2l99 6 real, leads to the

Lobachevsky function

JI(0) 1 Im (Li2 (e2t6)) -[° log |2 sin r| A, (24)
2 Jo

which is known to represent volumes of polyhedra in hyperbolic 3-space: If R

dénotes a hyperbolic 3-orthoscheme with graph

ai a2 a3

then, Lobachevsky showed that (cf. [K, Introduction and Theorem 14.5])

vol3 (R)
]- |jl(a, + 6) - JI(a, - 0) + Jlf^ + a2 - 0 J + Jl^ - a2 - 9

(25)
\* J)

where

/cos2 a2 — sin2 a, sin2 a3
0 &lt; 0:=arctan —7 \

cosz a, cos a3
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The Lobachevsky function is closely related to the Clausen function (see [L, §4])

according to

/
sin- dt

V0eR.

Analogous to the case of higher Clausen functions Cln (0) (see [L, §7.1.4]), we define

higher Lobachevsky functions as follows:

DEFINITION. For m &gt; 1, d e R, the higher Lobachevsky functions are defined

by

r=x
(26)

^L Re (Li2w +, (e«)) ^| ^?
It follows that

- 1 (0 A, Jl2^ +1 (S) i C(2m + 1) - f JI2m(0 A. (27)
o

- f JI2
Jo

Moreover, JTm(0) is rc-periodic, even for m odd and odd for m even, respectively.

By means of (23) (see also [L, (7.46)]), one deduces the following distribution
law

(28)

and, as a particular case, the duplication formula

-J-r JIm(20) Jlm(0) + JIm f0 + ?\ (29)
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2.3. In connection with volumes of five-dimensional hyperbolic polytopes, we are

mainly interested in the Lobachevsky function of order three. By the above, we
obtain the following results for J13(0):

\ CO), JI3(|) -± CO), JI,(î) -1 «3); (30)

3. The volume formula and applications

3.1. In order to dérive volume formulae for orthoschemes in terms of their angles,

we make use of the hyperbolic analog of Schlâfli&apos;s volume differential représentation:
For a family of orthoschemes R in Hn (n ^ 2) with dihedral angles a, attached to the

apices F, 1 &lt; / &lt; n), the volume differential d volw (R) can be represented by

d vol,, (R) -J— £ volw_2 (Fr) £far, vol0 (Fr) := 1. (33)

Schlâfli proved the spherical version of this formula for arbitrary simplices. For a

proof of both, the spherical and hyperbolic case, we refer to Kneser [Kn]. Plainly,
formula (33) is still valid for a family of orthoschemes in //&quot;, n # 3, with one or two
of the principal vertices at infinity. With thèse preliminaries, we are ready to prove
the following

THEOREM. Let R dénote the 2-asymptotic 5-orthoscheme given by

* P y &lt;x p

I(R) : o o o o o —i— o with cos2 a -h cos2 /? + cos y 1.

Then,

vol5 (*(a, fi, y)) l-|jI3(a) + JI3(jS) ~\

(34)

JI3(co), cy e R, dénotes the Lobachevsky function of order three.
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Proof. We use Schlâfli&apos;s volume differential (33) for a family of 2-asymptotic
orthoschemes R given by graphs

al a2 a3 a4 a5 o ~

E{K) : o o o o o o with cos2 olx + cos2 a2 + cos2 a3 1.

(35)

Then, by the asymptoticity conditions, a, =a4=:a, a2 a5=:j?. Moreover, we see

that a3 a6=«y. Now, assume that j? is constant and that a is the independent
variable, i.e., y y(a). In order to détermine the coefficients of d&lt;xx da4 doc,

da3 dy in (33), we observe that the corresponding apex orthoschemes FUF3, F4

are characterized by the graphs (see (10), (13))

n/2 - a a fi

n/2-y y n/2 - y

Z(F3) : o o o

a n/2 — a a

E(F4) : o o o o.

Therefore, by Lobachevsky&apos;s formula (see 2.2, (25)), their volumes are given by

vol3 (F,)
X-

JI(«) +
X- jjl^ - a + fi\ - JI^ + a

vol3(F4)=jI(a).

Hence, Schlâfli&apos;s formula (33) yields

J |jl(^ - a + j - JI^ + a-4) d vol5 (R) JI(a) du + J |jl(^ - a + j - JI^ + a + /î Jj da

where y =y(a). Since Jl3(co) =K(^) — Jo R(t)dt is an even function, and since a

volume formula for Z(R) has to be symmetric in a, j8, we obtain the following
expression

4 vol5 (R) JI3(a) + JI3(0) -1J
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Hère, c dénotes the constant of intégration which can be computed by evaluating
(36) in the degenerate case of an orthoscheme Rdeg m H5 satisfying (35) such that
vol5 (Rdeg) 0 For this, we consider the followmg class of orthoschemes Ree ci H5

given by

e n/2 — e n/2 — e e n/2 — e

2.-&apos;e e

with 0 &lt; e &lt; n/6, e &lt; e&apos; &lt; n/2 and sm2 e&apos; 2 sm2 s Then, property (35) îs satisfied,
and Ree îs 2-asymptotic Since, for e-*0, e&apos;(s)-+0 and det(ree) — sin28-»0,
REe con\erges to an orthoscheme Rdeg with vol5 (Rdcg) 0 This implies that
c (3/16)Ç(3) which fimshes the proof Q E D

3 2 The above Theorem combined with certain dissection properties of
orthoschemes (cf 1 4) enables us to compute exphcitly the volumes of the three Coxeter
orthoschemes (7) as well as the volumes of the charactenstic simphces (8) associ-
ated to certain regular star-honeycombs (being necessanly of infinité density) m H5

(cf 1 2)
The two Coxeter orthoschemes (72,&lt;73 (see (7)) satisfy the conditions of the

Theorem Using 2 3, we get for their volumes vol5 (crj, 1 2, 3

vol5 (&lt;r2) -^ C(3) * 0 000913, vol5 (&lt;x3) ^ C(3) ^ 0 001826 (37)

Before we compute the volume vol5 (ai) of the remaming Coxeter orthoscheme ax

(see (7)), which îs 1-asymptotic, we make the followmg remark

REMARK Let an =arccos l/y/n e (0, n/2), n ^ 3, and consider the schemes

of order ji + 1, * g [0, «], which descnbe either sphencal, euclidean or compact
hyperbohc «-orthoschemes if either aw &lt; a &lt; n - an, a an, or aw_ x

&lt; a &lt; art (see

[D, (7 9)]) In the sphencal case, Schlafli (cf [S, p 270]) denved the followmg
volume relations

volw (p? (a)) volrt (pS(a)), 1 s [0, n], (38)
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which were generalized by Debrunner (cf. [D, Theorem (7.8)]) to ail three cases

using a dissection argument: The orthoschemes p&quot;(&lt;x) tile the regular cross-polytope
with dihedral angle 2a.

But by continuity, we see that (38) holds even in the hyperboîic (asymptotic)
limiting case a aw_,; in particular, for n 5 (i.e., a tt/3), where Pq(tï/3) al9
Pi(tt/3) a2 and p2(n/3) a3, we obtain the relations (see (37))

vol5 (a,)
l-

vol5 (&lt;r2) 1 vol5 (a3) ^^ «3) * 0.000183. (39)

Hence, the volumes of the three Coxeter orthoschemes in H5 are rational multiples
of £(3) and therefore commensurable. Considering the associated reflection groups
and passing over to torsionfree subgroups of finite index, which, by a resuit of Borel
(see [Bo, Theorem B(ii), p. 345]), always exist, we obtain hyperboîic cusped
manifolds of dimension five whose volumes are rational multiples of £(3).

Finally, consider the orthoschemes \ix,\i2, /i3, v,, v2 presented in (8). Since
cos2 (tt/3) -f cos2 (tt/5) -fcos2 (2n/5) 1, we can use our Theorem to calculate the

volumes of the first three schemes fil9 /x2, fa making use of 2.3:

^ 0.001002;

vol5 0i3) ^ JJT3Q + ^J * 0.001998.

For the computation of the values vols^), vol5(v2), we use the orthoscheme
dissection presented in 1.4 and the above results. Let R dénote the orthoscheme

with graph I(R)=vl9 which we take as starting simplex with respect to the

dissection 2[/q 2[Q] + [R2] + [R3] + [R4] (see Definiton, (15) and (18) of 1.4).

Then, Q is the 2-asymptotic orthoscheme given by the graph Z(Q) v2. Using the

Lemma, (16) and (17) of 1.5, we obtain the following identities between the

schemes of R2, R3, R4.

which, by (18), imply that

vol5 (v,) vol5 (v2) -h - vol5 (/i2). (41)
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Repeatmg this process by starting with the orthoscheme R given by I(R) ju2, we
deduce that I(Q) /*3, and that

Z(R2)=Z(R3)=v2, Z(R4)=fi3

Therefore, we hâve

vol5 (ju2) vol5 (v2) + - vol5 0i3), (42)

which together with (40) and (41) yields

^0 001996,

1 / \
vol5(v2)=-JI3(JW 0 000493

REFERENCES

[B] J Bohm, Inhaltsmessung im R5 konstanter Krummung, Arch Math // (1960), 298-309
[Bo] A Borel, Compact Chfford-Klein forms of symmetnc space, Top 2 (1963), 111-122

[Cl] H S M Coxeter, Regular Honeycombs in Hyperbohc Space, Proceedings ICM, 1954 Amsterdam,
Noordhoff and North-Holland, 1957

[C2] H S M Coxeter, Regular Polytopes, Dover, New York, 1973

[D] H E Debrunner, Dissecting orthoschemes into orthoschemes, Geom Dedicata 3.3(1990), 123-152

[DS] J L Dupont, C H Sah, Sassors congruences, II, J Pure Appl Algebra 25(1982), 159-195

[K] R Kellerhals, The Dilogarithm and volumes of hyperbohc poly topes, in Structural Properties of
Polyloganthms, Léonard Lewin, Editor, AMS Mathematical Surveys and Monographs, vol 37,1991

[Kn] H Kneser, Der Simplexinhalt in der mchteukhdischen Géométrie, Deutsche Math / 1936), 337-340

[L] L Lewin, Diloganthms and Associated Functwns, North Holland, N Y Oxford, 1981

[M] P Muller Ùber Simplexinhalte in mchteukhdischen Raumen, Dissertation, Universitat Bonn, 1954

[Sa] C H Sah, Scissors congruences, I, Gauss Bonnet map, Math Scand 4P (1981), 181-210
[S] L Schlafli, Théorie der vielfachen Kontinuitat, in Gesammelte Mathematische Abhandlungen, Band

1, Birkhauser, Basel, 1950

[W] H C Wang, Topics in totally discontinuous groups, in Symmetnc Spaces, Boothby-Weiss, Editors,
N Y, 1972

Max Planck -Institut fur Mathematik

Gottfned-Claren-Strasse 26
W-5300 Bonn 3, FRG

and

Mathematisches Institut der Universitat Bonn

Wegelerstrasse 10

W-5300 Bonn 1, FRG

Received September 24, 1991


	On the volumes of hyperbolic 5-orthoschemes and the Trilogarithm.

