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On planarity of graphs in 3-manifolds*

YING-QING WU

A graph I' in a 3-manifold M is called planar if it is contained in an embedded
2-sphere in M. It is abstractly planar if it can be embedded into an abstract
2-sphere. In [3] Scharlemann and Thompson gave necessary and sufficient condi-
tions for a graph I to be planar in S* (see Theorem 3 in section 3). The special case
that I has a single vertex was proved by Gordon [1], while the generic case was
shown [2] to be equivalent to: An abstractly planar graph I' in S? is planar if and
only if both I' — e and I' /e are planar, where e is a noncycle edge of I'. Fix an
embedding of I' in a 2-sphere F. We say that the embedding of I' in S* is F-planar
if it can be extended to an embedding of F into S°. It turns out that the above result
is equivalent to: If both I' — e and I'/e are F-planar, then I is also F-planar.

In this paper, we study the F-planarity of a graph I' in a 3-manifold M, where
F can be an arbitrary surface containing I', or more generally a 2-dimensional cell
complex with I' as 1-skeleton. An embedding of I' in a 3-manifold M is called
F-planar if it can be extended to an embedding of F in M. We are interested in the
problem of whether the F-planarity of I" is determined be that of I' —e and I'fe. A
statement parallel to the case of F = §? is not true in this general setting. However
we will show it is true if I' is a “‘regular” graph.

We first study the triviality of cycles. This can be considered a special case of the
above problem, when the cell complex has only one 2-cell. A cycle of I is a
subgraph C which is homeomorphic to a circle.

DEFINITION. Suppose I' is embedded in a 3-manifold M. Then a cycle C of
I is trivial (with respect to (M, I'), if it bounds a disk with interior disjoint from I'.

In section 2 we prove a theorem about triviality of simple cycles. Note that if C
is a cycle of I', and e is an edge intersecting C at most once, then C remains a cycle
in both I — e and I'/e. Therefore it makes sense talking about the triviality of C

with respect to (M, I’ —e) and (M/e, I Je).

* Partially supported by NSF Grant DMS 9102633
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THEOREM 1. Suppose I' is a graph embedded in a 3-manifold M. Let C be a

cycle in I', and let e be an edge of I' with at most one end on C. If C is trivial with
respect to both (M,I’ —e) and (M /e, I [e), then it is trivial with respect to (M, TI’).

A link L in S3 is the unlink if each component of L is a trivial cycle. It turns
out that this is also true for any abstractly planar graphs in a 3-manifold A:

THEOREM 2. An abstractly planar graph I' in M is planar if and only if all
cycles of T are trivial.

We will prove Theorem 2 in Section 3, and use these theorems to give an
alternative proof of the Scharlemann—Thompson Theorem.

In Section 4, we study the F-planarity of graphs in arbitrary 3-manifolds M.
Suppose I' is a graph in a compact surface F. We assume that JF is either empty
or a subgraph of I'. An embedding of I" into M is F-planar if it can be extended to
an embedding of F into M. We call the closure of a component of F —I" a face of
F. The graph I is called a regular graph in F if each face of F is a disk, and the
intersection of any two faces is connected (or empty). Suppose e is an edge of I
with at least one end in the interior of F. Then both I' —e and I'/Je can be
considered as graphs in F in the natural way, so we can talk about the F-planarity
of I' — e and I'/e. The following theorem is proved in section 4.

THEOREM 5. Suppose I is a regular graph on a surface F, and suppose I is
embedded in a 3-manifold M. Let e be an edge of I with at least one end in Int F. If
both I'le and I — e are F-planar, then I' is F-planar.

The regularity condition on I' is necessary. We will give an example of a graph
I’ on a torus F that can be embedded into S3, so that both I' —e and I'/e are
F-planar, but I itself is not F-planar.

I would like to thank Marty Scharlemann for some helpful discussion on this
topic, and to the referee for many useful comments.

1. Definitions and preliminaries

Given a graph I' in a 3-manifold M, choose a regular neighborhood for each
vertex and each edge of I', so that the disks N(v) N N(e) are mutually disjoint for
all v and e. The union of all such neighborhoods forms a regular neighborhood
N(I') of I' and we define the exterior of I' to be E(I') = M — Int N(I'). For each
vertex v, denote by d(v) the punctured sphere dN(v) — | ) Int N(e); similarly, for
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each edge e, let d(¢) be the annulus dN(e) — | ) Int N(v). Sometimes the graph may
vary, in which case we use d(e) and d,(v) to denote 6(e) and &(v), respectively. If
C is a cycle, or more generally a subgraph of I', we use 6(C) to denote the union
of &(¢) with ¢ ranges over all edges and vertices of C.

For an edge e in I', denote by I' — e the subgraph obtained from I' by deleting
the interior of the edge e. If e is not a loop, then I'/e is a graph in M/e. Denote by
€ the image of e in I'/e. The quotient map n : M — M /e sends N(I') to a regular
neighborhood N(I'/e) of I'fe in M/e, so it induces a homeomorphism E(I') =~
E(I'/Je) = M /e — Int N(I' /e). We identify E(I') with E(I" /e) by this homeomorphism.
Note that 6,,.(é) =6,(v) Udr(e) LI, (v') if de =v UV .

If X is a subset of M, denote the number of components in X by |X|.

We define a simple disk to be a disk D in M which is bounded by a cycle of I,
and has interior disjoint from I'. Thus a cycle of I' is a trivial cycle if and only if
it bounds a simple disk.

Define a normal structure on N(I') to be a set of line segments {/, | x € IN(I')}
as follows: For any vertex v e I’ and any x € d(v), let /, be the straight line in
D3*=N(v) connecting x to v. If e is not a loop, the closure of
N() —|J{l |xe|)d()} has a product structure exD? such that for
x € 0e x 0D?, the [ defined above is the line between x and a point in de x 0. Now
for any x € p x 0D? with p € e, let I, be the line connecting x to p x 0. If e is a loop,
N(e) — | J {l. | x €] 6(v)} is homeomorphic to e x D?/de x 0, so we can define /, in
the same way as above. For any p e e, p x D? is called a meridian disk of I" (or e)
at p, and p x éD? is called a meridian of T.

Suppose P is a surface in E(I'). The normal extension D of P is the union of P
and the lines /, with x e PndN(I'). If P is a properly embedded disk in E(I'), and
C is a cycle of I' such that P intersects any meridian of C exactly once, and is
disjoint from the other meridians of I', then D is a disc with D = C. A surface S
in M with 4S in I is called in normal position if S is the normal extension of
S N E(I). The following lemma is useful in modifying disks to make their interiors
disjoint.

LEMMA 1.1. Suppose D,, ..., D, are simple disks in M with mutually disjoint
interiors. Suppose C is a trivial cycle, and C n D, is connected for all i. Then C bounds
a simple disk D with interior disjoint from D, for all i.

Proof. By an isotopy we may assume D,, ..., D, are in normal position. Let
P, = D, nE(I'). Choose a simple disk D in normal position and bounded by C so
that P = D nE(I') is transverse to P;, and |P n(| ) P;)| is minimal. Let 4 be the
closure of Int D n(| ) D;). Since 4 "N(I') consists of lines /, with x € 9P n(U P),
we know that A is the union of some circles which may intersect I" at one point, and
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some arcs with different endpoints on I'. These circles and arcs might intersect on
I', but are otherwise disjoint. If 4 has some circles, choose a circle a« which is
innermost in some D,;, and let 4 and 4, be the disks it bounds in D and D,
respectively. Then (D —A4)u d, can be rel D isotoped into a disk D’ with
D"~ (| P))|<|P n (| P;)|- If 4 has no circles but has some arcs, let f be an arc
in A which is outermost in the sense that there is an arc y in some C nédD,, such
that f Uy bounds a disk 4, in D; with Int 4,n D = . (This is possible because of
the assumption that C ndD; is connected for all /). Let 4 be the disk in D with
04 = 04, = fuy. Then a perturbation of (D — 4) u 4, produces a disk D’ with
D"~ (| P)|<|P () P;)| By the minimality of |Pn(|) P;)|, neither case can
happen. Therefore 4 = . O

In section 3 we will need some handle addition lemmas. Let F be a surface on
the boundary of a 3-manifold M, and let J be a simple loop on F. Denote by
1(M, J) the manifold obtained from M by attacking a 2-handle along J, that is,
t(M,J)=Mu(D' x D?), where D! x 0D? is identified with a regular neighbor-
hood N(J) of J in F. Denote by a(F, J) the surface (F — N(J)) u(0D' x D?). We
have the following generalized handle addition lemma.

LEMMA 1.2. Suppose S is a surface on the boundary of a 3-manifold M. Let vy
be a 1-manifold on S such that S — y is compressible, and let J be a circle in S disjoint
from y. If o(S, J) is compressible in ©(M, J) with D’ a compressing disk, then S —J
has a compressing disk D such that 0D ny < 0D’ ny.

This was implied in the proof of [4, Thm 1]. It was shown that under the
assumption we have |[0D ny|<|0D’ny|, but the argument there has actually
proved that 0D ny < dD’ ny.

2. Trivial cycles in a graph

Given a cycle C in I' =« M, and a noncycle edge e of I', if e does not have both
endpoints on C, then C remains a cycle in I' — e and I'/e. The following theorem
shows that the triviality of C with respect to (M, I') is determined by that with
respect to (M, I’ —e) and (M/e, I' /e).

THEOREM 1. Suppose I is a graph embedded in a 3-manifold M. Let C be a
simple cycle in I', and let e be an edge of I with at most one end on C. If C is trivial
with respect to both (M,I" —e) and (M/e, I |e), then it is trivial with respect to
(M, T).
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Proof. The Theorem is simple when C is disjoint from e: Let n: M — M/e
be the quotient map. By assumption C bounds a disk D in M/e with interior
disjoint from I /e. Since e is disjoint from C, = ~'(D) is a simple disk in M bounded
by C.

Now we assume e has exactly one end on C. Since C is trivial with respect to
(M, T’ —e), there is a disk D in M such that 0D = C, and Int DI =Int D ne.
Consider E(I') = M — Int N(I'). The surface P=DnE(I') is a planar surface
satisfying

(*1): 0P consists of circles d,, d,, ..., 0,, where d,,...,d, are meridians of e

on dN(e), and 0, is a curve on 6(C) intersecting each meridian of C at a
single point.
Conversely, any planar surface P in E(I') satisfying (*1) can be extended to a disk
D in M such that D =C and Int Dn I’ =Int D ne.

Now consider C as a cycle in I'/e. Since C is trivial with respect to (M /e, I' /e),
there is a disk D’ in M /e bounded by C with Int D’ disjoint from I'/e. The surface
Q =D’'nE(l) is a disk satisfying

(*2): 0Q is a curve on dN(C ue), which intersects each meridan of C at a single

point.
Conversely, any such disk Q can be extended to a disk D’ in M/e with 0D’ = C and
IntD’'Nn(I'Je) = .

We choose P and Q to satisfy (*1) and (*2), as well as the following general
position and minimality conditions:

(*3): n=|Pnd(e)| is minimal, and k =|Q Nd(e)| is minimal.

(*4): P intersects Q transversely, and |P n Q| is minimal subject to (*3).

(*5): PnQ nd(e’) = for each edge e’ in C.

(*5) is possible because by (*1) and (*2) each of Pnd(e’) and Q nd(e’) is an
essential arc in &(e’), so we can isotop Q to make them disjoint. Since k is minimal,
Q N d(e) consists of parallel essential arcs. So we may further assume

(*6): each component of Q nd(e) intersects each 0; at a single point,

j=1,...,n

If either » =0 or k =0, then an extension of P or Q is a disc D in M with
0D =C and IntDNT =, so C is trivial with respect to (M, TI'), as required.
Hence we assume both » and k are positive. Label the components of JP so that,
beginning with a point on dN(C), an arc of dQ nd(e) intersects 0, 0, .. ., 0,
successively.

A point of 0P ndQ is labeled i if it is a point on J;. Thus any arc on PN Q has
a label on each of its end points.

LEMMA 2.1. A component of P " Q in P is an arc which is either essential or has
both ends on 0.
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Proof. If P nQ has some circle components, a 2-surgery of P along some disk
in Q bounded by an innermost circle will reduce |P N Q|. Therefore P N Q consists
of arcs only.

If P~ Q has some arc which is inessential in P and has both ends on some 9,
with j # 0, let « be an outermost one, so there is an arc f on J; such that a U f
bounds a disk 4 in P with interior disjoint from Q. A boundary compression of Q
along 4 produces two disks, one of which satisfies (*2), but has less components of
intersection with d(e), contradicting the minimality of k. [

LEMMA 2.2. There is a label iy> 0 such that no arc of P ~Q has both ends
labeled i.

Proof. Otherwise choose an o, for each i =1,...,n, with da; on d;,. Then the
innermost such a; will be an inessential arc on P. O

Examine the order in which the indices appear on Q. By (*6), if we delete all
the 0 indices, the sequence is 1,2,...,n, n,...,2,1 repeated k/2 times. The 0
indices appear only possibly between two successive 1’s.

LEMMA 2.3. An arc o of PN Q which is outermost in Q is of one of the
following types.

Type (1): o has both ends labeled 1 or both ends labeled n.

Type (ii): o has one end labeled 1 and the othere labeled 0.

Proof. Note that if i, j are successive labels on dQ, then |i — j| < 1. Therefore if
a is not of Type (i) or (ii), then the labels of « are either {0, 0} or {i, i + 1} for some
i>0. Let f be the arc on dQ so that «a U bounds a disk 4 in @ with interior
disjoint from P.

Suppose a has label 0 on both endpoints. Then da divides d, = P into two arcs
do and dg, one of which, say @, has the property that it intersects a meridian of C
if and only if B does. So dyu B intersects any meridian of C at a single point. Let
P, be the part of P bounded by d,ua. Then P’ = P,u 4 satisfies (*1). Moreover,
|0P’| < |0P|, and a perturbation of P’ has less components of intersection with Q
than P does. This is impossible by (*4).

Now suppose a has labels {i, i + 1} for some i > 0. Then the normal extension
of 4 is a disk 4° in M such that d4'=a"UpB’, where ' D, B’ e, and
Int A’nT = . So we can isotop B’ through 4’ to reduce |D ne|. This contradicts
the minimality of n. OO

Note that the proof does not apply to the case when the labels of « are {0, 1},
since part of B” may be on C.
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LEMMA 2.4. There are at least two outermost edges a,, o, of Type (ii).

Proof. By Lemma 2.2, there is an index i, such that no arc in P nQ has both
ends labeled i,. Let A be the set of arcs in P n Q with one end labeled i,. Let 4 be
a disk in Q such that y =04 — 0Q is an arc in 4, and 4 contains no other arcs in
A. Note that there are at least two such 4’s. So we need only to show that there is
at least one type (ii) outermost edge in 4.

Suppose there is no outermost arc of type (ii) in 4. Then by Lemma 2.3, each
outermost arc in 4 is of type (i), so the labels of the arc are either {1, 1} or {n, n}.
If there are two such outermost arcs, then the index i, appears between them, which
is impossible by the definition of 4. So there is only one outermost arc on 4. This
implies that the arcs of P n Q are all parallel in 4. It is now clear that every arc in
4 has the same index on both ends. Especially, both ends of y are labeled i,
contradicting the choice of i,. [

Now let 4,, 4, be two disks in Q such that 04, — dQ is an outermost arc of type
(ii). Then the normal extension of 4, is a disk 4; in M with 4] = a; U B; Uy;, where
a; is an arc in D connecting a vertex v; of C to the first intersection x of e with Int D,
f: is an arc on e connecting x to v, =e N C, and v, is an arc on C connecting v, to
v;. (y; may degenerate to a single point.) Since 0Q intersects a meridan of C at a
single point, the two arcs y, and y, cannot have an edge in common, and hence
intersect only at v,. Thus 47n45=p,=8,,50 4 =470 4% is a disk in M. Let D,
be the part of D bounded by d4, and let D, be (D — D,) u4 pushed off f, — v,.
Then D, is a disk in M with 6D, = C, and |Int D,ne| < n — 1. This contradicts the
minimality of n = |Int Dne|. [

3. Planar graphs in manifolds

In this section we will discuss the planarity of graphs in a 3-manifold. Suppose
I is a graph embedded in M. An edge e of I is called a free edge if it is not a cycle,
and one of its endpoints is not incident to any other edges. Clearly, if e is a free
edge, then I is planar in M if and only if I' — e is planar. Therefore, without loss
of generality we will always assume that I" has no free edges.

We need the following definitions: A graph I' in M is called split if there is a
2-sphere S in M which is disjoint from I', and separates M into M, and M,, such
that both M, contain part of I'. It is called decomposable if there is a vertex v € I'
such that &(v) has a compressing disk D in E(I') which is separating. The following
lemma and its proof is similar to that of [3, Lemma 1.3].

LEMMA 3.1. Let I" be a split or decomposable graph in a 3-manifold. If all
proper subgraphs of T are planar, then I' is planar.
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Proof. First assume I is split. Let S be a 2-sphere disjoint from I, separating M
into M, and M,, such that I'; = M, NI are proper subgraphs of I". By assumption,
there are 2-spheres S; = M such that I'; < §;. By 2-surgery along disks bounded by
innermost circles of S;NS, we can delete all intersections of S; with S, and get
S; = M,. Tubing S, to S, gives a 2-sphere containing I

Now suppose I' is decomposable, and let D be a separating compressing disk of
6(v) in E(I). It can be extended to a 2-sphere S in M so that SNI"={v}, and S
separates M into M, and M,. Let I, =I' n M,. Since I'; is planar, there is a 2-disk
D, in E = M — Int N(v) which contains I', n E. By surgery along disks bounded by
innermost circles or outermost arcs of D N D, in D, we can assume D,nD = (J.
Gluing a band on é(v) to D, u D, produces a single disk containing I' n E, which
can be extended to a sphere in M containing I'. [

Define a cut point of I' to be a vertex v such that I' — v has more components
than I'. Let {v,,...,v,} be the cut points of I'. Then there is a component X of
I —{v,,...,v,} which has the property that I') = (the closure of X) contains at
most one of these v;; for otherwise one can find a simple loop in I' passing through
some of the v,’s, contradicting the definition of cutting points. This subgraph I'; is
connected, and has no cut point of its own. (It is possible that I';, =T.)

Suppose I’ is abstractly planar. Embed I', into a 2-sphere S. Since I'; is
connected and has no cut points of its own, the closure of each components of
S — T, is a disk. Let Dy, D,, ..., D, be these disks. If I', contains a cut point v of
I', choose D, to contain v. Let D = S — Int D,.

Denote by I'§ the closure of I' —I',. Then I'{nI', = {v} or &, depending on
whether I') contains a cut point v of I Embed I'{ into a disk D’ so that
oD'NnTI'{={v} or & accordingly. Glue D and D’ together, we get an embedding of
I' into S?= D u D’. We fix this embedding.

Recall that D,, ..., D, are the closures of the components of D —I';.

LEMMA 3.2. We can number the disks so that B, = D, v - -u D, is a disk for
all k.

Proof. If D, is a disk such that D, nD, is not connected, then D, u D, is not
simply connected, so there is a region 2 in D bounded by a boundary component
of D;uD,. Q is the union of some D;’s. Choose i so that © contains a minimal
number of these disks. Since D; is a disk, 02 is not completely contained in dD;, so
there is a disk D; in Q which has an edge in common with D,. If D,u D, is not
simply connected, then it bounds a region Q' < Q, contradicting the choice of D,.
Hence we can name this D; as D,. Generally, if B, = D,u---uD, is a disk, then
by the same argument we can find D, , so that B,nD, ., is an arc, and hence
B,uD,,,is a disk. The Lemma now follows by induction. [J
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A link in S? is a trivial link if and only if all of its components are trivial. The
following theorem shows that this is also true for graphs in 3-manifolds.

THEOREM 2. An abstractly planar graph I’ in M is planar if and only if all
cycles of T are trivial.

Proof. We want to show that the inclusion I' - M can be extended to an
embedding of I' U B, into M. This is done by induction. By assumption, D,
bounds a disk with interior disjoint from I', so we have an embedding of I' U D,
into M. Generally, suppose we have extended I' > M to an embedding
i :I' VB, > M. By Lemma 3.2, B, is a disk, and B, n D, . , is an arc. Consider the
graph I'"=T — Int B, < M. Then 0B, and dD, , , are cycles in I'" which are trivial
with respect to (M, I'’). So by Lemma 1.1, dD, ., bounds a disk 4, ., which has
interior disjoint from I'"U B,. Now we can define i, . ,: FTuD,u---UD, > M
so that D, ,, is mapped to 4, ,,. This completes the induction.

It follows that the image of B, is an embedded disk 4 in M so that AnI =T,
and 04 < I',. When I' = I'; this implies I" is planar. When I' #I',, the set I', U '
is either empty or a cut point, which implies I' is split or decomposable. By
induction we may assume that all proper subgraphs of I' are planar. The theorem
now follows from Lemma 3.1. O

As an application of the above theorems, we give an alternative proof of a
theorem of Scharlemann and Thompson [3].

THEOREM 3. A finite graph I = S* is planar if and only if
(a) I is abstractly planar;

(b) every graph properly contained in I' is planar;

(¢) m(E(D)) is a free group.

Proof. Since n,(E(I)) is free, E(I') is the connected sum of some handlebodies.
If I is not connected, then it is split, and the theorem follows from Lemma 3.1. So
we assume I” is connected. When I' has only one vertex, the theorem was proved in
[1], so we assume I" has some noncycle edge e. By induction on the number of edges
in I', we may assume that I'/e is planar for all such e.

According to Theroem 2, we need only to show that each cycle of I is trivial.
Let C by a cycle in I'. There are several cases.

CASE 1 (C does not contain all vertices of I'). In this case there is some
noncycle edge e which has at most one endpoint on C. Since both I' —e and I'/e
are planar, C is trivial with respect to both (S, I' — ¢) and (S°/e, I /e). By Theorem
1, C is also trivial with respect to (S>, I').
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CASE 2 (I' has some cycle edges). A cycle edge cannot contain all vertices of I'
because I' has more than one vertex. By Case 1, a cycle edge is a trivial cycle, so
it bounds a simple disk. It follows that I' is decomposable, and the Theorem follows
from Lemma 3.1. '

In the remaining cases, all edges not in C are noncycle edges with both ends on
C. Let e be such an edge. Its endpoints divide C into two arcs C, and C,.

CASE 3 (There is an edge e’ which has one endpoint on each of Int C,).
Consider the cycle C; ue. It is incident to just one endpoint of ¢’. By Case 1, C; ue
bounds a disk D, with interior disjoint from I'. By Lemma 1.1, we can choose the
D; to have disjoint interiors. Thus D = D, u D, can be modified off e to become a
simple disk bounded by C.

CASE 4 (No such edges e’ as in Case 3 exist). Note that in this case é, the
image of e in I' /e, is a cut point of I' /e, and hence a decomposing point because I' /e
is planar. We want to apply Lemma 1.2 to our situation. To do this, let M = E(I),
and let F=0N(Cue) —Int N(I'). This is a punctured genus 2 surface, with one
hole for each end of each edge which is notin C ue. Let ey, . . ., e, be the edges and
vy, ..., U the vertices of C. Denote by m; a meridian of ¢;, and by J a meridian of
e.lety=mu---um,.

F—1y is isotopic to d(e)udv,)u- - Udy) =dr,(8) u(l {6(v;) |vi¢de}).
Since € is a decomposing point of I' /e, 6, (€) is compressible in E(I'). So F —7y is
compressible.

Consider ©(E(I'), J). This is the manifold obtained from E(I') by attaching a
2-handle along a meridian of e, so it is actually the exterior of I' — e. The surface
o(F,J) is the punctured torus dN(C) —Int N(I' —e). Since I' —e is planar, C
bounds a disk in M, which gives rise to a compressing disk D’ of a(F,J) in
E(I' — e), so that D’ intersects each m; at a single point. By Lemma 1.2, F — J has
a compressing disk D in E(I') intersecting each m; at most once. Since F —J is a
punctured torus, and m; are meridians, if D is disjoint from some m;, it is disjoint
from all m;, so it will be a compressing disk of some d(v;), which implies I' is
decomposable, and the Theorem follows. So we assume D intersects each m; at one
point. Then we can modify D so that dD intersects any meridian of C at a single
point. The normal extension 4 of D is now a simple disk bounded by C. O

4. F-planarity of graphs

Let F be a finite 2-dimensional cell complex with a connected graph I' as its
1-skeleton. I' is called a regular graph in F if the attaching map of each face (i.e.
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2-cell) is a cycle in I', and the intersection of any two faces is connected. Suppose
I' is embedded in a 3-manifold M. Then I is called F-planar if it can be extended
to an embedding of F in M. Suppose e is an edge of I' which is not contained in
the boundary of any faces of F. Then f — Int e has I' — e as 1-skeleton, and F/e has
I' /e as 1-skeleton. To simplify notations, we call I' /e (resp. I' — e) F-planar if it is
(F/e)-planar (resp. (F — Int e)-planar). The following is a generalization of Theo-
rem 1.

THEOREM 4. Suppose F is a regular 2-complex with I' as its 1-skeleton, and
suppose I’ is embedded in a 3-manifold M. Let e be a noncycle edge of I' such that
both I — e and I [e are F-planar. If e intersects each face of F at most at one of its
endpoints, then G is F-planar.

Proof. This follows from Theorem 1 and Lemma 1.1 by induction on the
number of faces in F. [

The most interesting case of F-planarity is when F'is a surface. It was shown in
[2] that Theorem 3 is equivalent to the following:

THEOREM 3'. Let I' be an abstractly planar graph in S (or R?). If T has a
noncycle edge e such that both I' — e and I [e are planar, then I is planar.

The following is a similar result for regular graphs in an arbitrary compact
surface F. Suppose I' is such a graph, and e is a noncycle edge which has at least
one endpoint in the interior of F. Since F/e = F, both I' —e and I'fe can be
considered naturally as a graph in F.

THEOREM 5. Suppose I' is a regular graph on a surface F, and suppose I is
embedded in a 3-manifold M. Let e be a noncycle edge of I' with at least one end in
Int F. If both T'/e and T — e are F-planar, then I' is F-planar.

Proof. We may assume that each end of e has valence at least 3, otherwise I’ is
hemeomorphic to I' /e, and the planarity of I' follows from that of I' /e. Especially,
an end of e in Int F is incident to at least 3 faces of F.

Denote by D’, D" the two disks incident to e. Consider the 2-complex
G = F —Int D’ ulInt D". First suppose e has both ends on some face D of G, then
D contains 0D — e because D n D’ is connected. Similarly, D contains D" — e. By
assumption 0D is a cycle, so 0D = d(D’u D"). This is now a very special case: I" has
3 edges and 2 vertices, and F is a 2-sphere. Since I'/e is F-planar, I' /e, and hence
I'. is contained in a 3-ball. Therefore the theorem follows from Theorem 3’.
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Let D,,..., D, be the faces of G and consider G as a subset of M. Since D,
intersects e at most once, it remains a disk in M /e. By assumption I' /e is F-planar
in M/e, so 0D’/e bounds a disk 4 in M/e with Int AnT'/e = (. Since 0D’ N D; is
connected, 04 N D, is connected for all i =1,...,n By Lemma 1.1 we can choose
A4 so that IntdnD,=¢ for i=1,...,n. Let Q be the disk AnE(l/
e)=A4nEM) in E(I'). Q is disjoint from U D;, and 0Q intersects each meridian
of 0D’ —e at a single point. Let v be an end of e in Int F. Isotop Q so that
|00 Nd(e)| is minimal. Then A =dQ Nd(v) consists of arcs on the punctured
sphere d(v) which are all essential. As the circle dQ intersects a meridian of
0D’ — e at a single point, there is an arc @ € A with exactly one end on the circle
J = 8(v) ndé(e), while all the other arcs in 4 have both ends on J. The arcs in A,
being part of dQ, are disjoint from the disks D,,..., D,. Because F is a surface,
and v is in Int F, these disks cut d(v) into an annulus. It follows that all arcs in
A — {a} are inessential, which is absurd unless « is the only arc in 4. Therefore
0Q intersects a meridian of e at a single point. The normal extension 4’ of Q is
now a disk bounded by dD’, with interior disjoint from G. Similarly, there is a
disk 4” bounded by dD", such that Int A”nG = &, and by Lemma 1.1, it can be
chosen so that 4’n A" =e. The surface Gu4'UA4” is now an embedding of F in
M. O

The regularity condition in Theorem 4 is necessary. Consider the graph I on a
torus F as shown in Figure 1. Embedding F into S? in the trivial way, we get a
graph I'; which is F-planar in S*. Let I', be the embedding of I in S? as shown in
Figure 2, obtained from I'; by interchanging a crossing in Figure 1. Let e be the
edge shown in the figure. It is easy to see that I', —e and I',/e are isotopic to
I', — e and I, /e respectively, so they are F-planar in S°. One can also isotop I', so
that it lies on the trivial torus. But I', is not F-planar. To see this, one may need
the following fact.

Figure 1
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Figure 2

LEMMA 4.1. Suppose I is a graph in S*, and C is a trivial cycle with respect to
(S3,IN). If I' " E(C) is connected, then the simple disk D bounded by C is unique up
to ambient isotopy fixing I.

Label the vertices of I', as in Figure 2. Denote by C(i,,..., i) the cycle
successively passing through the vertices labeled i, . . ., i. Suppose I', is F-planar.
Then C(1, 2, 3,4) and C(1, 5, 3, 6) should bound simple disks with disjoint interi-
ors. By Lemma 4.1, the disks are unique up to isotopy, so we can take the disk D
bounded by C(1, 2, 3,4) to be the shaded region in Figure 2. Now C(1, 5, 3, 6)
cannot bound a disk with interior disjoint from I';u D, because it has linking
number 1 with some curve in I'yuD — C(1, 5, 3, 6).

REFERENCES

[1] C. GORDON, On primitive sets of loops in the boundary of a handlebody, Topology and its Appl. 27
(1987), 285-299.

[2] M. SCHARLEMANN, Planar graphs, family trees, and braids, preprint.

[3] M. SCHARLEMANN and A. THOMPSON, Detecting unknotted graphs in 3-space, preprint.

[4] Y-Q. Wu, A4 generalization of the handle addition theorem, Proc. Amer. Math. Soc. 114 (1992),
237-242.

Department of Mathematics
University of California
Santa Barbara, CA 93106

Received September 17, 1991



	On planarity of graphs in 3-manifolds.

