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Homology of maximal orders in central simple algebras

MICHAEL LARSEN*

§0. Introduction

Let R be a Dedekind domain whose quotient field K is a local or global field.
Let L/K denote a finite separable extension and @ the integral closure of R in L. It
is known ([3]) that there are (non-canonical) isomorphisms of Hochschild homol-

ogy groups
HHR(0) ~HHR, ,(0) Vn=1, (0.1)

and moreover that HHZ(¢) = 0. These two facts greatly facilitate the computation
of the cyclic homology HCR(0) ([3]).

This paper presents non-commutative analogues of the main results of [3]. In
particular, L is to be replaced by a central simple algebra D over K, while O is taken
to be a maximal R-order in D. Of course, @ is not, in general, uniquely defined by
R and D, but it turns out that the homology of O/R is independent of the choice
of maximal order. We prove that (0.1) remains valid in the non-commutative
context but that the odd Hochschild homology groups vanish.

The first section is devoted to generalities on Hochschild homology. We do not
claim to prove any new result but only to establish notation and give self-contained
proofs of various facts for which we could not find convenient references. The main
results, the periodicity theorem and the vanishing theorem, are proved in §2 where
R is a complete discrete valuation ring with perfect residue field. We construct an
element in Hochschild cohomology such that Yoneda product gives the desired
periodicity. The calculations needed to compute the low-dimensional Hochschild
homology groups are laborious, but the resulting formulae are quite simple. The
globalization is carried out in §3 and is completely standard. The vanishing of odd
Hochschild homology causes the Connes sequence to split into small pieces, so it is
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614 MICHAEL LARSEN
easy to compute cyclic homology, in both the local and the global case, up to

extension. This is explained in §4, where the extension problem is partially solved by
an application of the universal coefficient theorem.

\

§1. Generalities

(1.1) Let R be a commutative ring and 4 an associative, unital flat R-algebra.
Let A°=A ®x A°°, where A is the opposite ring of A. Then 4 has a natural
structure, A4;, of left A°-module and a natural structure, A4,, of right 4°-module.
Hochschild homology is defined as

HH}I} (A) = Tor;;i" (An AI ),
and Hochschild cohomology is defined

HH’;; (A) = Ext’:‘e (A[, A[).

The Yoneda pairing gives natural maps

HH’ (4) x HH% (4) = HHE " " (A) (1.1.1)
and
HHZ ., (4) x HH% (4) - HHR (A4). (1.1.2)

(1.2) There is a natural resolution, known as the standard resolution ([1] IX §6),
of A, as A°-module:

b b b
e A®3 L, 4®2 L4 L0 (1.2.1)

where

n—1

b'(x%® ®x,) =Y (—1)'di(x®  ®x,)
i=0

and

di(x® ®x,) =%@®  ®X;_ 1 QXX ;1 ®X; 4 1 Q" ®x,.
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The complex (1.2.1) is acyclic because
b'(1®a) =a — 1@ b ().

Throughout this paper, 4 is always a projective R-module, so (1.2.1) is always a
projective resolution. There are natural isomorphisms

Ar ®A3A®"§A®”_l
and
Hom . (A®", A) =~ Homg (4%®" 2, A).

Therefore, Hochschild homology is the homology of the complex

'--——b——>A®3 b,A®2 i A , 0
where

b(xo® @ x,) =b'(%® @ x,) +(—1)"X,%Q - ®x,_,.
Similarly, HH* is the cohomology of the complex

0> A - Homg (4, A) > Homg (4®%, A) > Homgz (A4®3, 4) > - -,
where the boundary of the multi-R-linear function f: 4*" > A4 is

O )Xgs -+ o s X)) =X f (X150 ooy Xp) = f(XoXy, X5 -+ 0 5 Xp) +f (X0, X%z, -+ Xn)
— (=D (xgy - - s Xy 1X0)

— (=D x5 - s X 1)%s

(1.3) Let Fe Hom,.(4®"*2, A) represents an element of HH% (4). We define
F, to be the A*linear map sending

X%®  ®@x,, P F(p® - ®x,81)®x, .
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We extend F, to a map of complexes

.,.___,A®n+4____)A®n+3 aA®n+2 0

lpz lpl lpo

@y A®4 —_ A®3 — 5 A4®2 —0
where
Fm(x0®'.'®xn+m+l)=('—1)mnF(x0®.'°®xn®l)®xn+l®”'®xn+m+l'

This diagram commutes because the cocycle relation for HH” implies

FO'x®  ®@X% 4 ) @D =Fb'(x® @, 1®D)+(=D)"%® -~ ®x,.1)
=(=D"Fx® " ®X,1);

therefore,

Fo i(0'(x0® " ®@%, .1 @01 @ ®Ym))
=F 1 0'(6® ®X 4 )@V ® @ Ym)
—(=D)"Fpu_1(x®  ®@x,@b(x, . 1@y ® " " ® V)
=(=D"""FG'x® ®X% 1 ®DN®y®  ®Ym)
—(=D)"F(x®  ®x, @) @b (yo® - - @)
=(=D"™Fx® ®X, 1)@y ® @Y
—F(x® ®@x,@Db' (X, 1 @y ® " @)
=b(Fp(x® " ®X, 1@y Q" - ®Ym))

We conclude that the pairing (1.1.2) is given by
(X ® -~ '®xm+n) foxOf(xl’ R x,,) @ Xy 4 1 ® O X4 ns
where

[y, .., x)=F(1@®x;® - ®x,d1).



Homology of maximal orders 617

(1.4) An element of HH? (A4) is called a Hochschild extension ([5] 25.C). It is
equivalent to an R-split R-algebra extension of 4 by the square-zero ideal I,

0->1-5A4,-5A4-0,

such that 7 is a free A-module of rank 1. To obtain a cocycle representative, choose
any R-linear section ¢ : A — A4,, and set

f(a, b) = c(a)c(b) — c(ab).

In particular, if V is a discrete valuation ring with uniformizer = and residue field
k and W is a V-algebra, we have an extension

0— W/aW — W/n2W — W/aW —0
which gives rise to an element of HHZ (W/nW).
(1.5) Let 4 be an R-algebra and R’ a commutative R-algebra, and let

A,=A ®R R/.
Then

A,®R"“®R’A/gA ®r R @r A QR@QrOR Qp® - @r R’
;(A ®R®RA) ®RR/9

so the universal coefficient spectral sequence says
E>, =Tor® (HHf (4), R") = HH}, | (4).
When R’ is flat over R,
HHY (4") @ HHf (4) ®x R’". (1.5.1)
When R is a discrete valuation ring with unifomizer n and residue field X,
HHY™R (4/n*4) @ HHY (4) ® x R/n*R @ Tor® (HHY_, (4), R/n*R).

PROPOSITION (1.6). If A/R is an Azumaya algebra, then there exists an
invertible R-module M such that

M éfp=0’

R =
HH, (4) {0 otherwise.
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Proof. By [2] 5.1, there exists an integer n € Z>' and a faithfully flat étale
R-algebra R’ such that A" = M,(R’). By Morita equivalence,

, R ifp=0

R A/ - >
HH," (4") {0 otherwise.
By faithful flatness, HHY (4) =0 for p >0. By faithfully flat descent for line
bundles, HH¥ (4) is the module of sections of a line bundle over R, i.e., an
invertible R-module.

COROLLARY (1.7). If R is an integral domain with fraction field K and A is an
R-order in a central simple algebra D|K, then HH[ (A) is a torsion module for p > 0.

Proof. Setting R’ = K, A’ = D, and applying (1.5.1), the result is an immediate
consequence of 1.6.

§2. Discrete valuation rings

(2.1) Let V be a complete discrete valuation ring with a uniformizer n, perfect
residue field &, and fraction field K. Let k’/k be a cyclic extension of degree n > 2,
and let o denote a fixed generator of Gal (k’/k). There exists a unique discrete
valuation ring V”, finite and unramified over V, such that the residue field of V" is
k’ ([6] III Th. 2). If K’ denotes its fraction field, there is a canonical isomorphism
Gal (K'/K) 5 Gal (k’/k); we view ¢ indifferently as an automorphism of k" or of
K’. By [7] IX Prop. 11, there exists a simple algebra D/K such that as K-vector
space, D =~ K'[x]/(x" — =), and the multiplication is given by the rule

(kyx*)(k,x?) =k k3" x1 * %2, (2.1.1)
The reduced trace of an element k € K" is Tr.x(k), while the trace of kx“ is zero for
1<a<n ([7] IX §3 (8)). The (unique) maximal order ¢ in D is the V-span of
expressions vx*, where v € ¥’ and k = 0. There is a natural Z/nZ-grading, Gr* on
O given by

Gr{(0) =x*V'=V'x*, 0<k<n.

PROPOSITION (2.2). With notation as in 2.1,

HHY (0) =V ® (k'[k).
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Proof. Computing with the standard complex, we obtain
HH{Y (0) = 0/[0, 0].

By [6] III Prop. 12, we can choose v, € ¥’ such that V' = Vv,]; in particular, the
(mod =) reduction of v, is a primitive element of the extension k’/k. For 1 <i <n,
v — v, is therefore invertible, so the set of commutators

{[ve, vx'] |0 € V'} = {v(v§ — vo)x' | v € V'} = V'x' = Gri(0). (2.2.1)
Moreover,

{Ix,ox" " |veV}={n@w —v) |veV}
={x € V' | Trgx(x) = 0}n = Gr(0) (2.2.2)
by [6] X Prop. 1 and [6] XII Lemma 3. But every commutator lies in x( and has

reduced trace 0, so every commutator is a sum of an element of (2.2.1) and an
element of (2.2.2). Therefore,

HH{ (0) =~ GrP(0)/{x € V' | Trg,x(x) = 0}=.

As V’[V is unramified, the relative different is trivial, so the restriction of Try. x is
a surjective map from ¥’ to V. The proposition follows immediately.

PROPOSITION (2.3). With notation as in 2.1,
HHY (0) = 0.

Proof. We use the standard complex to compute Hochschild homology. For
elements a, f € O ®, O, we write « ~ f whenever « — f € b(©®3). Thus HHY (0)
consists of ker (0 ®, O — ) modulo the equivalence relation ~. The relation

a®@xb~ax®b + ba® x Va,b e O (2.3.1)

shows that every element of O ®, O is homologous to an element of
ORx+0QV".

The Z/nZ-grading Gr’ on O extends to the standard complex for Hochschild
homology and thus to a grading on Hochschild homology itself. The proposition is
equivalent to the claim that Gr*(HH} (0)) =0 for all k.
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Suppose k # 0. Every a € Grf ker (0 ® , 0 — ) is homologous to an element
a’ € Gr¥ker (0 ®, O — 0) such that

et IRx+ VxRV, veV.
As vg* — v, is invertible, we can set

v

SO

bwx* '@vi®@x —wx* '@ x ®vp) € Wv§ —vewx* " '@x+ 0O RV’
=xk"T@x+0QRQ V.

It follows that a’ is homologous to
a"e(V'x*®V’)nker (0 ® 0 - 0).
As V' = V]vy], and
a®vgb ~avy®b + ba v, Va,b € 0. (2.3.2)

Since y®1=5b(y ®1®1) for all y, this means «” is homologous to v'x*®uv, €
ker (0 ® O — ©) for some v’ € V’. Hence v’x*v, = vyv’'x*, or

v’ (08" — vy)x* =0.

In other words, v’ =0, so a ~ 0.
If « € Grker (0 ®, 0 — 0), we apply (2.3.1) to find a’ ~ « such that

ex"" 'Xx+ V'RV,

for some ve V’. As b(a') =0, v°—v =0, so v € V. But repeated application of
(2.3.1) gives

O~ wRT=wRx"~wx@x"'+x""x
~wxZ@x" TP+ x" T twx @x + X" 'w®x

~ A" TR x +xwx" T 2®x 4+ X" w®x

= TI'Kv/K(W)x"— 1 ®x.
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As V"’ is unramified over V, vx"~!'® x ~ 0. Every element in V' ® V" is a boundary
since by [6] III Prop. 14, HHY (V') = Q},,, is annihilated by the different of V'/V,
which is the unit ideal.

KEY LEMMA (2.4). Let X denote the kernel of b’ : 0®3 — O ® (. Then there exists
a surjective map ¢ : X — O such that M = ker (¢) is a projective left-O¢-module.

Proof. Let of = V’{x} denote the twisted polynomial ring in one variable x
satisfying (2.1.1). Thus A4 is the quotient of &/ by the two-sided ideal (x” — ). By
1.4, the short exact sequence

0— A o J(x" — 1) 2 —s A — 0,

defines an element of HH? (0) represented by the unique V-linear function satisfy-
ing

0 ifa+b<n,
fvxe, wx®) ={ o4 .a+b—n

2.4.1
w%x ifa+b=n, ( )

forallv,we V' and a,b € {0, 1,...,n — 1}. This element gives (by 1.3) the vertical
arrows of the commutative square

b
(9@5 N (9@4

L, ]

0® — 092

The induced map on b’-cokernels, ¢ : X =, is surjective because the map
0®* - 0%? is so; indeed f(x, x"" ') =1.

Every finite D-module is projective, so to prove ker (¢) is projective, it suffices
to prove the kernel of the map ¢ : X/aX =X >0 = 0/n0 is projective as a
left-0¢-module. The advantage of working (mod ) is that " = 0, so the grading of
O®* by total x-degree is actually a Z-grading rather than a Z/nZ-grading. Given a
graded module @, . v M, of finite k-vector spaces, there is an associated Poincaré
polynomial £, dim, (M, )t". Thus, the polynomial associated to @®* is N(¢)*, where

NO)=n+nt+---+m"" ..
The exactness of

0®3 0% -0 -0
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implies that the Poincaré polynomial of X is
N(D)?* = N(@)*+ N@).

Yoneda product with f(x, y) has degree —n, so the polynomial of ker (¢) is
N(1)? — N(1)* + N(t) — N(o)t"

t—1

== N(t)z(N(t) -1~ —)
n

21 2 1
=N(t)2<nt"—‘+nt"-2+---+nt2+n t 4+ nt >
n n

As k’/k is Galois, there is an algebra isomorphism

k@ k'=2k®k'® - @k

n

If I is an irreducible direct summand of &’ ®, k’, we define

This is a projective left ideal of @¢, and its Poincaré polynomial is (1/n)N(f)?. More
generally, if M is a graded 0°-module and m € M is an element of degree k such
that O°m = (¢, then the Poincaré polynomial of O0°m is (1/n)t*N(¢)%. To prove the
lemma, it suffices to prove that ker (@) is a direct sum of free modules and modules

of the form 0%.
Given v € k' with monic minimal polynomial X, q;v’ = 0, we define

0y =Z Zap+q+10p®v®vq-
P q
Substituting r =p + ¢
b'(a)=Y a0 ®1—-1®v +") =0.

Next we define the k-linear operation

* 1 k'O x k[x]®" > O®™
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such that

0 @ ®vy) * (X1 Q- @ X)

=0, XTQu] X2 @u N TIEBQ - @ug T T
By construction,

d;(a * ) = d;(a) * d;(5)
for all i, «, and d. In particular, when m = 3,

b'(a % 6) = dy(a * 0) — d(a * 8) = dy(a) * dy(6) — d, () * d,(J),

so if @ and ¢ lie in ker (b"), so does a * 8. Choose a basis k,, . . ., k, for k’/k, and
let

i— 1
Pij = * (1@)?@1—— Y in_l“’®f®fl)-
=0

Then p, ; e ker (b") for all i and j. Next, let ¢, denote generators of the irreducible
k’'®, k’-submodules of

b -
ker (k' ®,. k' ®. k' — k' ®, k') = ker (¢). (2.4.2)
Irreducible k” ®, k’-modules are identified with k’-factors in &’ ®, k’ and are
therefore of k-dimension n. It follows that the module (2.4.2) breaks up into
n? —n + 1 irreducible pieces. Finally, let «, denote generations of the irreducible
k’ ®, k’-submodules of
ker (k' ®, k' ®, k' —s k'), (2.4.3)

where m denotes the multiplication map a ® b ® ¢ +> abc. The exact sequence of
k’ ® k’-modules

b b
k'® —k'®2—k'—0

can be decomposed into a direct sum of k' ® k’-isotypic exact subcomplexes by
tensoring with the irreducible summands of k' ®k’. In particular, as dy(a;) and
d,(;) lie in ker (b’), we can find elements f; and y,, each annihilated by the full
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maximal ideal annihilating a;, such that

b(B) = do(@);  b(y) = dy ().
Setting
r=a*(1®I®1) ~f*+E®1®1) +7,*(1@1® ),
we have
b'(r)) = do(0) * (F® 1) — dy (@) + (1@ )
—b(B) *(E®1) +b(4) + (18%) =0.

As the k-dimension of (2.4.3) is n® — n, there are n? — 1 generators r,.
We claim that the @°-modules O°p, ; are free, that the modules @°g; and O°r, are
of the form @¢%, and that

ker (¢) = ((—D @ep,._,>®<69 (5%;,)@(6—) (ﬁer,.). (2.4.4)

The two sides have equal Poincaré polynomials, and p,;, ¢;, r; € ker (@), so it
suffices to prove that the factors on the right hand side of (2.4.4) are independent
submodules of the left hand side. Left multiplication by an element of @¢ does not
change the center coordinate of a decomposable tensor a ® b ® c. We can therefore
write @®3 as a sum of free @°-modules:

n—1
03=P M, M=0Q0k3®0.
i=0
Each p,; is the sum of terms of the form- ® k;X'®- € M, and terms of lower
central degree. Since the M,-components are independent over (¢, and since all

gi,r; € My@® M, the p, ; cannot appear in any non-trivial relation with the g, and
the r;. Similarly, the r; can be decomposed into their M, and M, coordinates. If

Z (di,j®ei,j)ai *(1®x®1) =0,
ij
then

izj (di,j ®ezj)ai =0,
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in which case
J

for each i since the a; generate independent submodules of k’®3, As Ann(x;) =
Ann(B;) = Ann(y,),

Z (di,j®e:',,j)ﬁi = Z (di,j®ezj)?i =0.

J J

This implies

(Z di,j ®e,~,j)r,- =0. (2.4.5)
J

/

Since the ¢; have no M, component, in any relation between the ¢; and the r;, the
g; contribution is a sum of terms of the form (2.4.5). Finally, the @¢q; are linearly
independent because @ (k' ® k’)g; can be extended to a decomposition of k’®3
into k’ ® k’-irreducible components. Tensoring over k' ® k” with 0¢, we see that the
(¢q, are independent factors of @®3. The lemma follows.

THEOREM (2.5). With notation as in 2.1,

Vek'k) ifi=0,
HH! (0) =<k’[k if i >0 is even, (2.5.1)
0 if i is odd.
Proof. The case i =0 is Prop. 2.2. Let X = ker (0®*>— ¢ ®?). The short exact
sequence

0O—M—X—0—0
gives rise to a long exact sequence

-+« = Tor% (0,, M) - Tor¢* (0,, X) - Tor$* (0,, 0,) > Tors , (0,, M) >+ -
(2.5.2)

As M is a projective left ¢0¢-module, for n = 1

Tor;* (0,, X) o HH, (0),
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with equality for » > 1. The projective resolution
o 0B S5 0% 5 X 50

implies that

Tor," (0,, X) *HH,/,, (0)
for n 2 1. By Prop. 2.3,

HH! (0) « HHY (0) =0,
and by (2.5.2),

H;, , (0) > HH; (0) (2.5.3)

for n > 1. All that remains is the computation of HHY (0).

To accomplish this, we note first that for all p, HH) (0) is the homology of a
complex of finitely generated V-modules, and therefore finitely generated. By
(1.5.1) and Prop. 1.6,

HH; (0) ® , K ~HHf (0 ®,K) =0,

for all p > 0. Therefore, HH; (®) is a finitely generated torsion module. By (2.5.3),
we may choose j such that n/ annihilates HH} (0), for all p > 0. As M/n/M is a
projective @¢/n/0°-module, we have

HH}™Y (0/n/0)  HH!'™Y (0/n/0).
The universal coefficient formula (1.5.2) implies

v ; Tor (V/a’V, HHY (0)) =k’[k if n=0,
H3Y (0/70) = ; v —HHY '
Tor (V/n’V, HH} (0)) = HH} (0) if n >0.
To prove the theorem, therefore, it suffices to prove that the inclusion (2.5.4) is an
isomorphism. Since k’/k is m-torsion, it suffices to prove this for j = 1.
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Let

n—1n—1

a=3 3 a,%®b; '

i=0j=0
represent a class in HHY (@0). We can lift « to an element

n—~1n—1

d=3 Y 4,x®b ;xe0®O0.

i=0 j=0

As b(x) =0, b(d) is divisible by = = x”. Therefore,

b( Y a,‘,x"@)b,.,jif):o.

1+j<n

Without loss of generality, then, we may assume g, =b,; =0 when i+ <n.
Setting

B= Z ai’i)?i@fn_i@fi@bi‘ijje(D_®4,

i+j=n
we have b(B) =0, so  represents a class in HH% (0). The map HHX (0) - HH (0)

is given by Yoneda product with the (mod =) reduction, f, of the periodicity element
(2.4.1). As

fx, xm=y =1,

p — a, which proves that (2.5.4) is surjective and therefore bijective.

§3. Dedekind domains

(3.1) Let R denote a Dedekind domain whose field of fractions, K is a global
field, i.e., a finite extension of Q or a finitely generated extension of a finite field of
transcendence degree 1. If M is a module over R and g a maximal ideal of R, we
write M, for the completion of the module M with respect to the ideal . Let D
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denote a central simple algebra over K. Then [D : K] = n? for some n e Z>' ([7]
IX Prop. 3 Cor. 3), and for all but a finite set of primes g,

D,=M,K,)

([7] XI Th. 1). In general D, = M, (E,), where E,/K,, is a division of dimension
e, and e, f, =n ([7] XI §1). The algebra D is said to ramify when e, > 1, and we
write Ram (D/R) for the set of ramifying primes.

(3.2) Let O be an order in D, i.e., a subring of D such that ¢, is a compact
open subgroup of D, for all maximal ideals g of R. Then ¢, is a maximal
compact subring of D, for all but finitely many g ([7] XI Th. 1). Every order is
contained in a maximal order ¢’ such that O, is a maximal compact subring of
D,, for all p; this is proved in the case of number fields K in [7] XI Prop. 4, but
the argument also works for function fields. We treat only the case that @ is a
maximal order.

(3.3) The division algebras over a local field K, are classified by their invari-
ants inv(D,,) € Br(K,,) = Q/Z ([7] XII Th. 1), where the dimension of the algebra
is the square of the denominator of inv(D,). Moreover, the algebra with invariant
a/n, is generated over K, by the unramified extension K, of K, of degree n and
an element x satisfying (2.1.1), where o is the a'™™ power of the Frobenius element
in Gal (K,/K,). The maximal order ¢, of D, is the one described in 2.1. More
generally, the maximal orders of M,(D,) are all of the form M, (0,) ([7] X Th.

1).

THEOREM (3.4). If A is a central simple algebra over K, and O is a maximal
order of A with respect to R, then

RO®D, cramwp R/@)*~" ifi=0,
HHF(0) 2@, c Ram (/r) (R/0)0 ™! if i >0 is even,
0 if i is odd.

Proof. As 0 is a finite R-module, the Hochschild homology modules are finite
over R. Assume i > 0. Applying (1.5.1) for R"=K and Prop. 1.6, we see that
HHZ(0) is torsion. From the structure theorem for modules over Dedekind
domains, we deduce

HHF (0) @ @ HH?» (0,). (3.4.1)
3]
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Now, O, is maximal, so by Morita equivalence,
HHf» (0,,) = HHf» (M, ) = HH}" (0},),

where O, is the maximal order of a division algebra of degree e?, over K. By Th.
2.5,

0 if i 1s odd,

HHf» (07,) = {(R/go)"*-’/(R/&O) if i 1s even.

In particular, the primes @ such that e, = 1 contribute nothing to the sum (3.4.1),
so they may be omitted from the summation. This completes the proof for i > 0.

For i =0, we need to compute O/[0, O]. We have already noted that commuta-
tors in a simple algebra have reduced trace zero. If O, is defined as above, we have
already shown that the reduced trace map

Trd: 0, - R,
is surjective. It follows that
Trd: 0, = Mfw((op) -0,

is surjective. Since Trd: @ — R is R-linear, its image is an ideal, and by the
compatibility of trace with completion, we see that the image is in fact all of R.
Therefore, R is a quotient of HHE (), so there exists an R-splitting HHY (0) ~
R® M. As HHf (4) = K, M is a finite torsion module, so

M = @ HHE» (0,,)/R,,.
o

The theorem follows from Prop. 2.2.

§4. Cyclic homology

(4.1) Let R be a ring and A an associative R-algebra. We define rotation
operator p: A @z - ®rA—>A4A @z - g A by setting

PX® - ®x,) =X, XX @ - Qx,_,.
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The cyclic homology HCZ (A4) is defined as the homology of Tot(X ), where X _ is
the Tsygan double complex ([4] §1):

N T
0e—— A®% —— A®%  A®4 . 4®4 |

N T
00— A®3 —— A®3  A®3 A®3 <

l b —b J b —b
v v
0

where

_1—(=p"*!
1__(__1)n+1p°

T=1-(=1)"""; N

We use the first spectral sequence of this double complex, i.e., the one in which the
vertical differential is applied first, known in this context as the Connes spectral
sequence. As the b’-columns are exact, the E' term of this spectral sequence is of
the form

HH, (A) «0~HH,(4) « 0« --
HH,; (4) « 0~ HH; (4) « 0« --.
HH, (4) «0<HH, (4) « 0« --
HH, (4) «0<HH, (4) « 0« ---
HH, (4) «0<~HH,(4) « 0« ---

Thus the only non-zero differentials d, for r > 1 are the even differentials.
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(4.2) Let V, 0, k, and k’ be defined as in §2. By (2.5.1), the Connes long exact
sequence breaks up into short exact sequences

0—HH;, (0) »HC}, (0) > HHY, _, (0) >0
and sequences 0 - HC}, _ , (0) - 0. Thus,

HCY (0) =0  Vr odd, (4.2.1)
while for r even, HC! (0) has a filtration whose quotients are

Vek'|k),k'|k,...,k'lk.
O KK, kK, Kk, 422

r/2

We cannot fully settle the extension problem, but considerable light is cast on the
question by the tensoring with V/aV.

(4.3) Consider the Connes spectral sequence for HC, (0/k). We have already
seen that

E! =E? = HHI:; ((D—) for p even,
pa TR0 for p odd.

The universal coefficient formula (1.5.2) implies

k’ for p =0,
k’lk for p>0.

HH} (0) =~ {
By herizontal periodicity, the differential

.2 2
d2 : Ep,q 2Ly _24+1

depends only on ¢ and on the parity of p, and of course it is non-trivial only for p
even. For v € k’, let

o, =" 'RIREFT'RXIQ X" '®x e 0%,
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where, as usual, n = [k’ : k]. Then «, represents an element of E3,,_, =HH% _, (0).
Its image under d, is represented by

T(—-1®N(a,)) =p(1®N(a,)) — 1 ® N(a,).

The periodicity element f obtained by reducing (2.4.1) (mod 7) defines a sequence
of morphisms

HH%, (0) > HH%, _, (0) 5 - - -5 HH (0) o HHE (0) =k'.

Note that HH, « HH,, consists of the set of trace 0 elements of k’. The composition
of these morphisms is given by the map

£ 2 =, Q2r-
F:Yx0@ - @x Y a%f(@",a?) - @, af").
) i

In particular, any tensor monomial with x{) ek’ for some j > 0, maps to zero.
Thus

F(p(1® N(a,))) =0.
From this we deduce that

F(T(-1®N(=,))) = —F(1® N(a,))
=-F(1®a,) +F(1®p,)) -+ F1®p*~\(a,))

=—0+4+0'—v4+0°— - —v4+0"=r’ —0).

As every trace 0 element of k’ is of the form v? — v (cf. 2.2), if r is invertible, d,
maps E3,,_, onto E}, =HHS, (0). By the horizontal symmetry of the Tsygan
complex, d, maps E3, . ,,, _, onto E3,,,. Thus, E3,, =0 for 0 < g <char(k) and
for all g if char(k) = 0. We conclude that if rechar(k) or if char(k) =0,

dim, HC,, (0 /k) < dim, E3,, =n. (4.3.1)
PROPOSITION (4.4). If char(k) =0 or r < char(k), then as a V-module,

HCYL(O) = VW /" +'V)"~ 1. (4.4.1)
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Proof. Applying the universal coefficient theorem to the total Tsygan complex
for O/V, by (4.2.1),

HC,, (0/k) @ HC}, (0)®, k. (4.4.2)

The structure theorem for finitely generated modules over discrete valuation rings
says that as V-module,

HCL (O)=V*® @ V/nbV.
i=1
By (42.2), a=1 and Z,;b,=(n — 1) (r + 1). Moreover, b, <r + 1 because V/nbV
has a filtration with r + 1 quotients, each annihilated by n. By (4.3.1) and (4.4.2),
14+m<n, but HCJ (0) = V@k"~ ' is a quotient of HC). (0), so m=n —1.
Together these facts imply (4.4.1).

PROPOSITION (4.5). If R is a Dedekind domain whose field of fractions K is a
global field and O is a maximal order of a central simple algebra D over K, then

R®M ifris even,
R -

HC (O = {0 if r is odd,
where M is a finite module of order

o] ee v
% € Ram (D/R)

If, moreover, r[2 is less than the residue characteristic of every prime in Ram (D/R),
then

M~ @ (R/pHw".

£ € Ram (D/R)

Proof. As cyclic homology groups are finitely generated, they are of the form
P ® M, where P is projective and M is finite. The Chinese remainder theorem says
that M = @D o M,. We apply the universal coefficient theorem to completions
R, /R. Equation (4.2.1) implies the vanishing of odd cyclic homology. By 4.2 and
Th. 3.4, P has rank 1 and M has the given order. Prof. 4.4. gives M explicitly for
r/2 less than for the residue characteristic of every g € Ram (D/R). To see that P
is free we note that HCX (0) = HHE (0) contains R as a direct factor- (Th. 3.4). As
HC, is a factor of HC, for even r, this implies that P is free.
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