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On the minimal surfaces of Riemann

ERrIC TOUBIANA

§1. Introduction

Let y;,i =1, 2 be plane Jordan curves in horizontal planes P,,i =1, 2, P, # P,,
we know that under conditions on y;, for example y, not too far from y,, y, and
y, bound a least area minimal annulus M between P, and P,. Meeks and White
[7] were able to prove that when the y, are convex there are at most two minimal
annuli bounded by y, Uy,. Assuming that the y, are convex, Shiffman [10] proved
that if M is a minimal annulus bounded by y, Uy, then for each horizontal plane
P between P, and P,, the intersection P M is again a convex Jordan curve,
furthermore if y, and y, are circles, then P n M is also a circle.

In view of this last result it is natural to ask what happens when two straight
lines replace the Jordan curves. Namely, let D,,i=1,2, be straight lines in
horizontal planes P, i=1,2, P, # P,. Let us assume that D, makes an angle 6
with D,, 0 € [0, n]. Now let M be a minimal annulus between P, and P, bounded
by D,uD,. If P is a horizontal plane between P, and P,, what can we say about
the intersection P n M?

For example, if § =0 i.e. D, and D, are parallel, Riemann [9] has constructed
a minimal embedded annulus S between P, and P, bounded by D, u D,. Further-
more the intersection with any horizontal plane is a circle, see [3] for a detailed
description of Riemann’s examples.

In the same paper [3], Hoffman, Karcher and Rosenberg proved that if D, and
D, are parallel, i.e. 8 =0, then the only minimal properly embedded annulus
between P, and P,, bounded by D, u D, is precisely Riemann’s example.

Here we shall prove that the case 6 # 0 does not occur, namely we show the
following.

THEOREM 1. Let D;,i =1, 2 be straight lines in horizontal planes P;, i =1, 2,
P, # P,, let 0 €[0, n] be the angle that D, makes with D,. Let us assume there
exists a minimal properly embedded annulus M between P, and P, bounded by
D,uD,.

Then necessarily 0 =0 and M is Riemann’s example S.
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Let us assume now 0 =0, i.e. D, and D, parallel. We can generalize Riemann’s

examples to yield a family of minimal surfaces S, with the following properties:

(1) S, =S where S is Riemann’s example.

(2) For every integer k, k =0, S, is a minimal immersed annulus between P, and
P,, bounded by D, v D, such that after reflection about the lines D,, D,, . ..
we get a complete minimal surface in R*, which we call again S, . Furthermore
Sy is invariant under the translation X — X + 2u where u is the vector
orthogonal to D, translating D, to D,. Also each end of S, in R® is a flat
horizontal end, i.e. an end asymptotic to a horizontal plane, and the projection
of every end over any horizontal plane is a (4k + 1) to 1 map.

The following gives the Weierstrass representation of this family.

THEOREM 2. Let T be a rectangular torus, ie. T?=C|I where
I'={2w,p +2w3q,p,g€Z, v, e R}, w;€iR}}.

Then for every k, k € N the following data (g,,n,) is the Weierstrass representa-
tion of the surface S, described above.

g = M[P(2) — P(wy)]* *,

_ dz _ dz
= 2@~ MP@) — Plo)*

where w,=; + oy, z € T* — {0, w,}, A =iy/(—=2/P"(,))**" and P is the P-
Sfunction of Weierstrass.

We prove Theorems 1 and 2 in §2 and §3 respectively.

§2. Proof of Theorem 1

We are going to use the Weierstrass representation for a minimal surface, see
Lawson [5] p. 113, and the reflection principle, namely if a minimal surface in R?
has a piece y of a straight line in its boundary then we can extend minimally this
surface along y by the reflection about the line defined by 7, see [5] p. 82.

Let us take the notation of Theorem 1. By the reflection principle we can extend
M to a complete properly embedded minimal surface in R?, let us call M again this
surface. As the composition of the two reflections about D, and D, is a screw-mo-
tion S,g, i.6. the 20-rotation with respect to the x;-axis composed with a vertical
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translation, we get that M is globally invariant by the screw-motion S,,:
S(M) = M.

Then we get a quotient surface M/s, in R?/ s,9- BY construction this surface is
topologically a two-punctured torus properly and minimally embedded in R’/s_ .
By a theorem of Meeks and Rosenberg [6] we deduce that M/, has finite total
curvature. From this we get that each end of M is conformally a punctured disc, see
[5] p. 130. At last we deduce that the ends of M are parallel, flat, embedded and
also the Gauss map g of M has order two at each end (this last claim comes from
the fact that if E, is the end of M passing through the straight line D, then, by
construction, E, — P, has two connected components). Subsequently we assume
that D, is the x,-axis in the plane P, = {x; = 0}.

LEMMA 1. The extended complete minimal surface M in R? is parameterized by
C=C—(I'u(zyg+I)) where:

I'={2w,-p+2ni-q,p,qeZ, v, eR}},

Zoew|+y7zi, Ogysl.

Furthermore if X is the minimal immersion of C onto M < R®, X must satisfy:
— X sends the vertical lines {Re (z) =c,c #kw,,k € Z} to horizontal Jordan
curves in R3.
— X sends the vertical lines {Re (z) = kw,, k € Z} to horizontal straight lines in R?
and particularly X sends {Re (z) = 0} to the x,-axis D, and {Re (z) = w,} to D,.
At last we have:

VzeC, X(z+2mi)=X(2), (nH
X(Q2w, —2) = Sp,[X(2), (2)
X(z +2m,) = S[X(2)), (3)

where Sy, is the reflection about D, and Sy, = Sp, ° Sp,.

Proof of Lemma 1. Let M, be the piece of M bounded by D,u D, and let M,
be the reflection of M, about D,, i.e. M, = S,,(M,). Let D; be S,,(D,), so that M,
is bounded by D, and D;.

By construction M’ =M, UM, is homeomorphic to a one-punctured planar
annulus 4 bounded by two Jordan curves y,, y; each one with a point p;,i =1,3
removed.
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Let Z be the minimal immersion of 4 onto M’, let 4 have the conformal
structure induced by Z. As each end of M is conformally a one-punctured disc we
deduce that A4 is conformally a one-punctured annulus bounded by two Jordan
curves y,, y; each one with a point p,, i = 1, 3 removed.

Assume that Z(y;,) =D,;,i=1,3. Z sends a neighbourhood of p to the end
passing through the line D,. Assume that D, belongs to the plane P,=
{x3= ¢, ¢ > 0}. Then D, belongs to the horizontal plane P, = {x; =2c¢} (recall that
P, = {x;=0}).

Let Z, be the third coordinate function of Z, Z; is a harmonic function. By
construction of M, the line D, is the only part of M in the plane P,, that is:

MnP,=D,,
as Z5(y) =0 and Z,(y;) = 2¢, we deduced that {Z;'(c) up} is an embedded closed
curve in the interior of 4, and by the maximum principle applied to the function
Z,, this curve must be connected, so that {Z;'(c) up} is a Jordan curve y, in the
interior of A.

Now let a be a real number with a # ¢ and 0 < a < 2¢, again by the maximum
principle we get that Z; '(«) is a Jordan curve y of A. Hence we have a foliation
(7:)1 < i< 3 of A with Jordan curves y,, so that Z, is constant over each curve y;, i.e.:

Vie([l,3], Zi(y,) =c with: 0<¢;<2¢c and ¢, =0;c¢,=c¢;c;=2c.

Let Z* be a harmonic conjugate of Z; over A, we have locally:
Z3(2) =J *dZs,
where a is a path between a base point z, and z, and *dZ, is defined by:

*dZ3=7dy-———dx, z=x+iy.
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It can happen that Z% is not globally defined on 4, i.e. if y is any Jordan curve
in A generating IT,(A), let a be the real number defined by:

a =J *xdZ .
Y

Then Z¥% is well defined on A if and only if @ = 0. In case a # 0 let us consider the
function:

2
F(z) = exp [—5— (Z5(2) + izg"(z))]-

In case a =0 we put:

F(z) = exp [Z;(2) +iZ%(2)],
in any case F is a well defined map of 4 into C, F maps the Jordan curves {y;}, <<
to concentric circles of C: {|ju|=exp[(2IT/a)c;] or exp[c;] depending on the
expression of F}. F maps A on an annulus B of C bounded by two concentric circles

C,, C; with

Fp;)=C, 1<i<3.

It is easy to see that Fis a n-covering map of A onto B in C, so after composing
F with the nth root map, we can assume that F is an embedding of 4 onto B.
Let us call Y the composed map Z o F~!,

Y=2Zo-F-!

SR &
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we clearly have Y(C;) = D,, i =1, 2, 3 so by the reflection principle if I~ denotes the
reflection in C about a circle C we have:

Cy=1c,(C)) (because Y(C;) = D3 =S,,(Dy))

and then F(P;) = I,(F(P,)).

Now by reflection principle we extend Y to a minimal immersion of C — E onto
M in R3, where E is the infinite discrete set of C obtained by taking F(P,), F(P)
and all the successive images of those points by the reflections about the circles
CI’C?.’IC](CZ)’ ICZ(CI)"' .

Then the exponential map z —-u =exp(z) of C sends the vertical lines
{Re (z) =a} of the z-complex plane on the concentric circles {|u|=e*} of the
u-complex plane.

(C, 2) :—» (C, u

l

Up to a homothety of the u-plane we can assume that C, is the circle of radius
one. So that if we call X the composed map: X = Y o exp, X sends the imaginary axis
{Re (z) =0} to D, in R®. Furthermore up to a rotation in the u-plane, we can assume
that F(p,) =1, so that exp (0) = F(p,) = 1. Let denote z, the inverse image, by the
exponential map, of F(p) with 0 <Im z, < 2n, and w, the real part of z,.

wl == Re (Zo).

Then X sends the line {Re (z) = w,} to the horizontal line D, in R3.
It is clear that the inverse image of E by the exponential map is just I' U(zo + I'),
with

I' ={2w,p + 2niq, p,q € Z}.

Furthermore by construction of Y and by the geometric properties of M in R?
we must have:

VzeC=C—-Tu(zg+ 1)), X(z+2mi)=X(), (D

X(Q2w, — 2) = S5p,[X(2)], (2)

X(4w, - 2) = S, [X(2)]. (2)’
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(1) comes from the fact that X = Y o exp, and (2) (resp. (2)’) comes from the fact
that M is invariant by the reflection about D, (resp. D).
So that combining (2) and (2)” we have:

VzeC, X(z+42w,) = 8[X(2)] (3)

Finally considering the map z - —z of the z-plane keeping fixed the point 0,
and because of (1) we can assume that:

0<Re(zy) and Im(zy) =ym, 0<y<l.

Remarks

(1) From Lemma 1 we see that X induces a minimal embedding of C/,,;z onto
M in R’ and a minimal embedding of 77 —{0,2,} = C/r,¢,+r ONto Mg  in
R?Sza‘

(2) Until now we don’t know if w, is bigger or not than =, so from now we
assume 7 bigger than w,, the rest of the proof will not be affected. '

Let w, = in, so that the lattice I is:

I'={2w,p + 2niq, p, q € Z}.

LEMMA 2. With the hypothesis of Theorem 1 we have 68 = 0 and the Weierstrass
representation of the minimal immersion X of C in R? in Lemma 1 is:

VzeC, g(z) =AP(z) — P(,)],

_ dz _ dz
T gl2)  AP@) — P(w,)]’

n

where P is the P-function of Weierstrass associated to the torus T?=C|I,
wz = w, + w3 and Iq. == i-\/ —2/P”(w2) € iR.

Proof of Lemma 2. We are going to use some basic facts about the ¢ and {
functions associated with the P-function of Weierstrass (we recall these facts in the
Appendix).

Let us call (®,, @,, ?;) the coordinate forms of X, i.e.

X(2) = (X, (2), Xo(2), X(2)) = Re J (@), 8, )
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with z, a base point in C and:

1

i
®,=-n(l—g?; ¢2=‘2"1(1+82); Dy =1g.

N

As the third coordinate function Xj is constant on vertical lines {Re (z) = ¢} we
can assume ®; =1 and then n = dz/g(z).

As M5, has two flat horizontal ends parameterized by 0 and z, (with
Re (zy) = w,, see Lemma 1), we can assume that

g(0) =00 and g(z) =0,

also g is a 2 to 1 map near each end.

Furthermore on a fundamental domain of 72 in C there is no other point where
g is vertical, if not, up to a rotation in R>, another such point would be an n-pole
of g, n > 1, but this point is a regular point of M, so it must be a 2n-zero of n and
then it is an n-pole of @, =gn, but &, =1 as we saw before.

As g is the Gauss map of M, up to the stereographic projection of S? to
Cu{o}, by the geometric properties of M in R?, g must satisfy:

5z +20,) = g(2), (1)
VzeC < gQw, —3) = —e?Pg(2), 2)
g(z + 2w,) = e*%g(2). 3)

"

Those properties (1), (2), (3) of g come from respectively the properties (1), (2), (3)
of X established in Lemma 1.

From (3) we deduce that the map (g’/g)(z) is well defined on the torus 7% = C/,.
Furthermore (g’/g)(z) is an elliptic function on 72 and has a single pole at a point
z in T? if and only if z is a pole or a zero of g, and (g’/g)(z) has no other pole on
T?. From what we saw before we see that (g’/g)(z) has two single poles on 772, so
it is an elliptic function of degree two on T2 with a single pole at 0 and z,. The most
general form of such a function is:

g () - GP@ +a+bPE)
g P(2) = P(zo)

a,,ay,beC

with a, P(z,) + a, = bP’(z,) because —z, is not a pole of (g’/g)(2).
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From (2) we get that

4

Vz e C, 2w,——z‘=z=>g§(z)eiR.

So (g’/g)(z) must have purely imaginary values on the line {Re (z) =w,} in C.

But as Re (zy) = w,, P(z,) € R and then P(z) — P(z,) has real values on the line

{Re (z) = w,} also P’(z) has purely imaginary values on this line, so we have:
VyeR, a,P(w,+yw;)+ay+bP'(w, + yw;) €iR.

For y =0 and y =1 we deduce (as P'(w,) =0 = P'(w, + w3))

a,P(w,) + ay€ iR,

a; P(Cl)z) -+ dg € iR,

as P(w,) and P(w,) are two distinct real numbers, we get that ¢, and a, are purely
imaginary numbers, a,, g, € iR, so that:

VyeR, bP'(w,+ yw;)€iR
and then b is a real number:
a,,a,€iR, bekR
Now let us look for g, we have:

g a, P(zy) + a, P'(2)
Vz eC, *E (@) =a + P(z) — P(z,) +o P(z) — P(zo)

We want to show that z, = w,. Let us suppose now that z, # w,, i = 1, 2, that is:
Zo = W) + yws, O<y<l1.
As P’(z,) #0 we have

| 1
P(z) — P(z,) P'(zo)

[z —2z) — Lz +_Zo) + 2{(z)]
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as a; P(zy) + a, = bP’(z,) we get:

¢ o __P@
g(z)—-a1+2C(Zo)+b|:C(Z Z) C(Z“O“P(z)—P(zo)]

and so

VzeC, g(z)=Aelm+2iGolk [a(z_—go_) (P(z) — P(ZO))]b
o(z + zo)

with A €C,a,€iR,b eR.
But g must have a double pole at 0 and a double zero at z,, now we remark that
the function in brackets (6(z — z,)/0(z + z9))(P(z) — P(z,)), has the same zeros and

poles, so we must have b =1, so:

VzeC, g(z)=Aet H (P(z) — P(z))

where, A € C, 4 = a, + 2{(z,).
From the property ( #) of the o-function, see the Appendix, we have:

VzeC, g(z+2w,) =e*@it-%mzng(z), =123,
from conditions (1) and (3) on g we get:

2w,A —4n,2zy = 2i0 + 2pmi, p€eZ,
2wy A — 4n5zy = 2qmi, qgel

and then
20
zo=2¢(0) = ~on W3 — pW3 + q, .

By considering the real part and the imaginary part of z,, as we know that
Re (z,) = w;, and 0 <Im (z,) < —iw; we have g =1 and p = —1, so:

20(0) = w0, + (1 -—%w3>, 0 €0, 7]
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and
20,4 = 4n,2,(0) + 2i0 — 2mi. (%)

On the other hand as the map X is well defined on C we must have:
vy € I1,(C), Ref (@), D,, P;) =0.

Y
In particular if y is a small circle around 0, we must have:

RCJ (¢]3 ¢2) = 09
¥

that is

Jn=i ng’
Y Y

and as n = dz/g(z) then:

_— 1
—2n Re s(g, 0) =2n Re s(é , O) =0 (because 0 is a zero of g)

and so we must have
Re s(g, 0) =0.
A computation shows that:
Res(g, 0) = —A(4 — 24;(20)).
So we get that 4 = 2{(z,). In view of (*) we have
20,{(z0(0)) = 21,2(0) + i60 — im. (T)

Let A(0) be the function on [0, n] defined by:

V0 [0, n), h(B) =—:_—[2w,1,'(zo(0)) —2n,2,(0) — i + inm).



On the minimal surfaces of Riemann 557
As T? is a rectangular torus we have:
Vy e R, Re ({(w, + yw;)) =n ={(w),
and then:
VO e[0,n], Re[l(zo(0)] =n;

we deduce that A(0) is a real-valued function.
Now let us look for solutions 6 of (T'), i.e. zeros of the A-function, we have:

HO) == (20, {(@2) — 20,0, + i)

1 .
=7 20,1, — 21,0, + 7i]
=0 by Legendre relation, (see the Appendix)

and
1 1
h(n) = 7[2601((601) —2n,w,] =‘;[2w1’11 —2n,w,] =0.

So 0 and = are solutions of (7). Let us show there is no other solution in [0, x].
Suppose there is another solution 8 in ]0, n[, then by Role’s theorem the function
h’(0) would have at least two distinct zeros in ]0, [, but we have

2w, W,
n

h(6) = % [ P(z,(8)) + 2 "‘:3] .

zo(0) is a strictly monotone function of 8 with values in L = {w, + yw;,0 <y <1}.
Furthermore P is a strictly monotone and real-valued function on L. We deduce
that A’(0) is a strictly monotone function on [0, 7] and then 4’(0) cannot have two
zeros on ]0, n[.

So the only solutions of (T) are # =0 and 6 = n, but we then get z, = w, or

zo=w,. Let us show that z, =, does not work. For that let us assume that
zo=w,. Then (g’/g)(z) must have a single pole at 0 and w,, so:

g . _aP(2)+ay+bP(2)
e 9T R Pw)

a,,a,,beC,
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with: a, P(w,) + a, =0, we deduce that:

P'(2)

g\
g D=t e Py

As before we must have a, € iR and b € R, furthermore:

VzeC, g(z)=21e[P(z) — P(w,)]°.

As g must have a double pole at 0 and a double zero at w, we deduce b =1, and

VzeC, g(z) =21e%[P(z) — P(w,)], AeC, a eiR

but as we must have g(z + 2w;) = g(z), we deduce that a, - 2w; = 27nig, q € Z and

so a, =0 because a, € iR, at last we have:

8(z) = A(P(z) — P(w,)), 4€C,

As we have (property (1) of Lemma 1 with w; = in)
VzeC, X(z+22w;)=X(2)

we deduce that Re j'f;‘l/fz* 23 (¢, d,) =0, and then

/2 + 2w3 wy/2 + 2w,
- 2
j ﬂ*J‘ ng- -
wy/2 /2

So
f mETR 42 _r f T P@) - Py dz
w112 P(z) — P(w,) /2
as we have:
1 2

PG) — P(@,) P'(w)

(Pz —w,) — P(w,)), and ('=-—P

(4)
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we conclude:

= = e (1, + 03 P@) = — 20K, + 0, P@) 4
w,)

and then: (as 75, w; € iR and P(w,) € R)

2

b
P'(w,)

(3)

but as the P-function satisfies:
P?(2) =4(P(2) — e,)(P(z) — e;)(P(z) —e3), e,=Plw;), i=1273
with e, e,, e; real numbers, e, + e, + e; =0, e; < e, < e,, we deduce:
P'(w,) =2(3e?+ e e, + €65+ e,e5)

= 4(31 + %)(e, —e;) =2(e; —ey)(e; —e3)

and then P”(w,) is a positive number (as e, > e, and e, >e;) so (5) cannot be
satisfied, and z, # w,. _
The only case remaining is z, = w, = w, + w5, as before we have:

8(z) = A(P(z) — P(w,)),
_ 4z
"= 20

and the condition (5) becomes

-2
P’ (w,)

"=
AL =

but now we have

P"(w,) = 2(3e3 + e e, + eje3 + e€3)
=2(e; + 2e3)(2e, + e;) = 2(e; — ey )(e; —e,)

and P"(w,) is a negative number because e; > e, and e; <e,.
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At last as we assume that X sends the line {Re (z) =0} to the x,-axis of R®, g
must have purely imaginary values on the line {Re (z) = 0}, so 4 must be in iR and
we conclude:

-2
A=ti [
NPy

and without loss of generality we can assume

-2
A=1i € iR.
\ P'(w,)

This concludes the proof of Lemma 2.
Remark. A computation shows that the minimal surface given by the data (g, #)
in Lemma 2 is invariant by the u-translation where u is given by:

w3/2 + 2w,
U=RCJ (¢19¢2’ ¢3)

w3/2

-2
=1{0, — 2n, +e,), 2w, ).
( P (602)( M 2) x)

LEMMA 3. The data (g, n) given in Lemma 2 is the Weierstrass representation
of Riemann’s example.

Proof. Riemann [9] constructed for every rectangular torus an embedded mini-
mal annulus bounded by two parallel horizontal straight lines such that every
intersection with any horizontal plane is a circle. Inversely we just saw in Lemmas
1 and 2 that if such a surface exists then its Weierstrass representation is necessarily
the one given in Lemma 2; this concludes the proof of lemma 3 and the proof of
Theorem 1.

Remarks

(1) In [3], Hoffman, Karcher and Rosenberg gave an explicit proof that each
horizontal intersection of the surface defined by the data (g, n) of Lemma 2 is a
circle.

(2) Darboux [1] gave explicitly the equations of Riemann’s examples in terms
of a parameter k, 0 < k <1 associated to a rectangular torus 77 (that is for every
rectangular torus we can associate a real number k,0 < k <1 and conversely for
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each such number there is a corresponding rectangular torus) and the Jacobi
function associated to 72. For more details about these concepts see Gerretsen and
Sansone [2] p. 286.

(3) In [11] Appendix C we gave the following Weierstrass representation for
Riemann’s examples using the equations given by Darboux, see Remark 2 above).
Following the notations of [11], we set 2K’ = w,, 2iK = w;, 2K’ + 2iK = w, and we
use the variable z instead of (z — K’) in [11]. Let I' denote the lattice generated by
(2w,, 2w,) = (4K’, 4iK) and let P stand for the Weierstrass P-function on the torus
C/T'. Set

ke 1
$O =Y R - Plon)”

2 k' dz
’11=E(P(2)“P(w2))d2=—2—§~(;~).

We want to show that the data (g,, n,) defines the same surface as the data

given in Lemma 2, up to a rigid motion of R3. This will give a new proof of Lemma
3.
To see this recall that (see again [11] p. 60):

r

K24+ k?=1: h2=zz"z3; k, k' [0, 1],

17— €3
A 1 /. . 1 (*)
e,—e3=Z since K’ = hw, w1thh=§.

We have (since 1/(P(z) — P(w,)) = (2/P"(w,))(P(z — w,) — P(w,)):

/

2P (@) (P(z — w,) — P(w,)),

g(z) =

but again we can make a change of variable and put z instead of (z — w,), so:

kk’
£(2) = 2P (@) (P(2) — P(@,))-

Using (*) and since P"(w,) = 2(e; — e,)(e, — e,) a simple computation shows that:

kk' [ =2
2P"(w,) P"(w,)
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So we have:
-2
81() = = [ (PE) = P@y)
b,
_K ds
" 2@

.

Finally the 37/2 rotation about the x;-axis in R* applied to the surface defined by
(g1, 1) gives the following data for the rotated surface:

) -2
g:(2) =i | Pay) (P(2) — Kw,)),

K i
2 g,(2) ’

r

N>

~

that is:

8:(2) = g(2),
_K
’12 - 2 ?’,

where (g, ) is the data given in Lemma 2. Then (g,, n,) defines the same surface as
(g, n) up to the k’/2 homothety in R3, and so the date (g, n) given in Lemma 2 defines
Riemann’s examples.

(4) Infactin Lemmas 1 and 2 we just need M/, to be an immersed two-punctured
torus in R?/_, with finite total curvature and two embedded planar ends. That is we
can remove the hypothesis “M is properly embedded” by “M/s , has finite total
curvature and embedded planar ends”.

§3. Proof of Theorem 2

To show that the data (g,, 1, ) defines an immersed mineral surface in R*/, we just
need to verify the period conditions, that is if y and u are the paths on 72 defined by:

w0 == 2wy, te0,1],

u(t) = 2w, +5§3, t €0, 1],
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it is enough to show that:

Rej (®,, ],, P;) =(0, 0, 0), (1)

where:

n N
o ="2(1—gd),  ®=i(l+gd), Pi=ngu

This claim holds since the forms &,,i=1,2,3 have no residue (because the
P-function of Weierstrass is an even function). Let us remark that if the conditions
(1) are satisfied then the forms (®,, @,, ®;) must have periods on the path u, that
1s:

Re J (¢I7 ¢2’ ¢3) # (Os 0! 0),
m

otherwise the data (g, n,) defines an immersed minimal surface with finite total
curvature and two parallel flat ends in R3 but the “Half space theorem” of
Hoffman and Meeks [4] shows this situation is impossible.

Let us assume for a while that (1) is satisfied. Let 7 be the map on T2 defined
by:

VzeT? I(z)=-—=

Let us remark that, as P”(w,) is a negative real number (see the proof of Lemma
2 in §2), 4, € iR. We deduce that:

Vz e T?, g(I(2)) = A[P(—2) — P(w,)]**!

= —gi(2).
Then:
dz dz
I e —1 == n )
T R
so that:

I*(¢,)=5,; I*(¢2)= “52; I*(¢3)= "‘63-
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Calling X, the minimal immersion defined, up to a translation in R’ by
(k> i), we deduce that:

VzeT?—{0,0,}, X ((2)) =S [Xc(2)],

where S, is the reflection about the x,-axis. This shows that X, sends the line C,
defined by:

C, (1) = 2tws, te]0, 1]

to D, which is the x,-axis in the horizontal plane P, = {x; = 0}.
In the same way if J is the map on T? defined by:

VzeT? J@)=2w, —3Z,
we can show that:
VzeT?— {0, w,}, X(J(2)) = S,[X.(2)],

where S, is the reflection about D,, a straight line parallel to D, in a horizontal
plane P,, P, distinct from P,. Then X, sends the line C, of T? on D, in R* where

1
G (1) = ) + 2tws, tel0,1], ¢ 9&5.

Let

A={zeT?’/0<Re(?) w,, z#0, z #w,}.
As @; =1 and hence:

(Xi)s(2) = Re (2), Vz e T? - {0, ,},

we see that X, sends 4 N T? to the slab of R® bounded by P, and P,.
Of course X, (A) is a minimal immersed annulus in R* between P, and P, and
bounded by D,uD,. ‘
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e
W>' UJL‘

0 W,

H

Finally denoting (X, ), by X;, 1 =1, 2, 3 for simplicity, we have:

VzeT?— {O, 0)2}, (X1 - in)(Z) =J‘ e — ‘ r’kglzcﬁ
z9 L)

therefore, for z near 0 we have

. z dz
(X, — iX5)(2) ZJ Ak 20K+

]
P TERRCTES

and so the projection of the end near 0 on a horizontal plane is a (4k + 1) to 1 map.
Near the other end w, we also have:

: 2
R
Ak 1

Tl C—w)*r

2k + 1 1 dz
) I}: ' (z — @)@+ D

and again the projection of the end w, on a horizontal plane is a (4k + 1) to 1 map.
So it remains to show that conditions (1) hold. As we have @, =1 we deduce:

oReJ &, =0 and Rej P, =0
Y

Y
_ 2
‘bJ Ny “‘J N8k
14 Y

(1)
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As 1, = dz/g,(z) we have:

[ dz '
< = z)dz
], 2.(2) ] gi(2)

i dz

<> (P(z) — P(wz))2k+1 = ;tkl—k J (P(z) — P(wz))2k+ 1 dz,

(D

but:

! 2
P(z) — P(w,)  P"(w,) (P(z — ;) — P(,)).

So:

< A f (P(z)—P(wz))2k+‘dz=( ) f (P(z —@,) — P(,)) %+ dz

P(w,)

2k + 1
i Y cgk+1(—P(w2>>2*+‘-qi P(2) dz (1)
9=0 ¥

2 2k+12k+1
=(P”((D )) ZO C‘21k+1(_P(w2))2k+l*l{.J P(Z _wZ)qdz'
2

q= Y

The following lemma shows the last equality is true.

LEMMA 1. For every positive integer q we have:

f P(2)?dz = ——f Pi(z — w,) dz.

Assuming Lemma 1 we have:

2 2k + 1
<> Z.kfk = _(P"(Q)z))

which is true as 4, = i\/ (—2/P"(w,))**!. So it just remains to prove Lemma 1.
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Proof of Lemma 1. As T? is a rectangular torus we have the following Laurent
series for the Weierstrass P-function, see [2], [8] or the Appendix.

1 @
P(Z)=;§+ Z a,,z"

n=1

with a, real numbers.
We deduce that for any positive integer g the Laurent series of P9%(z) has the
following type:

q + o
Piz)= > b_,z7"+ ) b,z",
n=0

n=1

with b; real numbers, j=1,...,n.
Also if P®(z) is the kth-derivative of P we have:

(k+1)!

zk+2

P®() =(—1)* + Fy(2),

where F; is a holomorphic map near 0. We deduce that:

L b, _
Pi(z) — ngl Gn—1)! PC=2(2)

is an elliptic function on 72 without poles, so this function is constant and taking
z = w,, we see that this constant ¢ must be real, so:

y b
o= £ gy P+

with b_, and ¢ real numbers. Then:

q b /2 +2w; e ) ) J wy /2 + 2w3 J
Péz)dz = —r P —9(z z+cj 2
J; @ nzl (2”"1)!,[/),/2 w /2

Wy /2 + 203
=b_,J P(z) dz + 2ws5c

w|/2
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since for k = 2:

wi/2 4+ 2w
v P®(z)dz = p&—D Dy 2w; | — P%—D 21) < o.
wq/2 2 2

Then, as {'(z) = — P(z) we have:

j PY(z) dz = b_,[—-c(f"z—‘ + 2w3> + c(%—‘)] + 2m5¢

= 2n3b_] + 2(1)30.
In the same way, as:

q b—n

Pi(z —w,) =)

mpan—b(z —602) + ¢,
n=1 - .

we also have:
J PUz —w,)dz = —2n3b_, + 2w;c.
Y

This concludes the proof because ¢ and b_, are real numbers and w; and #, are
purely imaginary numbers.

Remarks

(1) Following the arguments of Lemmas 1 and 2 in §2, it is easy to show that
the surfaces S, are the only minimal immersed surfaces between P, and P, bounded
by D,u D, with finite total curvature.

(2) We do not know if there exists surfaces like S, which are bounded by two
horizontal lines D,, D, and make a non zero angle 6. Of course for £ = 0, Theorem
1 shows that such a surface does not exist.

§4. Appendix
Let T2 be a torus C/, where I is the lattice of C given by:

I'={p 2w,+q 2w;,p,g€Z,w, e R}, Im(w;) eR} }.
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The Weirstrass P-function is a special function defined on T2 which is a meromor-
phic function on C such that:
P has a pole of order two at each point of I' and:

VzeC—T, P(z+2w)=P2), i=1,3.
If w, =0, + w;, P(®,) + P(w,) + P(w;) =0.

P has the following Laurent series:

1 1 1
Fe) =;+wel‘z—{0} {(2—60)2_20—2}'

P is an even function: Vz e C—T', P(—2z) = P(2).

There are two other functions related to P, namely the { and o-functions: The
{-function satisfies:

VzeC—-TI, ('(z) =—P(2).

If n, = {(w,;), i =1, 2, 3, then n, =1, + 13, so { is uniquely defined on C —I'". We
have:

VzeC—-T, {(z+2w,)={z)+2n,, i=1,2,3,

and then { is not defined on T? because z and (z + 2w;) represent the same point
on T2

{ is an odd function: Vz e C— T, {(~2) = —{(2).

The following Legendre relation holds.

P

Wty — WMy =1i+.

(\]

The o-function satisfies:

VzeC—-T, —G&:(z):—-é'(z),
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and then ¢ is an holomorphic function on C, furthermore:

lim f@ =1,
z—-0 2

so that ¢ is uniquely determined on C.
We also have:

VzeC, od(z+2w;,)=—e*+2)g(z), (#)
o is an odd function: Vz € C, 6( —2z) = —o0(2).
Furthermore if 772 is a rectangular torus, that is if w; € iR}, we have:

VzeC—T, P@)=P2); () =L@
VzeC, a(2) = ;(?).

For more details about those functions see Gerretsen—Sansone [2] or Molk—Tan-
nery [8].
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