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Déchirures de variétés de dimension trois et la conjecture de Nash
de rationalité en dimension trois

Dédié a Heisuke Hironaka

RICCARDO BENEDETTI ET ALEXIS MARIN

Nash a montré en 1951 ([N]) que toute varié¢té C* compacte connexe et sans
bord V" est difféomorphe a une branche d’une variété algébrique réelle X. Il termine
cet article céleébre par deux conjectures en demandant successivement a la variété
algébrique X d’étre:

(i) non singuliére et connexe;
(i1) rationnelle.

Rapellons qu’une variété algébrique est rationnelle si elle est birationnellement
isomorphisme a I’espace projectif RP”". Par exemple la sphére euclidienne S” est
rationnelle grice a la projection stéréographique & : S™\{N}— R" < RP". Plus
généralement les modifications élémentaires de la géométrie algébrique par éclate-
ments et contractions (cf. [S] VI 2.2) sont des exemples d’isomorphismes bi-
rationnels. On dira qu’une variété algébrique X est élémentaire si on peut ’obtenir
a partir de S” par une suite d’éclatements sur des centres lisses, ces variétés
¢lémentaires sont non-singuliéres.

La premiére conjecture a ét¢ démontrée en 1973 par Tognoli ([T]), la deuxiéme
est toujours ouverte (Cf. [I] p 37). En dimension 2 toute surface non orientable est
difftomorphe a une somme connexe de plans projectifs réels, donc a une surface
rationnelle élémentaire P, obtenue en éclatant le plan projectif en k points alignés
sur une droite d. D’autre part en contractant la transformée stricte de d dans P,, on
obtient une surface algébrique X, homéomorphe a une surface orientable de genre
g. Les mémes idées permettent aussi d’obtenir la conjecture de Nash pour les variétés
de dimension quatre simplement connexes (Théoréme D dans 'appendice A).

Si le genre g est supérieur a 1 la surface X, obtenue ci-dessus est singulicre, on
ne peut ’éviter car Comessati avait montré dés 1913 qu’une surface rationnelle lisse
orientable est une sphére ou un tore ([C] ou, [K], [Si] pour une démonstration
moderne): il faut dans la conjecture de Nash permettre des singularités pour un
modeéle rationnel X d’une variété C* quelconque.



Déchirures de variétés de dimension trois 515
Dans cet article nous allons établir la conjecture de Nash en dimension trois :

THEOREME A. Soit V une variété fermée connexe C* de dimension trois. Alors
il y a un ensemble algébrique affine rationnel Y et un homéomorphisme h de Y sur V
tel que les restrictions de h aux strates de la stratification par singularité de Y sont des
difféeomorphismes. De plus:
(1) L’ensemble singulier X(Y) de Y est de dimension 1. Il est lisse si V est
orientable ou si dim (H,(V; Z/2Z) # 1.
(11) 1l y a une résolution des singularités de Y par une variété élémentaire X: un
morphisme régulier o : X - Y, qui induit:
(iil) un isomorphisme birégulier ® : X\o ~'(Z(Y)) -» Y\Z(Y).
(ii2) ume fibration de classe C* a fibres connexes
¢ 10 ((E(N\Z(E(Y)) - Z(Y)\Z(Z(Y)).

Les modifications élémentaires algébriques ont des analogues topologiques
décrits au §1.E ci-dessous, d’ou une notion de variété top-élémentaire (i.e. obtenue
a partir de la sphére S” par une suite d’éclatements topologiques) et de m-équiva-
lence entre variétés lisses qui sera pour nous la version topologique de I'isomor-
phisme birationnel.

On peut alors formuler la conjecture de Nash topologique:

Toute variété fermée connexe de dimension n est m-équivalente a la sphére S”.

Cette conjecture de Nash topologique est vraie en dimension trois. Aprés les
quelques rappels et préliminaires topologiques du §1 elle sera établie au §2. La
démonstration s’appuie sur un résultat plus précis pour les variétés orientables :

THEOREME B™*. Soit V une variéte fermée orientable de dimension 3 alors il y
a des entrelacs K et L dans V et une somme connexe R d’espaces projectifs RP? tels
que les éclatés topologiques Vet RdeVet Rsur KetlL respectivement sont
difféeomorphes par un difféomorphisme qui respecte les diviseurs exceptionnels.

Par définition (cf. §1 E.6 et E.7) un tel diffétomorphisme est une déchirure de V
sur R. Contrairement a la classification & m-équivalence prés la classification des
variétés de dimension trois & déchirure prés est non triviale :

Si V est une variété non orientable telle que le cup-carré de w, (V') est nul et F
est une surface duale de w,(¥V) on construira au §1.B une forme d’enroulement
caractéristique (cf. B.1 et B.6) sur le noyau de H,(F; Z/2Z) - H,(V; Z/2Z) qui est
quadratique pour la forme bilinéaire d’intersection de F et dont les invariants
(nullité ou non sur sur le radical de la forme bilinéaire associée et invariant de Arf
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lorsqu’il est défini) sont invariants par déchirure. Au §3 on déterminera les variétés
équivalentes par déchirure a une variété ¢lémentaire et on obtiendra la classification
a déchirure prés :

THEOREME B. Une variété fermée connexe de dimension trois V est équivalente
par déchirure a une variété rop-élémentaire si et seulement si on n’a pas simultané-
ment b, (V) =1 et la forme d’enroulement caractéristique est d’invariant de Arf 1.

THEOREME C. Deux variétés de dimension trois V et V' sont équivalentes par

déchirure si et seulement si:

(1) Il y a un isomorphisme linéaire gradué entre leurs cohomologie a coefficients
Z|2Z préservant le degré, la premiéere classe de Stiefel—Whitney w, et le
cup-produit avec w,.

(i) Dans le cas ou w,(V)* =0 mais V est non orientable, les formes d’enroule-
ment caractéristique ont mémes invariants.

Le théoréme B implique le théoréme A par des arguments classiques d’approxi-
mation algébrique a la Nash—Tognoli qui seront exposés au §4. Un exemple de
variété non équivalente par déchirure a une variété ¢lémentaire est M,, le fibré

1
théoréme C on produira une liste explicite d’exemples analogues, représentant sans
répétitions toute les classes de déchirure. Comme les méthodes du §4 permettent
d’obtenir des modéles projectifs rationnels lisses pour chaque variété ¢lémentaire et
donc pour chaque classe de déchirure distincte de M, le théoréme C implique aussi :

) 1 ; )
en tores sur le cercle de monodromie < 1). Au cours de la démonstration du

COMPLEMENT AU THEOREME A. Si la variété V n’est pas dans la classe
de déchirure de M, il y a une variété élémentaire X obtenue par éclatement sur des
courbes algébriques lisses C; dans une variété élémentaire explicite ne dépendant que
de la classe de déchirure de V et des submersions algébriques m; des diviseurs
exceptionnels correspondants E; sur des courbes lisses X, tels que la variété rationnelle
affine Y soit obtenue a partir de X en contractant les fibres des m;.

En particulier, sauf peut-étre pour M,, la classe de déchirure n’est pas une
obstruction a I’existence d’un modéle algébrique non-singulier (par contre, d’apres le
théoréme B, il n’y a pas de variété élémentaire dans la classe de M,). D’ailleurs nous
n’avons pas connaissance d’obstruction topologique a I’existence de mode¢les non-sin-
guliers dans le cas de variété de dimension supérieure a deux (dans le cas de dimension
paire il est probable que les démonstrations de [K] et [Si] donnent des obstructions
analogues a celles dévoilées par Comessati, elles restent cependant a expliciter).
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En 1987, comme premiere étape vers la conjecture de Nash, nous avions fait
quelques remarques sur la conjecture de Nash topologique ([BM]). Nous I’avions
notamment réduite a certaines questions de “calcul de Kirby”. Une réduction
analogue a été aussi annoncée par Akbulut ([A]). Ayant pris connaissance d’un
article de Nakanishi ([Nk]) sur la congruence de Fox des entrelacs de S° le
premier auteur ([B]) a achevé ce programme, en particulier il a montré la conjec-
ture de Nash topologique en dimension trois dans le cas orientable et réduit le cas
général au cas orientable. En s’appuyant aussi sur Nakanishi, Akbulut et King
([AK]) ont indépendamment montré cette conjecture de Nash topologique de
dimension trois. Cette approche par “calcul de Kirby” est esquissée dans ’appen-
dice B. L’approche par les déchirures présentée ici, outre qu’elle dégage des
phénoménes de nouement apparement nouveaux des surfaces caractéristiques dans
les variétés de dimension trois permet de résoudre la conjecture de Nash originelle
sous la forme précise du théoréme A et de son complément ci-dessus. Elle permet
aussi d’éviter le résultat de Nakanishi et donc de libérer la conjecture de Nash
topologique des diagrammes de dénouement que Nakanishi utilise pour montrer
son théoréme. Nous n’arrivons cependant pas a produire une démonstration
alternative du résultat de Nakanishi.

Bien que la méthode de [B] permette de réduire le cas général au cas orientable
la version forte du théoréme principal qui y est énoncée est erronée car les modeéles
proposés ne couvrent pas toutes les classes de déchirure possibles. Une premiere
version du présent travail était aussi fautive essentiellement car nous y affirmions
que la forme d’enroulement était linéaire. Cette erreur a été débusquée par A.
Degtyarev, S. Finashin, V. Kharlamov et G. Mihalkin nous les remercions tout
particuliérement de leur perspicacité ainsi que de l'intéret qu’ils ont porté au
“rétablissement de la vérité”. Ils ont obtenu des présentations alternatives du
phénoméne d’enroulement caractéristique tant en étudiant quand était bien définie
la forme de Seifert d’une surface qu’a ’aide de structures Pin-auxilliaries.

En mars 92 Gregory Mihalkin obtiendra la conjecture de Nash topologique en
dimension quatre ([Mih]).

§1 Rappels et préliminaires topologiques
(A) L’anneau d’intersection d’une variété de dimension trois

Hormis dans I'appendice A, ou I'utilisation de la cohomologie a coefficients
entiers est explicitement mentionnée, les coefficients de tout objet homologique ou

cohomologique dans cet article sont sous-entendus : il s’agit de Z/2Z, les entiers
modulo deux.
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D’apres la dualité de Poincaré si V est une variété fermée connexe de dimension
n le cup-produit H(V) x H/(V) - H'*/(V) en cohomologie a coefficients modulo
deux a une version duale: lintersection H,_ (V) xH,_,(V)->H,_,.;,(V) en
homologie. Dans cet article nous préférerons ce produit d’intersection homologique
d’'un maniement plus intuitif au “produit tasse” cohomologique, il nous arrivera
cependant, pour simplifier ’expression et €tre conforme aux notations tradition-
nelles des classes caractéristiques, de “confondre” parfois classes dans le H' et
hypersurfaces.

Voici, pour la commodité du lecteur une présentation rapide de la théorie de
I'intersection homologique a coefficients modulo deux et du lissage des cycles de
petite co-dimension.

Soit V une variété fermée de dimension n que ’on suppose triangulée. Une
chaine géométrique X modulo 2 de degré k, plus briévement k-chaine, dans V est une
partie X de V triangulée par un sous-complex d’une subdivision linéaire de V qui est
réunion de simplexes de dimension k. On note C, (V) I’ensemble des k-chaines de V.
L’adhérence de la différence symétrique fait de C,(¥) un groupe abélien dont tous
les éléments sont d’ordre 2 (i.e. un Z/2Z espace vectoriel). Le bord d’une k-chaine
2 est la (k — 1)-chaine 02 formée des simplexes de dimension kK — 1 de X qui sont
face d’un nombre impair de simplexes de dimension k£ de Z. Un k-cycle est une
chaine de bord nul. L’opérateur de bord d, : C,(V) — C,_ (V) est linéaire et vérifie
Or _ 1 © 0, =0, autrement dit les C,(¥) muni des opérateurs d, forment un complexe
dont I’homologie est ’homologie modulo 2 de la variété V. On notera H, (V) le
k*me groupe d’homologie modulo 2 ainsi défini, son rang b, (V) est le k™ nombre de
Betti modulo 2. On note C, (V) et H, (V) les sommes directes des C,(V') et des
H, (V) respectivement. De méme pour une sous-variété W d’une variét¢ V des
groupes d’homologie relative H,(V, W) seront définis a partir du complexe relatif
C.(V, W) des k-chaines dont le bord est dans W.

Les k-cycles sont des généralisations des sous-variétés triangulées qui ont
’'avantage de pouvoir étre organisés en groupes abéliens et donc de permettre des
calculs effectifs. Evidement pour les cycles de dimension zéro il n’y a pas de
différence. Thom ([Th]) a déterminé en général quand une classe d’homologie est
représentée par une sous-variété, en particulier : en dimension ambiante inférieure a
6 on ne perd rien en passant des cycles aux sous-variétés. Indiquons comment obtenir
de maniére élémentaire ce résultat de Kneser—Rohlin-Thom dans le cas de
dimension inférieure a 4 qui suffira & nos besoins.

(i) Par une méthode de lissage locale, due a Kneser, tout cycle Z de co-dimen-
sion 1 (i.e. 2 est un (n — 1)-cycle dans une variété ¥ de dimension n) est homologue
a une sous variété triangulée W de co-dimension 1 dans V, et une telle sous-variété
W de co-dimension 1 est homologue a 0 (i.e. au cycle vide) si et seulement si elle
borde une sous-variété triangulée X.
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(ii)) En co-dimension 2, Rohlin a remarqué qu’il en était de méme pour les cycles
2 qui ont un relévement en un cycle orienté (i.e. on peut choisir une orientation @,
pour chaque (n — 2)-simplexe ¢ d’une triangulation de X tel que tout (n — 3)-sim-
plexe de X soit le bord orient¢ d’un nombre pair 2m de simplexes ¢ de 2 dont
exactement m sont munis de I’orientation choisie (,, les m autres de I’orientation
opposée).

En dimension 3 les cycles de co-dimension 2 sont de dimension 1 et vérifient
¢videment cette derniére condition. D’ailleurs en ce cas la démonstration est plus
simple et due a Frankl et Pontriaguine. (On pourra se reporter aux pages 56 a 78
de [GM] pour une discussion de ces méthodes de lissage combinatoire et les
références aux textes originaux).

Soit V une variété de dimension n inférieure a quatre et a et § des classes
d’homologie de dimension i et j respectivement. D’aprés ce qui préceéde, et comme
des sous-variétés isotopes sont des cycles homologues, on peut supposer que o et f§
sont représentées par deux sous-variétés A4 et B transverses' dans V. Leur intersection
C est alors une sous-variété de V de dimension £k =n — (i + ) dont la classe dans
H, (V) ne dépend que de a et B. Cette classe est notée o - f c’est le produit
d’intersection de o et de B. Ce produit munit H, (V) d’une structure d’anneau
commutatif dit anneau d’intersection de la variété V.

Isolons, en dimension ambiante inférieure a 4, les énoncés que nous utiliserons.

AFFIRMATION A.1. (i) Si ¢ est une courbe simple fermée tracée sur une surface
S représentant une classe y de H,(S) alors intersection y - y est nulle si et seulement
si ¢ est bilatérale dans S.

(i) Si cette surface est plongée dans une variété de dimension trois V I’intersection
des classes représentées par c et S est nulle si et seulement si, prés de c, la surface S
est bilatérale dans V.

(iii) Soient F, S, T trois surfaces dans une variété de dimension trois V. On suppose
F transverse a S et T et on note c et d les courbes d’intersection. Soient ¢,a,7 et 7,0
les classes de F, S, T et c,d dans H,(V) et H,(V) respectivement. Alors I’intersection
v -6 de y et & dans F est égale a I’intersection o -1 - ¢ de 0,71, ¢ dans V.

(B) Les bords sur une surface plongée et leur enroulement

DEFINITIONS B.1. Soit S une surface dans une variété ¥ de dimension trois.
Son espace de bords B,(S) est le noyau du morphisme H,(S) — H,(V') induit sur

I L’intersection se définie en général pour des cycles non nécessairement sous-variété par des
arguments de position générale.
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’homologie de degré 1 par linclusion de S dans V. Le défaut de S est la
dimension de son espace de bords. Une membrane pour une courbe ¢ de S
représentant un bord est une surface MM plongée dans V, bordant ¢ et en position
générale relativement a S: la surface S est transverse a l'intérieur de IR et
Pintersection de S et de I est I'union de ¢ et d’une courbe d, proprement plongée
dans S (0d = d n M) dite intersection stricte de la membrane avec la surface. Les
fibrés normaux v(d; S) et v(d; M) coincident sur le bord de d (c’est le fibré normal
a dd =dnc dans ¢). Si les auto-intersections de d dans R et dans S n’ont pas de
sens puisque la courbe d peut avoir un bord non vide on peut cependant définir la
différence de ces auto-intersections ou enroulement p(9M) de la membrane IN
comme [’évaluation, sur la classe fondamentale du double abstrait d. ud_ de d,
du fibré en droite obtenu en recollant les fibrés v(d; S) et v(d; M) par I'identité de
v(0d; ¢).

AFFIRMATION B.2. Soit ¢ une courbe connexe de la surface S représentant un
bord. Alors la surface S est, prés de c, bilatérale dans V. De plus la courbe ¢ est
bilaterale dans S.

Démonstration. Comme la classe y de la courbe ¢ est nulle dans H,(}),
'intersection de la classe o de S et de y est nulle ainsi (cf. A.1(ii)) la surface S est
bilatérale dans V prés de c. Si ¢ n’était pas aussi bilatérale dans S elle aurait
un voisinage non orientable dans V et ne serait pas nulle dans H,(V) (cf. C
ci-dessous). [1

Comme d’aprées B.2 la surface S et la variété V sont orientables au voisinage de
¢ le bord 0T d’un tube T'(c) autour de ¢ est un tore coupant la surface S en deux
courbes ¢, et ¢_, homologues dans 0T.

DEFINITION B.3. On dit qu'une membrane IR est simple si elle coupe chacune
des courbes ¢, et c_ en au plus un point et son intersection stricte d avec S est
connexe.

AFFIRMATION B.4. Soit ¢ comme dans B.2. Alors il y a une membrane simple
I pour c.

Démonstration. L’intersection d’une membrane IR avec 0T est homologue soit a
¢y, soit @ I'union de ¢, et d’'un méridien de T(c). Ainsi, quitte a changer la
membrane M dans un collier de 07, on peut supposer qu’elle coupe chacune des
courbes ¢, en au plus un point : 'intersection stricte d a au plus une composante
a bord non vide. 11 suffit alors d’ajouter des anses d’indice 1 & 9 pour connecter les
composantes de d. [
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DEFINITION B.5. Une classe d’homologie ¢ de degré 2 dans une variété de
dimension trois V est d’intersection orientable si pour toute classe t € H,(V) on a
T 10+1:0-0=0.

PROPOSITION B.6. (i) Si la surface S n’est pas d’intersection orientable
dans V alors toute courbe représentant un bord borde une membrane d’enroulement
nui.

(11) Si la surface S est d’intersection orientable dans V alors I’enroulement d’une
membrane ne dépend que de la classe d’homologie du bord de la membrane. L’appli-
cation i : B\ (S) = Z/2Z ainsi définie est quadratique de forme bilinéaire associée b, la
restriction a B,(S) de la forme d’intersection de la surface S.

Démonstration. Soient I et M” deux choix de membrane pour une méme
courbe c¢. D’apres I'interprétation de I’enroulement comme différence des auto-inter-
sections, dans la surface et la membrane, de I'intersection de la membrane avec la
surface, le cycle 1 = MM UIM” vérifie (cf. A.1(iii)):

T°1T° 04706 06=TT°6—7T'0" 0 =pu(W)—uM").

D’ou (i) car en ce cas si M’ est une membrane bordant une courbe ¢ avec u(M") = 1
il y a une membrane M’ de bord c¢ telle que le cycle t associé vérifie
T:17-0+71 0 0 =1.0n obtient aussi dans (ii) que u(I) ne dépend que du bord
c de la membrane. Pour vérifier que pu(9M) ne dépend que de la classe d’homologie
de ¢ nous allons procéder en deux temps : d’abord (a) vérifier que si ¢ borde une
surface D dans la surface S alors u(M) = 0, puis (b) montrer que si M’ et IMN” sont
des membranes pour des courbes ¢’ et ¢” alors il y a une membrane 9 bordant une
courbe ¢ obtenue en remplagant chaque composante d’un voisinage de ¢’ n¢” par
deux arcs disjoints de méme bord et telle que:

p(0) = p(WM) + p(M") +¢" - c”.

Si les courbes ¢’ et ¢” sont homologues alors la courbe ¢ borde dans S : cette
formule et u(9M) = 0 d’aprés le point (a) donnent w(M’) = u(M"). La formule pour
¢’ et ¢” quelconques établit aussi le caractére quadratique de I'’enroulement u.

(a) La surface D mise en position général relativement a S est une membrane
pour ¢ d’enroulement nul.

(b) Comme I’enroulement ne dépend que de la classe d’isotopie de la membrane
modulo son bord, on peut supposer que M’ et M” sont transverses et, pres ¢’ Nc”,
transverse a S et du méme c6té de S. Une membrane I obtenue en remplagant un
voisinage de M N IM” par une surface de méme bord convient. En effet chaque
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Figure 1

point de (¢’ nint (M")) U (c”" Nnint (M) ajoute 1 a I'’enroulement (cf. Figure 1) d’ou
la formule puisque (¢'nc¢”)u(c’ nint (M) u(c” Nnint (IM')) est le bord de la
courbe M NIN” et a donc une nombre pair de points). [

Si la restriction d’une forme quadratique ¢ sur un Z/2Z espace vectoriel E au
radical E+ de la forme bilinéaire associée b est nulle alors g induit sur le quotient
E/E* une forme quadratique non dégénérée dont I'invariant de Arf détermine la
classe d’isométrie de g (le couple (E, b) étant donné). D’autre part les formes
quadratiques associées a b dont la restriction a E* est non nulle sont toutes
isométriques.

DEFINITION B.7. Soit S une surface d’intersection orientable dans une variété
V de dimension trois. Le défaut algébrique d,(S) d’une surface S est 0, 2 ou 1
suivant que sa forme d’enroulement a un invariant de Arf défini et valant 0 ou 1 ou
n’a pas d’invariant de Arf défini (i.e. est non nulle sur le radical de la forme
bilinéaire associée).

Si une surface S n’est pas d’intersection orientable son défaut algébrique est 0.

Le rang r de la restriction de la forme d’intersection a ’espace des bords B, (S)
est pair : r = 2q. Le genre algébrique de S est g,(S) =¢q si d,(S) =0, g,(S) =q +1
si d,(S) #0.
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PROPOSITION B.8. Le défaut algébrique d’une surface S d’intersection ori-
entable dans une variété V de dimension trois ne dépend que de la classe d’homologie
o de S dans H,(V).

Démonstration. Soient S, et S, deux surfaces homologues dans V. 1l y a alors
une variété G de dimension trois dans V x I et de bord S, x 0uU S, x 1. On peut
supposer que la projection sur I'intervalle 7 induit sur G une fonction de Morse
générique. Il faut montrer que le franchissement de chaque niveau critique ne
change pas le défaut algébrique. Les maximums et minimums suppriment ou
introduisent des sphéres et ne changent pas I’enroulement. On peut donc (quitte a
renverser localement le sens de parcours de 7) ne considérer que les points d’indice
1 : soit on connecte deux composantes de la surface et on ne change pas la classe
d’isométrie de ’enroulement, soit on fait la somme connexe de la surface S avec un
tore dont une courbe non séparante borde la co-ame de I’anse. Ainsi ’espace des
bords voit sa dimension augmenter de 1 ou 2, dans le premier cas la dimension du
radical augmente de 1, dans le second le radical est inchangé. Comme la co-dme est
une membrane d’enroulement nul (car d’intersection stricte vide) la nullité ou non
de I’enroulement sur le radical subsiste et, si 'invariant de Arf est défini il le reste
et ne change pas. O

(C) Hypersurfaces caractéristiques

On peut orienter le complémentaire du (n — 1)-squelette d’une variété triangulée
V de dimension n. Il y a donc un sous-complexe K de V dont le complémentaire est
orienté et qui est minimal pour cette propriété. Un tel K est un cycle de co-dimen-
sion 1 et réciproquement pour tout cycle 2 homologue on peut orienter le
complémentaire de ¥ de maniére a ce que cette orientation ne s’étende pas a un
ouvert plus grand.

En particulier I'orientation @, du complémentaire différe de I'orientation
suivie par continuité le long d’une courbe a chaque traversée d’un (n — 1)-simplexe
o de Z. Ainsi 0,y induit sur les deux cotés d’un tel ¢ la méme orientation : X est
un cycle orientable (le bord de la n-chaine orientée formée des simplexes de V\Z
orientés par 0,5 représente deux fois le cycle X).

D’aprés 4 on peut prendre pour X une hypersurface F, une telle hypersurface F
est dite caractéristique, la classe qu’elle représente dans H, _ (V) est duale de la
premiére classe de Stiefel— Whitney w,(V) € H'(V). D’aprés ce qui précéde on a:

AFFIRMATION C.1. (i) Une courbe simple fermée c préserve [’orientation
d’une variété V si et seulement si la premiére classe de Stiefel—Whitney w, (V)
s’anulle sur la classe d’homologie y de c.
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(1) Toute hypersurface duale de w,(V') est orientable. [
D’ou en utilisant A.1(iii):

AFFIRMATION C.2. (i) Une classe 6 € H'(V) est duale d’une classe d’inter-
section orientable si et seulement si 6 Uw,(V) =0, en particulier:

(it) Une surface caractéristique dans une variété de dimension trois V est d’inter-
section orientable si et seulement si elle est de carré nul. [

DEFINITION C.3. Une variété V de dimension trois est dite de type 0 si elle
est orientable, fortement non orientable ou de type II ou si w,(V)? # 0, faiblement
non orientable si w, (V) # 0 = w,(V)2. L’espace des bords d’une surface caractéris-
tique F dans une variété faiblement orientable est donc muni d’une forme d’enroule-
ment dite caractéristique p: B\ (F) —» Z/2Z. Le défaut algébrique et le genre d’une
variété non orientable sont ceux d’une surface caractéristique. Une variété faible-
ment orientable est dite de zype I,d si son défaut algébrique vaut d.

AFFIRMATION C.4. Soit MM une membrane simple bordant une courbe non
séparante d’une surface caractéristique F dans une variété de dimension trois alors
wW(IM) = 0 si et seulement si M\F a un nombre impair de bouts: soit M est transverse
a F et lintersection stricte d est bilatérate dans M, soit MM n’est pas transverse a F
et F n’est pas bilatérale au voisinage de M F.

En particulier I’auto-intersection d’une surface caractéristique connexe dans une
varieté faiblement non orientable est d’enroulement nul. [

EXEMPLES C.5. Une matrice 2 x 2 a coefficients entiers 4 de déterminant — 1
induit un difffomorphisme renversant l'orientation du tore T2 Le cylindre
M(A) = T? x [0, 1]/{(x, 0) ~ (A(x), 1)} d’une telle matrice est une variété de
dimension trois faiblement non-orientable et ayant le tore 72 x 0 comme surface
caractéristique. Soit ¢ une courbe de T2 telle que A(c) coupe c¢ transversalement
en un point p. En modifiant au voisinage de p I'anneau immergé ¢ x [0, 1}/
{(p,0) ~(p,1)} = M(A) on obtient une membrane d’enroulement 1 pour une
courbe homologue a ¢ + A(c), ainsi :

1
(a) Sid=A4,= ((1) O) on obtient M, = M(A,) avec b,(M,) =2et d,(M,) = 1.

1

(b) Sid=4,= (? 1) on obtient M, = M(A,) avec b;(M,) =1 et d,(M,) =2.
(c) Soient pour i=1,2, N, les complémentaires dans les variétés M(A;) ci-

dessus d’un tube ouvert autour du cercle {0} x [0, 1]/{(0, 0) ~ (0, 1)} = M(4;). On

dit que N, est une vrille de défaut i, son bord est une bouteille de Klein et si ¢ est
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une courbe simple fermée orientée et renversant lorientation d’une variété V
de dimension trois le vrillement de défaut i de V le long de ¢ est
U,(V,c) = V\Yo’(c) UN;. Si Vest de type I,d alors U, (V, c) est de type I,1 et U, (V, ¢)
de type I,(2 — d). Remarquons que U, (V, ¢) et V ont des anneaux de cohomologie
isomorphes.

(D) Surfaces désorientées et désorientables dans une variété de dimension trois

DEFINITION D.1. Une surface connexe S proprement plongée dans une
variété de dimension trois V (i.e. S = S ndV) est dite désorientée si elle est non
orientable mais a un voisinage dans V orientable. Un neud K dans V est dit
faiblement trivial si une section d’un tube 7(K) autour de K borde dans
\( 70’(1() U §) une surface désorientée S.

Soit ¢ ’ame d’un ruban de Mobius M plongé dans une surface désorientée S.
Comme un voisinage de S dans V est orientable la courbe ¢ préserve I’orientation
de V et le ruban M est unilatéral dans V. D’apreés affirmation A.1.(ii) I'intersection
des classes représentées par ¢ et S est non nulle, ainsi, selon la définition D.2
ci-dessous la surface S est désorientable.

DEFINITION D.2. Une surface connexe S plongée dans V est dite désori-
entable si elle a un voisinage orientable dans V et si il y a une courbe ¢ conservant
I’orientation de V qui a une intersection non nulle avec S. Une classe x de H,(V)
est désorientable si elle est représentée par une surface désorientable.

Dans une variété orientable ¥ toute élément non nul de H,(V) est représente
par une surface désorientée et un nceud est faiblement trivial> dés qu’il représente 0
en homologie modulo 2. Cela découle de la dualit¢ de Poincaré et du lemme
suivant :

LEMME D.3. Une classe de degré 2 désorientable est représentée par une surface
désorientée.

Démonstration. 11 suffit d’ajouter a une surface S désorientable représentant cette
classe une anse le long d’un arc convenable d’'une courbe ¢ transverse a S donnée
par la définition D.2. [

2 Dans une variété non orientable la faible trivialit¢ est une notion plus subtile : le double de
Whitehead d’une section S' x (*) du fibré non trivial S' x S? n’est pas faiblement trivial bien qu’il soit
homotopiquement trivial.
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(E) Eclatements, chirurgie de Dehn et déchirures

Soit W une sous variété lisse de co-dimension ¢ d’une variété V de classe C*™.
Un voisinage tubulaire T(W) autour de W dans V s’identifie au cylindre de la
projection du fibré en sphéres bord du tube = : dT(W) — W. Let fibré n se factorise
en = P(&) ovou P(&) : UW) — W est le projectivisé du fibré normal & a W dans
Vetv:0T(W)—- UW) l'application de Gauss qui a chaque point x de oT(W)
associe la droite de & ~'(n(x)) passant par x.

DEFINITION E.1. L'éclatée V de V de centre W (ou le long de W) est la
variété obtenue en remplagant T(W) par le cylindre de I'application de Gauss v.
L’identification de V\ W a I}\ U(W) produite : V--— Vv qui “éclate” chaque point w
de W en l’espace projectif P(¢)~'(w) ~ RP“~', la contraction ¢ inverse de ¢ par
contre est une application C* partout définie (cf. [Ae]). Si F est une sous-variété de
V non incluse dans W la transformée stricte de F est la fermeture F dans V de
e(F\W). Remarquons que si F contient W ou est transverse a W alors F s’identifie
avec I'éclatée F de F le long de Fn W.

En dimension 3 les seuls ‘“diviseurs exceptionnels” possibles U(W) au dessus
d’une sous variété connexe W sont:

(a) Un plan projectif RP? unilatéral si W est un point.

(b) Un tore unilatéral T2 si W est un cercle préservant I’orientation.

(¢) Une bouteille de Klein unilatérale K? si W est un cercle renversant
’orientation.

En particulier on a le

LEMME E.2. Soit V une variété de dimension trois obtenue par éclatement sur
une sous-variété connexe W d’une variété de dimension trois V alors b,(V) =
by(V) + 1 et V est non orientable si W est de dimension 1. [J

Réciproquement:

LEMME E.3. Toute sous-variété U décrite en (a), (b) ou (c) d’une variété de
dimension trois M apparait comme diviseur exceptionnel d’une contraction ¢ : M - N
unique a isomorphisme prés, des que I’on a fixé la classe d’homotopie de la restriction
oy a U de la contraction (qui doit étre telle que la restriction (U, M)\, -1y du fibré
normal a U dans M aux fibres de o est non triviale). [

DEFINITION E.4. Une variété Vest dite élémentaire si elle est obtenue a partir
de la sphére S par une suite d’éclatements sur des centres lisses. Deux variétés V
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et V' de classe C* sont dites équivalentes par modification élémentaires (m-équiva-
lentes en abrégé) si il y a une suite finie de variétés V=V, V,,...,V,=V’ ou,
pour chaque indice i inférieur a #, il y a une permutation (k, /) des indices i et i + 1
telle que V, soit diffeomorphe a I’éclatée de V), le long d’une sous-variéteé.

Soient L, et L, deux entrelacs dans deux variétés de dimension trois V, et V.
Soit T(L;) un tube autour de L, dans V;. Un méridien de 'entrelacs L; est une
courbe m; de T(L,) qui borde un disque transverse a L,. Une chirurgie de Dehn entre
V, et Vz, d’dmes deux entrelacs L, et L, est la donnée d’'un homéomorphisme
h: VI\T(L )= Vo\ T(Lz) entre les extérieurs de ces entrelacs, une chirurgie ordinaire
est une chirurgie de Dehn qui envoit chaque méridien de L, sur une section due
Tube T(L,).

Remarquons que les composantes de 0T(L;) sont des tores si la composante
A correspondante de D’entrelacs préserve l'orientation, des bouteilles de Klein
sinon. Dans ce dernier cas toute chirurgie de Dehn préserve la classe d’isotopie
du méridien et s’¢tend a la composante de T(L,) correspondante (car dans la
bouteille de Klein il n’y a qu’une classe d’isotopie de courbe essentielle & deux
cotés). On peut donc supposer, et on supposera toujours dans la suite, que les
entrelacs L; ont toutes leurs composantes préservant I’ orientation.

Plus généralement, puisque deux courbes simples sur un tore sont isotopes des
qu’elles sont homotopes, une chirurgiec de Dehn qui préserve les classes d’homo-
topie des méridiens s’étend en un isomorphisme d’entrelacs H :(V,, L,) -
(V3, Ly).

D’aprés le théoréme de Rohlin—Wallace ((W]) il y a une chirugie entre deux
variétés fermées connexes de dimension trois si et seulement si elles sont soit
toutes deux orientables, soit toutes deux non-orientables, nous n’utiliserons qu’une
forme plus précise de ce fait pour les variétés qui ont la méme homologie a
coefficients Z/2Z que la sphére S* (d’aprés la dualité de Poincaré il revient au
méme de dire que leurs H, a coefficients Z/2Z sont nuls). Nous appelerons sphére
d’homologie de dimension trois une telle variété.

FAIT E.5. Toute sphére d’homologie de dimension trois H est le dernier terme H,
d’une suite de sphéres dhomologies de dimension trois S =H,, H,, ..., H, ou
chaque H;. ., s’obtient a partir de la précédente H; par chirurgie sur un naeud K.
faiblement trivial.

Démonstration. D’apreés le théoréme de Rohlin—Wallace ([W]) une variété de
dimension trois orientable ¥ borde une variété de dimension quatre W ayant une
décomposition en anses sans anse d’indice impair. La forme d’intersection g de W
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est représentée par la matrice d’enlacement de ’entrelacs “repéré®*” L des cercles
d’attachement des anses d’indice 2 (cf. [Ki2]).

Si V est une sphére d’homologie la forme g est non dégénérée et, quitte a
faire la somme connexe de W avec un plan projectif complexe, on peut supposer la
forme q sur le Z/27Z espace vectoriel H,(W) non totalement isotrope donc diagonal-
isable.

En réalisant une diagonalisation par glissement d’anses on obtient que chaque
composante K; de ’entrelacs L borde une surface S; disjointe du reste de L et que
les repérages sont d’auto-enlacement impair, le nceud K, , , est ainsi faiblement trivial
dans la spheére d’homologie H; obtenue en ne faisant que les chirurgies sur
K,...,K. O

DEFINITION E.6. Une déchirure est une chirurgie de Dehn qui envoie les
méridiens du tube T(L,) sur des courbes homologues modulo 2 aux méridiens du
tube 7T(L,).

LEMME E.7. Une chirurgie de Dehn h: V\T(L,) » V,\T(L,) s’étend, aprés
e; clatement (cf. E. 1) le long des dmes L; de la chirurgie, en un homéomorphisme
h: (V,, U(L))) —->(V2, U(L,)) si et seulement si c’est une déchirure.

Démonstration. Les méridiens forment une base du noyau de H, (af(L,. )
—->H1(7A"(L,-)), d’ou la nécessité. Pour la suffisance on peut supposer que 4 est
“linéaire” sur chaque tore [dans les coordonnées ‘longitude, méridien”
h(u, v) = (au + bv, cu + dv) avec a, b, ¢, d entiers et u, v dans R/Z]. Désignons par
7; I'involution de oT (L;) qui a tout point x d’une composante de dT(L;) associe le
point diamétralement opposé sur le méridien passant par x [t(u, v) = (4, v +3)].

Un homéomorphisme # : VI\T(L )— Vz\T(Lz) s’é¢tend en un homéomorph-
isme des éclatés dés que sa restriction au bord conjugue les involutions
7, [Vx e 6f’(L,) h(t,(x)) = 1,(h(x))], c’est clairement le cas si 4 préserve la classe
d’homologie modulo 2 des méridiens [b est alors pair et d impair]. O

Soit 4 : V,\7°‘ (L)) — Vz\f" (L,) une déchirure entre deux variétés de dimension 3
et S une surface dans V, transverse a l’entrelacs L,. Comme A préserve les classes
d’homologie des méridiens il y a une surface E proprement plongée dans 7T(L,) et
bordant A(8(S\T(L,))).

3 Un repérage (framing en anglais) d’une sous-variété L d’une variété V¥ est une trivialisation de son
fibré normal. Pour repérer un entrelacs L =(X,, ..., K,) a voisinage orientable dans une variéte¢ de
dimension trois il suffit de se donner un section s de son fibré normal. La matrice d’enlacement de
Ientrelacs repéré (L, s) est ((k(K;, s(K)))).
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DEFINITION E.8. La Surface h(S\T° (L,)) U E est dite obtenue par rapiégage a
partir de S, sa classe d’homologie dans H,(V,) ne dépend que de celle de S dans
H,(V,), plus précisément :

LEMME E.. Soient V, et V, deux variétés de dimension trois équivalentes par
déchirure alors:
(1) Les variétées V| et V, ont méme type (cf. C.3).
(11) La déchirure h induit un isomorphisme linéaire gradué h* : H*(V,) —» H*(V))
tel que:

h*(w, (V1)) = w, (V)
et pour tout x dans H'(V,), h*(x uw,(V5)) = h'(x) uw, (V).

Démonstration. Comme h préserve les classes d’homologie des méridiens, la
premiere partie de (ii) résulte de la comparaison des suites exactes de Mayer-—
Vietoris de V; = V,-\Z;" (L,)VT(L;) pour i =1, 2. Comme I’entrelacs L, est a voisi-
nage orientable on peut choisir une surface caractéristique F, dans V, disjointe de
L,, la surface F, = h(F,) sera caractéristique dans V, et a méme forme d’enroule-
ment donc méme défaut algébrique que F, d’ou (i) et la deuxiéme partie de (ii). O

REMARQUE E.10. (a) On ne peut espérer d’isomorphisme multiplicatif sur
tout ’anneau de cohomologie : en effet RP? et S' x $? n’ont pas mémes structures
multiplicatives bien que les nceuds RP' et S' x {*} aient pour extérieurs des tores
solides dont I'identification produit une déchirure.

(b) Contrairement aux déchirures les éclatements ne préservent pas le type : en
éclatant une variété V le long d’une courbe simple fermée duale de w,(V)? on
change le type. Nous utiliserons deux manifestations de ce phénomeéne :

(b1) Le complémentaire de ’entrelacs de Hopf dans la sphére S est fibré en
anneaux, ainsi I’éclatée de la sphére S°* le long de I’entrelacs de Hopf est fibré en
tores, d’aprés E.2 la réduction mod 2 de la monodromie de ce fibré est conjuguée a

0 1 :
( i 0), et d’aprés C.5 cet éclaté est de type I,1. En fait l’éclaté de S°* le long de

Ientrelacs de Hopf est la variété M, de type I,1 décrite en C.5.

(b2) Soit M, le fibré non trivial en sphéres S* sur le cercle, c’est une variété de
type 10. L’éclatée Mo de M, le long du double de Whitehead K d’une section est une
variété de type I2. En effet il y a dans M|, un tore T caractéristique bilatéral disjoint
de K et dont des générateurs de ’homologie bordent des disques D et D’ coupant
K transversalement en un point (cf. Figure 2). Une surface caractéristique F dans
MO est 'union du diviseur exceptionel et de la transformée stricte 77 de T. Ainsi les
éclatés des deux disques ci-dessus sont des membranes d’enroulement 1 pour les
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FK

Figure 2

genérateurs de H,(T"). Comme une surface de Seifert pour K se reléve en une
membrane bordant un générateur du radical de B,(F), cette membrane est
d’enroulement nul puisque 7’ est bilatérale, ainsi I'invariant de Arf de la forme
d’enroulement est défini et vaut 1. []

§2. Dénouement par déchirure, le cas orientable et la conjecture de Nash
topologique

A déchirure prés les nceuds faiblement triviaux sont trivaux et les classes
désorientables s’isolent dans des espaces projectifs RP? plus précisément :

LEMME 1. Soit S une surface désorientée dans une variété de dimension trois V.
On suppose que le bord de S a au plus deux composantes connexes et on se donne une
orientation de 0S. Alors il y a un entrelacs L porté par S et une déchirure
h: V’\f(L’) — V\f’(L) d’ame L telle que S soit le rapiécage d’une anneau ou d’un
disque bilatéral dans V' et ayant 0S comme bord orienté si S a un bord non vide, d’un
plan projectif a voisinage orientable si S est fermée.

Démonstration. Soient en effet ¢,,...,c, des courbes deux a deux disjointes
renversant 'orientation de S, elles conservent ’orientation ambiante et ont donc
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pour voisinage dans V et S des tores solides T; et des rubans de Mobius M,
respectivement. Les bords de ces M, sont homologues aux méridiens des T, ainsi les
courbes c; se contractent sur une surface S’ a voisinage orientable dans la déchirure
correspondante.

Comme toute surface fermée non orientable est somme connexe de plans
projectifs réels il y a dans S un tel systéme de courbes ¢, tel que la surface S’ ainsi
obtenue soit un plan projectif, un disque ou un anneau suivant que S a 0, 1 ou 2
composantes de bord. [

COROLLAIRE 1. Soit V une variété fermée connexe de dimension trois alors il
y a une suite variétées V =Vy, V\,...,V, =V’ telle que chaque V., s’obtient a
partir de V; par une déchirure ou une contraction sur un point ou un cercle préservant
Porientation et V' a son H' engendré par w (V).

Démonstration. D’apres E.2 du §1 il suffit de montrer que si il y a dans V' une
surface S non séparante et non caractéristique alors il y a une déchirure dans
laquelle le rapiécé de S se contracte. On peut supposer que S est connexe et, si V
est non orientable, que S coupe une surface caractéristique F en une courbe connexe
ne séparant pas S. D’aprés D.3 on peut supposer de plus que S\f‘(F ) est
désorientée. Le lemme 1 produit une déchirure disjointe de F dans laquelle S\f"(F )
se rapiece en un plan projectif S’ unilatéral si S est disjoint de F, et un anneau A
qui forme avec SN T(F) un tore unilatéral S’ si S rencontre F. D’ou le résultat
d’aprés E.3 du §1. O

Démonstration du théoréeme B*. Comme V est orientable toutes les contractions
qui ont lieu dans le corollaire 1 sont, d’apreés E.2 du §1 sur des points et il y a une
déchirure de V sur une somme connexe de b,(V) exemplaires de RP? et d’une
sphére d’homologie. Il suffit donc de montrer que toute telle sphére d’homologie
admet une déchirure sur la sphére standard S°. D’apreés le fait E.5 du §1, I’affirma-
tion suivante achéve la démonstration.

AFFIRMATION. Soit H' une sphére d’homologie obtenue par une chirurgie sur
un neud K faiblement trivial dans une sphére d’homologie H. Alors il y a une
déchirure entre H et H'.

Démonstration. D’aprés D.3 du §1 et le lemme 1 il y a une déchirure de H sur
une sphére d’homologie H, dans laquelle le neeud K est trivial, d’ou une déchirure
de H’ sur une sphére d’homologie H obtenue par chirurgie sur le nceud K vu dans
H,. Comme H; est une sphére d’homologie le nceud K a, dans H;, un nombre
d’enlacement impair avec le repérage servant a définir la chirurgie (cf. [Ki2]).
D’aprés E.7 du §1 il y a une déchirure entre H et la variéte Hy diffeomorphe a H
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obtenue par chirurgie de H sur le nceud trivial K repéré par une section de nombre
d’enlacement 1 avec K, d’ou le résultat par composition de déchirures. [10J

PROPOSITION 1. Toute variété fermée connexe de dimension trois est m-équiv-
alente & la sphére S°.

Démonstration. D’apres le théoréme B* il suffit de montrer que toute variété de
dimension trois est m-€quivalente a une variété orientable. On va établir que si une
variété de dimension trois posséde une surface caractéristique connexe de genre
g +1>0 allors elle est m-équivalente a une variété W qui posséde une surface
caractéristique connexe de genre g si g > 0 et est orientable si g =0, d’ou le résultat
par récurrence sur g. On se raméne d’abord au cas ou F est unilatérale en
remarquant que si F est bilatérale la transformée stricte de F dans I’éclatée de V le
long d’une courbe non séparante de F est une surface caractéristique unilatérale de
méme genre que F. Si F est un tore unilatéral on peut d’apres E.3 du §1 le contracter
pour obtenir une variété orientable. Si g est postif on considére une courbe ¢
séparant F en une surface trouée bilatérale S, de genre g un tore troué unilatéral Tj,.
Comme ¢ borde la surface désorientable S, le lemme 1 nous assure que V est
équivalente par déchirure a une variété V' dans laquelle le nceud c est trivial. Ainsi
la variété V" obtenue partir de V par chirurgie sur le nceud ¢ repéré par un bicollier
de ¢ dans F est équivalente par déchirure a la somme connexe de V' et de RP?, et
V" est m-équivalente & V' et donc a V. L’affirmation de récurrence vient alors de
ce que la surface caractéristique de V" obenue a partir de F par chirurgie plongée
est union disjointe d’une surface S de genre g et d’un tore unilatéral qui se contracte
d’aprés E.3. O

§3. Classification a déchirure prés : démonstration du théoréme C

PROPOSITION 2. Toute variété fermée connexe de dimension trois V est
équivalente par déchirure & une variété W possédant une surface caractéristique F dont
le défaut est égal a son défaut algébrique.

Démonstration. Soit V’ une variété dans la classe de déchirure de V et F’ une
surface caractéristique connexe de genre g pour V', définissons la complexité du
couple (V’, F') comme étant 1 + g si F’ est bilatérale et g sinon. Soit (W, F) un tel
couple de complexité minimale. Si le défaut de F n’était pas égal a son défaut
algébrique il y aurait d’aprés B.4 et B.6 une membrane simple IR pour une courbe
¢ non séparante de F d’enroulement u(M) = 0. Le lemme suivant contredirait alors
la minimalité de (W, F).
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LEMME 2. Soit F une surface caractéristique connexe de genre g dans une
variété V de dimension 3 et IR une membrane simple pour une courbe non séparante
cde F. Si u(M) =0 il y aune déchirure de V sur une variété W possédant une surface
caractéristique F’ qui est:

(1) unilatérale de genre au plus g si F est bilatérale,

(ii) de genre g — 1 si F est unilatérale.

Démonstration. On distingue deux cas suivant que la membrane simple N est ou
non transverse a F prés de son bord. Dans le premier cas I'intersection stricte d est
une courbe simple fermée le long de laquelle on peut découper la membrane M
pour obtenir une membrane YN bordant 'union de ¢ et des deux composantes d_
et d, du bord d’un collier autour de d dans F (cf. Figure 3).

Comme la courbe c est non triviale dans H,(F) la trace de M’ sur le complémen-
taire de l'intérieur d’un tube 7'(F) autour de la surface F dans W représente un
élément non nul et non caractéristique de Hz(W\Yo“(F ), 8T(F)). Ainsi d’aprés D.3
du §1 on peut supposer MM'\d est désorientée. En ajoutant a IR’ une demi-anse
d’indice 1 on obtient une membrane désorientée N bordant I'une des courbes d, et
une somme connexe de 'autre avec ¢. Le lemme 1 permet alors, quitte & déchirer
hors de F, de supposer que M est un anneau bilatéral. Comme, pres de d, la
membrane N arrive “des deux c6tés” de F la surface obtenue en remplagant un
bicollier du bord de M dans F par le bord d’un bicollier de 9 dans W est une
surface F’ unilatérale de méme genre que F : On a obtenu (i) si la surface F était
bilatérale. Si F est unilatérale on peut ajouter une demi-anse a 9t pour connecter ses
deux composantes de bord puis toujours griace au lemme 1 se ramener au cas ou RN
est un disque. Une chirurgie plongée donne alors (ii).

o,

J%IF ’unilal'e’ rale

Figure 3.

F
F
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Dans le deuxiéme cas la trace 9t de M sur W\]o"(F ) a un bord connexe. Par la
méme méthode que précédement on se raméne au cas ou N est un disque, ainsi M
est un ruban de Mobius bilatéral. Il y a alors un diffeomorphisme du complémen-
taire d’un tube autour de ¢ qui est I'identité hors du bicollier de M dans W et dans
le bicollier une isotopie de I'identité au double tour du ruban de Mdobius IR. Ce
difftomorphisme s’é¢tend en un difféeomorphisme entre W la variété obtenue par
chirugie sur le neeud ¢ dans laquelle on peut faire une chirurgie plongée qui baisse
le genre de la surface F. OO

REMARAQUE (G. Mihalkin). On peut, dans la derniére partie de la démonstra-
tion, éviter le difféomorphisme de “double tour” le long du ruban de Mébius I en
remarquant que RN se prolonge en une membrane transverse a F pour une courbe
¢’ homologue modulo 2 (mais non modulo 4) a c.

Démonstration du théoréeme B. La nécessité vient de ce que le type est invariant
par déchirure (E.9(i)) et qu’une variété élémentaire V avec b, (V) =1 est d’aprés E.2
du §1 I’éclatée de la sphére S* sur un point ou un nceeud K, dans le premier cas elle
est orientable, dans le deuxiéme cas la transformeée stricte d’une surface de Seifert
pour K est une membrane d’enroulement nul elle est donc de type 70 ou I1.

Pour la suffisance il suffit, d’apres le théoréme B*, de montrer que si V' est une
variété non-orientable qui n’est pas de type 72 avec b,(V) =1 on peut construire
une suite de variétés V; comme dans le corollaire 1 aboutissant a une variété V,
orientable : en effet on peut supposer par position générale que les centres des
déchirures permettant de passer de V, a V,,, sont disjoints des centres des
contractions de V; sur V., pour j <i et on peut repousser toutes les déchirures
dans le premier étage de la construction : le passage de V, a V.

Si V posséde un tore caractéristique unilatéral on peut, d’aprés E.3 le con-
tracter pour obtenir une variété orientable. Soit F une surface caractéristique de
défaut égal au défaut algébrique donnée par la proposition 2. Si F est une sphére
on obtient un tore caractéristique unilatéral en lui ajoutant un anse le long d’un
arc renversant I’orientation. Si F est un tore de défaut 1, il est bilatéral et il y a
une surface S coupant F en une courbe non séparante. Comme dans le corollaire 1
on se raméne par déchirure disjointe de F au cas ou S est un tore unilatéral et
I'image de F est un tore caractéristique unilatéral dans la variété obtenue en
contractant S. De méme si le genre de F est supérieur a 1 on construit apres
déchirure disjointe de F un tore unilatéral coupant F en une courbe non séparante
non homologue dans V a lauto-intersection de F. La variét¢ V' obtenue en
contractant S vérifie w,(V’)>#0 et si une surface caractéristique F’ de V"’ de
défaut nul n’est pas un tore unilatéral elle est de genre supérieur 4 un et on peut
recommencer.
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Reste le cas ou V est de type 12 avec b,(V) > 1 et F est un tore. Dans ’exemple
(b2) de la remarque E.10 on avait construit une variété élémentaire My de type 12
avec b, (M) =2, d’ou le résultat si on admet le théoréme C de classification a
déchirure preés, nous donnons cependant ci-dessous un argument alternatif direct.
D’apres C.4 une membrane simple bordant une courbe non séparante ¢ de F n’est
pas transverse a F et, comme b,(¥) > 1, il y a une telle membrane M qui contient
un arc « proprement plongé dans I, tel que o coupe transversalement en un point
une surface S disjointe de F et do borde sur ¢ un arc y contenant les deux points ou
9 n’est pas transverse & F. Il y a donc une surface D disjointe de a, de bord le bord
d’un disque de F contenant I’arc y et d’intérieur disjoint de F et du méme coté de
F que M prés de cndD. Le lemme 1 permet de déchirer hors de Fua pour
transformer D en un disque, ainsi la surface caractéristique F’ obtenue a partir de
F par chirurgie plongée sur a et sur D est 'union d’un tore unilatéral et d’un tore
bilatéral. La membrane M se chirurgise aussi pour donner une membrane M’ qui
est transverse a la composante bilatérale de F’. Ainsi lorsque 'on contracte la
composante unilatérale de F’ on obtient une variété de dimension trois et une
membrane d’enroulement nul bordant une courbe non séparante d’un tore caracté-
ristique: cette variété est de 'un des types type 10 ou I1 déja traité. [

PROPOSITION 3. Soit V une variété fermée connexe de dimension trois faible-
ment non orientable de défaut algébrique non nul. Alors V est équivalente par
déchirure a une variété obtenue par vrillement (cf. C.5(c)) d’une variété W possédant
une surface caractéristique G de defaut nul.

Démonstration. D’aprés la proposition 2 on peut supposer que la variété V a
une surface caractéristique F connexe dont le défaut est égal a son défaut algé-
brique. Comme I'espace des bord B, (F) est de dimension 1 ou 2 et qu’en ce dernier
cas la forme d’intersection de la surface F est non dégénérée sur B,(F) on peut
couper la surface F en un tore troué¢ F, dont ’homologie contient B,(F) et une
surface F, dont ’homologie s’injecte dans H, (V).

Ainsi tout élément de B, (F) est bord d’une membrane M telle que M F < F,.
(Si une membrane M bordant une courbe ¢ de F, coupe F, l'intersection avec N
produit un élément du dual de H,(F,) qui, par dualité¢ de Poincaré, est représenté
par l'intersection avec une surface fermée S ; la somme connexe de 9N avec S est la
membrane 9N cherchée.) D’aprés 'affirmation C.4 du §1 une telle membrane I est
non transverse a F et M\ ]o"(F ) a deux composantes de bord a et b qui se projettent
sur F, en deux courbes simples fermées @ et b se coupant transversalement en un
point (on note 7 : T(F) — F la projection et 1 ~'(@) = au ——a).oLe lemme 1 assure
alors que, quitte a déchirer hors de F, on peut supposer que I\ 7(F) est un anneau.
On munit a et b de I'orientation bord de cet anneau.
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Supposons d’abord que le défaut est 2 et soit IR’ une membrane bordant un
¢lément ¢’ de B,(F) distinct de ¢. Comme H,(F,) a trois éléments non triviaux on
a, quitte a changer M’ dans un voisinage de F, et 4 renuméroter, a =a’ et b’ est
homotope au juxtaposé de a et b et est transverse A @et a b avec b’ n(@ub) =anb.
Alors nécessairement a et a’ sont de part et d’autre de F: a’ = —a (sinon on peut
supposer que a et a’ sont disjointes dans 07T (F) et y bordent un anneau A, ainsi
MU I’ U A4 serait une surface immergée dont la courbe de points doubles n’a qu’un
point dans son bord!). L’intersection (I n&m')\f (F) est alors 'union d’un arc
joignant les deux composantes de a(im\f(F )) et de courbes bordant des disques
dans I, ces disques permettent par chirugie plongée de I’ de se ramener au cas ou
(‘.D?nim')\]c" (F) est un arc a. Quitte a déchirer hors de FUIM on peut supposer
grace au lemme 1 que M\ est un disque, ainsi M’ est un anneau et F,u MU M’
est 'ame de la vrille de défaut 2 cherchée.

Dans le cas de défaut 1 la courbe —a U —b est homologue a zéro dans ¥\ f"(F ),
d’aprés la suite exacte de Mayer—Vietoris. Il y a donc une membrane I’ dans
V\f‘(F) qui borde —a u —b. Comme dans le cas de défaut 2 on se raméne au cas
ou M est un anneau coupant M en un arc a: IMUIN’ est un tore immerge et
FouMOUM est 'ame de la vrille de défaut 1 cherchée. [

On obtient par une application inductive analogue du lemme 1:

PROPOSITION 4. Soit V une variété non orientable possédant une surface
caractéristique F de défaut nul et de genre g. Alors il y a une déchirure, disjointe de
F, de V sur une variété W et des surfaces X; dans W deux a deux transverse et
transverses a F, 1 <i <k avec k =2g — 1 ou 2g suivant que V est fortement ou
Jaiblement non orientable et telles que:

Z,NF =, est une courbe simple fermée, Z,X; = & pour |i —j| > 1, et Z,nZ;
est une courbe simple fermée S; coupant F transversalement en un point.

Pour i pair X, est un tore unilatéral.

Pour i impair et inférieur a k, la surface X; est une bouteille de Klein bilatérale.

Enfin si V est fortement non orientable, la surface X,, | est un plan projectif
bilatéral.

De plus si K est un neud coupant F transversalement en un point on peut demander
a X, de le contenir et a 6, d’en étre disjoint. [

Soit Z I'union de F et d’'un nceud K coupant F transversalement en un point si
F est une sphére, 'union de F et des surfaces X, si F est de genre positif.

Le complexe Z est de caractéristique d’Euler 1 ainsi le bord d’un voisinage
régulier N de Z est une sphére [le double D(N) de N est une variété fermeée
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de dimension trois donc de caractéristique d’Euler 0, comme d’autre part
X(D(N)) =2x(N) — x(0N) il vient y(ON) =2 donc 0N est une sphére car dN est
clairement connexe]. D’autre part il n’y a qu'une maniére d’épaissir Z en le
voisinage régulier N car les fibrés normaux a F et aux X, sont déterminés par
I’énoncé de la proposition 4. Soient V. et VI les variétés fermées obtenues en
bouchant par un disque les voisinages N ci-dessus correspondants aux cas faible-
ment et fortement orientables et pour d >0, la variété V2? est obtenue par
vrillement de défaut d sur V% .

Démonstration du théoréme C. La nécessité a €té obtenue en E.9 du §1. Pour la
suffisance on remarque que d’apres le théoréme B™* et les propositions 3 et 4 toute
varieté fermée connexe V de dimension trois est équivalente par déchirure 4 la
somme connexe V, de n exemplaires de ’espace projectif RP? si elle est orientable,
a la somme connexe de V, et d’une variété explicite ¥'2* ou V) ne dépendant que
du type I, d ou II de V et du genre algébrique g de V sinon (cf. C.3 du §1). Suivant
que le type est O, I ou II 'entier n est défini par: n =b,(V), n +2g =b,(V) +d,
n+2g=>b(V). O

§4. Approximation algébrique et démonstration du théoréme A

Rappelons quelques définitions et résultats de géométrie algébrique réelle (nous
suivrons le livre [BCR]). Soit Y une variété algébrique réelle affine compacte. Une
classe z € H,(Y) est algébrique si elle est représentée par la classe fondamentale d’un
sous-ensemble algébrique de dimension k de Y. On dit que Y a son homologie
algébrique si toutes ses classes d’homologie sont algébriques.

Un fibré fortement algébrique sur Y est par définition la pré-image du fibré
tautologique sur une grassmannienne par une fonction réguliére (cf. [BCR] 3.2.1)
de Y dans cette grassmannienne. On montre :

(4.1) Un fibré topologique sur Y est isomorphe a un fibré fortement algébrique si
et seulement si il I’est stablement ((BCR] 12.3.5).

(4.2) Une section o continue d’un fibré fortement algébrique sur Y s’approxime
par une section reguliere s ((BCR] 12.3.1).

(4.3) Si Y est de plus non singuliére prés d’un sous-ensemble algébrique Z non
singulier sur lequel o s’annule on peut demander a s et o de coincider sur Z
et a s d’approximer ¢ pour la topologie C™ prés de tout fermé sur lequel o
est C* ([BCR] 12.5.5 et 12.3.2).

(4.4) Si Y est non singuliére de dimension d il y a un fibré fortement algébrique &
de rang 1 sur Y dont la premiére classe de Stiefel - Whitney w, () est duale
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d’une classe z de H,_(Y) si et seulement si cette classe est algébrique
([BCR] 12.4.8).

Comme une hyper-surface M d’une variété V' de dimension d détermine* un fibré
de rang 1 dont la classe d’isomorphisme ne dépend que de la classe de M dans
H,_,(Y) lapproximation algébrique de (4.3) donne :

(4.5) On peut, par une isotopie C* petite, pousser sur un sous-ensemble algébrique
non singulier toute hyper-surface C* d’une variété algébrique affine com-
pacte non singuliére dont I’homologie de codimension 1 est algébrique (BCR]
12.4.10).

En dimension trois on peut approximer les sous-variétés C* de toute dimension
par des sous-variétés algébriques non singuliéres :

PROPOSITION S. Soit X une varieté algébrique réelle lisse de dimension trois
qui est affine et compacte et dont I’homologie est algébrique, alors toute sous-variété
C* de X s’approxime pour la topologie C* par une sous-variété algébrique non
singuliere.

Démonstration. Cette proposition peut se déduire des résultats de Bochnak et
Kucharz ([BK]) su la K-théorie fortement algébrique des variétés réelles non
singuliéres de dimension trois. Donnons en cependant une preuve ¢lémentaire.

D’aprés (4.5) il suffit de montrer que 'on peut approximer toute sous-variété
de dimension 1. Soit donc L un entrelacs C* dans X et Z’ un sous-ensemble
algébrique de dimension 1 dont la classe fondamentale Z représente la classe
d’homologie de L (Z est obtenu en enlevant & Z’ les points isolés de Z’). Quitte a
isotoper légérement L on peut le supposer disjoint de Z’. Remarquons que, comme
sous-ensemble algébrique de dimension 1 dans une variété algébrique lisse de
dimension trois, Z est un graphe a valences paires topologiquement localement plat’
(cf. [BCR] Théorémes 9.3.5 et 11.2.2). On peut donc appliquer a K=LuZ la
remarque suivante:

REMARQUE. Soit K un graphe dont tous les sommets sont de valence paire et
qui est plongé de maniére localement plate dans une variété de dimension trois V.

4 La pré-image du fibré tautologique sur RP"*! par la construction de Thom sur le fibré normal a
M dans V.

5 j.e. prés de chaque point de Z la paire (Y, Z) est homéomorphe a une paire de cones (cS, c4) ou
A est un ensemble fini & nombre pair d’éléments dans une sphére S.
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Alors il y a un fibré & sur V qui est C* de rang 2 et posséde une section continue &
dont I’ensemble des zéros est le graphe K et qui est topologiquement transverse a K la
ou K est une sous-variété (i.e. hors des sommets de valence supérieur a 2).

De plus on peut supposer que la section o est C*® et transverse la ou K est une
sous-variété C* de V.

Démonstration. Si K est une sous-variété et n : T(K) — K est la projection du
fibré normal a K dans V le fibré n*(v) sur T(K) a une section ¢’ transverse dont
I’ensemble des zéros est K. Ainsi la restriction de n*(v) a T(K)\K, munie de la
section ¢’ est isomorphe a la restriction du stabilisé 6 @ ¢ du fibré d’orientation 0 de
V, munie de la section provenant du facteur trivial ¢. Le fibré ¢ et la section & sont
obtenus en recollant (n*(v), ¢”) et (6 @ ek, (0, 1)).

Dans le cas général le fibré £ est obtenu par le procédé ci-dessus appliqué a une
sous-variété K’ de V' qui coincide avec K hors de l'intérieur d’un voisinage conique
N du zéro-squelette de K. La restriction de ce fibré ¢ a la boule N est triviale,
supposons la trivialisée, on peut prendre pour section ¢ ’extension conique dans
cette trivialisation de la restriction a V\ﬁ de la section transverse a K’ construite
dans le paragraphe précédent. [

La deuxiéme classe de Stiefel-Whitney w,(&) est nulle car représentée par
LuZ. 1l s’ensuit que la restriction au 2-squelette d’une triangulation de X du
fibré stabilisé ¢ @ ¢ est isomorphe a la somme d’un fibré trivial et d’un fibré de rang
1 ((M] 12.1). Comme =,(O(3)) est nul le fibré £ @ ¢ est lui aussi un stabilisé d’un
fibré de rang 1. D’aprés (4.1) et (4.4)° il y a un fibré fortement algébrique
isomorphe a £ On conclut alors par le théoréme d’approximation relative
(4.3). OO

Remarquons que si une variété algébrique réelle affine non singuliére X et une
sous-vari¢te algébrique non singulicre Z de X ont toute deux leur homologie
algébrique il en est de méme de I’éclatée X de centre Z (cf. [BCR] 3.5.10 et E.1 et
E.2 du §1).

Démonstration du théoréme A. Soit V' = RP*# V I’éclaté de V sur un point si
V est équivalent par déchirure a M., V' = V sinon. D’aprés le théoréme B il y a une
variété top-élémentaire W obtenue a partir de la sphére S* par une suite d’éclate-
ments S> = Wy W, - W,« W, _, =W et une fibration C* a fibres connexes

¢ Car ’homologie de dimension 2 de Y algébrique.
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¢ : E, —» L du diviseur exceptionnel E, du dernier éclatement W, « W, , sur un
entrelacs L de V"’ telle que le fibré normal & E” dans W, . , le long de chaque fibre
de ¢ est non trivial et V"’ est diffétomorphe a la variété obtenue par contraction de
E, sur L suivant ¢. Si V' =RP*#V on peut supposer que le plan projectif
RP?c RP? # V est transverse aux centres des éclatements et on note S la trans-
formée stricte de RP? dans W.

La proposition 5 permet par récurrence de voir la tour Wy W -« W, |
comme une tour de variétés rationnelles non-singuliéres S°= X;« X, «---
« X, .1 =X ou chacune des X; est obtenue a partir de la précédente X;_, par un
éclatement de centre une courbe algébrique non-singuliére Z,_,. On note
n:X-W,,., ledifftomorphisme ainsi obtenu.

Si ’on prend soin d’approximer le centre H, du dernier éclatement composante
par composante on obtient que chaque composante connexe de la courbe Z, est
irréductible il en est de méme de chaque composante connexe de la surface
algébrique ©® =@ dans X =X, ,, correspondant 4 la surface E, de W,. Ces
composantes ont leur homologie algébrique (engendrée par une fibre de I’éclate-
ment et la classe de Stiefel-Whitney du fibré normal).

En identifiant I’entrelacs L 4 X, une union disjointe de droites projectives RP',
le théoréme d’approximation 4.2 permet d’approximer pour la topologie C* la
fibration @ on : @ - X par une application réguliére ¢ ([BCR] 13.3.1). De méme
une version relative du théoréme d’approximation 4.5 obtenue a partir de 4.3
permet d’isotoper S relativement a I'intersection de S avec les transformés strictes
des diviseurs exceptionnels des éclatements X; « X, , sur un ensemble algébrique
z.

La variété rationnelle affine Y du théoréme A sera alors obtenue par la
solution du “probléme de modification” donnée par la proposition 6 ci-dessous
qui généralise la construction du compactifi¢ d’Alexandroff algébrique ([BCR]
3.5.3). (Si V' = RP*# V il faut aprés avoir appliqué une premiére fois ce principe
pour contracter les fibres de ¢ et obtenir une variété affine compacte Y’ 'appli-
quer une deuxiéme fois a la fermeture projective Y” de Y’ pour contracter en un
point I'union de I'image de X dans Y” avec Y” = Y"nRP%*~!, la partie a I'infini
de Y".)

PROPOSITION 6. Soit X une variété algébrique réelle projective, ©® < X une
sous-variété propre et ¢ : @ — X une application réguliére ou X < R™ est une variété
algébrique réelle affine.

Alors il y a une variété algébrique réelle affine Y = R* contenant X pour une
inclusion naturelle de R™ dans R* et une application rationnelle réguliére ¢ : X - Y
étendant ¢, et telle que la restriction @ de o a X\O est un isomorphisme algébrique
de X\@ sur Y\ZX.



Déchirures de variétés de dimension trois 541

Démonstration. Donnons en une esquisse et renvoyons a [BR] 3.7.13 pour les
détails :

Il y a un plongement régulier de I'’espace projectif réel RP” dans un espace
affine R d’image Zariski-fermée dans P’espace projectif RP" correspondant
([BCR] 3.4.4), ou [BR] 3.6.1 et 3.7.12) on peut donc supposer que la variété X
est réalisée comme un ensemble algébrique affine dans un RY Zariski-fermé
dans RP". La somme des carrés d’équations homogénes de X est alors un
polyndme homogéne H e R[X,, X,,..., Xy] avec X ={[xo, x|,...,xy] € RP"|
H(xy,...,xy)=0}.

Soit aussi T € R[X,, X,,...,Xy] un polyndbme homogene de degré d tel que
© = {T = 0}. Par définition d’une application réguliére (cf. [BCR] 3.2.1) I'applica-
tion ¢ a une extension rationnelle

G =

m
QO

P (P; P;
Ql

): RY-- > R™

ou le diviseur polaire {Q’ =0} de G’ est disjoint de ©. L’application

P’Ql

P
“TgTo T

est une extension réguliére de ¢ a R™. Soit I'y et I'y les ensembles algébriques
affines

Iy={(x,u,2) e R"x Rx R"|x € X, u=T(1, x), 20(1, x) = P(1, x)},

Fe={(x,u,s)ely|xeB}.

Il y a des identifications biréguliéres naturelles de X, @ avec I'y et Ig
respectivement et donc il suffit de démontrer la proposition en remplagant ¢ par la
restriction a I'g de la projection naturelle de RY x R x R™ sur R™.

Soit 2'={0} x X =cR x R™, Re R[U, Y] un polynéme tel que 2’ ={R =0}
et ¢ lapplication polynomiale de RY x R x R™ dans R" x R x R™ définie par
é(x, u, y) = (R(u, y)x, u, y). Posons

Y =6(I'y)u({0} x £’) et soit @ la restriction de ¢ a I'y.
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Les équations H(R(u,y), x) =0, R(u,y)u = T(R(4,y),x), y - Q(R(u,y), x) =
P(R(u, y), x) définissent Y donc Y est bien une variété algébrique affine, il est clair
que l'application ¢ a les propriétés demandées. [J

Appendice A
La conjecture de Nash pour les variétés simplement connexes de dimension quatre

Soient P le plan projectif complexe muni de son orientation de variété complexe
et Q le méme plan projectif mais muni de 'orientation opposée. On note par R et
S les sphéres d’auto-intersection + et —1 dans P et Q respectivement correspon-
dant 4 une droite projective complexe. Si V est une variété de dimension quatre
la somme connexe M =V #pP #qQ (p,q € N) contient donc des sphéres
R,,...,R,, S, ..., S, dauto-intersection +1 dans M telles que la variété V
s’obtienne a partir de M en contractant en un point chacune des sphéres R, et S;.

D’apres le théoréme de Wall ((Wa]) pour toute variété simplement connexe
V de dimension quatre il y a des entiers p et g et un difffomorphisme
h:V #pP #qQ - Wy = #, (P # Q). Ainsi pour les variétés de dimension quatre
simplement connexes on a stablement une situation analogue a celle qui permet de
résoudre la conjecture de Nash en dimension 2 :

THEOREME D. Soit V une variété de dimension quatre simplement connexe.
Alors V est homéomorphe a un ensemble algébrique rationnel Y dont I’ensemble
singulier 2 est fini.

De plus il y a une variété rationnelle non singuliére X et une surface algébrique non
singuliere @ dans X dont chaque composante est difféomorphe a la sphére, d’auto-
intersection +1 dans X et une application réguliére n : (X, @) — (Y, X) qui réalise un
isomorphisme birationnel entre X\@ et Y\ZX.

Demonstration. Considérons la sphére S* comme la sphére unité dans C? x R.
On munit les intérieurs des hémispheres nord et sud de la structure complexe
transportée de celle de C? par la premiére projection. L’éclatée complexe X, de S*
le long de 2N points également répartis entre ces deux hémisphéres est une variété
rationnelle non singuliére difffomorphe a W,. Les “fibrés tautologiques” des
éclatements sont des fibrés en droites complexes fortement algébriques sur X, et
dont les classes de Chern forment une base de H*(X,; Z). Par produit tensoriel il
s’en suit que toute classe de H*(X,; Z) est classe de Chern d’un fibré en droites
complexes fortement algébrique sur X, . Ainsi les arguments a la Nash—Tognoli du
paragraphe 4 permettent d’approximer les spheres hA(R;) et h(S;) par des surfaces
algébriques non singuliéres d’ou le théoréme D grace a la proposition 6. [J
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Appendice B
Le m-calcul des entrelacs repérés dans S°

Soit D un disque de bord C dans une variét¢é V' de dimension trois et
hp: V\C = V\C le tour complet’ le long de D. Pour ¢ = +1, ’homéomorphisme
5 s’étend en un homéomorphisme de V sur la variété déduite de V' par chirurgie
d’ame la nceud C repéré par la section s, dont le nombre d’enlacement avec C est
¢. Ainsi si L est un entrelacs repéré dans S* et D un disque dans S* de bord C
disjoint de L alors la variété obtenue par chirurgie sur L est diffeomorphe a celle
obtenue par chirurgie sur le e-mouvement de Kirby de L le long de D : K (L) =
(L) LI (C; s,).

Bien que nous ne l'utiliserons pas signalons que réciproquement Kirby, Fenn et
Rourke ([Ki], [FR]) ont montré que si deux entrelacs repérés dans S représentent
des variétés orientées positivement diffeomorphes alors on peut passer de 'un a
l’autre par une suite de mouvements de Kirby et de leurs inverses.

Le calcul des modifications élémentaires d’entrelacs repérés dans S> ou m-calcul
est la relation d’équivalence sur les entrelacs repérés engendrée par :

m,: Les mouvements de Kirby et leurs inverses.

m,: Le changement de repérage dans la méme classe modulo 2.

my: L’introduction ou la suppression de I’entrelacs L d’une composante C bordant
un disque disjoint de L et repréré par la section s,.

REMARQUE. Les mouvements m, et m, permettent le mouvement de double
tour :

my: Si D est un disque de bord disjoint de L, passer de L a I’entrelacs repéré
hE*(L).

Démonstration. En effet d’aprés le mouvement m, on peut introduire deux
composantes paralléles & C I’'une repérée par s,, l'autre par s_,. Le mouvement m,
permet de changer ces repérages en s_,, s_,, respectivement s,, s;. En supprimant
ces deux composantes par des mouvements m; on obtient bien respectivement
hp3(L) et hpX(L). O

7 Hors d’un bicollier D x ]~1, 1[ autour de D le tour complet A, est I'identité et sur D x ] -1, 1|,
hp(z, t) = (—exp(nit)z, ).
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Fox dit que deux entrelacs (non repérés!) sont (2, 1)-congruents si 'on peut
passer de 'un & lautre par une suite d’isotopies et de double tours m,.

Le lemme E.7 du §1 nous assure que des entrelacs équivalents sous m, et
m, présentent des variétés orientables équivalentes par déchirures. Comme les
mouvements m; correspondent a lintroduction ou la suppression d’un facteur
RP? en somme connexe, des entrelacs m-équivalents produisent des variétés
m-équivalentes.

La trivialit¢ des variétés orientables a m-équivalence prés découle alors du
résultat suivant de Nakanishi ([Nk]): Deux entrelacs dans la sphére S* sont
(2,1)-congruents si et seulement si leurs matrices de nombre d’enlacement sont
congrues modulo 2.

Démonstration. Soit en effet V' une variété orientable présentée par un entrelacs
repéré L. Quitte a faire un mouvement de Kirby on peut supposer que la forme
d’intersection de la trace de la chirurgie est impaire (elle est représentée par la
matrice d’enlacement de ’entrelacs repéré L). D’aprés la classification des formes
quadratiques non isotropes sur Z/2Z on peut, aprés glissement d’anses, supposer
que la matrice des nombres d’enlacement de L est diagonale modulo 2. Ainsi
d’apres le résultat de Nakanishi et en tirant partie des mouvements m,, la variété
V est équivalente par déchirures a une variété orientable présentée par un entrelacs
trivial repéré par des sections de nombre d’enlacement 1 ou 2: c’est une somme
connexe d’espaces projectifs réels RP3, d’ou une démonstration alternative du
théoréeme B*. O
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