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Déchirures de variétés de dimension trois et la conjecture de Nash
de rationalité en dimension trois

Dédié à Heisuke Hironaka

RlCCARDO BENEDETTI ET ALEXIS MARIN

Nash a montré en 1951 ([N]) que toute variété C°° compacte connexe et sans

bord Vn est difféomorphe à une branche d&apos;une variété algébrique réelle X II termine
cet article célèbre par deux conjectures en demandant successivement à la variété

algébrique X d&apos;être

(î) non singulière et connexe,
(n) rationnelle

Rapellons qu&apos;une variété algébrique est rationnelle si elle est birationnellement
îsomorphisme à l&apos;espace projectif RPn Par exemple la sphère euclidienne Sn est

rationnelle grâce à la projection stéréographique Sf Sn\{N} -* Rn c RPn Plus

généralement les modifications élémentaires de la géométrie algébrique par éclatements

et contractions (cf [S] VI 2 2) sont des exemples d&apos;isomorphismes bi-
rationnels On dira qu&apos;une variété algébrique X est élémentaire si on peut l&apos;obtenir

à partir de S&quot; par une suite d&apos;éclatements sur des centres lisses, ces variétés
élémentaires sont non-singulières

La première conjecture a été démontrée en 1973 par Tognoh ([T]), la deuxième

est toujours ouverte (Cf [I] p 37) En dimension 2 toute surface non orientable est

difféomorphe à une somme connexe de plans projectifs réels, donc à une surface

rationnelle élémentaire Pk obtenue en éclatant le plan projectif en k points alignés

sur une droite d D&apos;autre part en contractant la transformée stricte de d dans P2g on
obtient une surface algébrique Xg homéomorphe à une surface orientable de genre

g. Les mêmes idées permettent aussi d&apos;obtenir la conjecture de Nash pour les variétés
de dimension quatre simplement connexes (Théorème D dans l&apos;appendice A)

Si le genre g est supérieur à 1 la surface Xg obtenue ci-dessus est singulière, on
ne peut l&apos;éviter car Comessati avait montré dès 1913 qu&apos;une surface rationnelle lisse

orientable est une sphère ou un tore ([C] ou, [K], [Si] pour une démonstration

moderne) il faut dans la conjecture de Nash permettre des singularités pour un
modèle rationnel X d&apos;une variété C°° quelconque
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Dans cet article nous allons établir la conjecture de Nash en dimension trois

THEOREME A Soit V une variété fermée connexe C°° de dimension trois Alors
il y a un ensemble algébrique affine rationnel Y et un homéomorphisme h de Y sur V
tel que les restrictions de h aux strates de la stratification par singularité de Y sont des

difféomorphismes De plus
(1) Uensemble singulier Z(Y) de Y est de dimension 1 // est lisse si V est

orientable ou si dim (HX{V, Z/2Z) # 1

(n) II y a une résolution des singularités de Y par une variété élémentaire X un

morphisme régulier o X -+ Y, qui induit

(ni) un isomorphisme biréguher 0 X\a-l(Z(Y)) -&gt; Y\Z(Y)
(n2) une fibratwn de classe C°° à fibres connexes

Les modifications élémentaires algébriques ont des analogues topologiques
décrits au §1 E ci-dessous, d&apos;où une notion de variété top-élémentaire (î e obtenue
à partir de la sphère Sn par une suite d&apos;éclatements topologiques) et de m-équwa-
lence entre variétés lisses qui sera pour nous la version topologique de l&apos;isomor-

phisme birationnel
On peut alors formuler la conjecture de Nash topologique

Toute variété fermée connexe de dimension n est m-équwalente à la sphère Sn

Cette conjecture de Nash topologique est vraie en dimension trois Après les

quelques rappels et préliminaires topologiques du §1 elle sera établie au §2 La
démonstration s&apos;appuie sur un résultat plus précis pour les variétés orientables

THEOREME B+ Soit V une variété fermée orientable de dimension 3 alors il y
a des entrelacs K et L dans V et une somme connexe R d&apos;espaces projectifs RP3 tels

que les éclatés topologiques V et R de V et R sur K et L respectivement sont

difféomorphes par un difféomorphisme qui respecte les diviseurs exceptionnels

Par définition (cf §1 E 6 et E 7) un tel difféomorphisme est une déchirure de V

sur R Contrairement à la classification à m-équivalence près la classification des

variétés de dimension trois à déchirure près est non triviale
Si V est une variété non orientable telle que le cup-carré de w,(F) est nul et F

est une surface duale de w,(F) on construira au §1 B une forme d&apos;enroulement

caractéristique (cf B 1 et B 6) sur le noyau de HX(F, Z/2Z) -+ Hx(F, Z/2Z) qui est

quadratique pour la forme bihnéaire d&apos;intersection de F et dont les invariants
(nullité ou non sur sur le radical de la forme bihnéaire associée et invariant de Arf
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lorsqu&apos;il est défini) sont invariants par déchirure. Au §3 on déterminera les variétés

équivalentes par déchirure à une variété élémentaire et on obtiendra la classification
à déchirure près :

THEOREME B. Une variété fermée connexe de dimension trois V est équivalente

par déchirure à une variété top-élémentaire si et seulement si on n&apos;a pas simultanément

bx{V) 1 et la forme d&apos;enroulement caractéristique est d&apos;invariant de Arf \.

THEOREME C. Deux variétés de dimension trois V et V sont équivalentes par
déchirure si et seulement si:

(i) II y a un isomorphisme linéaire gradué entre leurs cohomologie à coefficients

Z/2Z préservant le degré, la première classe de Stiefel-Whitney w, et le

cup-produit avec wx.

(ii) Dans le cas où wl(V)2 0 mais V est non orientable, les formes d&apos;enroule¬

ment caractéristique ont mêmes invariants.

Le théorème B implique le théorème A par des arguments classiques d&apos;approximation

algébrique à la Nash-Tognoli qui seront exposés au §4. Un exemple de

variété non équivalente par déchirure à une variété élémentaire est M2, le fibre

en tores sur le cercle de monodromie I 1 .Au cours de la démonstration du

théorème C on produira une liste explicite d&apos;exemples analogues, représentant sans

répétitions toute les classes de déchirure. Comme les méthodes du §4 permettent
d&apos;obtenir des modèles projectifs rationnels lisses pour chaque variété élémentaire et

donc pour chaque classe de déchirure distincte de M2 le théorème C implique aussi :

COMPLEMENT AU THEOREME A. Si la variété V n&apos;est pas dans la classe

de déchirure de M2 il y a une variété élémentaire X obtenue par éclatement sur des

courbes algébriques lisses Ct dans une variété élémentaire explicite ne dépendant que
de la classe de déchirure de V et des submersions algébriques nl des diviseurs

exceptionnels correspondants E, sur des courbes lisses Et tels que la variété rationnelle

affine Y soit obtenue à partir de X en contractant les fibres des nl.

En particulier, sauf peut-être pour M2, la classe de déchirure n&apos;est pas une
obstruction à l&apos;existence d&apos;un modèle algébrique non-singulier (par contre, d&apos;après le

théorème B, il n&apos;y a pas de variété élémentaire dans la classe de M2). D&apos;ailleurs nous
n&apos;avons pas connaissance d&apos;obstruction topologique à l&apos;existence de modèles non-singuliers

dans le cas de variété de dimension supérieure à deux (dans le cas de dimension

paire il est probable que les démonstrations de [K] et [Si] donnent des obstructions

analogues à celles dévoilées par Comessati, elles restent cependant à expliciter).
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En 1987, comme première étape vers la conjecture de Nash, nous avions fait
quelques remarques sur la conjecture de Nash topologique ([BM]) Nous l&apos;avions

notamment réduite à certaines questions de &quot;calcul de Kirby&quot; Une réduction
analogue a été aussi annoncée par Akbulut ([A]) Ayant pris connaissance d&apos;un

article de Nakanishi ([Nk]) sur la congruence de Fox des entrelacs de S3 le

premier auteur ([B]) a achevé ce programme, en particulier il a montré la conjecture

de Nash topologique en dimension trois dans le cas orientable et réduit le cas

général au cas orientable En s&apos;appuyant aussi sur Nakanishi, Akbulut et Kmg
([AK]) ont indépendamment montré cette conjecture de Nash topologique de

dimension trois Cette approche par &quot;calcul de Kirby&quot; est esquissée dans l&apos;appendice

B L&apos;approche par les déchirures présentée ici, outre qu&apos;elle dégage des

phénomènes de nouement apparement nouveaux des surfaces caractéristiques dans
les variétés de dimension trois permet de résoudre la conjecture de Nash originelle
sous la forme précise du théorème A et de son complément ci-dessus Elle permet
aussi d&apos;éviter le résultat de Nakanishi et donc de libérer la conjecture de Nash

topologique des diagrammes de dénouement que Nakanishi utilise pour montrer
son théorème Nous n&apos;arrivons cependant pas à produire une démonstration
alternative du résultat de Nakanishi

Bien que la méthode de [B] permette de réduire le cas général au cas orientable
la version forte du théorème principal qui y est énoncée est erronée car les modèles

proposés ne couvrent pas toutes les classes de déchirure possibles Une première

version du présent travail était aussi fautive essentiellement car nous y affirmions

que la forme d&apos;enroulement était linéaire Cette erreur a été débusquée par A.
Degtyarev, S Fmashin, V Kharlamov et G Mihalkin nous les remercions tout
particulièrement de leur perspicacité ainsi que de l&apos;intérêt qu&apos;ils ont porté au
&quot;rétablissement de la vérité&quot; Ils ont obtenu des présentations alternatives du

phénomène d&apos;enroulement caractéristique tant en étudiant quand était bien définie

la forme de Seifert d&apos;une surface qu&apos;à l&apos;aide de structures Pin-auxilhanes.
En mars 92 Gregory Mihalkin obtiendra la conjecture de Nash topologique en

dimension quatre ([Mih])

§1 Rappels et préliminaires topologiques

(A) L&apos;anneau d&apos;intersection d&apos;une variété de dimension trois

Hormis dans l&apos;appendice A, où l&apos;utilisation de la cohomologie à coefficients

entiers est explicitement mentionnée, les coefficients de tout objet homologique ou

cohomologique dans cet article sont sous-entendus il s&apos;agit de Z/2Z, les entiers

modulo deux
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D&apos;après la dualité de Poincaré si V est une variété fermée connexe de dimension
n le cup-produit Hl(V) x HJ(V) -+Hl+J(V) en cohomologie à coefficients modulo
deux a une version duale : l&apos;intersection Hn_t(V) x //„_,( F) -&gt;Hn_il+j)(V) en

homologie. Dans cet article nous préférerons ce produit d&apos;intersection homologique
d&apos;un maniement plus intuitif au &quot;produit tasse&quot; cohomologique, il nous arrivera
cependant, pour simplifier l&apos;expression et être conforme aux notations traditionnelles

des classes caractéristiques, de &quot;confondre&quot; parfois classes dans le H1 et

hypersurfaces.
Voici, pour la commodité du lecteur une présentation rapide de la théorie de

l&apos;intersection homologique à coefficients modulo deux et du lissage des cycles de

petite co-dimension.
Soit V une variété fermée de dimension n que l&apos;on suppose triangulée. Une

chaîne géométrique I modulo 2 de degré k, plus brièvement k-chaîne, dans V est une
partie I de V triangulée par un sous-complex d&apos;une subdivision linéaire de V qui est

réunion de simplexes de dimension k. On note Ck(V) l&apos;ensemble des fc-chaînes de V.

L&apos;adhérence de la différence symétrique fait de Ck(V) un groupe abélien dont tous
les éléments sont d&apos;ordre 2 (i.e. un Z/2Z espace vectoriel). Le bord d&apos;une A:-chaîne

I est la {k — 1)-chaîne dl formée des simplexes de dimension k — 1 de Z qui sont
face d&apos;un nombre impair de simplexes de dimension k de I. Un k-cycle est une
chaîne de bord nul. L&apos;opérateur de bord dk : Ck(V) -+Ck_x(V) est linéaire et vérifie

dk_ i © &lt;5fc 0, autrement dit les Ck(V) muni des opérateurs dk forment un complexe
dont Phomologie est l&apos;homologie modulo 2 de la variété V. On notera Hk{V) le
£ième gr0Upe cThomologie modulo 2 ainsi défini, son rang bk{V) est le kxemc nombre de

Betti modulo 2. On note C^(V) et H+(V) les sommes directes des Ck(V) et des

Hk(V) respectivement. De même pour une sous-variété W d&apos;une variété V des

groupes d&apos;homologie relative Hk(V, W) seront définis à partir du complexe relatif
Ck(V9 W) des k -chaînes dont le bord est dans W.

Les A:-cycles sont des généralisations des sous-variétés triangulées qui ont
l&apos;avantage de pouvoir être organisés en groupes abéliens et donc de permettre des

calculs effectifs. Evidement pour les cycles de dimension zéro il n&apos;y a pas de

différence. Thom ([Th]) a déterminé en général quand une classe d&apos;homologie est

représentée par une sous-variété, en particulier : en dimension ambiante inférieure à

6 on ne perd rien en passant des cycles aux sous-variétés. Indiquons comment obtenir
de manière élémentaire ce résultat de Kneser-Rohlin-Thom dans le cas de

dimension inférieure à 4 qui suffira à nos besoins.

(i) Par une méthode de lissage locale, due à Kneser, tout cycle I de co-dimension

1 (i.e. I est un (n — 1)-cycle dans une variété F de dimension n) est homologue
à une sous variété triangulée W de co-dimension 1 dans V, et une telle sous-variété

W de co-dimension 1 est homologue à 0 (i.e. au cycle vide) si et seulement si elle

borde une sous-variété triangulée X.
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(n) En co-dimension 2, Rohhn a remarqué qu&apos;il en était de même pour les cycles

I qui ont un relèvement en un cycle orienté (1 e on peut choisir une orientation 0a

pour chaque (n — 2)-simplexe a d&apos;une triangulation de I tel que tout (n — 3)-sim-
plexe de I soit le bord oriente d&apos;un nombre pair 2m de simplexes a de I dont
exactement m sont munis de l&apos;orientation choisie 0a, les m autres de l&apos;orientation

opposée)
En dimension 3 les cycles de co-dimension 2 sont de dimension 1 et vérifient

evidement cette dernière condition D&apos;ailleurs en ce cas la démonstration est plus
simple et due à Frankl et Pontnagume (On pourra se reporter aux pages 56 à 78

de [GM] pour une discussion de ces méthodes de lissage combinatoire et les

références aux textes originaux)
Soit V une variété de dimension n inférieure à quatre et a et P des classes

d&apos;homologie de dimension i et j respectivement D&apos;après ce qui précède, et comme
des sous-variétés isotopes sont des cycles homologues, on peut supposer que a et /?

sont représentées par deux sous-variétés A et B transverses1 dans V Leur intersection
C est alors une sous-variété de V de dimension k n —(i +j) dont la classe dans

Hk(V) ne dépend que de oc et /? Cette classe est notée a jî c&apos;est le produit
d&apos;intersection de a et de jS Ce produit munit H^(V) d&apos;une structure d&apos;anneau

commutatif dit anneau d&apos;intersection de la variété V
Isolons, en dimension ambiante inférieure à 4, les énoncés que nous utiliserons

AFFIRMATION Al (i) Si c est une courbe simple fermée tracée sur une surface
S représentant une classe y de Hx (S) alors l&apos;intersection y y est nulle si et seulement

si c est bilatérale dans S

(n) Si cette surface est plongée dans une variété de dimension trois V l&apos;intersection

des classes représentées par c et S est nulle si et seulement si, près de c, la surface S

est bilatérale dans V

(in) Soient F, 5, T trois surfaces dans une variété de dimension trois V On suppose
F transverse à S et T et on note c et d les courbes d&apos;intersection Soient (/&gt;, a, z et y9ô

les classes de F,S9 T et c,ddans H2(V) et HX(V) respectivement Alors l&apos;intersection

y ô de y et ô dans F est égale à l&apos;intersection a x &lt;/&gt; de &lt;r, t, 4&gt; dans V

(B) Les bords sur une surface plongée et leur enroulement

DEFINITIONS B 1 Soit S une surface dans une variété V de dimension trois
Son espace de bords BX(S) est le noyau du morphisme HX(S)-+HX(V) induit sur

1

L&apos;intersection se définie en gênerai pour des cycles non nécessairement sous-vanete par des

arguments de position générale
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l&apos;homologie de degré 1 par l&apos;inclusion de S dans V. Le défaut de S est la
dimension de son espace de bords. Une membrane pour une courbe c de S

représentant un bord est une surface 50Ï plongée dans F, bordant c et en position
générale relativement à S : la surface S est transverse à l&apos;intérieur de 9JI et
l&apos;intersection de S et de 501 est l&apos;union de c et d&apos;une courbe d, proprement plongée
dans S (dd dndffî) dite intersection stricte de la membrane avec la surface. Les

fibres normaux v(d; S) et v(d; 501) coïncident sur le bord de d (c&apos;est le fibre normal
àdd dnc dans c). Si les auto-intersections de d dans 50Î et dans S n&apos;ont pas de

sens puisque la courbe d peut avoir un bord non vide on peut cependant définir la
différence de ces auto-intersections ou enroulement ju(501) de la membrane 501

comme l&apos;évaluation, sur la classe fondamentale du double abstrait d^ u d_ de d,

du fibre en droite obtenu en recollant les fibres v(d; S) et v(d; 501) par l&apos;identité de

v(dd; c).

AFFIRMATION B.2. Soit c une courbe connexe de la surface S représentant un
bord. Alors la surface S est, près de c, bilatérale dans V. De plus la courbe c est

bilatérale dans S.

Démonstration. Comme la classe y de la courbe c est nulle dans HX(V),
l&apos;intersection de la classe a de S et de y est nulle ainsi (cf. A.l(ii)) la surface S est

bilatérale dans V près de c. Si c n&apos;était pas aussi bilatérale dans S elle aurait
un voisinage non orientable dans V et ne serait pas nulle dans HX{V) (cf. C

ci-dessous).

Comme d&apos;après B.2 la surface S et la variété V sont orientables au voisinage de

c le bord dT d&apos;un tube T(c) autour de c est un tore coupant la surface S en deux
courbes c+ et c_, homologues dans d T.

DEFINITION B.3. On dit qu&apos;une membrane 501 est simple si elle coupe chacune
des courbes c+ et c_ en au plus un point et son intersection stricte d avec S est

connexe.

AFFIRMATION B.4. Soit c comme dans B.2. Alors il y a une membrane simple
501 pour c.

Démonstration. L&apos;intersection d&apos;une membrane 501 avec dTest homologue soit à

c±9 soit à l&apos;union de c± et d&apos;un méridien de T(c). Ainsi, quitte à changer la

membrane 9W dans un collier de dT, on peut supposer qu&apos;elle coupe chacune des

courbes c± en au plus un point : l&apos;intersection stricte rfaau plus une composante
à bord non vide. Il suffit alors d&apos;ajouter des anses d&apos;indice 1 à 501 pour connecter les

composantes de d. D
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DEFINITION B.5. Une classe d&apos;homologie a de degré 2 dans une variété de

dimension trois V est $ intersection orientable si pour toute classe t g H2(V) on a

T*T*CT+T-(7-&lt;7=0.

PROPOSITION B.6. (i) Si la surface S n&apos;est pas d&apos;intersection orientable
dans V alors toute courbe représentant un bord borde une membrane d&apos;enroulement

nul.

(ii) Si la surface S est d&apos;intersection orientable dans V alors l&apos;enroulement d&apos;une

membrane ne dépend que de la classe d&apos;homologie du bord de la membrane. L&apos;application

\i : BX{S) -&gt;I./2Z ainsi définie est quadratique de forme bilinéaire associée b, la
restriction à BX(S) de la forme d&apos;intersection de la surface S.

Démonstration. Soient 2R&apos; et 9W&quot; deux choix de membrane pour une même

courbe c. D&apos;après l&apos;interprétation de l&apos;enroulement comme différence des auto-intersections,

dans la surface et la membrane, de l&apos;intersection de la membrane avec la

surface, le cycle t =WkjW vérifie (cf. A.l(iii)):

D&apos;où (i) car en ce cas si W est une membrane bordant une courbe c avec fi(W) 1

il y a une membrane 90T de bord c telle que le cycle t associé vérifie

t • t • (7 + t • &lt;t • a 1. On obtient aussi dans (ii) que fi(W) ne dépend que du bord
c de la membrane. Pour vérifier que fi(^Jl) ne dépend que de la classe d&apos;homologie

de c nous allons procéder en deux temps : d&apos;abord (a) vérifier que si c borde une
surface D dans la surface S alors ^(SW) 0, puis (b) montrer que si W et W sont
des membranes pour des courbes c&apos; et c&quot; alors il y a une membrane 9W bordant une
courbe c obtenue en remplaçant chaque composante d&apos;un voisinage de c&apos;c\c&quot; par
deux arcs disjoints de même bord et telle que:

+ c&apos; • c&quot;.

Si les courbes c&apos; et c&quot; sont homologues alors la courbe c borde dans S : cette

formule et fi(W) 0 d&apos;après le point (a) donnent ji(9W&apos;) fx{W). La formule pour
cf et c&quot; quelconques établit aussi le caractère quadratique de l&apos;enroulement /z.

(a) La surface D mise en position général relativement à S est une membrane

pour c d&apos;enroulement nul.

(b) Comme l&apos;enroulement ne dépend que de la classe d&apos;isotopie de la membrane

modulo son bord, on peut supposer que W et 501&quot; sont transverses et, près c&apos;ne&quot;,

transverse à S et du même côté de S. Une membrane $R obtenue en remplaçant un
voisinage de WnW par une surface de même bord convient. En effet chaque
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Figure 1

point de (c&apos;n int (W)) u(c&quot;nint (W)) ajoute 1 à l&apos;enroulement (cf. Figure 1) d&apos;où

la formule puisque (c/nc&quot;)u(c/nint(aK&quot;))u(^nint(SH/)) est le bord de la
courbe W nW et a donc une nombre pair de points).

Si la restriction d&apos;une forme quadratique q sur un Z/2Z espace vectoriel E au
radical E± de la forme bilinéaire associée b est nulle alors q induit sur le quotient
E\EL une forme quadratique non dégénérée dont l&apos;invariant de Arf détermine la
classe d&apos;isométrie de q (le couple (£&quot;, b) étant donné). D&apos;autre part les formes

quadratiques associées à b dont la restriction à E^ est non nulle sont toutes

isométriques.

DEFINITION B.7. Soit S une surface d&apos;intersection orientable dans une variété
V de dimension trois. Le défaut algébrique da{S) d&apos;une surface S est 0, 2 ou 1

suivant que sa forme d&apos;enroulement a un invariant de Arf défini et valant 0 ou 1 ou
n&apos;a pas d&apos;invariant de Arf défini (i.e. est non nulle sur le radical de la forme
bilinéaire associée).

Si une surface S n&apos;est pas d&apos;intersection orientable son défaut algébrique est 0.

Le rang r de la restriction de la forme d&apos;intersection à l&apos;espace des bords Bx (S)
est pair : r 2q. Le genre algébrique de S est ga(S) q si da(S) 0, ga(S) q + 1
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PROPOSITION B 8 Le défaut algébrique d&apos;une surface S d&apos;intersection

orientable dans une variété V de dimension pois ne dépend que de la classe d&apos;homologie

g de S dans H2(V)

Démonstration Soient So et S{ deux surfaces homologues dans V II y a alors

une variété G de dimension trois dans V x / et de bord So x 0 u S, x 1 On peut
supposer que la projection sur l&apos;intervalle / induit sur G une fonction de Morse
générique. Il faut montrer que le franchissement de chaque niveau critique ne

change pas le défaut algébrique Les maximums et minimums suppriment ou
introduisent des sphères et ne changent pas l&apos;enroulement On peut donc (quitte à

renverser localement le sens de parcours de /) ne considérer que les points d&apos;indice

1 soit on connecte deux composantes de la surface et on ne change pas la classe

d&apos;isométne de l&apos;enroulement, soit on fait la somme connexe de la surface S avec un
tore dont une courbe non séparante borde la co-âme de l&apos;anse Ainsi l&apos;espace des

bords voit sa dimension augmenter de 1 ou 2, dans le premier cas la dimension du
radical augmente de 1, dans le second le radical est inchangé Comme la co-âme est

une membrane d&apos;enroulement nul (car d&apos;intersection stricte vide) la nullité ou non
de l&apos;enroulement sur le radical subsiste et, si l&apos;invariant de Arf est défini il le reste

et ne change pas

(C) Hypersurfaces caractéristiques

On peut orienter le complémentaire du (n — 1)-squelette d&apos;une variété tnangulée
V de dimension « II y a donc un sous-complexe K de V dont le complémentaire est

orienté et qui est minimal pour cette propriété Un tel K est un cycle de co-dimen-

sion 1 et réciproquement pour tout cycle I homologue on peut onenter le

complémentaire de I de manière à ce que cette orientation ne s&apos;étende pas à un
ouvert plus grand

En particulier l&apos;orientation 0V\E du complémentaire diffère de l&apos;orientation

suivie par continuité le long d&apos;une courbe à chaque traversée d&apos;un {n — l)-simplexe
cr de I Ainsi GV\Z induit sur les deux côtés d&apos;un tel a la même orientation I est

un cycle orientable (le bord de la «-chaîne orientée formée des simplexes de V\I
orientés par 0V\Z représente deux fois le cycle I)

D&apos;après A on peut prendre pour I une hypersurface F, une telle hypersurface F
est dite caractéristique, la classe qu&apos;elle représente dans Hn_x{V) est duale de la

première classe de Stiefel-Whitney wx(V) e H\V) D&apos;après ce qui précède on a

AFFIRMATION Cl (î) Une courbe simple fermée c préserve Vorientation
d&apos;une variété V si et seulement si la première classe de Stiefel-Whitney w{(V)
s&apos;anulle sur la classe d&apos;homologie y de c.
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(ii) Toute hypersurface duale de wx(V) est orientable.

D&apos;où en utilisant A.l(iii):

AFFIRMATION C.2. (i) Une classe a e Hl(V) est duale d&apos;une classe d&apos;intersection

orientable si et seulement si a uw,(F) =0, en particulier:
(ii) Une surface caractéristique dans une variété de dimension trois V est d&apos;intersection

orientable si et seulement si elle est de carré nul.

DEFINITION C.3. Une variété V de dimension trois est dite de type 0 si elle

est orientable, fortement non orientable ou de type II ou si w{(V)2 ^ 0, faiblement
non orientable si wx(V) /0 wx(V)2. L&apos;espace des bords d&apos;une surface caractéristique

F dans une variété faiblement orientable est donc muni d&apos;une forme d&apos;enroulement

dite caractéristique fi: BX(F) -»Z/2Z. Le défaut algébrique et le genre d&apos;une

variété non orientable sont ceux d&apos;une surface caractéristique. Une variété faiblement

orientable est dite de type I9d si son défaut algébrique vaut d.

AFFIRMATION C.4. Soit SDÎ une membrane simple bordant une courbe non

séparante d&apos;une surface caractéristique F dans une variété de dimension trois alors

H(W) 0 si et seulement si W\F a un nombre impair de bouts: soit $R est transverse
à F et l&apos;intersection stricte d est bilatérate dans $R, soit 9W n&apos;est pas transverse à F
et F n &apos;est pas bilatérale au voisinage de 5CR n F.

En particulier l&apos;auto-intersection d&apos;une surface caractéristique connexe dans une

variété faiblement non orientable est d&apos;enroulement nul.

EXEMPLES C.5. Une matrice 2 x 2 à coefficients entiers A de déterminant — 1

induit un difféomorphisme renversant l&apos;orientation du tore T2. Le cylindre
M(A) T2 x [0, 1]/{(jc, 0) ~(A(x), 1)} d&apos;une telle matrice est une variété de

dimension trois faiblement non-orientable et ayant le tore T2 x 0 comme surface

caractéristique. Soit c une courbe de T2 telle que A(c) coupe c transversalement
en un point p. En modifiant au voisinage de p l&apos;anneau immergé c x [0, 1]/
{(/?, 0) ~ (/?, 1)} c M(A) on obtient une membrane d&apos;enroulement 1 pour une
courbe homologue àc + A(c), ainsi :

(a) Si A Ax K \ on obtient M, M(AX) avec bx(Mx) 2 et da(Mx) 1.
1 Oj

0 O
(b) Si A A2 on obtient M2 M(A2) avec bx(M2) 1 et da(M2) 2.0
(c) Soient pour i \,2,Nt les complémentaires dans les variétés M(At) ci-

dessus d&apos;un tube ouvert autour du cercle {0} x [0, l]/{(0, 0) - (0, 1)} c M(At). On
dit que N, est une vrille de défaut i, son bord est une bouteille de Klein et si c est
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une courbe simple fermée orientée et renversant l&apos;orientation d&apos;une variété V
de dimension trois le vnllement de défaut / de V le long de c est

U,(F, c) V\f(c) uN, Si Kest de type I,d alors U,(F, c) est de type 7,1 et U2(V9 c)
de type 7,(2 — d) Remarquons que H2(F, c) et F ont des anneaux de cohomologie
isomorphes

(D) Surfaces désorientées et desonentables dans une variété de dimension trois

DEFINITION D 1 Une surface connexe S proprement plongée dans une
variété de dimension trois V (î e dS S r\dV) est dite desorientée si elle est non
orientable mais a un voisinage dans V orientable Un nœud K dans V est dit
faiblement trivial si une section d&apos;un tube T(K) autour de K borde dans

V\(T(K)uS) une surface désorientée S

Soit c l&apos;âme d&apos;un ruban de Mobius M plongé dans une surface désorientée S

Comme un voisinage de S dans V est orientable la courbe c préserve l&apos;orientation

de F et le ruban M est unilatéral dans V D&apos;après l&apos;affirmation A 1 (n) l&apos;intersection

des classes représentées par c et 5 est non nulle, ainsi, selon la définition D 2

ci-dessous la surface S est désonentable

DEFINITION D 2 Une surface connexe S plongée dans V est dite déson-
entable si elle a un voisinage orientable dans K et si il y a une courbe c conservant
l&apos;orientation de V qui a une intersection non nulle avec S Une classe x de H2(V)
est désonentable si elle est représentée par une surface désonentable

Dans une variété orientable V toute élément non nul de H2(V) est représenté

par une surface désorientée et un nœud est faiblement trivial2 dès qu&apos;il représente 0

en homologie modulo 2 Cela découle de la dualité de Poincaré et du lemme

suivant

LEMME D 3 Une classe de degré 2 désonentable est représentée par une surface
désorientée

Démonstration II suffit d&apos;ajouter à une surface S désonentable représentant cette
classe une anse le long d&apos;un arc convenable d&apos;une courbe c transverse à S donnée

par la définition D 2

2 Dans une vanete non orientable la faible trivialité est une notion plus subtile le double de

Whitehead d&apos;une section S1 x (*) du fibre non trivial S1 x S2 n&apos;est pas faiblement trivial bien qu&apos;il soit
homotopiquement trivial
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(E) Eclatements, chirurgie de Dehn et déchirures

Soit W une sous variété lisse de co-dimension q d&apos;une variété V de classe C°°
Un voisinage tubulaire T{W) autour de W dans V s&apos;identifie au cylindre de la

projection du fibre en sphères bord du tube n dT{W)-^W Let fibre n se factorise
en n P(£) °voù P{Ç) U{W)-+W est le projectivise du fibre normal Ç à W dans

F et v dT(W)-^U(W) l&apos;application de Gauss qui a chaque point x de ôT{W)
associe la droite de Ç~l(n(x)) passant par x

DEFINITION E 1 Véclatée V de V de centre W (ou le long de W) est la
variété obtenue en remplaçant T(W) par le cylindre de l&apos;application de Gauss v

L&apos;identification de V\Wà V\U(W) produit £ V -&gt;Vqui &quot;éclate&quot; chaque point w
de W en l&apos;espace projectif P(Ç)&quot;l(w) &amp;RP&quot;~l, la contraction a inverse de e par
contre est une application C°° partout définie (cf [Ae]) Si F est une sous-vanéte de

V non incluse dans W la transformée stricte de F est la fermeture F dans V de

e(F\ W) Remarquons que si F contient W ou est transverse a W alors F s&apos;identifie

avec l&apos;éclatée F de F le long de Fn W

En dimension 3 les seuls &quot;diviseurs exceptionnels&quot; possibles U{W) au dessus
d&apos;une sous variété connexe W sont

(a) Un plan projectif RP2 unilatéral si W est un point
(b) Un tore unilatéral T2 si W est un cercle préservant l&apos;orientation

(c) Une bouteille de Klein unilatérale K2 si W est un cercle renversant
l&apos;orientation

En particulier on a le

LEMME E 2 Soit V une variété de dimension trois obtenue par éclatement sur
une sous-variété connexe W d&apos;une variété de dimension trois V alors bx(V)
bx{V) + 1 et V est non orientable si W est de dimension 1

Réciproquement

LEMME E 3 Toute sous-variété U décrite en (a), (b) ou (c) d&apos;une variété de

dimension trois M apparaît comme diviseur exceptionnel d&apos;une contraction a M -&gt; iV

unique à isomorphisme prés, dès que Von a fixé la classe d&apos;homotopie de la restriction
av à U de la contraction {qui doit être telle que la restriction v(U, M)\((Tu)-i(w) du fibre
normal à U dans M aux fibres de av est non triviale) D

DEFINITION E 4 Une variété Fest dite élémentaire si elle est obtenue à partir
de la sphère S3 par une suite d&apos;éclatements sur des centres lisses Deux vanétés V
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et V de classe C00 sont dites équivalentes par modification élémentaires (m-équiva-
lentes en abrégé) si il y a une suite finie de variétés V Vo, Vu Vn V où,

pour chaque indice / inférieur à «, il y a une permutation (k, l) des indices / et / + 1

telle que Vt soit difféomorphe à l&apos;éclatée de Vk le long d&apos;une sous-variété.
Soient Lx et L2 deux entrelacs dans deux variétés de dimension trois Vx et V2.

Soit T{Lt) un tube autour de L, dans Vr Un méridien de l&apos;entrelacs Lt est une
courbe ml de T(L,) qui borde un disque transverse à Lt. Une chirurgie de Dehn entre
Vx et V2, d&apos;âmes deux entrelacs Lx et L2 est la donnée d&apos;un homéomorphisme
h : F^TlXi) -? V2\T(L2) entre les extérieurs de ces entrelacs, une chirurgie ordinaire
est une chirurgie de Dehn qui envoit chaque méridien de Lx sur une section due

Tube T(L2).

Remarquons que les composantes de dT(Lt) sont des tores si la composante
X correspondante de l&apos;entrelacs préserve l&apos;orientation, des bouteilles de Klein
sinon. Dans ce dernier cas toute chirurgie de Dehn préserve la classe d&apos;isotopie

du méridien et s&apos;étend à la composante de T{Lt) correspondante (car dans la
bouteille de Klein il n&apos;y a qu&apos;une classe d&apos;isotopie de courbe essentielle à deux

côtés). On peut donc supposer, et on supposera toujours dans la suite, que les

entrelacs Lt ont toutes leurs composantes préservant Vorientation.
Plus généralement, puisque deux courbes simples sur un tore sont isotopes dès

qu&apos;elles sont homotopes, une chirurgie de Dehn qui préserve les classes d&apos;homo-

topie des méridiens s&apos;étend en un isomorphisme d&apos;entrelacs H :(VU Lx) -+

(v2,L2y
D&apos;après le théorème de Rohlin-Wallace ([W]) il y a une chirugie entre deux

variétés fermées connexes de dimension trois si et seulement si elles sont soit

toutes deux orientables, soit toutes deux non-orientables, nous n&apos;utiliserons qu&apos;une

forme plus précise de ce fait pour les variétés qui ont la même homologie à

coefficients Z/2Z que la sphère S3 (d&apos;après la dualité de Poincaré il revient au
même de dire que leurs //, à coefficients Z/2Z sont nuls). Nous appelerons sphère

d&apos;homologie de dimension trois une telle variété.

FAIT E.5. Toute sphère d&apos;homologie de dimension trois H est le dernier terme Hn
d&apos;une suite de sphères d&quot;homologies de dimension trois S3 Ho, Hu Hn où

chaque Hl^l s&apos;obtient à partir de la précédente Ht par chirurgie sur un nœud K,
faiblement trivial.

Démonstration. D&apos;après le théorème de Rohlin-Wallace ([W]) une variété de

dimension trois orientable V borde une variété de dimension quatre W ayant une

décomposition en anses sans anse d&apos;indice impair. La forme d&apos;intersection q de W
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est représentée par la matrice d&apos;enlacement de l&apos;entrelacs &quot;repéré3&quot; L des cercles
d&apos;attachement des anses d&apos;indice 2 (cf. [Ki2]).

Si V est une sphère d&apos;homologie la forme q est non dégénérée et, quitte à

faire la somme connexe de W avec un plan projectif complexe, on peut supposer la
forme q sur le Z/2Z espace vectoriel H2(W) non totalement isotrope donc diagonal-
isable.

En réalisant une diagonalisation par glissement d&apos;anses on obtient que chaque

composante Kt de l&apos;entrelacs L borde une surface St disjointe du reste de L et que
les repérages sont d&apos;auto-enlacement impair, le nœud Kt + x est ainsi faiblement trivial
dans la sphère d&apos;homologie Ht obtenue en ne faisant que les chirurgies sur

Kl9...9Kr D

DEFINITION E.6. Une déchirure est une chirurgie de Dehn qui envoie les

méridiens du tube T(LX) sur des courbes homologues modulo 2 aux méridiens du
tube T(L2).

LEMME E.7. Une chirurgie de Dehn h : Vx\f(Lx) -&gt; V2\f{L2) s&apos;étend, après
éclatement (cf. E.l) le long des âmes L, de la chirurgie, en un homéomorphisme
h : (Fj, U(LX)) -&gt;(K2, U(L2)) si et seulement si c&apos;est une déchirure.

Démonstration. Les méridiens forment une base du noyau de Hx(ôT(Ll))
-&gt;Hx(T(Lt)), d&apos;où la nécessité. Pour la suffisance on peut supposer que h est
&quot;linéaire&quot; sur chaque tore [dans les coordonnées &quot;longitude, méridien&quot;

h(u, v) {au + bv, eu -h dv) avec a, b, c, d entiers et w, v dans IR/Z]. Désignons par
t, l&apos;involution de dT(Lt) qui à tout point x d&apos;une composante de df{Lt) associe le

point diamétralement opposé sur le méridien passant par x [t(w, v) (u, v -h £)].

Un homéomorphisme h \VX\T(LX)-+V2\T(L2) s&apos;étend en un homéomorphisme

des éclatés dès que sa restriction au bord conjugue les involutions

t, [Vx edf(Lx) h(xx{x)) T2(h(x))], c&apos;est clairement le cas si h préserve la classe

d&apos;homologie modulo 2 des méridiens [b est alors pair et d impair].

Soit h : Vx\f(Lx)-&gt; V2\f(L2) une déchirure entre deux variétés de dimension 3

et S une surface dans Vx transverse à l&apos;entrelacs Lx. Comme h préserve les classes

d&apos;homologie des méridiens il y a une surface E proprement plongée dans T(L2) et

bordant h(d(S\f(Lx))).

3 Un repérage (framing en anglais) d&apos;une sous-variété L d&apos;une variété V est une tnvialisation de son
fibre normal. Pour repérer un entrelacs L — (K{,. Kn) à voisinage orientable dans une variété de

dimension trois il suffit de se donner un section s de son fibre normal. La matrice d&apos;enlacement de
l&apos;entrelacs repéré (L, s) est (lk(Kn s(Kj))).



Déchirures de variétés de dimension trois 529

DEFINITION E.8. La Surface h(S\f(Lx)) kjE est dite obtenue par rapiéçage à

partir de S, sa classe d&apos;homologie dans H2(V2) ne dépend que de celle de S dans

H2{VX), plus précisément :

LEMME E.9. Soient Vx et V2 deux variétés de dimension trois équivalentes par
déchirure alors:

(i) Les variétés Vx et V2 ont même type (cf. C.3).

(ii) La déchirure h induit un isomorphisme linéaire gradué h* : H*(V2) -+ H*(VX)
tel que\

h\wx(V2))=wx(Vx)

et pour tout x dans H\V2\ h2(xuwx(V2)) h\x)\j\vx(Vx).

Démonstration. Comme h préserve les classes d&apos;homologie des méridiens, la

première partie de (ii) résulte de la comparaison des suites exactes de Mayer-
Vietoris de F, V^fiLJ u T(Lt) pour i 1, 2. Comme l&apos;entrelacs Lx est à voisinage

orientable on peut choisir une surface caractéristique Fx dans Vx disjointe de

Lx, la surface F2 h(Fx) sera caractéristique dans V2 et a même forme d&apos;enroulement

donc même défaut algébrique que Fx d&apos;où (i) et la deuxième partie de (ii). D

REMARQUE E.10. (a) On ne peut espérer d&apos;isomorphisme multiplicatif sur
tout l&apos;anneau de cohomologie : en effet RP3 et S1 x S2 n&apos;ont pas mêmes structures

multiplicatives bien que les nœuds RP1 et S1 x {*} aient pour extérieurs des tores
solides dont l&apos;identification produit une déchirure.

(b) Contrairement aux déchirures les éclatements ne préservent pas le type : en

éclatant une variété V le long d&apos;une courbe simple fermée duale de wx(V)2 on
change le type. Nous utiliserons deux manifestations de ce phénomène :

(bl) Le complémentaire de l&apos;entrelacs de Hopf dans la sphère S3 est fibre en

anneaux, ainsi l&apos;éclatée de la sphère S3 le long de l&apos;entrelacs de Hopf est fibre en

tores, d&apos;après E.2 la réduction mod 2 de la monodromie de ce fibre est conjuguée à

et d&apos;après C.5 cet éclaté est de type 7,1. En fait l&apos;éclaté de S3 le long de

l&apos;entrelacs de Hopf est la variété Mx de type 7,1 décrite en C.5.

(b2) Soit Mo le fibre non trivial en sphères S2 sur le cercle, c&apos;est une variété de

type 70. L&apos;éclatée Mo de MQ le long du double de Whitehead K d&apos;une section est une

variété de type 7,2. En effet il y a dans Mo un tore T caractéristique bilatéral disjoint
de K et dont des générateurs de l&apos;homologie bordent des disques D et D&apos; coupant
K transversalement en un point (cf. Figure 2). Une surface caractéristique F dans

Mq est l&apos;union du diviseur exceptionel et de la transformée stricte T de T. Ainsi les

éclatés des deux disques ci-dessus sont des membranes d&apos;enroulement 1 pour les



530 RICCARDO BENEDETTI ET ALEXIS MARIN

o K

U
K

U

Figure 2

générateurs de HX{T). Comme une surface de Seifert pour K se relève en une
membrane bordant un générateur du radical de BX(F), cette membrane est

d&apos;enroulement nul puisque T&apos; est bilatérale, ainsi l&apos;invariant de Arf de la forme
d&apos;enroulement est défini et vaut 1.

§2. Dénouement par déchirure, le cas orientable et la conjecture de Nash

topologique

A déchirure près les nœuds faiblement triviaux sont trivaux et les classes

désorientables s&apos;isolent dans des espaces projectifs RP3 plus précisément :

LEMME 1. Soit S une surface désorientée dans une variété de dimension trois V.

On suppose que le bord de S a au plus deux composantes connexes et on se donne une

orientation de dS. Alors il y a un entrelacs L porté par S et une déchirure
h : V&apos;\T(L&apos;) -&gt; V\T(L) d&apos;âme L telle que S soit le rapiéçage d&apos;une anneau ou d&apos;un

disque bilatéral dans V et ayant dS comme bord orienté si S a un bord non vide, d&apos;un

plan projectif à voisinage orientable si S est fermée.

Démonstration. Soient en effet c,,..., cn des courbes deux à deux disjointes
renversant l&apos;orientation de S, elles conservent l&apos;orientation ambiante et ont donc
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pour voisinage dans V et S des tores solides T, et des rubans de Môbius M,
respectivement. Les bords de ces M, sont homologues aux méridiens des Tn ainsi les

courbes ct se contractent sur une surface S&quot; à voisinage orientable dans la déchirure
correspondante.

Comme toute surface fermée non orientable est somme connexe de plans
projectifs réels il y a dans S un tel système de courbes c, tel que la surface S&apos; ainsi
obtenue soit un plan projectif, un disque ou un anneau suivant que S a 0, 1 ou 2

composantes de bord.

COROLLAIRE 1. Soit V une variété fermée connexe de dimension trois alors il
y a une suite variétés V Fo, K,,. Vn V telle que chaque V,+, s&apos;obtient à

partir de Vt par une déchirure ou une contraction sur un point ou un cercle préservant
Vorientation et V a son H1 engendré par wx(V).

Démonstration. D&apos;après E.2 du §1 il suffit de montrer que si il y a dans V une
surface S non séparante et non caractéristique alors il y a une déchirure dans

laquelle le rapiécé de S se contracte. On peut supposer que S est connexe et, si V
est non orientable, que S coupe une surface caractéristique F en une courbe connexe
ne séparant pas S. D&apos;après D.3 on peut supposer de plus que S\T(F) est
désorientée. Le lemme 1 produit une déchirure disjointe de F dans laquelle S\T(F)
se rapièce en un plan projectif S&quot; unilatéral si S est disjoint de F, et un anneau A

qui forme avec S n T(F) un tore unilatéral S&quot; si S rencontre F. D&apos;où le résultat
d&apos;après E.3 du §1.

Démonstration du théorème B+. Comme F est orientable toutes les contractions
qui ont lieu dans le corollaire 1 sont, d&apos;après E.2 du §1 sur des points et il y a une
déchirure de V sur une somme connexe de bx(V) exemplaires de RP3 et d&apos;une

sphère d&apos;homologie. Il suffit donc de montrer que toute telle sphère d&apos;homologie

admet une déchirure sur la sphère standard S3. D&apos;après le fait E.5 du §1, l&apos;affirmation

suivante achève la démonstration.

AFFIRMATION. Soit H&apos; une sphère d&apos;homologie obtenue par une chirurgie sur

un nœud K faiblement trivial dans une sphère d&apos;homologie H. Alors il y a une

déchirure entre H et H&apos;.

Démonstration. D&apos;après D.3 du §1 et le lemme 1 il y a une déchirure de H sur
une sphère d&apos;homologie Hx dans laquelle le nœud K est trivial, d&apos;où une déchirure
de H&apos; sur une sphère d&apos;homologie H\ obtenue par chirurgie sur le nœud K vu dans

Hx. Comme H\ est une sphère d&apos;homologie le nœud K sl, dans Hl9 un nombre
d&apos;enlacement impair avec le repérage servant à définir la chirurgie (cf. [Ki2]).
D&apos;après E.7 du §1 il y a une déchirure entre H\ et la variété H&apos;[ difféomorphe à H\
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obtenue par chirurgie de H\ sur le nœud trivial K repéré par une section de nombre
d&apos;enlacement 1 avec K, d&apos;où le résultat par composition de déchirures.

PROPOSITION 1. Toute variété fermée connexe de dimension trois est m-équivalente

à la sphère S3.

Démonstration. D&apos;après le théorème B+ il suffit de montrer que toute variété de

dimension trois est m -équivalente à une variété orientable. On va établir que si une
variété de dimension trois possède une surface caractéristique connexe de genre

g + 1 &gt; 0 allors elle est m -équivalente à une variété W qui possède une surface

caractéristique connexe de genre g si g &gt; 0 et est orientable si g 0, d&apos;où le résultat

par récurrence sur g. On se ramène d&apos;abord au cas où F est unilatérale en

remarquant que si F est bilatérale la transformée stricte de F dans l&apos;éclatée de V le

long d&apos;une courbe non séparante de F est une surface caractéristique unilatérale de

même genre que F. Si F est un tore unilatéral on peut d&apos;après E.3 du §1 le contracter

pour obtenir une variété orientable. Si g est postif on considère une courbe c

séparant F en une surface trouée bilatérale So de genre g un tore troué unilatéral To.

Comme c borde la surface désorientable So le lemme 1 nous assure que V est

équivalente par déchirure à une variété V dans laquelle le nœud c est trivial. Ainsi
la variété V&quot; obtenue partir de V par chirurgie sur le nœud c repéré par un bicollier
de c dans F est équivalente par déchirure à la somme connexe de V et de RP3, et
V&quot; est m-équivalente à V et donc à V. L&apos;affirmation de récurrence vient alors de

ce que la surface caractéristique de V&quot; obenue à partir de F par chirurgie plongée
est union disjointe d&apos;une surface S de genre g et d&apos;un tore unilatéral qui se contracte
d&apos;après E.3.

§3. Classification à déchirure près : démonstration du théorème C

PROPOSITION 2. Toute variété fermée connexe de dimension trois V est

équivalente par déchirure à une variété Wpossédant une surface caractéristique F dont

le défaut est égal à son défaut algébrique.

Démonstration. Soit V une variété dans la classe de déchirure de V et F&apos; une
surface caractéristique connexe de genre g pour V\ définissons la complexité du

couple (V\ F&apos;) comme étant 1 + g si F&apos; est bilatérale et g sinon. Soit (W, F) un tel

couple de complexité minimale. Si le défaut de F n&apos;était pas égal à son défaut

algébrique il y aurait d&apos;après B.4 et B.6 une membrane simple 501 pour une courbe

c non séparante de F d&apos;enroulement //(SOI) 0. Le lemme suivant contredirait alors

la minimalité de (W, F).
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LEMME 2. Soit F une surface caractéristique connexe de genre g dans une

variété V de dimension 3 et ÎR une membrane simple pour une courbe non séparante

c de F. Si ^(9W) =0 il y a une déchirure de V sur une variété W possédant une surface

caractéristique F&apos; qui est&apos;.

(i) unilatérale de genre au plus g si F est bilatérale&apos;,

(ii) de genre g — 1 si F est unilatérale.

Démonstration. On distingue deux cas suivant que la membrane simple $R est ou
non transverse à F près de son bord. Dans le premier cas l&apos;intersection stricte d est

une courbe simple fermée le long de laquelle on peut découper la membrane 9M

pour obtenir une membrane W bordant l&apos;union de c et des deux composantes d_
et d+ du bord d&apos;un collier autour de d dans F (cf. Figure 3).

Comme la courbe c est non triviale dans Hl (F) la trace de W sur le complémentaire

de l&apos;intérieur d&apos;un tube T(F) autour de la surface F dans W représente un
élément non nul et non caractéristique de H2(W\T(F), ôT(F)). Ainsi d&apos;après D.3
du §1 on peut supposer W\d est désorientée. En ajoutant à W une demi-anse
d&apos;indice 1 on obtient une membrane désorientée 9t bordant l&apos;une des courbes d± et

une somme connexe de l&apos;autre avec c. Le lemme 1 permet alors, quitte à déchirer
hors de F, de supposer que 9i est un anneau bilatéral. Comme, près de d, la
membrane 9t arrive &quot;des deux côtés&quot; de F la surface obtenue en remplaçant un
bicollier du bord de 91 dans F par le bord d&apos;un bicollier de 91 dans W est une
surface Ff unilatérale de même genre que F : On a obtenu (i) si la surface F était
bilatérale. Si F est unilatérale on peut ajouter une demi-anse à 91 pour connecter ses

deux composantes de bord puis toujours grâce au lemme 1 se ramener au cas où 91

est un disque. Une chirurgie plongée donne alors (ii).

F-4

Figure 3
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Dans le deuxième cas la trace 91 de 901 sur W\f(F) a un bord connexe. Par la
même méthode que précédement on se ramène au cas où 91 est un disque, ainsi 9JI

est un ruban de Môbius bilatéral. Il y a alors un diflféomorphisme du complémentaire

d&apos;un tube autour de c qui est l&apos;identité hors du bicollier de 9M dans W et dans
le bicollier une isotopie de l&apos;identité au double tour du ruban de Môbius 9R. Ce

difféomorphisme s&apos;étend en un difféomorphisme entre W la variété obtenue par
chirugie sur le nœud c dans laquelle on peut faire une chirurgie plongée qui baisse

le genre de la surface F. DD

REMARQUE (G. Mihalkin). On peut, dans la dernière partie de la démonstration,

éviter le difféomorphisme de &quot;double tour&quot; le long du ruban de Môbius 9R en

remarquant que 91 se prolonge en une membrane transverse à F pour une courbe
c&apos; homologue modulo 2 (mais non modulo 4) à c.

Démonstration du théorème B. La nécessité vient de ce que le type est invariant

par déchirure (E.9(i)) et qu&apos;une variété élémentaire F avec bx{V) 1 est d&apos;après E.2

du §1 l&apos;éclatée de la sphère S3 sur un point ou un nœud K, dans le premier cas elle

est orientable, dans le deuxième cas la transformée stricte d&apos;une surface de Seifert

pour K est une membrane d&apos;enroulement nul elle est donc de type 70 ou 71.

Pour la suffisance il suffit, d&apos;après le théorème B+, de montrer que si V est une
variété non-orientable qui n&apos;est pas de type 72 avec bx{V) 1 on peut construire
une suite de variétés Vt comme dans le corollaire 1 aboutissant à une variété Vn

orientable : en effet on peut supposer par position générale que les centres des

déchirures permettant de passer de F, à F, + sont disjoints des centres des

contractions de Vj sur Vj + pour j &lt; i et on peut repousser toutes les déchirures
dans le premier étage de la construction : le passage de Vo à Vx.

Si V possède un tore caractéristique unilatéral on peut, d&apos;après E.3 le

contracter pour obtenir une variété orientable. Soit F une surface caractéristique de

défaut égal au défaut algébrique donnée par la proposition 2. Si F est une sphère

on obtient un tore caractéristique unilatéral en lui ajoutant un anse le long d&apos;un

arc renversant l&apos;orientation. Si F est un tore de défaut 1, il est bilatéral et il y a

une surface S coupant F en une courbe non séparante. Comme dans le corollaire 1

on se ramène par déchirure disjointe de F au cas où S est un tore unilatéral et

l&apos;image de F est un tore caractéristique unilatéral dans la variété obtenue en

contractant S. De même si le genre de F est supérieur à 1 on construit après
déchirure disjointe de F un tore unilatéral coupant F en une courbe non séparante

non homologue dans V à l&apos;auto-intersection de F. La variété V obtenue en

contractant S vérifie w1(F/)27é0 et si une surface caractéristique Ff de V de

défaut nul n&apos;est pas un tore unilatéral elle est de genre supérieur à un et on peut
recommencer.
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Reste le cas où F est de type 72 avec bx(V) &gt; 1 et F est un tore. Dans l&apos;exemple

(b2) de la remarque E.10 on avait construit une variété élémentaire M&apos;Q de type 72

avec bx(M&apos;Q) =2, d&apos;où le résultat si on admet le théorème C de classification à

déchirure près, nous donnons cependant ci-dessous un argument alternatif direct.
D&apos;après C.4 une membrane simple bordant une courbe non séparante c de F n&apos;est

pas transverse à F et, comme bx(V) &gt; 1, il y a une telle membrane 901 qui contient
un arc a proprement plongé dans 9W, tel que oc coupe transversalement en un point
une surface S disjointe de F et du borde sur c un arc y contenant les deux points où
SOI n&apos;est pas transverse à F. Il y a donc une surface D disjointe de a, de bord le bord
d&apos;un disque de F contenant l&apos;arc y et d&apos;intérieur disjoint de F et du même côté de

F que 50Î près de cnôD. Le lemme 1 permet de déchirer hors de Fua pour
transformer D en un disque, ainsi la surface caractéristique Fr obtenue à partir de

F par chirurgie plongée sur oc et sur D est l&apos;union d&apos;un tore unilatéral et d&apos;un tore
bilatéral. La membrane W se chirurgise aussi pour donner une membrane W qui
est transverse à la composante bilatérale de F&apos;. Ainsi lorsque l&apos;on contracte la

composante unilatérale de Ff on obtient une variété de dimension trois et une
membrane d&apos;enroulement nul bordant une courbe non séparante d&apos;un tore
caractéristique: cette variété est de l&apos;un des types type 70 ou 71 déjà traité.

PROPOSITION 3. Soit V une variété fermée connexe de dimension trois faiblement

non orientable de défaut algébrique non nul Alors V est équivalente par
déchirure à une variété obtenue par vrillement {cf. C.5(c)) d&apos;une variété W possédant

une surface caractéristique G de défaut nul.

Démonstration. D&apos;après la proposition 2 on peut supposer que la variété V a

une surface caractéristique F connexe dont le défaut est égal à son défaut
algébrique. Comme l&apos;espace des bord Bx (F) est de dimension 1 ou 2 et qu&apos;en ce dernier
cas la forme d&apos;intersection de la surface F est non dégénérée sur Bx (F) on peut

couper la surface F en un tore troué Fo dont l&apos;homologie contient Bx (F) et une
surface Fx dont l&apos;homologie s&apos;injecte dans 77,(V).

Ainsi tout élément de BX(F) est bord d&apos;une membrane 9W telle que 901 n Fc Fo.

(Si une membrane 9t bordant une courbe c de FQ coupe Fx l&apos;intersection avec 91

produit un élément du dual de 77, (Fx qui, par dualité de Poincaré, est représenté

par l&apos;intersection avec une surface fermée S ; la somme connexe de 91 avec S est la

membrane StR cherchée.) D&apos;après l&apos;affirmation C.4 du §1 une telle membrane 9W est

non transverse à F et W\f(F) a deux composantes de bord a et b qui se projettent
sur FQ en deux courbes simples fermées â et B se coupant transversalement en un
point (on note n : dT(F) -*Fla projection et n~~l(a) =au —a). Le lemme 1 assure
alors que, quitte à déchirer hors de F, on peut supposer que SR\r(F) est un anneau.
On munit a et b de l&apos;orientation bord de cet anneau.
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Supposons d&apos;abord que le défaut est 2 et soit W une membrane bordant un
élément c&apos; de B^F) distinct de c. Comme H^Fq) a trois éléments non triviaux on
a, quitte à changer W dans un voisinage de Fo et à renuméroter, à à&apos; et E&apos; est

homotope au juxtaposé de â et E et est transverse à â et à E avec E&apos; n(âuE) ânb.
Alors nécessairement a et af sont de part et d&apos;autre de F : a&apos; — — a (sinon on peut
supposer que a et af sont disjointes dans ÔT(F) et y bordent un anneau A, ainsi

$JlvWvA serait une surface immergée dont la courbe de points doubles n&apos;a qu&apos;un

point dans son bord!). L&apos;intersection (yjlnW)\f(F) est alors l&apos;union d&apos;un arc
joignant les deux composantes de d($Jl\T(F)) et de courbes bordant des disques
dans SW, ces disques permettent par chirugie plongée de W de se ramener au cas où

(9JlnW)\T(F) est un arc a. Quitte à déchirer hors de Fu$ft on peut supposer
grâce au lemme 1 que W\ol est un disque, ainsi SOI&apos; est un anneau et Fo u 901 u W
est l&apos;âme de la vrille de défaut 2 cherchée.

Dans le cas de défaut 1 la courbe — a u — b est homologue à zéro dans V\T{F),
d&apos;après la suite exacte de Mayer-Vietoris. Il y a donc une membrane W dans

V\T(F) qui borde — au—b. Comme dans le cas de défaut 2 on se ramène au cas

où W est un anneau coupant 90? en un arc a : 9W u W est un tore immergé et
Fou9WuïR&apos; est l&apos;âme de la vrille de défaut 1 cherchée.

On obtient par une application inductive analogue du lemme 1:

PROPOSITION 4. Soit V une variété non orientable possédant une surface

caractéristique F de défaut nul et de genre g. Alors il y a une déchirure, disjointe de

F, de V sur une variété W et des surfaces Et dans W deux à deux transverse et
transverses à F, l &lt;&gt; i &lt;&gt; k avec k 2g — 1 ou 2g suivant que V est fortement ou

faiblement non orientable et telles que:

Z,nF y, est une courbe simple fermée, Z, n T7 0 pour \i —j | &gt; 1, et It n I, +
est une courbe simple fermée ô, coupant F transversalement en un point.

Pour i pair It est un tore unilatéral.
Pour i impair et inférieur à k, la surface Et est une bouteille de Klein bilatérale.

Enfin si V est fortement non orientable, la surface E2g -1 est un P^an projectif
bilatéral.

De plus si K est un nœud coupant F transversalement en un point on peut demander
à Ex de le contenir et à èx d&apos;en être disjoint.

Soit Z l&apos;union de F et d&apos;un nœud K coupant F transversalement en un point si

F est une sphère, l&apos;union de F et des surfaces It si F est de genre positif.
Le complexe Z est de caractéristique d&apos;Euler 1 ainsi le bord d&apos;un voisinage

régulier N de Z est une sphère [le double D(N) de N est une variété fermée
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de dimension trois donc de caractéristique d&apos;Euler 0, comme d&apos;autre part
X(D(N)) 2x(N) - x(SN) il vient x(dN) 2 donc dN est une sphère car ôN est

clairement connexe]. D&apos;autre part il n&apos;y a qu&apos;une manière d&apos;épaissir Z en le

voisinage régulier N car les fibres normaux à F et aux Z, sont déterminés par
l&apos;énoncé de la proposition 4. Soient V&apos;f et V&quot; les variétés fermées obtenues en
bouchant par un disque les voisinages N ci-dessus correspondants aux cas faiblement

et fortement orientables et pour d &gt; 0, la variété Vlf est obtenue par
vrillement de défaut d sur Vff_,.

Démonstration du théorème C. La nécessité a été obtenue en E.9 du §1. Pour la
suffisance on remarque que d&apos;après le théorème B+ et les propositions 3 et 4 toute
variété fermée connexe V de dimension trois est équivalente par déchirure à la
somme connexe Vn de n exemplaires de l&apos;espace projectif RP3 si elle est orientable,
à la somme connexe de Vn et d&apos;une variété explicite Vgtd ou V&quot; ne dépendant que
du type /, d ou // de V et du genre algébrique g de V sinon (cf. C.3 du §1). Suivant

que le type est 0, / ou // l&apos;entier n est défini par : n bx(V), n +2g bx{V) +d,
n+2g bl(V). D

§4. Approximation algébrique et démonstration du théorème A

Rappelons quelques définitions et résultats de géométrie algébrique réelle (nous
suivrons le livre [BCR]). Soit Y une variété algébrique réelle affine compacte. Une
classe z e Hk(Y) est algébrique si elle est représentée par la classe fondamentale d&apos;un

sous-ensemble algébrique de dimension k de Y. On dit que Y a son homologie
algébrique si toutes ses classes d&apos;homologie sont algébriques.

Un fibre fortement algébrique sur Y est par définition la pré-image du fibre

tautologique sur une grassmannienne par une fonction régulière (cf. [BCR] 3.2.1)
de Y dans cette grassmannienne. On montre :

(4.1) Un fibre topologique sur Y est isomorphe à un fibre fortement algébrique si
et seulement si il l&apos;est stablement ([BCR] 12.3.5).

(4.2) Une section a continue d&apos;un fibre fortement algébrique sur Y s&apos;approxime

par une section régulière s ([BCR] 12.3.1).

(4.3) Si Y est de plus non singulière près d&apos;un sous-ensemble algébrique Z non

singulier sur lequel a s&apos;annule on peut demander à s et a de coïncider sur Z
et à s d&apos;approximer a pour la topologie C00 près de tout fermé sur lequel a

est C°° ([BCR] 12.5.5 et 12.3.2).

(4.4) Si Y est non singulière de dimension d il y a un fibre fortement algébrique Ç

de rang 1 sur Y dont la première classe de Stiefel- Whitney w,(&lt;^) est duale
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d&apos;une classe z de Hd_x(Y) si et seulement si cette classe est algébrique
([BCR] 12.4.8).

Comme une hyper-surface M d&apos;une variété V de dimension d détermine4 un fibre
de rang 1 dont la classe d&apos;isomorphisme ne dépend que de la classe de M dans

Hd_l(Y) l&apos;approximation algébrique de (4.3) donne :

(4.5) On peut, par une isotopie C°° petite, pousser sur un sous-ensemble algébrique
non singulier toute hyper-surface C°° d&apos;une variété algébrique affine
compacte non singulière dont Vhomologie de codimension 1 est algébrique (BCR]
12.4.10).

En dimension trois on peut approximer les sous-variétés C°° de toute dimension

par des sous-variétés algébriques non singulières :

PROPOSITION 5. Soit X une variété algébrique réelle lisse de dimension trois

qui est affine et compacte et dont Vhomologie est algébrique, alors toute sous-variété
C°° de X s&apos;approxime pour la topologie C00 par une sous-variété algébrique non

singulière.

Démonstration. Cette proposition peut se déduire des résultats de Bochnak et

Kucharz ([BK]) su la A&apos;-théorie fortement algébrique des variétés réelles non
singulières de dimension trois. Donnons en cependant une preuve élémentaire.

D&apos;après (4.5) il suffit de montrer que l&apos;on peut approximer toute sous-variété
de dimension 1. Soit donc L un entrelacs C°° dans X et Z&apos; un sous-ensemble

algébrique de dimension 1 dont la classe fondamentale Z représente la classe

d&apos;homologie de L (Z est obtenu en enlevant à Z&apos; les points isolés de Z&apos;). Quitte à

isotoper légèrement L on peut le supposer disjoint de Z&apos;. Remarquons que, comme
sous-ensemble algébrique de dimension 1 dans une variété algébrique lisse de

dimension trois, Z est un graphe à valences paires topologiquement localement plat5

(cf. [BCR] Théorèmes 9.3.5 et 11.2.2). On peut donc appliquer àX LuZla
remarque suivante:

REMARQUE. Soit K un graphe dont tous les sommets sont de valence paire et

qui est plongé de manière localement plate dans une variété de dimension trois V.

4 La pré-image du fibre tautologique sur RP&quot; + l par la construction de Thom sur le fibre normal à

M dans V.
5 i.e. près de chaque point de Z la paire (F, Z) est homéomorphe à une paire de cônes (cS, cA) où

A est un ensemble fini à nombre pair d&apos;éléments dans une sphère S.
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Alors il y a un fibre Ç sur V qui est C°° de rang 2 et possède une section continue a
dont Vensemble des zéros est le graphe K et qui est topologiquement transverse à K là
où K est une sous-variété (i.e. hors des sommets de valence supérieur à 2).

De plus on peut supposer que la section a est C°° et transverse là où K est une
sous-variété C°° de V.

Démonstration. Si K est une sous-variété et n : T(K) -? K est la projection du
fibre normal à K dans V le fibre tc*(v) sur T(K) a une section af transverse dont
l&apos;ensemble des zéros est K. Ainsi la restriction de n*(v) à T(K)\K, munie de la
section or est isomorphe à la restriction du stabilisé 6 © e du fibre d&apos;orientation 9 de

V, munie de la section provenant du facteur trivial s. Le fibre Ç et la section a sont
obtenus en recollant (n*(v), a&apos;) et (0 ®e\V\K, (0, 1)).

Dans le cas général le fibre £ est obtenu par le procédé ci-dessus appliqué à une
sous-variété K&apos; de V qui coïncide avec K hors de l&apos;intérieur d&apos;un voisinage conique
N du zéro-squelette de K. La restriction de ce fibre Ç à la boule N est triviale,
supposons la trivialisée, on peut prendre pour section a l&apos;extension conique dans

cette trivialisation de la restriction à V\N de la section transverse à K&apos; construite
dans le paragraphe précédent.

La deuxième classe de Stiefel-Whitney w2(Ç) est nulle car représentée par
LkjZ. Il s&apos;ensuit que la restriction au 2-squelette d&apos;une triangulation de X du
fibre stabilisé ^ © s est isomorphe à la somme d&apos;un fibre trivial et d&apos;un fibre de rang
1 ([M] 12.1). Comme 7r2(O(3)) est nul le fibre £®£ est lui aussi un stabilisé d&apos;un

fibre de rang 1. D&apos;après (4.1) et (4.4)6 il y a un fibre fortement algébrique
isomorphe à ^. On conclut alors par le théorème d&apos;approximation relative
(4.3). DD

Remarquons que si une variété algébrique réelle affine non singulière X et une
sous-variété algébrique non singulière Z de X ont toute deux leur homologie
algébrique il en est de même de l&apos;éclatée X de centre Z (cf. [BCR] 3.5.10 et E.l et

E.2 du §1).

Démonstration du théorème A. Soit V RP3 # V l&apos;éclaté de V sur un point si

V est équivalent par déchirure à M2, V V sinon. D&apos;après le théorème B il y a une
variété top-élémentaire W obtenue à partir de la sphère S3 par une suite d&apos;éclatements

S3 Wo&lt;- Wx &lt; Wn &lt;- Wn+ W et une fibration C00 à fibres connexes

Car Fhomologie de dimension 2 de K algébrique.
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q&gt; :£&quot;„-&gt;L du diviseur exceptionnel En du dernier éclatement Wn+-Wn+X sur un
entrelacs L de V telle que le fibre normal à En dans Wn+Ï le long de chaque fibre
de (p est non trivial et V est difféomorphe à la variété obtenue par contraction de

En sur L suivant cp. Si V RP3 # V on peut supposer que le plan projectif
RP2 c iÊP2 # V est transverse aux centres des éclatements et on note S la
transformée stricte de RP2 dans W.

La proposition 5 permet par récurrence de voir la tour Wo &lt;- Wx &lt;-•••&lt;- Wn +
comme une tour de variétés rationnelles non-singulières S3 Xo &lt;- ^ &lt;- • • •

&lt;- A^ +, X où chacune des Xt est obtenue à partir de la précédente Xt _ x par un
éclatement de centre une courbe algébrique non-singulière Z, _ j. On note
y\ : X -? W^ + i le difféomorphisme ainsi obtenu.

Si l&apos;on prend soin d&apos;approximer le centre Hn du dernier éclatement composante
par composante on obtient que chaque composante connexe de la courbe Zn est

irréductible il en est de même de chaque composante connexe de la surface

algébrique 0 0n dans X Xn+l correspondant à la surface En de Wn. Ces

composantes ont leur homologie algébrique (engendrée par une fibre de l&apos;éclatement

et la classe de Stiefel-Whitney du fibre normal).
En identifiant l&apos;entrelacs L à Z9 une union disjointe de droites projectives RP1,

le théorème d&apos;approximation 4.2 permet d&apos;approximer pour la topologie C°° la
fibration (p ° rj : (9 -+E par une application régulière $ ([BCR] 13.3.1). De même

une version relative du théorème d&apos;approximation 4.5 obtenue à partir de 4.3

permet d&apos;isotoper S relativement à l&apos;intersection de S avec les transformés strictes
des diviseurs exceptionnels des éclatements Xt&lt;-Xl+Ï sur un ensemble algébrique
Z.

La variété rationnelle affine Y du théorème A sera alors obtenue par la
solution du &quot;problème de modification&quot; donnée par la proposition 6 ci-dessous

qui généralise la construction du compactifié d&apos;Alexandroff algébrique ([BCR]
3.5.3). (Si V RP3 # V il faut après avoir appliqué une première fois ce principe

pour contracter les fibres de 0 et obtenir une variété affine compacte Y&apos; l&apos;appliquer

une deuxième fois à la fermeture projective Y&quot; de Yf pour contracter en un
point l&apos;union de l&apos;image de I dans Y&quot; avec Y&quot;^ Y&quot; r\RPk^\ la partie à l&apos;infini

de Y\)

PROPOSITION 6. Soit X une variété algébrique réelle projective, 0 aX une

sous-variété propre et &lt;f&gt; : G -*Z une application régulière où Z c Um est une variété

algébrique réelle affine.
Alors il y a une variété algébrique réelle affine Y c (R* contenant Z pour une

inclusion naturelle de Um dans Uk et une application rationnelle régulière a : X-+Y
étendant &lt;j&gt;, et telle que la restriction &lt;P de a à X\&amp; est un isomorphisme algébrique
de X\0 sur Y\Z.
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Démonstration Donnons en une esquisse et renvoyons à [BR] 3 7 13 pour les

détails

II y a un plongement régulier de l&apos;espace projectif réel RP&quot; dans un espace
affine UN d&apos;image Zanski-fermée dans l&apos;espace projectif RPN correspondant
([BCR] 3 4 4), ou [BR] 3 6 1 et 3 7 12) on peut donc supposer que la variété X
est réalisée comme un ensemble algébrique affine dans un UN Zanski-fermé
dans RPN La somme des carrés d&apos;équations homogènes de X est alors un

polynôme homogène H e U[X0, Xx, XN] avec X {[jc0, jc1s ,xN]eRPN\
H(xOi ,xN)=0}

Soit aussi T eU[X0, Xu ,XN] un polynôme homogène de degré d tel que
0 {T 0} Par définition d&apos;une application régulière (cf [BCR] 3 2 1) l&apos;application

(f&gt; 2l une extension rationnelle

où le diviseur polaire \Q&apos; 0} de G&apos; est disjoint de 0 L&apos;application

r p
Cj —

Q Q&apos;2+T2

est une extension régulière de 0 à UN Soit Fx et T@ les ensembles algébriques
affines

Tx {(je, u9 z) e UN x R x Um\x e X, u 7(1, x), zQ(\, x) P(l, x)},

r0 {(x,u,s)erx\xe0}

II y a des identifications biréguhères naturelles de X, 0 avec Yx et T@

respectivement et donc il suffit de démontrer la proposition en remplaçant 4&gt; par la

restriction à FQ de la projection naturelle de UN x R x !Rm sur IRm

Soit r {0}xIcHxr, R e R[U, Y] un polynôme tel que Z&apos; {R 0}
et â l&apos;application polynomiale de UN x IR x [Rm dans R^xRxr définie par
ô(x, m, y) (R(u, y)x, u, y) Posons

Y â{Tx) u({0} x Z&quot;) et soit # la restriction de à à Tx
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Les équations H(R(u, y), x) 0, R(u, y)du T(R(u, y), x), y • Q(R(u9 y), x)
P(R(u, y), x) définissent Y donc Y est bien une variété algébrique affine, il est clair

que l&apos;application a a les propriétés demandées.

Appendice A

La conjecture de Nash pour les variétés simplement connexes de dimension quatre

Soient P le plan projectif complexe muni de son orientation de variété complexe
et Q le même plan projectif mais muni de l&apos;orientation opposée. On note par R et

S les sphères d&apos;auto-intersection + et — 1 dans P et Q respectivement correspondant

à une droite projective complexe. Si V est une variété de dimension quatre
la somme connexe M V#pP #qQ (p,q eN) contient donc des sphères

/?!,..., Rp, Sl9..., Sq d&apos;auto-intersection ±1 dans M telles que la variété V
s&apos;obtienne à partir de M en contractant en un point chacune des sphères R, et S,.

D&apos;après le théorème de Wall ([Wa]) pour toute variété simplement connexe
V de dimension quatre il y a des entiers p et q et un difféomorphisme
h : V # pP # qQ -+ WN #N (P # Q). Ainsi pour les variétés de dimension quatre
simplement connexes on a stablement une situation analogue à celle qui permet de

résoudre la conjecture de Nash en dimension 2 :

THEOREME D. Soit V une variété de dimension quatre simplement connexe.
Alors V est homéomorphe à un ensemble algébrique rationnel Y dont Vensemble

singulier I est fini.
De plus il y a une variété rationnelle non singulière X et une surface algébrique non

singulière 0 dans X dont chaque composante est difféomorphe à la sphère, d&apos;auto-

intersection ± 1 dans X et une application régulière n : (X, 0) -? (7,1) qui réalise un

isomorphisme birationnel entre X\0 et Y\I.
Démonstration. Considérons la sphère S4 comme la sphère unité dans C2 x M.

On munit les intérieurs des hémisphères nord et sud de la structure complexe
transportée de celle de C2 par la première projection. L&apos;éclatée complexe XN de S4

le long de 2N points également répartis entre ces deux hémisphères est une variété
rationnelle non singulière difféomorphe à WN. Les &quot;fibres tautologiques&quot; des

éclatements sont des fibres en droites complexes fortement algébriques sur XN et

dont les classes de Chern forment une base de H\XN ; Z). Par produit tensoriel il
s&apos;en suit que toute classe de H2(XN; Z) est classe de Chern d&apos;un fibre en droites

complexes fortement algébrique sur XN. Ainsi les arguments à la Nash-Tognoli du

paragraphe 4 permettent d&apos;approximer les sphères h(Rt) et h(Sj) par des surfaces

algébriques non singulières d&apos;où le théorème D grâce à la proposition 6.
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Appendice B

Le m-calcul des entrelacs repères dans S3

Soit D un disque de bord C dans une variété V de dimension trois et

hD V\C -+ V\C le tour complet7 le long de D Pour s — ±1, l&apos;homéomorphisme

hpD s&apos;étend en un homéomorphisme de V sur la variété déduite de V par chirurgie
d&apos;âme la nœud C repéré par la section se dont le nombre d&apos;enlacement avec C est

e Ainsi si L est un entrelacs repéré dans S3 et D un disque dans S3 de bord C

disjoint de L alors la variété obtenue par chirurgie sur L est difféomorphe a celle

obtenue par chirurgie sur le ^-mouvement de Kirby de L le long de D KeD(L)

hUL)U(C,sE)
Bien que nous ne l&apos;utiliserons pas signalons que réciproquement Kirby, Fenn et

Rourke ([Ki], [FR]) ont montré que si deux entrelacs repérés dans S3 représentent
des variétés orientées positivement difféomorphes alors on peut passer de l&apos;un a
l&apos;autre par une suite de mouvements de Kirby et de leurs inverses

Le calcul des modifications élémentaires d&apos;entrelacs repérés dans S3 ou m-calcul
est la relation d&apos;équivalence sur les entrelacs repérés engendrée par

mx Les mouvements de Kirby et leurs inverses

m2 Le changement de repérage dans la même classe modulo 2

m3 L&apos;introduction ou la suppression de Fentrelacs L d&apos;une composante C bordant

un disque disjoint de L et repreré par la section s2

REMARQUE Les mouvements m, et m2 permettent le mouvement de double

tour

m4 Si D est un disque de bord disjoint de L, passer de L à l&apos;entrelacs repère

hî\L)
Démonstration En effet d&apos;après le mouvement mx on peut introduire deux

composantes parallèles à C l&apos;une repérée par su l&apos;autre par s_x Le mouvement m2

permet de changer ces repérages tn s_us_u respectivement sl9sx En supprimant
ces deux composantes par des mouvements m, on obtient bien respectivement

h+\L) et h~D\L)

7 Hors d&apos;un bicolher D x ] -1, 1[ autour de D le tour complet hD est l&apos;identité et sur D x ] -1, 1[,
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Fox dit que deux entrelacs (non repérés!) sont (2, \)-congruents si l&apos;on peut
passer de l&apos;un à l&apos;autre par une suite d&apos;isotopies et de double tours m4.

Le lemme E.7 du §1 nous assure que des entrelacs équivalents sous m, et

m2 présentent des variétés orientables équivalentes par déchirures. Comme les

mouvements m3 correspondent à l&apos;introduction ou la suppression d&apos;un facteur
RP3 en somme connexe, des entrelacs m-équivalents produisent des variétés

m -équivalentes.
La trivialité des variétés orientables à m-équivalence près découle alors du

résultat suivant de Nakanishi ([Nk]) : Deux entrelacs dans la sphère S3 sont

(2,l)-congruents si et seulement si leurs matrices de nombre d&apos;enlacement sont

congrues modulo 2.

Démonstration. Soit en effet V une variété orientable présentée par un entrelacs

repéré L. Quitte à faire un mouvement de Kirby on peut supposer que la forme
d&apos;intersection de la trace de la chirurgie est impaire (elle est représentée par la
matrice d&apos;enlacement de l&apos;entrelacs repéré L). D&apos;après la classification des formes

quadratiques non isotropes sur Z/2Z on peut, après glissement d&apos;anses, supposer
que la matrice des nombres d&apos;enlacement de L est diagonale modulo 2. Ainsi
d&apos;après le résultat de Nakanishi et en tirant partie des mouvements m2, la variété
V est équivalente par déchirures à une variété orientable présentée par un entrelacs

trivial repéré par des sections de nombre d&apos;enlacement 1 ou 2 : c&apos;est une somme
connexe d&apos;espaces projectifs réels RP3, d&apos;où une démonstration alternative du
théorème B+.
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