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Extremal functions for the Trudinger—Moser inequality in 2 dimensions

MARTIN FLUCHER

Abstract. We prove that the Trudinger —Moser constant

sup{f exp (4nu) dx:u € H(’)’z(ﬂ),f [Vul? dx < 1}
Q Q

is attained on every 2-dimensional domain. For disks this result is due to Carleson—Chang. For other
domains we derive an isoperimetric inequality which relates the ratio of the supremum of the functional
and its maximal limit on concentrating sequences to the corresponding quantity for disks. A conformal
rearrangement is introduced to prove this inequality.

I would like to thank Jiirgen Moser and Michael Struwe for helpful advice and criticism.

1. Introduction

Consider functionals of the form

Fo(w) = J S(x, u(x)) dx

on a bounded domain Q = R". The function u is supposed to lie in the unit ball

B, =={u e H*(Q): j |Vul? dx < 1}.
Q

We ask for conditions under which the supremum
sup F:= sup Fg(u)

MGBQ

is attained. The particular functional we have in mind is

Fo(w) = f exp (au?) dx.
Q
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Trudinger [15] proved that the latter is bounded on B, for sufficiently small «.
Moser [9] found that it is bounded for « < 4n and unbounded for a > 4n, i.e.
o =4n is the critical exponent. Later, Carleson—Chang [4] found that the
supremum is attained even for the critical exponent, if the domain is the unit disk
D. Unfortunately their method is limited to disks. However, our main result
(Corollary 7) says that the supremum is attained on arbitrary domains. This is in
striking contrast to the fact that for bounded domains of dimension n =3 the
supremum of

Fo(u) =J‘ lulp dx
Q

on By, is not attained for the critical Sobolev exponent p = 2n/(n — 2).

Moreover Pohozaev’s non-existence result [10] and the results of Bahri—Coron
[3] show that the solvability of the corresponding Euler equation depends on the
topology of the domain. In contrast to this, Adimurthi [1] shows that the Euler
equation

Au + Auexp (au?) =0 in Q

u=0 on dQ

has a positive solution for any « >0 and 0 < A < 4, on any domain (see [2] for the
proof). All the same we cannot deduce anything about the existence of maximizers
for Fo(u) = |, exp (4nu?) from Adimurthi’s result.

2. Preliminaries

The difficulty in finding a maximizer for the Trudinger—Moser functional stems
from its lack of compactness, i.e. its discontinuity with respect to weak convergence
in H}?(Q). To see this consider the sequence

r

k if 0 < |x| < exp (—2nk?),

—log |x]|

: k) <
s if exp (—2nk?) < |x| <1,

Uye(X) = <

0 otherwise.
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We assume D < Q. Then (u,) is a sequence on dB,, tending weakly to 0, but
lim Fgo(u) > Fo(0).
k— o0

Thus the functional is not compact up to the boundary of B,. However it is
compact in its interior.

DEFINITION (Compactness in the interior of B,). We say that a general
functional Fo(u) = g f( -, u) dx is compact in the interior of By, if lim sup ||v, | <1
and v, — v weakly implies (-, v;) = f(-,v) in L'(Q) for a subsequence.

For the Trudinger—Moser functional this property follows from its boun-
dedness on B, via Vitali’s theorem. In contrast, for n =3 the functional
Fo(u) = [q |/~ dx is not compact in the interior of B,.

In order to find a maximizer for a general functional Fop(u) ={, f( -, u)dx
consider a maximizing sequence (u;) and extract a weakly converging subsequence
u; — u such that the measures |V, |” dx tend weakly to some Borel measure dy.

DEFINITION (Concentration). We say that a sequence (u;) concentrates at x
if u; € By and |Vu,|* dx —69,. Clearly xe @ and 0<6 < 1.

By the following theorem it suffices to exclude this phenomenon.

THEOREM 1 (Concentration-compactness alternative). Assume Q2 is a bounded
domain in R" of dimension n 2 2. If F, is compact in the interior of B, then for
every sequence (u;) in Bq with u;— u and |Vu,|* dx — dy there is a subsequence
such that either (u;) concentrates at a point x € Q and u=0 or compactness
holds in the sense f(:,u;))—>f(-,u) in L'(Q). If (u;) concentrates at x, then
f(,u)dx —f(-,0)dx +75, for some y € R.

For Fo(u) = j}) exp (4nu?) dx this result is due to P. L. Lions [8]. Unlike Lions’
proof our proof is based on capacity methods. Thus we do not need any informa-
tion about the structure of F, except the compactness in the interior of B,.
Compactness does not imply convergence in H}?(R). In particular concentration
and compactness can hold simultaneously. This is the case for compact functionals.
Compactness in the interior of B, implies continuity up to the boundary by
application of the alternative to converging sequences. Another simple application
is to domains with symmetry.
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COROLLARY 2. If Q is invariant under a group G of diffeomorphisms without
fixed points in Q and F, is compact in the interior of By, then for G-invariant
sequences only compactness occurs.

Proof. If a G-invariant sequence would concentrate at some point x € Q, then it
would concentrate on the whole orbit Gx. This is a contradiction. [J

The concentration-compactness alternative provides the subsequent criterion for
the existence of maximizers.

DEFINITION (Concentration-function). For x € @ we denote by

F5(x) :=sup {lim sup Fo(u;): (u;) concentrates at x}

11— Q0

the concentration-function of F, at x and call sup F’:=sup, . 5 F%(x) the critical
level of F.

THEOREM 3 (General existence theorem). Assume the compactness of F, in
the interior of By, and suppose the compactness-criterion

sup F%, < sup Fy,

holds. Then sup Fy, is attained.

Proof. From a maximizing sequence (¥;) for F,, choose a subsequence such that
u;—u € By and |Vu;|> dx — du. The case of concentration is excluded by hypo-
thesis. Therefore F,(u;) = F,(u) and u realizes sup F,. [

For 2-dimensional domains and space homogeneous f we will prove that F?, is
a continuous function on Q with F%, = F,(0) on Q2 and we will see that the critical
level depends sensitively on the geometry of the domain.

Remark. The above theorem does not apply to Fo(u) = {g [u|*"~? dx with
n = 3 for two reasons: the lack of compactness in the interior of B, and the failure
of the compactness-criterion. The first objection is not serious because every
maximizing sequence of this functional automatically concentrates at a single point
as follows from a concentration-compactness lemma due to P. L. Lions [8] (Lemma
I.1). To see that the compactness-criterion fails choose u € B, such that F,(u) is
close to sup F, = S*C—-m_ (S, denotes the best Sobolev constant in R"). For
fixed x € Q set u,(x +y):=t""22y(x + ty). Then for t large enough u, € B,
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Fo(u,) = Fo(u) and (u,) concentrates at x as ¢t — co. This proves F5(x) =sup F,
which is fatal.

Several authors tried to describe the asymptotic behavior of maximizing se-
quences for this functional consisting of solutions of a subcritical problem. The
most precise description was recently given by Han [6]. He considers maximizing
sequences consisting of solutions of

Au + n(n — un+n-2—c

and proves concentration of a subsequence of (,) at a critical point of Tr H,
(defined in Section 4.2 of this paper). A similar problem has been studied by O. Rey
[12]. The maximizing sequences in the results of Han and Rey concentrate at
specific points because they are chosen in a particular way. But of course there are
maximizing sequences which concentrate at any given point x € Q.

3. Main results

Throughout the remaining sections except Section 4.1 a domain will be an open,
bounded and connected subset of R? with smooth boundary. To every domain
associate its symmetrized domain Q*:={x € R |x| < R,} having the same area as
Q, i.e. R, =./|Q2|/r. As a reference domain we take D :={x € R* |x| < 1} on which
we consider the space of radially symmetric functions.

DEFINITION (F,,4). Denote by HyZ.(D) the space of radially symmetric
functions in H}?(D) which are non-increasing in radial direction and by B4,
F,.q: B~ R and F2,,: D - R the corresponding unit ball, functional and concen-
tration-function.

As to f we make the following general assumptions.

(A) fis space homogenous, i.e. independent of x, continuous and f(0) = 0.
(B) f(lt) 2 1.

(C) fis non-decreasing on R*.

(D) sup F,qy < c0.

The function f(¢) = exp (4nt?) — 1 satisfies (A)... (D). For the radially sym-
metric case on the unit disk Carleson—Chang have computed the critical level of
this functional and - in the case of a disk — found a function u with F,,4(u) above
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this level. In our terms their result reads as follows.

LEMMA 4 (Carleson—Chang [4]). For f(f) = exp (4nt?) — 1 one has

sup Froy = me,

sup Fq > me.

The general existence theorem implies that the Trudinger—Moser constant is
achieved for disks. By stability of the compactness-criterion under small perturba-
tions of the domain this result carries over to domains which are close to a disk in
measure (see Struwe [14]). However, in general replacing D by another domain
with the same area decreases both sides of the compactness-criterion by a factor
which is not necessarily close to 1. Thus the compactness-criterion might fail.
Fortunately — and this is our main point — the ratio sup F,/sup F5 can only
increase.

THEOREM 5 (Functional isoperimetric inequality). Assume (A) ... (D). Then

sup Fp _ sup F,4
>
sup F4  sup F,,

for every domain .

Thus sup F, /sup F4 is minimal for disks and this case is worst with respect to
the compactness-criterion. Equality holds if and only if Q is a disk. The functional
isoperimetric inequality makes the general existence theorem much more applica-
ble, because verifying the compactness-criterion in the radially symmetric case is a
1-dimensional problem.

COROLLARY 6 (Special existence theorem). Assume (A)...(D), the com-
pactness of F,, in the interior of B, and the radial compactness-criterion

SUp Flq < sup Frag.
Then sup Fy, is attained.

Together with the result of Carleson—Chang this answers our main question.
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COROLLARY 7. The Trudinger —Moser constant

MGBQ

sup J exp (4nu?) dx
Q

is attained on every bounded domain Q < R*.

4. Tools and proofs

4.1. Concentration-compactness alternative

DEFINITION (Capacity). For every set 4 < Q define its capacity with respect
to Q2

Co(4):= inf J|Vu|2dx.
et o

The key to the proof of Theorem 1 is the following observation. (As norm on
H§?(Q) we use |u®:=[gq |Vu|* dx.)

LEMMA 8. Assume n =22 and u € H}?(Q). Then

*Co({u > t})—-0,
inf o —0

ve H (@)
v=uon {u>1t}

as t— oo.

Proof. Assume the contrary of the first claim, i.e. t?Co({u > 1;}) = ¢ for some
¢>0 and a sequence of levels 0=¢,<t, <t,<---—00. For a subsequence
(t:—t,_ 1) Co{u>1,}) 2¢)2 which leads to the contradiction

JWWw=Z
Q

i=1J{y, _su<y}

VuPdx =2 Y (t,—t;_)*Co({u > 1,}) = .
i=1

As to the second claim fix ¢ >0 and choose ¢ so large that |, ., |Vu]><e and
1?Cq({u > t}) <e. By definition of capacity there is a function w € H§?(Q) such
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that w =1 on {u >t} and ¢* [, |Vw|* dx <e. Thus

. {tw on {u <t},

u on {u>t}

is in H§?(Q) and [, |[Pv[? dx < 2¢. This completes the proof of the Lemma. O
Now we come to the proof of Theorem 1. Let f, (1;), u and u be as in the
theorem. We show that if u is not a Dirac measure of mass 1, then compactness

holds.

STEP 1. If (u;) concentrates at a point x, then it tends weakly to 0.

Proof. For every test function ¢ and r > 0 use Cauchy’s inequality to estimate

J Vo Vu, dx =J Vo Vu,dx +J Vo Vu,; dx
Q Q\B(x,r) Qn B(x,r)

<toll J[ pul s+ folcw/mlul

which is arbitrary small if we choose r small and i large enough. Thus »;, — 0 in
H#(Q). O

One can show that |Vu|*dx < du (see P. L. Lions [8]) which also yields the
claim.

STEP 2. If u is not a Dirac measure of mass 1, then compactness holds.

Proof. We distinguish the cases u € L*(Q2) and u ¢ L*(2). First assume
u € L*(€). Since u is not a Dirac measure of mass 1, there is a radius R >0
such that u(B(x, R)) <1 for every x € Q. Fix y >0 and choose r € (0, R) such
that a function #n exists which is harmonic on B(0, R)\B(0,r) with n =0 on
R™\B(0, R),n =1 on B(0,7) and (. |Vn|* dx <y. With #™(y):=n(y — x) we get

lim sup j |V (n*u;)|? dx
11— O g
< (1+¢) lim sup J [n*[*|Vu; ? dx + c(e) lim sup f |V |u; | dx
i— o Q t— o0 Q

< (1 + &)u(B(x, R)) + c(¢) J |V ||ul? dx
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because u; »u in L*(Q) and n € H"*. Since u is bounded we can make the above
<1 by choosing ¢ and y small enough. Compactness in the interior of B, provides
a subsequence for which f( -, n ;) > f( -, n*u) in L'(Q) hence f( -, u;) »f( -, u)
in LYB(x,r)nQ). Covering Q by finitely many balls B(x,r) yields
SO u) = f(,u) in LY(Q).

If u ¢ L*(Q2) we can assume that ess sup u = + oo. Otherwise consider & = —u,
7, = —u; and f(x, t) =f(x, —t). By Lemma 8 there is a function v € H}*(Q) such
that v =u on {u >t} for some ¢ and |v| < |u|. For the convergence on {u >t}
set v;:==u; —u +v. Then v, — v and

lim sup [|v, ||* = lim sup |[(v; — o) |* + [lo|* = lim sup [lu, ||* — lu|* + o ||* < 1.

Compactness in the interior of B, yields f( -, v;) = f(-,v) in LY(Q) for a subse-
quence, hence f( -, %) —f(-,u) in L'({u >t}). For the convergence on {u <t}
set v(x) :==min {u(x), 1}. Then |v| < |u| since esssupu = +oo. The same argu-
ment as above shows f( -, u;) —f(-,u) in L'({u < t}). Together compactness is
proved.

STEP 3. If (u;) concentrates at x, then for a subsequence
f( ',ui)dx__\f( 70)dx+'y5x

with some y € R.

Proof. For a subsequence the limit y:=lim _[Q (f(-,u)—f(-,0)) dx exists in
R. For r >0 choose a cut-off function 5 € C*(R") with n#(x)=0,7=1 on
R™\B(x, r). Then

j |V(17u,-)|2de2f n[?[Vu, dx+2f |V |u; [* dx
Q a a

which tends to 0 because n(x) =0 and u,—0 in L*Q). Compactness in the
interior of B, provides a subsequence for which f(-,%)—-f(-,0) in
LY(Q\B(x, r)). Furthermore [z ,(f(,%)—f(-,0))dx -y by definition of 7.
Thus (f(-,u) —f(-,u)dx —yd, since r was arbitrary. [J

This completes the proof of Theorem 1. We add a stronger version of Step 3.

PROPOSITION 9. Assume f is space homogenous and (u;) concentrates at x.
Then (., < f(u;) dx — (o £(0) dx for every t > 0.
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Proof. Observe that |{|u;| = 1}| -0 because u; -0 in L*(Q). Thus

f f(ui)dx_ff(o)dx
{lui| < 1} Q

~

= (f(w;) dx — £(0)) dx

J{[uil <1}

»

< (f(u;) dx — f(0)) dx

U{’uil <’}mB(X, ")

+

f (f(;) dx — f(0)) dx|.
Q\B(x, )

The first term is <c(f)r?. By the previous step the second term tends to 0 as
i—»oo. [

4.2. Green’s function, conformal radius

In 2 dimensions the Green’s function has the form

1
Gﬂ,x(y) = —ZI. log lx _yl - H.Q,x(y)'

The regular part H,, is a harmonic function with the same boundary data as the
singular part. By

TrHy:x— Hg (%)
we denote its trace on the diagonal. On the unit disk H,,=0.

DEFINITION (Approximately small disks). We say that the sets (B;) form
a sequence of approximately small disks of radii p;, at x if B(x, p; —9d;) < B,
B(x, p; + 6;) with §,/p; = 0.

LEMMA 10 (Asymptotic analysis of the Green’s function). For every t >0

P
VGq P dx =1,
o {Gﬂ,x <t}

ed

IVGQ,XI dS = 1.

o {GQ,X = t}
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As t —> o0 the sets {Gq, 2t} form a sequence of approximately small disks of radii
p, =ro(x) exp (—2nt) and

VGo . (»)|= +0(1)

2np,
uniformly for y € {Gq . = t}. In particular

. [{Ga. 2t}
1 = = qIF

i exp (—4nt) wra(x),
lim exp (2n?)

——— = 27r o (x).
M W Gan(y)] ™)

Proof. By definition of the Green’s function [, VG, Vfdx =f(x) for all test
functions f. Choosing a smooth approximation of f(y):=inf {Gg (»), t} the first
claim follows. Integration by parts yields the second identity. Solving G .(y) = ¢
for |y — x| yields |y — x| =exp (—2nHg () exp (—2xt). By smoothness of H,
the corresponding level set is close to a circle. As to the gradient on this level

1 (y—x
2n |y — x|?

VGo . (»)|=|— —VH, ()| = +0(1)

2np,
by the previous claim. [J
DEFINITION (Conformal radius and conformal incenters). For x € Q define
ro(x):=exp (—2n Tr Hy(x)).

The points where the conformal radius is maximal — i.e. where Tr H, is minimal —
are called conformal incenters of Q.

On simply connected domains the conformal radius has a simple geometric
interpretation. In this case the Riemann mapping theorem provides for given x € Q
a conformal diffeomorphism A, : D - Q with hg ,(0) = x.

Q. x
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This map is unique up to rotations of D. Thus |hg (0)| is a well defined
number (* denotes the complex derivative). We claim

ro(x) = |hg (0)].

This is the standard definition of the conformal radius on simply connected
domains. It is consistent with the above definition by conformal invariance of the
Green’s function: G (z) = Gg (hg (2)), i.e.

1 1
—2_71: lOg 'Zl = —Zt‘ IOg lhﬂx(o) - hQ,x(Z)I - H.Q,x(hQ,x(Z))

which is equivalent with

1

ho (0) —h
Ho(hg.(2)) = — 7 log 2.(0) —ho.(2)

z

In the limit as z — 0 this equality tends to what we claimed. The conformal radius
of the unit disk is rp(x) =1—|x|> as can be seen from appropriate Mobius
transformations. More generally rg.(x) = Ro(1 — |[x[*/R3). The conformal radius
of any simply connected domain can be computed from a single conformal
diffeomorphism 4 : D — Q via ro(h(z)) = |h'(z)|(1 —|z|*). For polygons the confor-
mal radius can be computed from the Schwarz—Christoffel map

z K
hz)y=c| [l €—z)Md+d

0 k=1

which provides a conformal transformation of the unit disk to a polygon.

hzy,¢) P
: klhz,)
h
—l
Zy
Q
Zey
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Combining this with a Mobius transformation of the unit disk yields
— |Z

= .
I |z —z|™

k=1

|2

ro(h(z)) = ro(h(0))

The conformal radius is small near the boundary and large at points which are far
from the boundary. All the same it can attain several maxima, i.e. multiple
conformal incenters, as it does on the domain below.

We have plotted the conformal radius for this domain parameterized over D, i.e.
the function rg © h.

0.5 17! Re(z)

It shows 2 maxima on the same level. They correspond to 2 different conformal
incenters of Q. However, there is a single conformal incenter if the domain is strictly
convex.
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PROPOSITION 11. Assume Q is strictly convex. Then

2
ATr Hg - exp(4n Tr Hy) =0 in Q
Tr Ho(x) > 00 uniformly as x — 0L2.

In particular Q has a single conformal incenter.

Proof. Since Q is simply connected there is a conformal bijection f:Q — D
from which the conformal radius can be computed as ro(x) = (1 —|f(x)])/|/"(x)].
Equivalently Tr H, = —(2n) "'(log (1 —ff) —ilog (f'f)). With ATrH,=
40,0, Tr H,, the claim follows after a simple computation. I thank G. Philippin for
this remark. As to the boundary condition see Proposition 12 below. A theorem due
to A. Kennington (see Kawohl [7], Theorem 3.13) implies that on strictly convex
domains the solutions of such boundary value problems are strictly convex. In
particular they attain their minimum at a single point. [

Some properties of the conformal radius follow immediately by application of
the maximum principle to the regular part of the Green’s function.

PROPOSITION 12. The conformal radius of any domain satisfies
1. ro € C(2, R™).

2. ro(x) >0 as x - 09Q.

3. suprg S sup rg. =ro.(0) = R,,.

Proof. 1. We show that Tr Hy, is continuous. Using the symmetry of the regular
part of the Green’s function in its arguments we can estimate

1 1
|Tr Ho(x) — Tr Ho(p)| < 2:1:%3 - log |x — z| —5 log |y — 2|

by application of the maximum principle to the harmonic function
Zk H.Q,x(z) - Hﬂ,y(z)'
Thus

x =yl
7 min {{x —0Q|, |y —oQ|}

ITr Ho(x) — Tr Ho(y)| <

2. The following argument is similar to that used by O. Rey [12] (2.8) showing
that in the higher dimensional case Tr H, grows like |x —dQ? " as x —0Q.
Denote by R the minimal curvature radius of the arc 0Q2. Then to every point x € Q
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within distance r < R of 0Q there is a reflected point x’ at distance r from 0Q such
that B(x’, r) noQ = &.

For fixed x the function z — —(2n) ~' log |x’ — z| — Hg .(2) is harmonic in Q. Thus

—1—10
27 g

1
x'—x|—Tr Hg(x) < max (—Et— log

' 2|+ = log |x — 2]
x'—z|+5-loglx —z

by the maximum principle. This means

ral) < e — x| max 571

?Z‘%E |x —z|

and implies ry(x) < 6|x — 0Q| because
|x —x|=2]x —éQ| and {z:|x —z|/|x’'—z|>3} = B(x’,r)

which is not hit by 0Q.

3. We show that ro(x) < rq.(0) for any x € Q. This yields the claim because rg.
is maximal at the origin. If Q is simply connected then the mean value theorem for
holomorphic functions implies

1
axOF < | o P ds
D

via Jensen’s inequality. (This inequality is strict if hg , is not a constant, i.e. if Q is
not a disk.) The integral on the right is just the area of € and we get

Q
ri(x) < 1—1—t—| = R% =r%.(0)

from the definition of the conformal radius for simply connected domains. In the
general case we make use of Lemma 10, in particular [, .4 |VGa.| dx=1.
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Symmetrization does not increase the Dirichlet integral. Replace G%, on {G§ , <1}
by the harmonic function v with the same boundary data. Then [, ., |[Vv|*dx < 1.
The function » has to be a multiple of the Green’s function at the origin: v = AGg. .
Therefore

2dx =tA

t ZJ IVU|2 dx=/12J. lVGQ',O
{fv<i} {Ggso<t/i}

by Lemma 10. Hence A <1. Using |{Ggo, 2 t}|=|{v 2 t}| =|{Ggsp 2 ¢/A}| and
Lemma 10 we find

2(x) = i {Gax 2 t}| < i {Garo<1/A}] _
ra(x) :I_I.TO 7 exp ( —4nt) t}»n:a nexp (—4nt/l)

rét(O). |

The last inequality is equivalent with Tr H,(x) 2 —(2n) ~! log (Ry). It is strict if Q
is not a disk. If in addition |Q|=|D| it implies inf Tr H, >0 which can be
considered as a positive mass theorem for 2-dimensional domains.

4.3. Concentration-formula

Surprisingly the concentration-function is related with the conformal radius r,
via a simple formula.

THEOREM 13 (Concentration-formula). Assume (A) ... (D). Then
F(x) = rp(x)F1,4(0)
for every x € Q.
In particular the concentration-formula says that
lim sup Fyo(4;) < (sup r§)Fi(0)

i-» 00

whenever the sequence (#;) concentrates somewhere and that this inequality is
optimal. Furthermore a maximizing sequence which concentrates has to concentrate
at a point where the conformal radius is maximal. Clearly these points are



The Trudinger—Moser inequality in 2 dimensions 487

independent of f. Observe that F2,;(0) = sup F’,4 = sup F$, by Schwarz symmetriza-
tion. Now we can give a precise generalization of the result of Carleson—Chang to
arbitrary domains. (Use Lemma 4, Theorem 5 and Theorem 13).

COROLLARY 14. For f(f) = exp (4nt?) — 1 one has

sup FS = (sup r3)ne,

sup Fp > (sup r3)me.

The concentration-formula allows to deduce non-trivial properties of the con-
centration-function from those of the conformal radius (Proposition 12).

COROLLARY 15. Under the general assumptions (A)...(D) the concentra-
tion-function satisfies

1. F e C(Q,RY).

2. F4 |09 =0.

3. Either F4 =0 or F5 >0 on Q.

4. The concentration-functions on a fixed domain but for different functions f are

scalar multiples of each other.
5. sup F < sup F?..

Proof. The conformal radius is continuous on €, hence so is F%,. Since ro(x) =0
as x — 0Q the same holds for F5. By definition F?, is lower semi continuous. Thus
F% =0 on 09Q. Since ro >0 one has F >0 in the interior of Q if F2,(0) >0
and F) =0 if F%,4(0) =0. All concentration-functions on  are scalar multiples
of r3. From the last item of Proposition 12 we get sup F = (sup ro)2F?2,4(0) <
(sup roe)2F%,4(0) =sup F5.. 0O

We give an alternate, more geometric proof of the fact that the concentration-
function vanishes at the boundary. It can be generalized easily to H)"(2) on
n-dimensional domains and it requires only that Q satisfies the exterior ball
condition. .

Choosing a subsequence (u;) of a sequence which concentrates at a boundary
point x we can assume that F,(u;) — lim sup F,(u;). Since Q2 satisfies the exterior
ball condition there is a ball B such that BN Q = {x}. Choosing B small enough
some translate ¢B is entirely contained in . Special conformal diffeomorphisms are
circle reflections. The circle itself is a fixed point set. If two circles intersect
orthogonally, then each of them is invariant under the reflection with respect to the
other. The reflection r with respect to the circle 0B maps € into B. The sequence
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u; o r concentrates at r(x) = x and lim Fy(y; o r) = lim Fy(%,) since [r'(x)* =1 (see
Lemma 16 below).

Next choose circle reflections r, with respect to circles 0B, mapping B onto itself
having their center so close to x that |(r; ')'(x)]* 2 2k. On some neighborhood U,
of x we still have |(r;!)’|* = k. By Step 3

lim jf(u,- or)dx = lim J f(u;or)dx
B Uy

for every fixed k. Thus for a subsequence of (u;)

f S(u; or)dx Zl.ﬁm Jf(uior)dx.
Ui B

2 11— o0
Set w;s==u; or or; ot ~!. It’s support is contained in ¢tB < Q. Therefore w; € B, and
sup F, 2 lim Fy(w;) = lim Fgz(u; or or;) = lim ff(u,- on)|(ri ') dx
i—o Jp

>dx 2 lim (1’ J- f(u; or) dx).
1— o0 Ui

But since sup F,, < oo by (D) this is only possible if .fui f(u; or)dx —0. Together we
conclude Fg(u;) — 0.

> lim J [ on|erity

1 0

4.3.1. Proof of Theorem 13 on simply connected domains. In the simply con-
nected case tools from complex analysis provide a particularly simple proof. In
order to exploit the conformal equivalence of the domain with the unit disk we need
a transformation rule for concentrating sequences.
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LEMMA 16. Assume h : Q" — Q is a conformal diffeomorphism and h(x") = x. If
a sequence (u;) in Bg concentrates at x, then (u; o h) is a sequence in By, concentrating
at x’ and

lim Fg(u;) = |'(x)P lim Fg(u; ° h)

I— O
if the limits exist.

Proof. In two dimensions the Dirichlet integral is invariant under conformal
transformations. Therefore u; - h € B,.. For every r >0

f V(s )2 dx = f P,
Q\B(x’,r) Q\hB(x',r)

which tends to 0 as i — o0 because hB(x’, r) is a neighborhood of x. This means that
(u; o h) concentrates at x’. Applying Step 3 to the sequence (u; o h) yields

2 dx

lim Fy(u, o h) = lim f(w;  B) dx = lim J S|ty
hB(x',r)

i— 0o i— o0 B(x',r) i— oo

=([(h=)' )+ O)) lim LB( , )f(u,.) dx

as r —»0. Step 3 yields the claim. [J

Now we can prove Theorem 13 for simply connected domains. First we
construct a sequence showing that r%(x)F2,4(0) is a lower bound for F2,(x). Then
we have to show that this is indeed the worst what happens.

Choose a sequence (v;) realizing F?%,4(0), i.e. a sequence in B, concentrat-
ing at 0 such that F.4(v;) - FZ,4(0). Then u;:=v, o hg . concentrates at x and
lim Fy(u;) = r3(x) lim F,,4(v;) by the previous lemma. Thus F5(x) = r3(x)F2,4(0).
For the opposite inequality choose a sequence (u;) realizing F2(x). By (B) we can
assume u; = 0. Set v;:=u; o hy ., then by the previous lemma

Fo(x) = lim Fo(u;) =rg(x) lim Fp(v,) < r5(x)Fraqa(0)

because (v;) concentrates at 0. This proves Theorem 13 for simply connected
domains.

4.3.2. Proof of Theorem 13 on general domains. To estimate F% from below
choose (v;) realizing F?,4(0). The conformally rearranged sequence (vi, ) (Section
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4.4) concentrates at x and lim F,,(vio’x) =r3(x) lim F,,4(v;) by Theorem 18. Thus
F(x) 2 ri(x)F?%,4(0). For the opposite inequality choose a sequence (u;) realizing
F5(x). We will show that there is a sequence (i;) also realizing F2(x), r;—»0 and
A; — oo such that:

1. #; is harmonic for values <1 and {#; > 1} = B(x, r;).

2. ;-0 in CE(Q\{x}) for all k 2 0.

3. 4it; > Gg, in CE(2\{x}) for all k > 0.

4. The sets {@#; > 1} form a sequence of approximately small disks of radii

pi =rp(x) exp (—2m4,;) at x.

Once the sequence (i;) is constructed proceed as follows. Replace A4, by the least
level ¢, 2 A, for which {G,, = 1,} = {#; 2 1}. By Lemma 10 the sets {Gq, >t} are
also approximately small disks of radii p; at x. By Dirichlet’s principle

J;Gﬂ,x/’i < l}

The left side is independent of 2 and x. In particular we can replace (€2, x) by
(D, 0). Set

V Gﬂ,x
2

2
dx < J |V, |? dx.
{a;< 1}

for values <1,

v;(2) = *
u* (’—)—’; z) for values =1,
r?
L 1

where p} denotes the radius of the disk {#; > 1}* and r}:=exp (—2nt,) is chosen
such that the two pieces of v, fit together.

By construction |v;|| < |u; | <1, ie. v;€B,,. As to the functional observe
that p} = p, + o(p,) and r}¥ =exp (—2n4;) + o(exp (—27n4;)), hence p¥* [r¥ — ro(x).
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By Proposition 9

*\ 2
lim Fy(,) = lim f f(@,) dx = lim (5’;) J f(,) dx
J (a2 1} r {v;2 1}

i— o0 i— oo i— o0 i

=rg(x) lim F4(v;) < rg(x)Fa(0)

11— QO

because (v;) concentrates at 0. This completes the proof of Theorem 13 up to the
construction of the sequence (i#;). Now we make up for this.
1. Fix r >0 and assume there is a point y; € {u; = 1}\B(x, 2r).

G

If y; could be connected with B(x,r) by an arc which is entirely contained in
{u; = 1}, then (u;) could not concentrate at x because in 2 dimensions the capacity
of a connected set of diameter r is bounded below by a positive number which only
depends on r and Q. This contradiction implies that for i large enough every
component of {#; > 1} which intersects B(x, r) is contained in B(x, 2r). It allows to
replace u; by a function @; € Hy?(2) which coincides with »; on the connected
components of {u; > 1} which intersect B(x,r) and is harmonic otherwise. Thus
l@: || < ||u; | by Dirichlet’s principle. Since r was arbitrary we can choose r, —0 and
a subsequence of (#;) such that {#; = 1} = B(x, r;). By Step 3 and Proposition 9
there is a subsequence of (u;) such that I(Q\B(x,,i»u{ui(,} f(u;)dx —0. The same
holds for the sequence (%;) which also concentrates at x. Therefore the limit of the
functional remains unchanged.

2. The following argument is similar to that given by Schoen [13] (Theorem 3.3)
for the Yamabe functional. Fix r >0 such that Q\B(x,r) is connected and a
compact subset K = Q\B(x, r). For i large enough #; is a positive harmonic function
on Q\B(x, r). Since infy &; — 0 also supy &, —0 by Harnack’s inequality. Schauder’s
estimate implies supy |Vi;| —0. By iterative application of Schauder’s estimate the
same follows for all derivatives of #;, since they are harmonic on Q\{x} as well.
Since r was arbitrary we find @; -0 in C{ (Q2\{x}) for all k.
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3. Fix y #x and set 4;:=G, ,(»)/4;(y) and u;:=A4;. Then A, > . For K as
before but containing y, Harnack’s inequality and Schauder’s estimate imply that
(u}) is bounded in all C¥(K). By Ascoli’s compactness theorem and since K was
arbitrary there is a subsequence of (u;) which converges in all C§.(2\{x}) to a
function #’. By uniform convergence u’ has to satisfy

du'=0 on Q\{x}

u'=0 on 0Q

and u’(y) = Gg,(»)- The only function with these properties is u’ = G, itself.

4. By Lemma 10 the sets {G,, = 4;} form a sequence of approximately small
disks of radii p;. Since 4,i1; > Gg , in C|,.(2\{x}) a subsequence of {,i; = 4;} also
consists of approximately small disks of radii p; at x.

4.4. Conformal rearrangement, mean value inequality

On simply connected domains the mean value theorem implies what we call the
mean value inequality

1
— lho(2)| ds 2
228 Y -ny

2x(0).

We prove a generalization of this inequality to arbitrary domains. It will be
essential in the proof of the functional isoperimetric inequality.

THEOREM 17 (Mean value inequality). For any r € (0, 1]
1 ds

(21r)? Ji6g. = ~@n -1 10g 02} VGo.l

N\

2 r2(x).

This inequality tends to an equality as r —0.

Proof. The isoperimetric inequality for planar domains implies

([ ] <o) )
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In our case

4n

1
{G.Q,x > ——2; log (r)}

J* ds
2
{Gg.x= —(2n) —1log (n} |VG9~"' IVGQ,xI ds

J{Gn,x = —(2m) ~ 1 log (1)}
The denominator is =1 by Lemma 10. As to the numerator set

Q,:={Gq, > —2n) " 'log (r}.
Then G, ,=Gq,+(2m) 'log(r) and H, ,=H,,—(2m) 'log(r) and therefore
ro (x) =ro(x)r. From Proposition 12 we know that nR% >mrj(x), hence

Q,| 2 nrd (x). Plugging this into the above inequality yields the first claim. By
Lemma 10

1
'{G = —5- log (r)}

and

= 2nro(x)r + O(r?)

m = 2nrq(x)r + O(r?)

on this level set. Thus

1 ds
(27"')2 {Ggo .= —Qn) —1log(r)} lVGQ,x l (27”‘)2

Qaro(X)r + 0(r?))?

which tends to ri(x) as r »0. O

This inequality is a generalization of the mean value inequality for simply
connected domains as can be derived from the conformal invariance of the Green’s
function. For simply connected domains the proof of the functional isoperimetric
inequality uses the conformal transformation of radially symmetric functions into
functions on Q. For the general case we introduce a rearrangement which general-
izes this transformation and also preserves the Dirichlet integral.

DEFINITION (Conformal rearrangement). To every v € H{?Z,4(D) and x € Q
associate its conformal rearrangement on £ at x

UQ,x =vo Gl;,(l) °© GQ,x'
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The function vg , is a constant on each level set of G, namely the same constant
as v takes on the corresponding level set of G . Equivalently, if v = ¢ o G4, then

vQ,x = ¢ °© GQ,x'

GD,O = Gﬂ,x
V=Vox

If Q is simply connected, then v, , = v o A5 | by conformal invariance of the Green’s
function.

THEOREM 18. Assume v € HyZ 4(D). Then
1. vo, € Hy*(Q) and |vg. || = |v].
2. For every f e C(R, R*)

f fva,) dx 2 rj(x) j f () dx.
Q D

3. If (v;) concentrates at 0, then (v, ) concentrates at x and
lim Fo(v;,, ) =ra(x) lim F4(v;)
{—» QO 1> 0

if the limits exits.

Proof. For simplicity we assume Vv # 0 except at the origin.

1. For simply connected domains this is just the conformal invariance of the
Dirichlet integral. For the general case choose ye 2 and ze D such that
Gao.(y) = Gpo(2). Then Vg () = ([Vo(2)|/|VG o (2)|)V Ga . (»). By the co-area for-
mula (Federer [S] Theorem 3.2.12)

QQ
50 |2 = j J el dsa
0 Hvg x>t

_ f ©  |Pu(z(1))]

VGg | ds dt
0 |VGD,0(Z(t))l a{cn,x>GD,o(z(t))}I ® l
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where z(¢) € v ~'(¢). By Lemma 10 the inner integral is =1 independently of 2 and
x. In particular we can replace (2, x) by (D,0) which yields the analogous
expression for vy = [v].

2. This inequality follows from the mean value inequality using the radial
symmetry of v. By the co-area formula

J F(vay) dx = J ") S
{vg > 1} |V QxI
PG o) ds_
f TOTRocO Jotoa > oocion WGan]

Using |VGpo(z(1)| = (2n|z()|) " and (|Pu(z())]) =" = Qa|z()]) ~* foro > o [Vv|~" ds
we can write this as

o ds 1 ds
t —— | dt.
J:) f( ) oo >1} lVUl [(27['20) |)2 J;{Gﬂ.x> Gpo(z(1)} ‘VGQ,X |]

By the mean value inequality the expression in square brackets is 2> r3(x) and the
claim follows.
3. From the first item we already know that v;, € B,. Furthermore

J v, | dx=f |Pv; | dx
{Gax <1} | {Gpo<1t}

which tends to 0 for every ¢ > 0. This shows that (v, ) concentrates at x. As in the
previous item the limit of Fo(v,, ) can be written as

" ds 1 ds
lim t — | dt.
"‘*OOJ: /) o{v, > 1) IVU,-| [(27"4(’)’)2 L{Ga‘x>00,o(25(l))} IVGn,xl]

The expression in square brackets tends to r%(x) uniformly in ¢ > 1, since
|z;(®)| < |z:(1)| > 0 as i > 0. The claim follows Proposition 9. [

4.5. Functional isoperimetric inequality

The proof of Theorem 5 is our main application of the conformal rearrange-
ment just introduced. It allows the construction of a function u € B, on an
arbitrary domain with F,(u) above the critical level from a function with this
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property in the radially symmetric case. In the simply connected case choose
v € B,y and x € Q and set u:=v o hg . Then

Fo(x)  ra(x)FLq(0)

by Theorem 13. By radial symmetry of v the numerator can be written as

! 1
2nr(fov) —
0 217 Jijz) = 1)

using the mean value inequality. The conformal factor cancels and we get

hh,x(z)lz dS dr 2 r%)(x)Frad(v)

Sup FQ > Frad(v) — Frad(v)
Fo(x) ~ Fps(0)  sup Fiq

for every x € Q. Theorem 5 follows by taking the infimum over x € Q (for x € 0R
the left side is infinite) and the supremum over all v € B,,4. On general domains set
u:=vg, and Theorem 18 yields the same inequality.
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