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Extremal fonctions for the Trudinger-Moser inequality in 2 dimensions

Martin Flucher

Abstract We prove that the Trudinger -Moser constant

sup \ exp (4nu2) dx u e Hl0 2(O), \Vu\2 dx ^ 11

îs attained on every 2-dimensional domain For disks this resuit îs due to Carleson-Chang For other
domains we dérive an isopenmetnc mequality which relates the ratio of the supremum of the functional
and îts maximal hmit on concentrating séquences to the corresponding quantity for disks A conformai
rearrangement îs introduced to prove this inequality

I would hke to thank Jurgen Moser and Michael Struwe for helpful advice and cnticism

1. Introduction

Consider functionals of the form

(u) f /(*, u(
J(2

FQ(u) f(x, u(x)) dx

on a bounded domain Q c Un. The function u is supposed to lie in the unit bail

BQi=LeHl02(Q): \Vu\2dx &lt;&gt; \\.

We ask for conditions under which the supremum

sup FQ := sup FQ(u)
ue BQ

is attained. The particular functional we hâve in mind is

FodO f exp (aw2) dx.
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Trudinger [15] proved that the latter is bounded on BQ for sufficiently small a.

Moser [9] found that it is bounded for a ^ 4n and unbounded for a &gt; 4n, i.e.

a 4n is the critical exportent. Later, Carleson-Chang [4] found that the

supremum is attained even for the critical exponent, if the domain is the unit disk
D. Unfortunately their method is limited to disks. However, our main resuit

(Corollary 7) says that the supremum is attained on arbitrary domains. This is in
striking contrast to the fact that for bounded domains of dimensipn n &gt; 3 the

supremum of

Wrdx
a

on BQ is not attained for the critical Sobolev exponent p 2n/(n — 2).

Moreover Pohozaev&apos;s non-existence resuit [10] and the results of Bahri-Coron
[3] show that the solvability of the corresponding Euler équation dépends on the

topology of the domain. In contrast to this, Adimurthi [1] shows that the Euler

équation

Au -h ku exp (aw2) =0 in Q

u 0 on dQ

has a positive solution for any a &gt; 0 and 0 &lt; k &lt; kx on any domain (see [2] for the

proof). Ail the same we cannot deduce anything about the existence of maximizers
for FQ(u) {Q exp (4nu2) from Adimurthi&apos;s resuit.

2. Préliminaires

The difficulty in finding a maximizer for the Trudinger-Moser functional stems

from its lack of compactness, i.e. its discontinuity with respect to weak convergence
in Hq2(Q). To see this consider the séquence

uk(x)

if

ifexp(-27rit2)&lt;|jc|&lt;l,

otherwise.
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We assume D œQ. Then (uk) is a séquence on dBQ tending weakly to 0, but

lim FQ(uk) &gt; FQ(0).
k-+ao

Thus the functional is not compact up to the boundary of BQ. However it is

compact in its interior.

DEFINITION (Compactness in the interior of BQ). We say that a gênerai
functional FQ{u) J^ /( •, u) dx is compact in the interior of BQ if lim sup \\vt || &lt; 1

and vt-^v weakly implies/( •, vt) -&gt;/( •, v) in L\Q) for a subsequence.

For the Trudinger-Moser functional this property follows from its boun-
dedness on BQ via Vitali&apos;s theorem. In contrast, for n ^ 3 the functional
FQ{u) =\q |w|2w/(&quot;~2) dx is not compact in the interior of BQ.

In order to find a maximizer for a gênerai functional FQ(u) fa /( *, w) dx
consider a maximizing séquence (m,) and extract a weakly converging subsequence

ut-**u such that the measures \Vut |2 dx tend weakly to some Borel measure d\i.

DEFINITION (Concentration). We say that a séquence (ut) concentrâtes at x
if ut g BQ and \Vut |2 dx -- 9ôx. Clearly x e Q and 0 ^ 0 &lt; 1.

By the following theorem it suffices to exclude this phenomenon.

THEOREM 1 (Concentration-compactness alternative). Assume Q is a bounded

domain in Rn of dimension n^2. If FQ is compact in the interior of BQ, then for
every séquence (wj in BQ with ut-^u and \Vut\2dx —*&gt;dfi there is a subsequence

such that either (ut) concentrâtes at a point xeQ and u=0 or compactness
holds in the sensé /( • ,u,)-&gt;f( •, m) in Ll(Q). If (w,) concentrâtes at jc, then

/( • ,u,)dx -*/( •, 0) dx + yÔx for some y e ft.

For Fa(M) Jfl exp (4tim2) dx: this resuit is due to P. L. Lions [8]. Unlike Lions&apos;

proof our proof is based on capacity methods. Thus we do not need any information

about the structure of FQ except the compactness in the interior of BQ.

Compactness does not imply convergence in Hq*2(Q). In particular concentration
and compactness can hold simultaneously. This is the case for compact functionals.

Compactness in the interior of BQ implies continuity up to the boundary by
application of the alternative to converging séquences. Another simple application
is to domains with symmetry.
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COROLLARY 2. If Q is invariant under a group G of diffeomorphisms without

fixed points in Q and FQ is compact in the interior of BQ, then for G-invariant

séquences only compactness occurs.

Proof If a G -invariant séquence would concentrate at some point x g Q, then it
would concentrate on the whole orbit Gx. This is a contradiction.

The concentration-compactness alternative provides the subséquent criterion for
the existence of maximizers.

DEFINITION (Concentration-function). For xefîwe dénote by

Fq(x) -= sup &lt; lim sup FQ{ut)\ (wz) concentrâtes at x

the concentration-function of FQ at x and call sup FQ-=snpxeûFQ(x) the critical
level of FQ.

THEOREM 3 (General existence theorem). Assume the compactness of FQ in
the interior of BQ and suppose the compactness-criterion

sup FèQ &lt; sup FQ

holds. Then sup FQ is attained.

Proof. From a maximizing séquence (m, for FQ choose a subsequence such that

ut-^ue BQ and \Vutf dx-^ dp. The case of concentration is excluded by hypo-
thesis. Therefore FQ(ut) -+FQ(u) and u realizes sup FQ.

For 2-dimensional domains and space homogeneous / we will prove that FÔQ is

a continuous function on Q with FÔQ FQ(0) on dQ and we will see that the critical
level dépends sensitively on the geometry of the domain.

Remark. The above theorem does not apply to FQ(u) jfi \u\2n/(n~2) dx with
n ^ 3 for two reasons: the lack of compactness in the interior of Bn and the failure
of the compactness-criterion. The fîrst objection is not serious because every
maximizing séquence of this functional automatically concentrâtes at a single point
as follows from a concentration-compactness lemma due to P. L. Lions [8] (Lemma
1.1). To see that the compactness-criterion fails choose us BQ such that FQ(u) is

close to supFQ S^K2~n). (Sn dénotes the best Sobolev constant in Un). For
fixed xeQ set ut(x + y)&apos;&gt;=tin~2)/2u(x + ty). Then for t large enough ut gBq,
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Fa(ut) =FQ(u) and (w,) concentrâtes at x as t-&gt;co. This proves Fq(x) =supFQ
which is fatal.

Several authors tried to describe the asymptotic behavior of maximizing
séquences for this functional consisting of solutions of a subcritical problem. The
most précise description was recently given by Han [6]. He considers maximizing
séquences consisting of solutions of

Au + n(n- 2)w(&quot; + 2)/(w ~2) &quot;e 0

and proves concentration of a subsequence of (ue) at a critical point of Tr HQ

(defined in Section 4.2 of this paper). A similar problem has been studied by O. Rey
[12]. The maximizing séquences in the results of Han and Rey concentrate at
spécifie points because they are chosen in a particular way. But of course there are

maximizing séquences which concentrate at any given point x e Q.

3. Main results

Throughout the remaining sections except Section 4.1 a domain will be an open,
bounded and connected subset of U2 with smooth boundary. To every domain Q
associate its symmetrized domain Q*.= {x e U2: \x\ &lt; RQ} having the same area as

Q, i.e. Ra y/\Q\/n. As a référence domain we take D -= {x e U2: \x\ &lt; 1} on which

we consider the space of radially symmetric functions.

DEFINITION (Fnd). Dénote by H^2ad{D) the space of radially symmetric
functions in Hloa(D) which are non-increasing in radial direction and by 2?rad,

Frad : Brad -? IR and Ffad : D -? R the corresponding unit bail, functional and concen-
tration-function.

As to / we make the following gênerai assumptions.

(A) /is space homogenous, i.e. independent of x, continuous and/(0) =0.
(B) /(|/|) &gt;f(t).

(C) /is non-decreasing on IR+.

(D) supFrad&lt;oo.

The function /(/) exp (4nt2) — 1 satisfies (A)... (D). For the radially
symmetric case on the unit disk Carleson-Chang hâve computed the critical level of
this functional and - in the case of a disk - found a function u with FTSLd(u) above
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this level. In our terms their resuit reads as follows.

LEMMA 4 (Carleson-Chang [4]). For f(t) exp (4nt2) - 1 one has

sup Fômd ne,

sup Frad &gt; ne.

The gênerai existence theorem implies that the Trudinger-Moser constant is

achieved for disks. By stability of the compactness-criterion under small perturbations

of the domain this resuit cames over to domains which are close to a disk in
measure (see Struwe [14]). However, in gênerai replacing D by another domain
with the same area decreases both sides of the compactness-criterion by a factor
which is not necessarily close to 1. Thus the compactness-criterion might fail.
Fortunately - and this is our main point - the ratio sup FQ /sup FQ can only
increase.

THEOREM 5 (Functional isoperimetric inequality). Assume (A)... (D). Then

sup FQ
^ sup Frad

sup FQ sup Ffad

for every domain Q.

Thus sup FQ /sup Fg is minimal for disks and this case is worst with respect to
the compactness-criterion. Equality holds if and only if Q is a disk. The functional
isoperimetric inequality makes the gênerai existence theorem much more applicable,

because verifying the compactness-criterion in the radially symmetric case is a

1-dimensional problem.

COROLLARY 6 (Spécial existence theorem). Assume (A)... (D), the com-
pactness of FQ in the interior of BQ and the radial compactness-criterion

Then sup FQ is attained.

Together with the resuit of Carleson-Chang this answers our main question.
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COROLLARY 7. The Trudinger-Moser constant

ïsup exp (4nu2) dx
&quot;*Ba JQ

is attained on every bounded domain Q a U2.

4. Tools and proofs

4.1. Concentration-compactness alternative

DEFINITION (Capacity). For every set A c Q define its capacity with respect
to Q

CQ(A)&apos;.= inf \Vu\2dx.

u 1 °on A

The key to the proof of Theorem 1 is the following observation. (As norm on

LEMMA 8. Assume n&gt;2 andue Hl02(Q). Then

t2CQ({u&gt;t})-+0,

inf |M|-&gt;0
veHlQ&apos;2(Q)

t u on {« &gt; t)

as t -&gt; oo.

Proof. Assume the contrary of the first claim, i.e. t2CQ({u &gt; tt}) ^ s for some
s &gt; 0 and a séquence of levels 0 t0 &lt; t{ &lt; t2 &lt; • • • -&gt; oo. For a subsequence

(/, - tt_ \)2CQ{{u &gt;tt})&gt; fi/2 which leads to the contradiction

f H2&lt;&amp;=£ f \Vu\2dx&gt; £ (tl-tl_l)2CQ({u&gt;tl}) œ.
JQ i=\ J{t, _,su&lt;/,} i=l

As to the second claim fix e &gt;0 and choose t so large that J{w&gt;,} |Fw|2&lt;£ and

t2Cn({u &gt; ^}) &lt; £• By définition of capacity there is a function w g H\a{Q) such
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that w 1 on {u &gt; t} and t2 \Q \Vwf dx &lt; s. Thus

tw on {u &lt; t}9

u on {u &gt; t}

is in Hl02(Q) and Jo \Vv\2 dx &lt; 2e. This complètes the proof of the Lemma.

Now we corne to the proof of Theorem 1. Let /, (u, u and ju be as in the

theorem. We show that if \i is not a Dirac measure of mass 1, then compactness
holds.

STEP 1. If {u,) concentrâtes at a point x, then it tends weakly to 0.

Proof. For every test function &lt;/&gt; and r &gt; 0 use Cauchy&apos;s inequality to estimate

V4&gt; Vut dx= \ V(f) Vu, dx + V&lt;f&gt; Vu, dx
JQ JQ\B(x,r) JQ n B(x,r)

Q\B(x,r)

which is arbitrary small if we choose r small and i large enough. Thus ut —* 0 in
HlQ2{Q).

One can show that \Vu\2 dx &lt; d/i (see P. L. Lions [8]) which also yields the

claim.

STEP 2. If jll is not a Dirac measure of mass 1, then compactness holds.

Proof We distinguish the cases w€L°°(O) and m^L°°(O). First assume
m e Lœ(Q). Since \i is not a Dirac measure of mass 1, there is a radius R &gt;0

such that fi(B(x, R)) &lt; 1 for every jcg&amp; Fix y &gt; 0 and choose r e(0, R) such

that a function rj exists which is harmonie on 2?(0, R)\B(0, r) with f/=0 on
ffrVB(0, ^), if 1 on 5(0, r) and J*. |Frç|2 &lt;£c &lt; y. With ^(7) «^(^ - jc) we get

limsup F |F0/*w,)|2rfjc

&lt;: 1 + e) lim sup |rç*|2|Fw, |2 rfx + c(e) lim sup \Vr\x\2 \ut \2 dx
1-00 JQ 1-00 JQ

f
Ji2
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because ut -» u in L2(Q) and rj e H1 °°. Since w is bounded we can make the above
&lt; 1 by choosing e and y small enough. Compactness in the interior of BQ provides
a subsequence for which/( •, rjxut) -?/( •, r\xu) in L\Q) hence/(-,«,) -&gt;/( •, u)
in Ll(B(x,r)nQ). Covering Q by fînitely many balls B(x, r) yields
/(-,!&lt;,)-&gt;/(-,ii) in L^fl).

If u $ L°°(D) we can assume that ess sup u + oo. Otherwise consider m — m,

é?; — — w, and/(x, î) =f(x, — t). By Lemma 8 there is a fonction v e Hl02(Q) such

that v u on {w &gt; /} for some t and ||#|| &lt; ||w||. For the convergence on {u &gt; /}
set v^^u, —u +1?. Then i?f —^ 17 and

limsup ||I?, ||2 lim sup \\(v, -tO||2+ ||f ||2 Hm sup \\u, \\2 - ||w||2-f- ||^||2&lt; 1.
/ —? oo i —*¦ oo i —»• oo

Compactness in the interior of BQ yields /( •, vt) -&gt;/( •, v) in L^O) for a

subsequence, hence /(-,«,) -&gt;/( -, m) in L!({m &gt; ^}). For the convergence on {m ^ *}
set f(x).*=min {w(jc),/}. Then |H| &lt; ||w|| since ess sup u -f oo. The same argument

as above shows /( •, ut) -*f( •, u) in /^({w &lt; /}). Together compactness is

proved.

STEP 3. If (ut) concentrâtes at x, then for a subsequence

f(-9ut)dx-~f(-90)dx+y5x

with some y e M.

Proof For a subsequence the limit y :=lim J^ (/( •, ut) —/( •, 0)) dx exists in
R. For r&gt;0 choose a cut-off fonction fjeC^r) with rj(x) 0, rç 1 on

r). Then

f |P(^)|2Jjc&lt;2 f |f/|2|PwJ2^-h2 f
J« Jfl Jfl

which tends to 0 because rç(;c)=0 and w,-&gt;0 in L2(Q). Compactness in the
interior of BQ provides a subsequence for which /( •, w, -?/( •, 0) in
Ll(Q\B(x, r)). Furthermore j*(JC,r)(/( *, &quot;J -/( •, 0)) rfx -&gt;y by définition of y.
Thus (/( •, m,) —/( •, m)) dx -*• yôx since r was arbitrary.

This complètes the proof of Theorem 1. We add a stronger version of Step 3.

PROPOSITION 9. Assume f is space homogenous and (ut) concentrâtes at x.
Then J{K| &lt; „ /(«, dx - Jo /(0) rfx /or «wry / &gt; 0.
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Proof. Observe that \{\ut\ ^ t}\-+0 because ut -»0 in L2(Q). Thus

If f(ut)dx-ï f(0)dx
I J(KI &lt; &lt;} J«

(Kl &lt; &lt;}

(f(Ul)dx-f(0))dx

f (f(ut &lt;/* -/(0)) &lt;/* + f (/(Mj dx -/(0))
J{|k,| &lt; /} rs B(x, r) JQ\B(x, r)

The first term is ^c(i)r2. By the previous step the second term tends to 0 as

/-?oo. D

4.2. Green&apos;s function, conformai radius

In 2 dimensions the Green&apos;s function has the form

2n-T- »og |x - j| - HQtX(y).
2n

The regular part HQx is a harmonie function with the same boundary data as the

singular part. By

we dénote its trace on the diagonal. On the unit disk HD 0 0.

DEFINITION (Approximately small disks). We say that the sets (Bt) form
a séquence of approximately small disks of radii pf at x if B(x, pt — ôl) a Btc:
B(x,pl+ô,)mihôi/pt-+0.

LEMMA 10 (Asymptotic analysis of the Green&apos;s function). For every / &gt; 0
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As t -y oo the sets {GQx ^ /} form a séquence of approximately small disks of radu

Pt — ra(x) exp — 2ni) and

uniformly for y s {GQx t) In particular

hm exp (lui)
W^—7~V\\VGQx(y)\

Proof By définition of the Green&apos;s function \Q VGQ x Vfdx =f(x) for ail test

fonctions/ Choosing a smooth approximation off(y) =inf {GQx(y), t} the first
claim follows Intégration by parts yields the second îdentity Solving GQx{y) t
for \y — x\ yields \y — x\ exp —2nHQx(y)) exp (—2nt) By smoothness of HQx
the corresponding level set îs close to a circle As to the gradient on this level

\VGQx(y)\
1 (y-x) 1

2np,
0(1)

2n\y-x\2
&apos;&quot;axK-

by the previous claim

DEFINITION (Conformai radius and conformai incenters) For x g Q define

rQ(x) exp — 2% Tr HQ(x))

Ihe points where the conformai radius îs maximal - 1 e where Tr HQ îs minimal -
are called conformai incenters of Q

On simply connected domains the conformai radius has a simple géométrie

interprétation In this case the Riemann mappmg theorem provides for given x e Q

a conformai diffeomorphism hQx D -±Q with hQx(0) x
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This map is unique up to rotations of D. Thus
number (&apos; dénotes the complex derivative). We claim

*s a defined

This is the standard définition of the conformai radius on simply connected
domains. It is consistent with the above définition by conformai invariance of the
Green&apos;s function: GD0(z) GQx{hQx(z)), i.e.

-~ log \z\ -~

which is équivalent with

In the limit as z -?O this equality tends to what we claimed. The conformai radius

of the unit disk is rD(x) 1 — \x\2 as can be seen from appropriate Môbius
transformations. More generally rQ*(x) RQ(\ — \x\2/Rq). The conformai radius

of any simply connected domain can be computed from a single conformai
diffeomorphism h : D -+Q via rQ(h(z)) \h&apos;(z)\(\ — |z|2). For polygons the conformai

radius can be computed from the Schwarz-Christoffel map

which provides a conformai transformation of the unit disk to a polygon.
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Combining this with a Môbius transformation of the unit disk yields

1

483

ra(Kz))=ra(h(0)) —
m*-**

The conformai radius is small near the boundary and large at points which are far

from the boundary. Ail the same it can attain several maxima, i.e. multiple
conformai incenters, as it does on the domain below.

We hâve plotted the conformai radius for this domain parameterized over D, i.e.

the function rQ ° h.

Im(z)

Re(z)

It shows 2 maxima on the same level. They correspond to 2 différent conformai

incenters of Q. However, there is a single conformai incenter if the domain is strictly

convex.
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PROPOSITION 11. Assume Q is strictly convex. Then

Air HQ-~ exp {An Tr Hn) 0 in Q
n

Tr HQ(x) -? oo uniformly as x -? ÔQ.

In particular Q has a single conformai incenter.

Proof. Since Q is simply connectée there is a conformai bijection f:Q-+D
from which the conformai radius can be computed as rQ(x) (1 — |/(
Equivalent^ Tr HQ -(2tc) - &apos;(log 1 -//) - \ log (/&apos;/&apos;))¦ With
43fd2 Tr //^ the claim follows after a simple computation. I thank G. Philippin for
this remark. As to the boundary condition see Proposition 12 below. A theorem due

to A. Kennington (see Kawohl [7], Theorem 3.13) implies that on strictly convex
domains the solutions of such boundary value problems are strictly convex. In
particular they attain their minimum at a single point.

Some properties of the conformai radius follow immediately by application of
the maximum principle to the regular part of the Green&apos;s function.

PROPOSITION 12. The conformai radius of any domain satisfies
1. rQ g C(Q9 U+).
2- fûC*) -* 0 as x -? dQ.

3. sup rQ ^ sup ra+ rQ*(0) RQ.

Proof 1. We show that Tr HQ is continuous. Using the symmetry of the regular
part of the Green&apos;s function in its arguments we can estimate

|Tr HQ(x) - Tr HQ(y)\ ^ 2 max — log|x-z|-— \og\y-z\
zeôQ 271 O| &apos;

27C

by application of the maximum principle to the harmonie function

Thus

n min {\x — dQ\, \y — 3Q\}
&apos;

2. The following argument is similar to that used by O. Rey [12] (2.8) showing
that in the higher dimensional case Tr HQ grows like |jc — dQ\2~n as x-^dQ.
Dénote by R the minimal curvature radius of the arc dQ. Then to every point x e Q
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within distance r &lt; R of ôQ there is a reflected point x&apos; at distance r from dQ such

that B(x\r)ndQ 0.

For fixed x the function z f-&gt; — (2n) l log |x&apos; — z| — HQx(z) is harmonie in O. Thus

-— log |x&apos; - x\ - Tr //fî(x) ^ max -— log \x&apos; - z\ -f — log |x - z|
271 ze^fi y 2n 2n

by the maximum principle. This means

x — z
max f 7

zedQ \X — ZI

and implies rQ{x) &lt; 6|x — £Q\ because

|x - x&apos;\ 2\x - £Q\ and {z : |x - z\l\x&apos; - z\ &gt; 3} c 5(x&apos;, r)

which is not hit by dQ.

3. We show that rQ(x) ^ rQ*{G) for any x e Q. This yields the claim because ra*
is maximal at the origin. If Q is simply connected then the mean value theorem for
holomorphic functions implies

- [ K71 JD

via Jensen&apos;s inequality. (This inequality is strict if h&apos;Qx is not a constant, i.e. if Q is

not a disk.) The intégral on the right is just the area of Q and we get

\Q\

n

from the définition of the conformai radius for simply connected domains. In the

gênerai case we make use of Lemma 10, in particular J{c?flx&lt;/} \PGa,x\2dx t.
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Symmetrization does not increase the Dirichlet intégral. Replace G%x on {G%x &lt; t}
by the harmonie function v with the same boundary data. Then ${v&lt;t} \Vv\2 dx &lt; t.

The function v has to be a multiple of the Green&apos;s function at the origin: v XGQ+#.

Therefore

: f \Vv\2 dx k2 f |FGQ.,o|2 dx tk

by Lemma 10. Hence X ^ 1. Using \{GQ,X l&gt; t}\ \{v &gt; t}\ \{GQ*,0&gt; t/À}\ and
Lemma 10 we find

7i exp -4tcO &apos;-oo tt exp —4nt/X)
D

The last inequality is équivalent with Tr HQ(x) ^ -(27c)&quot;1 log (RQ). It is strict if Q

is not a disk. If in addition |O| |Z)| it implies infTr HQ&gt;0 which can be

considered as a positive mass theorem for 2-dimensional domains.

4.3. Concentration-formula

Surprisingly the concentration-function is related with the conformai radius rQ

via a simple formula.

THEOREM 13 (Concentration-formula). Assume (A)... (D). Then

for every x € Q.

In particular the concentration-formula says that

lim sup FqM ^ (sup
I-+OO

whenever the séquence (ut) concentrâtes somewhere and that this inequality is

optimal. Furthermore a maximizing séquence which concentrâtes has to concentrate
at a point where the conformai radius is maximal. Clearly thèse points are
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independent of/. Observe that Ffad(0) sup Ffad sup FôD by Schwarz symmetriza-
tion. Now we can give a précise generalization of the resuit of Carleson-Chang to
arbitrary domains. (Use Lemma 4, Theorem 5 and Theorem 13).

COROLLARY 14. For f(t) =exp (4nt2) - 1 one has

sup FSQ (sup r2Q)ne,

sup FQ &gt; (sup rQ)ne.

The concentration-formula allows to deduce non-trivial properties of the con-
centration-function from those of the conformai radius (Proposition 12).

COROLLARY 15. Under the gênerai assumptions (A).. (D) the concentration-f

unedon satisfies
1. FôQeC(Q, R+).
2. FSQ | dQ 0.

3. Either FÔQ =0 or FÔQ &gt; 0 on Q.

4. The concentration-functions on afixed domain but for différent functions f are
scalar multiples of each other.

5. supF^ &lt;supFôQ*.

Proof The conformai radius is continuous on Q, hence so is FÔQ. Since rQ(x) -&gt;0

as x -*dQ the same holds for FÔQ. By définition FÔQ is lower semi continuous. Thus
FÔQ 0 on dQ. Since rQ &gt; 0 one has F£ &gt; 0 in the interior of Q if Fsrad(0) &gt; 0

and Fq 0 if ^^(0) 0. Ail concentration-functions on O are scalar multiples
of r^. From the last item of Proposition 12 we get sup FÔQ (sup rfl)2Ffad(0) ^

02^ad(0)=supF^. D

We give an alternate, more géométrie proof of the fact that the concentration-
function vanishes at the boundary. It can be generalized easily to Hl*n{Q) on
H-dimensional domains and it requires only that Q satisfies the exterior bail
condition. ^

Choosing a subsequence (ut of a séquence which concentrâtes at a boundary
point x we can assume that Fa(ut) -^limsupFfî(w/). Since Q satisfies the exterior
bail condition there is a bail B such that BnÛ {x}. Choosing B small enough
some translate tB is entirely contained in Q. Spécial conformai diffeomorphisms are
circle reflections. The circle itself is a fixed point set. If two circles intersect

orthogonally, then each of them is invariant under the reflection with respect to the

other. The reflection r with respect to the circle dB maps Q ipto B. The séquence
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M,°r concentrâtes at r(x) x and limFB(ul or)= limFQ(ut) since |r&apos;(jc)|2 1 (see
Lemma 16 below).

Next choose circle reflections rk with respect to circles dBk mapping B onto itself
having their center so close to x that \{rkxy{x)^ ^ 2/r. On some neighborhood Uk

of x we still hâve Kr^1)&apos;!2 ^ *• By Step 3

lim f(ut o r)dx lim f(ul © r) rfx

for every fixed A:. Thus for a subsequence of (m,

f(ut or)dxï&gt;- lim f(ut ° r) dx.

Set wt := ut o r o r, o t~l. It&apos;s support is contained in tB cz (2. Therefore wt e BQ and

sup FQ î&gt; lim i^C^) lim FB{ut o r o rt) lim /(m, o r)\(r~l)f dx
i —? oo i —» oo i —? oo jjj

&gt; lim F f(ut °r)\(rrl)fdx ^ lim (/ | f(ut or)dx\
t-*™ Ju, &apos;-« \ Ju,

But since sup FQ &lt; oo by (D) this is only possible if J^ f(ut or)dx-+ 0. Together we
conclude FQ(ut) -»0.

4.3.1. Proof of Theorem 13 &lt;?« simply connected domains. In the simply con-
nected case tools from complex analysis provide a particularly simple proof. In
order to exploit the conformai équivalence of the domain with the unit disk we need

a transformation rule for concentrating séquences.
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LEMMA 16. Assume h :Q&apos; -&gt;Q is a conformai diffeomorphism and h{x&apos;) x. If
a séquence {ut in BQ concentrâtes at x, then (ut o h) is a séquence in BQ&gt; concentrating
at xr and

lim Fa(u,) \h&apos;(x&apos;)\2 lim Fa(u, o h)
l —*¦ OO l—*CO

if the limits exist.

Proof In two dimensions the Dirichlet intégral is invariant under conformai
transformations. Therefore ut o h e Bq.. For every r &gt; 0

r r
\F(ut o h)\2 dx \Vut\2dx

jQ&apos;\B(x&apos;,r) jQ\hB(x ,r)

which tends to 0 as / -+ oo because hB(x\ r) is a neighborhood of x. This means that
(u, o h) concentrâtes at x&apos;. Applying Step 3 to the séquence (m, o h) yields

lim FQ\ut o h) lim | /(m, o h) dx lim | f(ut)\(h ~ l)f dx
1 - °° &apos; -* °° JB(x&apos;,r) l ~&gt; °° JhB(x&apos;,r)

(\(h-ly(x)\2 + O(r))Km f /(Ml)ifa
&apos;^°° JhB(x&apos;,r)

as r -? 0. Step 3 yields the claim.

Now we can prove Theorem 13 for simply connected domains. First we

construct a séquence showing that r2Q{x)FôV2Ld(Q) is a lower bound for FôQ{x). Then

we hâve to show that this is indeed the worst what happens.
Choose a séquence (vt) realizing jFfad(O), i.e. a séquence in 5rad concentrating

at 0 such that F^v,) -^Ffad(0). Then «,*=!&gt;! °Aô.i concentrâtes at x and
lim FQ(ut) r2Q(x) lim F^iv,) by the previous lemma. Thus FâQ(x) ^ r^(jc)Ffad(0).
For the opposite inequality choose a séquence (ut) realizing FsQ(x). By (B) we can

assume ut &gt; 0. Set tv=w, ° hQx, then by the previous lemma

F*Q(x) lim Fodi,) r2Q(x) lim F^fe) ^ r2Q(x)Fôrad(0)

because (vt) concentrâtes at 0. This proves Theorem 13 for simply connected
domains.

4.3.2. Proof of Theorem 13 on gênerai domains. To estimate FÔQ from below
choose (vt) realizing /*tad(0). The conformally rearranged séquence (t&gt;, (Section
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4.4) concentrâtes at x and \imFQ(vlQ r^(x) UmF^vJ by Theorem 18. Thus

Fq(x) ^ rQ(x)Ffad(0). For the opposite inequality choose a séquence (m,) realizing
ffl(x). We will show that there is a séquence (w,) also realizing Fq(x), rt-+0 and

A, -? oo such that:
1. w, is harmonie for values &lt; 1 and {ût ^ 1} c 2?(x, r,).
2. m, -0 in Cîoc(Q\{x}) for ail A; :&gt; 0.

3. Kût -*GQtX in Cfoc(O\{x}) for ail k ^ 0.

4. The sets {w, ^ 1} form a séquence of approximately small disks of radii
Pi ra(x) exp -27rAJ at x.

Once the séquence (w,) is constructed proceed as follows. Replace A, by the least

level /, ^ A, for which [GQx ^t,}d{ût^ 1}. By Lemma 10 the sets {GQ,X ^ tt) are
also approximately small disks of radii pt at x. By Dirichlet&apos;s principle

L, L
The left side is independent of Q and x. In particular we can replace (Q, x) by

(A 0). Set

for values &lt;1,
GD,0(z)

«&amp;

where p* dénotes the radius of the disk {m, &gt; 1}* and rf :=exp( —

such that the two pièces of vt fit together.
O is chosen

By construction \\vt || ^ \\u, \\ ^ 1, i.e. vt€Brad. As to the functional observe

that pf p, + o(pt) and rf =exp(-27iAl) 4-o(exp(-27iAI)), hence pT /rf -&gt;rQ(x).
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By Proposition 9

lim FQ(ût) lim f /(«,) dx lim f^Y f /(*,)&lt;**

#£(*) lim Fradfe) &lt; rl(x)FôU0)

because (vt) concentrâtes at 0. This complètes the proof of Theorem 13 up to the

construction of the séquence (wf). Now we make up for this.
1. Fix r &gt; 0 and assume there is a point yl e {ut &gt; \}\B(x, 2r).

If y, could be connected with B(x, r) by an arc which is entirely contained in
{ut &gt; 1}, then (w,) could not concentrate at x because in 2 dimensions the capacity
of a connected set of diameter r is bounded below by a positive number which only
dépends on r and O. This contradiction implies that for / large enough every
component of {ut &gt; 1} which intersects B(x, r) is contained in B(x, 2r). It allows to
replace ut by a function ûl e H\f2{G) which coincides with ut on the connected

components of {ut &gt; 1} which intersect B(x, r) and is harmonie otherwise. Thus
||wf I &lt; I m, I by Dirichlet&apos;s principle. Since r was arbitrary we can choose r, -»0 and

a subsequence of (ûj such that {m, ^ 1} c B(x, rt). By Step 3 and Proposition 9

there is a subsequence of (ut) such that f(o\i*(jç,r|))U{„,&lt;!}/(«,)*&amp; -&gt;0. The same

holds for the séquence (w, which also concentrâtes at x. Therefore the limit of the

functional remains unchanged.
2. The following argument is similar to that given by Schoen [13] (Theorem 3.3)

for the Yamabe functional. Fix r &gt; 0 such that Q\B(x9 r) is connected and a

compact subset K c Q\B(x, r). For / large enough ùt is a positive harmonie function

on Q\B(x, r). Since inf^w, -?0 also sup* ût -»0 by Harnack&apos;s inequality. Schauder&apos;s

estimate implies sup^ |Pw, | —&gt;0. By itérative application of Schauder&apos;s estimate the

same follows for ail derivatives of ûn since they are harmonie on 0\{jc} as well.
Since r was arbitrary we find ùl -?() in Cx^Q^x}) for ail k.
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3. Fix y /x and set ^l&apos;=Gax(y)/ul(y) and u\*=Atut. Then A,-&gt;oo. For # as

before but containing 7, Harnack&apos;s inequality and Schauder&apos;s estimate imply that
(u\) is bounded in ail Ck(K). By Ascoli&apos;s compactness theorem and since K was

arbitrary there is a subsequence of (u\) which converges in ail Cfoc(0\{x}) to a

function iï. By uniform convergence u&apos; has to satisfy

Au&apos; 0 on 0\{x}
u&apos; 0 on 30

and w&apos;( j&gt;) GQx(y). The only function with thèse properties is u&apos; GQx itself.
4. By Lemma 10 the sets {GQtX &gt; A,} form a séquence of approximately small

disks of radii pt. Since A,w, -?G!i2vX. in C\oc(Q\{x}) a subsequence of {^w, &gt; Àt} also

consists of approximately small disks of radii pt at x.

4.4. Conformai rearrangement, mean value inequality

On simply connected domains the mean value theorem implies what we call the

mean value inequality

We prove a generalization of this inequality to arbitrary domains. It will be

essential in the proof of the functional isoperimetric inequality.

THEOREM 17 (Mean value inequality). For any r e(0, 1]

J{Gq,x - - (2rr) - 1 log (r)} |V ^Q,x |(2nr)

This inequality tends to an equality as r -+ 0.

Proof The isoperimetric inequality for planar domains implies
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In our case

I ds
GQx&gt;-—\og{r)

(2n) Mog(r)} \VGQx\ds
x= -(2«)-Mog(r)}

The denominator îs 1 by Lemma 10 As to the numerator set

Qr={GQx&gt;-(2n)-l\og(r)}

Then GQr X GQx + (2n)~l log(r) and HQrX HQx-(2n)-1 log(r) and therefore

rQr(x) =rQ{x)r From Proposition 12 we know that %R2Q ^ 7cr^(x), hence

|Qr | &gt; 7rr^r(x) Plugging this into the above mequahty yields the first claim By
Lemma 10

and

on this level set Thus

i
which tends to r2Q{x) as r -*0 D

This mequahty îs a generahzation of the mean value mequahty for simply
connected domains as can be denved from the conformai invariance of the Green&apos;s

fonction For simply connected domains the proof of the fonctional îsopenmetnc
mequahty uses the conformai transformation of radially symmetnc fonctions into
fonctions on Q For the gênerai case we mtroduce a rearrangement which general-

îzes this transformation and also préserves the Dinchlet intégral

DEFINITION (Conformai rearrangement) To every v e Hl02ad(D) and x e Q

associate îts conformai rearrangement on Q at x
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The function vQx is a constant on each level set of GQx namely the same constant
as v takes on the corresponding level set of GD0. Equivalently, if v &lt;j&gt; © GD0, then

If Q is simply connectée, then vQx v o hQxby conformai invariance of the Green&apos;s

function.

THEOREM 18. Assume v e Hl02ad(D). Then
1. v^xeHl&gt;HQ)and\\vQJ \\vl
2. For everyfeC(U, \

\ f{vQ,x)dx^r2Q{x) [ f(v)dx.
JQ JD

3. If (vt) concentrâtes at 0, then (vtQx) concentrâtes at x and

lim FQ(v =r2Q(x) lim Frad(^)
/ -+ 00 • / -*• 00

if the limits exits.

Proof. For simplicity we assume Vv # 0 except at the origin.
1. For simply connectée! domains this is just the conformai invariance of the

Dirichlet intégral. For the gênerai case choose y e Q and z e D such that

GaAy) GM(z). Then VvQfX(y) (\Vv{z)\l\VGD#(z)\)VG^x(y). By the co-area
formula (Fédérer [5] Theorem 3.2.12)

r \
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where z(t) e v~l(t). By Lemma 10 the inner intégral is 1 independently of Q and

x. In particular we can replace (Q, x) by (D, 0) which yields the analogous
expression for \\vD#\\ \\v||.

2. This inequality follows from the mean value inequality using the radial
symmetry of v. By the co-area formula

\f{vQ,x)dx=\~f(t) [

f
JoJ

Using |FGD,0(2(/))| (2ii|z(0|)-1 and (|PKz(0)|)-&apos; =(2n\z(t)\)-1 \g{v&gt;l} \Vv\~l ds

we can write this as

Jo

By the mean value inequality the expression in square brackets is ^r2Q{x) and the
claim follows.

3. From the first item we already know that vlQx e BQ. Furthermore

f
J{G

\Vv,fdx

which tends to 0 for every / &gt; 0. This shows that (v,ax) concentrâtes at x. As in the

previous item the limit of FQ(vlQx) can be written as

— J. m L&gt;
&apos;1 W\ L(2*|z.WD2

koa,x&gt;cD,0(:,m

The expression in square brackets tends to r2Q(x) uniformly in / ^ 1, since

\zt{i)\ ^ |z,(l)|-&gt;0 as /-&gt;oo. The claim follows Proposition 9. D

4.5. Functional isoperimetric inequality

The proof of Theorem 5 is our main application of the conformai rearrangement

just introduced. It allows the construction of a function u g Bq on an

arbitrary domain with FQ(u) above the critical level from a function with this
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property in the radially symmetric case. In the simply connectée! case choose

v e Bmd and x eQ and set u -= v o h âj.. Then

Fo(«)

by Theorem 13. By radial symmetry of v the numerator can be written as

2nr(f ov)^-\ \h&apos;o,x(z)|2 ds dr &gt; rl{x)FnM
Jo

using the mean value inequality. The conformai factor cancels and we get

sup Fa

Fi(x) FUO) supFf,ad

for every x eQ. Theorem 5 follows by taking the infimum over x g Q (for x e ôQ

the left side is infinité) and the supremum over ail v g Brad. On gênerai domains set

Ui—vQx and Theorem 18 yields the same inequality.
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