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Minimal isometric immersions of spherical space forms in spheres

DENNIS DETURCK AND WOLFGANG ZILLER

Introduction

A number of authors [C], [DWI1], [DW2], [L], [T] have studied minimal
isometric immersions of Riemannian manifolds into round spheres, and in particu-
lar of round spheres into round spheres. As was observed by T. Takahashi [T], if
®:M->SY¥r) cRM*! is such a minimal immersion, then the components of @
must all be eigenfunctions of the Laplace operator on M corresponding to the same
eigenvalue. Conversely, if @ is an isometric immersion such that all the components
are eigenfunctions of the Laplace operator for the same eigenvalue, then @ is a
minimal isometric immersion into a round sphere. Takahashi also observed that if
M is an isotropy-irreducible Riemannian homogeneous space, i.e., if the isotropy
group of a point acts irreducibly on the tangent space, then an orthonormal basis
of each eigenspace automatically gives rise to a minimal isometric immersion into
a round sphere. These are called the standard minimal immersions.

In particular, if M = S"(1) one obtains a sequence of such standard minimal
isometric immersions, one for each nonzero eigenvalue. For the first such eigen-
value one obtains the standard embedding into R"*+!, and for the second eigenvalue
an immersion into S""*32-1(_ /n/(2(n + 1))), which gives rise to the Veronese
embedding of RP”. For odd-numbered eigenvalues the images of the standard
minimal immersions are all embedded spheres and for even-numbered eigenvalues
the images are all embedded real projective spaces. E. Calabi [C] showed that every
minimal isometric immersion of the two-dimensional sphere into S”¥(r) is congruent
to one of these standard eigenspace immersions. On the other hand, M. Do Carmo
and N. Wallach [DW2] showed that in higher dimensions there are in general many
minimal isometric immersions of $"(1) into S¥(r), and that they are parametrized
by a compact convex body in a finite-dimensional vector space.

P. Li [L] generalized this result to arbitrary isotropy-irreducible homogeneous
spaces and also claimed that the image of a minimal isometric immersion of an
isotropy-irreducible homogeneous space is still an isotropy-irreducible homoge-
neous space. He went on to apply this theorem to the case where M is also a sphere,
and ultimately concluded that the image of a minimal isometric immersion of a
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sphere into a sphere must be either a sphere or a real projective space. This would
of course imply that there exists no minimal isometric immersion of a lens space or
any other more complicated spherical space form into a sphere.

That this is indeed not correct was first observed by K. Mashimo [Mal], who
gave an example of a minimal isometric immersion of $3(1) into S°(3), whose image
is at least a 6-fold subcover of S* (but he did not identify the image completely).
Later, in [WZ], M. Wang and the second author showed that certain quotients of
S3 (by the so-called polyhedral groups) are in fact isotropy irreducible, and so by
the above-mentioned theorem of Takahashi, the polyhedral manifolds S°3/T*,
S3/0* and S3/I* admit minimal isometric immersions into spheres. Also, the first
author obtained some explicit minimal isometric embeddings of certain three-di-
mensional lens spaces. This then raises the question of just which spherical space
forms do admit minimal isometric imersions or embeddings into spheres. The
purpose of the present paper is to give a partial answer to this question. We will
show

THEOREM A. Every homogeneous spherical space form admits a minimal
isometric embedding into a standard sphere (of sufficiently high dimension and
appropriate radius).

Spherical space forms, i.e. compact manifolds of constant curvature + 1, have
been completely classified [W]. Only few of them are homogeneous, see [W],
Theorem 2.7.1, for a description. It seems likely that most if not all spherical space
forms admit a minimal isometric immersion into a sphere.

The interior points of the compact convex body parametrizing minimal isomet-
ric immersions of spheres into spheres correspond to immersions which use a full
basis of the eigenspace corresponding to a given eigenvalue as the coordinates of
the immersion. In [WZ] it was observed that these immersions are SO(n + 1)-
equivariant immersions into R¥+! (although they are not equivariant into S™(r)),
and hence their images must be embedded spheres or real projective spaces. The
minimal immersions in the above Theorem must therefore correspond to boundary
points in the convex body. They are still equivariant immersions, but only with
respect to a proper subgroup G < SO(n + 1) that acts transitively on S”. Their
images are therefore G-homogeneous embedded submanifolds. We doubt that there
are any minimal isometric immersions whose image is not embedded.

Such equivariant immersions, in the case of G = SU(2) acting transitively on
S3(1), are examined in some detail by K. Mashimo [Mal], [Ma2], but he does not
attempt to identify their images. In [P] F. J. Pedit constructs U(n)-equivariant
isometric embeddings of (2n — 1)-dimensional lens spaces into spheres, but they are
not minimal.
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One should also mention a theorem by Hsiang and Lawson [HL] which states
that every homogeneous space G/H admits a minimal isometric immersion (not
necessarily an embedding!) into a sphere of sufficiently high dimension, with respect
to some G-invariant metric. But in this result, the metric cannot be chosen apriori.
In particular, for a homogeneous space form, there are in general many G-invariant
metrics.

Another question that is interesting in this context was asked by DoCarmo and
Wallach [DW2], Remark 1.6: For a given n, what is the smallest dimension N for
which there exist minimal isometric immersions of S”(1) into S¥(r) which are not
totally geodesic? In this question one can also specify r, i.e. fix the eigenvalue one
wants to consider. A lower bound was given by J. D. Moore [Mr] who showed that
no such immersions exist if N < 2n — 1. In [DW2] they guessed the probable answer
to be N =n(n + 3)/2 — 1, which is achieved by the Veronese embedding. That this
is false, at least for n = 3, was first observed by N. Ejiri [E] who showed that there
exists a minimal isometric immersion of S3(1) into S%3) which is not totally
geodesic. He also showed that the immersion is totally real with respect to the
natural almost-complex structure on S°. Notice though that his construction is not
explicit, since it uses the fundamental theorem for isometric immersions to prove
existence. In [Mal] Mashimo constructed this immersion more explicity as an
SU(2)-equivariant immersion. In [Ma2] he shows that it is also an orbit of a
subgroup of G, acting on S® and proves that every totally real immersion of S>3(1)
into S%@3) is congruent to this example. In [DVV] it was observed that the
immersion is a 24-fold cover onto its image. In our paper we will be able to identify
the image as the tetrahedral manifold S3/T". We can also easily describe it explicitly
as follows. We start with an isometric immersion of S*(1) obtained by sending
(a, b) € S, |af* + |b|* =1, into:

(-}1— 6@~ %), § 6(Slaf — bP) + 5 a*(Slef: ~ [aP),

}1 V10 [ab>(2|a]? — |bP) + ab(|af? — 2|6 )], %\/TE (Jal? = |pP) Im (a252)) :

One easily shows that this isometrically immerses S3(1) into S%3) c
C?*® R = R’ and hence is a minmal isometric immersion. This map is clearly invar-
iant under o(a, b) = (ia, —ib), P(a,b) =(—b,a), and y(a, b) = G (1 +i)(a — b),
3(1 —i)(a + b)). a, B, and y generate a group of order 24 isomorphic to the binary
tetrahedral group T* and we will see that the immersion defines an embedding of
S3/T* into S%3). We will also prove the following uniqueness property of this
immersion:
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THEOREM B. Every SU(2)-equivariant minimal isometric immersion of S>(1)
into S5(r) which is not totally geodesic, is congruent to the above immersion of S3(1)
into S%(3), whose image is an embedded S*|T*.

We suspect that this result may be true without the assumption of equivariance.
Notice also by Moore’s theorem, six is the smallest ambient dimension for which
S3(1) admits a non-totally-geodesic minimal isometric immersion.

In §1 we give some geometric preliminaries, in §2 we prove Theorem A in the
three-dimensional case and in §4, §5 in the higher-dimensional cases. In §3 we discuss
the moduli space of SU(2)-equivariant minimal isometric immersions of S$>(1) and
prove Theorem B.

Both authors acknowledge the support of the National Science Foundation. The
first author would also like to thank the Institute for Advanced Study for its
hospitality during the course of the research for this work. We would also like to
thank Christine Escher for pointing out several mistakes in an earlier version of this

paper.

1. Geometric preliminaries

Let M be an n-dimensional compact Riemannian manifold, and 4 be the
Laplacian on L (M). If ¢ : M — R" is an isometric immersion of M into Euclidean
space, then the mean curvature vector H of the immersion satisfies

A =nH.

If furthermore, the coordinate functions of the immersion are all eigenfunctions of
A4 corresponding to the same eigenvalue A, then we have H =n¢/A. Since
(H,d¢) =0, this implies that (¢, dp> =0, and hence |¢|* is constant. Thus ¢ is
actually an immersion of M into the sphere SV~ ! whose radius must be ./n/i
because of the value of H. Furthermore the immersion is a minimal immersion into
the sphere, since the mean curvature vector is orthogonal to the sphere. Reversing
the reasoning shows the converse: if ¢ : M"—SV~!(r) is a minimal isometric
immersion, then A4¢ = (n/r?)¢. These results were obtained by Takahashi [T] (see
also [DW1)).

In order to minimally isometrically immerse a manifold M into a sphere, we
must therefore find eigenvalues of the Laplacian of M of sufficiently high multiplic-
ity to provide the coordinate functions of the immersions.

Another result of Takahashi [T] is that certain homogeneous Riemannian
manifolds M = G/H do admit such immersions, namely those for which the
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isotropy group H acts irreducibly on the tangent space. To see this, we consider the
eigenspace E; to a fixed eigenvalue 4 # 0. On E; we have the inner product induced
by the one on L*(M), and the group G acts on E; by isometries. If we let
{¢,,...,¢dn} be an orthonormal basis of E;, then X d¢? must be a multiple of the
metric on M since both are invariant under G and hence at every point they are
invariant under the irreducible action of H. Therefore, after multiplying the metric
on M by a constant, ¢ =(¢,,...,¢dy): M —R" is an isometric immersion, which
by the above comments give rise to a minimal isometric immersion into a sphere.
This immersion is called the standard minimal immersion of degree d if ). is the dth
nonzero eigenvalue. Notice that a different choice of orthonormal basis for E; gives
rise to a congruent immersion.

An obvious example of such a homogeneous Riemannian manifold is the
n-dimensional sphere, realized as the homogeneous space SO(n + 1)/SO(n). The
eigenfunctions of S” are simply the restrictions of harmonic homogeneous polyno-
mials on R"*! to §”(1). All the harmonic homogeneous polynomials of degree d
restrict to eigenfunctions on S” with the same eigenvalue 1, =d(d +n — 1) and the
dimension of this eigenspace is equal to N, =(2d +n — 1)(d +n —2)!/(d'(n — 1)!).
For odd d, the standard minimal isometric immersion is a minimal isometric
embedding of S" into SV~1(,/n/A,;). For even d, all the components of the
immersion are invariant under the antipodal map, and we get a minimal isometric
embedding of RP" into SN~ 1(/n/,).

In [DW2] the space of all minimal isometric immersions of S”(1) into S™(r) was
examined in some detail, and it was shown that for » > 2 there are many minimal
isometric immersions other than the ones described above. If we fix r = ./n/l,, or
equivalently if we only consider harmonic homogeneous polynomials of degree d,
then these minimal isometric immersions (up a rotation of the ambient space) are
parametrized by a convex body in a finite-dimensional vector space, which we will
now describe.

Let ¢, : S™(1) » SN4—1(,/n/4,) be the standard minimal isometric imersion of
degree d. Then any other isometric immersion ¢ of degree d is given by A4 o ¢,
where 4 is an N; x N, matrix. Since we can write 4 = R o P where R is orthogonal
and P symmetric and positive semidefinite, 4 o ¢, is congruent to P o ¢,. More-
over, one easily checks that P o ¢, is an isometric immersion if and only if P? — Id
is orthogonal to Sym? (@), (7S")) = Sym? R4 If we let W, be the vector space of
all symmetric matrices with this property and B,={P e W, | P + Id 2 0}, then
P o ¢, is an isometric immersion precisely when P? — Id € B,,. One easily shows that
P € W,implies tr P = 0 and hence B, is a compact convex body which parametrizes
all congruence classes of minimal isometric immersions of degree d. An explicit
parametrization is given by P € B, +» /P + Id o ¢po. In [DW2] it is shown that for
n =2 and any d and for d =2, 3 and any n, the space B, is a point, i.e. any such
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minimal isometric immersion is congruent to the standard one ¢,. For any other
value of n and d it is shown that dim B, > 18 and that dim B, grows very quickly
with n or d. It seems to be a very difficult problem to determine the dimension of
B, exactly. In [Mu] Y. Muto showed that dim B, =18 if n =3 and d =4.

From this description it follows immediately that the interior points of the
convex body B, correspond to isometric immersions which use a full basis of E;,
as their components. For these immersions it was observed in [WZ] that they
are SO(n + 1)-equivariant immersions into R"“ and hence are embeddings of S”
for d odd and of RP” for d even. On the other hand, it seems that immersions
using only a subspace of E,, which correspond to boundary points of the convex
body, have not been systematically studied before in the literature. These
boundary-type immersions produce the minimal isometric embeddings in Theorem
A.

There is also a “gauge group” acting on B,. If g € O(n + 1) and if P o ¢, is an
isometric immersion, then P o ¢, o g is another one. The equivariance properties of
¢, imply that P o ¢o0og = P o p(g) o ¢, where p(g) is the orthogonal matrix of the
isometry g acting on the eigenspace E; with respect to the orthonormal basis
defining ¢,. Since P o p(g) o ¢, is congruent to p(g) ~' o P o p(g) o ¢,, we have that
O(n + 1) induces an action on B, given by T € B, — p(g) ~' o T o p(g). It follows
that g € O(n + 1) lies in the isotropy group of this action at T € B, if and only if the
corresponding immersion /T + Id o ¢, is equivariant with respect to g. Since p
induces an absolutely irreducible representation of SO(n + 1) on E; , the only
matrix 7 which commutes with every p(g) are the multiples of the identity, but
alde B, if and only if a =0. Hence the origin is the only fixed point of the
O(n + 1) action, corresponding to the fact that ¢, is the only O(n + 1)-equivariant
immersion.

If we fix a subgroup G = SO(n + 1), then the set of all G-equivariant minimal
isometric immersions corresponds to the set of all 7 € B, which commute with
every g € G. This set is a convex sub-body of B,. Of course, G is contained in the
isotropy group of every point of this sub-body. But notice that if P o ¢, is
G-equivariant and if g € SO(n + 1)\G, then Po¢yog is in general no longer
G-equivariant unless g is in the centralizer of G. On the other hand, P o ¢, g is
equivariant with respect to gGg ~ ' = SO(n + 1).

Our construction of minimal isometric embeddings for space forms will use
G-equivariant immersions, where G is a subgroup of SO(n + 1) that still acts
transitively on S”. Given such a group G, we have that $”=G/H and we let
VEcE, , be the subspace on which H = G acts trivially. For every v e VH we
obtain a map ®,: G/H —E,, given by ®(gH) =gv. The image of this map is
obviously contained in the sphere of radius |v|, and if we pull back the metric on
E,, we get a left-invariant symmetric two-tensor on S” which may or may not
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agree with the constant-curvature metric. Our goal is therefore to find a vector v
such that this pull-back metric has curvature 1. Then @, will be an isometric
immersion, which by the previous remarks, must be a minimal isometric immersion
of §7(1) into S¥~'(\/n/4,). Here N is the smallest integer such that @, (M) lies in
an N-dimensional subspace E c E, .

The image ®,(M) < E must of course be an embedded submanifold, namely the
orbit of v under the action of G on E. Hence ®,(M) = G/H*, where H* is the
isotropy group of v. Of course H < H* and H*/H is finite. Therefore, G/H* is a
subcover of S” and @, gives rise to a minimal isometric embedding of G/H* into
SN=1(/n/A;). Thus, to find an isometric embedding of a given space form G/H*
we need to find a v € V# such that H* is the full isotropy group of v. We call this
process of manufacturing an isometric minimal embedding the “equivariant con-
struction” since the embedding is indeed G-equivariant.

We can usually guarantee that N <N, by the following remark. Although
SO(n + 1) acts irreducibly on E, , the subgroup G = SO(n + 1) usually does not.
Indeed, if v € V¥ is a vector which lies in a subspace invariant under G, then the
whole orbit lies in this subspace. Hence, to produce equivariant immersions of
smallest codimension, we choose v in a G-invariant subspace of smallest dimension.
Equivalently we could also consider a class-one representation of G with respect to
H, i.e. a representation of G which has a fixed vector when restricted to H, and then
take the orbit of G through such a fixed vector.

Before we proceed, we will need an explicit expression of the metric on E, , the
space of homogeneous harmonic polynomials on R"*! of degree d. We first remark
that the action of 4 € SO(n +1) on p e R[x,,...,x,,,] is given by 4 - p(x) =
p(A ~'x) = p(A'x) where x e R**!. Since this action is irreducible, the metric is
uniquely determined up to a multiple. Now we define

)

which must be a real number since both p and g have the same degree. One easily
verifies that this inner product is invariant under the action of SO(n + 1) (see [V]
for details) and hence is our desired inner product.

When 7 + 1 is even, we can also express polynomials in E;, using complex
notation as p(z;, z;) and, to within a factor 2 the above inner product is the same
as the one given by

J 0
<p(z:, Z;), 9(zi, Z;) ) = Re {P('ézt 8 a—z—)q—}
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This last inner product is the one we will use. Note that this inner product is easy
to work with: for monomials, we have

n n
(1 stzt, [Tz ) =0
i=1 i=1

unless k; = m; and /; = n; for all i, in which case we have

< 1 42 ] z:az-gf> =TT k.
i=1 i=1 i=1
We will refer to this as the “unitary metric” on the space of homogeneous
polynomials.

Finally, we list the homogeneous space forms. Each homogeneous spherical
space form must belong to one of the following classes:

(i) M = S°/T’, where T is a finite subgroup of S* = SU(2) = Sp(1);
(i) M = S*~'/C,, where C, is generated by e?™/? and acts on R?>" =C" by
multiplication on each complex coordinate;
(iii) M = S*"—'/I', where I is any finite subgroup of Sp(1) acting on R** = H"
by multiplication on each quaternionic coordinate from the left.

Minimal isometric embeddings for space forms in the first class are produced in
§2, the second one in §4 and the third one in §5.

2. The three-dimensional case

The case of quotients of the three-sphere S? is separated from the rest because
S? is itself a group, rather than simply a homogeneous space. We may consider S°
either as the group of unit imaginary quaternions Sp(1), or as the special unitary
group SU(2). The homogeneous three-dimensional spherical space forms can all be
written as S3/I" where I' is an arbitrary finite subgroup of S°. The homogeneous
lens spaces can also be written as quotients of U(2), but the minimal isometric
embeddings one obtains in this fashion (see §4) have higher codimension.

We start by listing the possible groups I'. As is well-known [W], [Mo], the
following is an exhaustive list of the finite proper subgroups of Sp(1):

(i) the cyclic groups C, = {e?™/* k =0,1,...,d — 1} for d 2 2;
(i) the binary dihedral groups D} = C,, uC,,j where j is the usual generator
of the quaternions over C, for d = 1 (note that d =1 gives a cyclic group
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isomorphic to C,, and 4 = 2 gives what is usually called the “quaternionic
group”, {+1, i, +j, +k});

(iii) the binary tetrahedral group T*=D¥u{3(+1+i+ j+k)} of order 24
(this is the double cover of the group of symmetries of the tetrahedron);

(iv) the binary octahedral group O* =T*ue™*T* of order 48 (this is the
double cover of the group of symmetries of the octahedron);

(v) the binary icosahedral group I* = T*UxT* Ux?T* U x3T* U x*T*, where
x=a+i+(1/a)j and a is the golden ratio (1 +\/§)/2. This group has
order 120 and is the double cover of the group of symmetries of the
icosahedron.

Furthermore, any pair of finite subgroups of Sp(1) which are isomorphic are in fact
conjugate to each other in Sp(1).

Corresponding to each of these finite subgroups of Sp(1), we get a homogeneous
three-dimensional spherical space-form:

(1) the lens spaces L(d; 1) = Sp(1)/C, for d = 2 (note that L(2; 1) is the real
projective space RP3);
(i) the “prism manifolds” Sp(1)/D¥ for d = 2;
(iii) the “tetrahedral manifold” Sp(1)/T*;
(iv) the “octahedral manifold” Sp(1)/O*;
(v) the “icosahedral manifold” Sp(1)/I*.

For later purposes, we list here all possible inclusions among these groups:

(i) Ca' c Cnd;
(i) C; <= Cyy = Cypy =DYy; DI =Dy
(i) C,cCycT*; C;=c Co = T*; DY = T,
(iv) C,cCyc Cg = O%; C; = Cg = O*; DX = D c O*; DY < O*; T* = O%;
(v) CocCucI* CycCycI*; Csc Cyyc I*; DF < I*; DY < I*; D¥ < I*.

To verify these inclusions for the subgroups of the binary polyhedral groups, one
first determines the subgroups of the polyhedral groups T, O, I in SO(3) by
observing that T and I are isomorphic to the alternating groups 4, and A4, and that
O is isomorphic to the symmetric group S,. Under the projection from Sp(1) to
SO(3) the inverse image of a polyhedral group is the corresponding binary
polyhedral group, the inverse image of a dihedral group D, is a binary dihedral
group D¥, and the inverse image of a cyclic group C, is the cyclic group C,,. In
addition, for a cyclic group of odd order in SO(3), there exists a cyclic group of the
same order in Sp(1), for which the projection gives rise to an isomorphism. All this
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follows from the fact that all subgroups of Sp(1) contain the center {+ 1} of Sp(1),
except for the cyclic subgroups of odd order.

To see the subgroups of Sp(1) as subgroups of SU(2), we simply identify the
quaternion a + bj with the matrix

a b
-b af
If a + bj € Sp(1), i.e. |af* + |b|* = 1, then the corresponding matrix is in SU(2). Thus
the action of the quaternion a + bj on the polynomial p(z, w, Z, w) is given by

((@a + b)) - p)z, w, zZ, w) = p(Gz — bw, bz + aw, az — bw, bz + aw).

Instead of looking at the action of Sp(1) on the full space of homogeneous
harmonic polynomials in four real variables, we only consider the following
subspace. Let W, be the space of homogeneous complex polynomials of degree d in
two complex variables z, w. If we regard W, as a real vector space by taking real and
imaginary parts, we obtain a 2(d + 1)-dimensional subspace of the (d + 1)2-dimen-
sional space of homogeneous harmonic polynomials in four real variables. The
natural action of Sp(1) on z and w induces an action of Sp(1) on W, which is the
same as the action of Sp(1) on E, restricted to W,. Hence we only need to find
polynomials p(z, w) in W, such that I is the stabilizer group of p and such that the
orbit Sp(1) - p has constant curvature 1.

We can reduce the codimension of the embedding in some cases, by observing
that, if the degree is even, say 2d, then the irreducible representation of Sp(1) on W,,
is the complexification of a real representation of dimension 2d + 1. The conjugation
which gives rise to this real subspace is given by the complex antilinear map which
sends z¥w?~* to (—1)*z¢~*w*. Hence the real subspace R,, = W,, has as a basis

22 4w (72 _ 2y 2=y 2= 2=y 4 2=y dgdyd

and Sp(1) leaves this subspace R,, invariant. Hence if p is a polynomial in R,,, then
the orbit Sp(1) - p also lies in R,,.

It is a fact (see [Mi] for a résumé and [K] for a beautiful classical exposition) that
the subalgebra of C[z, w] left invariant by the action of any finite subgroup of Sp(1)
is generated by three homogeneous polynomials which satisfy one algebraic relation.
We list these polynomials and relations for each of the above groups:

(i) For the cyclic group C, the algebra of invariant polynomials is generated
by p =z% q = w¥, and r = zw, with the obvious relation pg = r?.
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(i1) For the binary dihedral group D¥, the algebra of invariant polynomials is
generated by P=:z24+ w2 Q =z2+'w —w2@+1z and R =z?w? The
relation is given by P2R — Q2 —4R4+1 =0.

(iii) For the binary tetrahedral group T*, the algebra of invariant polynom-
ials is generated by a =zw’—wz? B=z%+14zw*+w? and y =212 —
33z8w* — 33z%w® + w'2. The relation is 108a* — B3 + 72 =0.

(iv) For the binary octahedral group O*, we can express the generators in terms
of those of T*, since T* = O*. The generators are 8, «? and ay, and the
relation is (¢?)()? — 108(a?)? — (ay)? =0.

(v) Finally, for the binary icosahedral group we discover that the realization of
I* as a subgroup of Sp(1) given above, while easy to describe, is not so
convenient for computing the invariant polynomials. For example, the
generator of lowest degree has degree 12, and is 22(5 + 8a)a” — (11 + 18a)y,
in terms of the generators of T* given above. For convenience later, we
perform a conjugation in Sp(1) (which places a vertex of the icosahedron
on the z-axis in R3, as opposed to a vertex of the dual dodecahedron), to
realize the binary icosahedral group as the following set of quaternions:

{te', te:u=0,...,4}

u{i\/_:((e"——e)e“+(ez—e3)e_“j):u,v =0,... ,4}
u{i\/%j((e“-e)e“+(ez—63)6‘“j):u,v =0,... ,4}

where ¢ =e?™/°, For this presentation of I*, the algebra of invariant
polynomials is generated by A4 = zw(z!°+ 11z°w3 —w!%), B =(z2° + w?)
—228(zw3 — 23w %) +494z'%1% and C = (z3° + w0 + 522(z%w® — z°w?%)
—10,005(z°w!% + z'°w2%), These are algebraically related by the equation
C?—B*+17284° =0.

Armed with the generators of the algebras of invariant polynomials for each of

the finite subgroups of Sp(1), we are now in position to carry out the “equivariant
construction” of minimal isometric embeddings. One should be careful in applying
the above description of invariant polynomials since it depends completely on the
embedding of the subgroup I' chosen. If we change the embedding by a conjugacy
in Sp(1), then the description of the set of invariant polynomials changes corre-
spondingly. This applies in particular when we claim that a given group I is the full
isotropy group of a polynomial p: It is not enough that p is simply not on the list
of invariant polynomials for a bigger group; rather, we must check that p is not
conjugate to anything on the bigger group’s list.
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CASE I. THE CYCLIC GROUPS C,. The quotients S*/C, are the lens spaces
L(d; 1). By the results of the previous section, we need to find a homogeneous
polynomial p(z, w), invariant under the action of C,, so that the metric induced by
the “unitary metric” on the orbit of p agrees with the constant-curvature 1 metric
at p. The tangent space to SU(2) at the identity is the Lie algebra su(2), and an
orthonormal basis for su(2) in the constant-curvature 1 metric is given by the
matrices:

i 0 0 1 0 i
LT B B B P

If ¢, : SU(2) - C[z, w] is the map @,(a + bj) = p(az — bw, bz + aw), then one easily
computes that for p(z, w) = z°w?,

D,4(Z) = D, (i) =i(b — a)z°w?,

Qp*(U) — ¢p*(.]) = —qz%" lwb+l + bze+ lwb—— l’

D, (V) =P, (if) = —i(az®'wt+ 4 bze+ WP 1),
Any invariant polynomial for C, consists of sums and products of z¢, w¥, and zw.

One easily checks that none of the polynomials cz*¢, ew*?, c(zw)*, ¢,z% + c,w give
rise to an isometric immersion. If we set f,,(z, w) = ¢,;z%? + ¢,z%w*, then

¢fzd*(Z) = “2cldi22d,
¢f2d*(U) = —2c1d22d— 'w + Czd(Zd+ Iwd =1 zd=lyd+ 1),

D, x (V)= —i(26,d2%4 YW + c,d(z9 w4 z4F I 1Y),

Provided d = 3, these three polynomials are orthogonal with respect to the “unitary
metric”. If d = 3 we have

127,42 |* = des Pa?(2d)L,
|B,,,+ () |2 = |®,, (V) |2 = 4le, fd?(2d — 1)! + 2|e, Pd>(d — I + 1!

If we set

2d — 1
4d*(d")(d + 1)!’

Icl '2 = and IC2|2 =

1
4d(2d)!
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then the push-forwards of Z, U and V will be orthonormal, and the Sp(1) orbit of
f>4 Will provide an isometric minimal immersion of the lens space L(d; 1) into the
4d + 1-dimensional sphere of radius \/ 3/(4d(d + 1)). The polynomial f,, is of
course also invariant under C,, and by equating the coefficients of w24 and zw?¢—!
in gfo, =f,4 for g € SU(2), a calculation shows that the isotropy group of f,, is in
fact equal to C,,. Hence @r,, gives rise to a minimal isometric embedding of
L(2d; 1), d 2 3, into $**'(/3/(4d(d + 1))). As we will see shortly, the codimen-
sion can actually be improved if d > 4.

Since we only need the absolute value of ¢, and c,, it seems that we have a
two-parameter family of solutions. But one parameter is due to the ambient
congruence of W,, which takes ¢, to e®c,. The other parameter is due to the fact

: : . . 0 -
that if f,, is a solution, then so is 3 froa = (@*¢))z*? + c,z%w?. Hence the

a
0
solutions give rise to a one parameter family of orbits of constant curvature one, all
of which are congruent to each other. Each of these orbits corresponds to the same
three-parameter family of solutions in the moduli space B,;, where all the members
of this family are equivalent to each other with respect to the gauge group.

For d =2 not all of the terms in the polynomials &,, ,(U) and &, (V) are
orthogonal to each other. In fact, for L(4;1) we will see in §3 that we cannot
define an isometric embedding using degree 4 or (real) degree 6 polynomials. But
one can easily find one using degree 8 polynomials. In fact, the polynomial
Ps =128+ c,z*wS gives rise to an isometric embedding if and only if |¢;|=
1 /(480\/ﬁ) and |c,| = \/7/(240,/6). A calculation again shows that the isotropy
group of pg is equal to C, and hence we obtain a minimal isometric embedding of
L(4;1) into S”(\/%). One can also improve the codimension by using real degree
10 polynomials.

To obtain a minimal isometric embedding of L(d; 1) for d odd, we must use a
polynomial of degree 3d. In particular, if we set

kig = c,;23? + c,z%w*

one shows as above that the orbit through k;, has constant curvature 1 if and only
if '

d+1 and |l = 3d — 1
4d*(3d + 2)(3d)! 2L 7 4d%(3d + 2)(d")(2d)!

lcl|z=

Furthermore, the stabilizer group of k,, is equal to C, and hence we get a minimal
isometric embedding of L(d; 1), for odd d = 3, into $%+ 1(\/ 1/(d(3d + 2))).
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CASE II: THE BINARY DIHEDRAL GROUPS D%. The quotients S3/D¥
are usually called “prism manifolds™ (see [Mo]). One easily checks that powers of
the invariant polynomials P, Q and R do not give rise to isometric immersions,
hence we need to take linear combinations. If d is even, then the polynomial
224(z, W) = ¢, (z** + w?*) + ¢,z is invariant under the dihedral group action, and
we calculate:

@, +(Z) = —2¢,di(z** — w9,

¢gzd*(U) —_ _2Cld(22d— lw _ w2d— IZ) _ Czd(zd~ lwd+ 1 __ Zd+ lwd— l),

D, (V) = —i(2c,d(z*~'w + w7 12) + cod(z9~ 'weH 4 29 1w 1)),
Provided d = 3, these three polynomials are clearly orthogonal. This is the case even
for d = 2, but notice that for d = 2 not all of the polynomials in the image of U (or
V') are orthogonal to each other. Hence if d > 3 we compute

| Be o (Z2) |* = 8le: [d*(24)!,

|®e,,x (D) |* = || P, x (V) |* = 8le1 Pd?(2d — 1)! + 2|c, Pd*(d — 1))(d + 1)!.

If we set

L le,* = 24— 1
8d2(2d)! 27 4d(d)d + D!

|‘31|2=

then the push-forwards of Z, U and V will be orthonormal, and the Sp(1)-orbit of
g4 Will provide an isometric minimal immersion of the prism manifold S*/D¥%, d
even = 4. If ¢, and ¢, are real, the polynomial g,, also lies in the real subspace
Ry, = W), (since d is even) and hence @, provides a minimal isometric immersion
into the 2d-dimensional sphere. We now need to see whether D} is the full isotropy
group of g,,. If d = 4, this is actually not the case, since the polynomial is identical
to one of the invariant polynomials of O*. To see whether there exists an invariance
group K for g,; with D% < K in any of the other cases, we use, besides the list of
possible inclusions among the finite subgroups of Sp(1), the fact that the orders of
D? must divide the order of K, that K must have an invariant polynomial of degree
2d, and that the invariant polynomials for X must occur in a degree for which D}
also has an invariant polynomial. These conditions already exclude all but the
possibility that K = D},, but this can easily be excluded since the only invariant
polynomial for D, in degree 2d is z?w? and we already saw that this polynomial
does not give rise to an isometric immersion. Hence &,  provides a minimal
isometric embedding of S3/D¥* into S?4(./3/(4d(d + 1))) for even d = 6.
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To obtain an isometric embedding for S3/D¥, instead of choosing ¢, and c, real
in the polynomial gz, we can choose e.g. ¢, real and c, imaginary. Indeed, one

: . . b
shows, by equating the coefficients of z® and w?® in Z_ _] gs = gs, that ¢,/c,
—b a

must be real if ab # 0 for some element of I', and that ab = 0 for all elements of I’
implies that the invariance group is D¥. Hence, if c,/c, is not real, the invariance
group of gg is equal to D¥. Of course, in this case the polynomial no longer lies in
a real subspace and hence we obtain an minimal isometric embedding of S*/D¥ into
Sl?( \/g(')‘ )

If d =2, then the correct formula for the lengths of the images of Z, U and V
is given by

2

I|¢g4*(Z) ”2 — 32 * 4![61

b

|25 (@)[* =2-412e, =o', [ B u (> =2 42¢, + o

They will be orthonormal if ¢, =1 /(16\/5) and ¢, =i/8. By equating coefficients
again, one shows that the invariance group of g, is equal to D¥ and so we get a
minimal isometric embedding of S*/D¥ into s9(\/§).

One can actually improve the codimension of the latter embedding somewhat.
The orbit of the polynomial g = c¢,(z® + w®) + c,(z®w? + z?w®) + tz*w* has con-
stant curvature one if we set ¢, = —1 /(512\/5) and c2=\/7/(384\/§) and t =
\/7 ) 768\/3). The only possible invariance groups for this polynomial are D¥ and
O* (since T* and D¥ have the same invariant polynomials in degree 8), but then the
orbit of ¥z would have to go through the “standard” invariant polynomial for O*
and one easily shows that this is not the case. Hence one obtains a minimal
isometric embedding of $3/D# into S%(/3).

In the case of d even = 4, we can consider the orbit through g,, for all allowable
values of ¢, and ¢, to obtain a two-parameter family of solutions. One parameter
is again due to the ambient congruence which takes c; to e®c;. But changes in the
other parameter, namely c,/c,, cannot be accounted for by congruences, or the fact
that the polynomials lie on the same orbit. In fact, we obtain a one-parameter
family of distinct orbits parametrized by c,/c, (note that |c,/c,| is fixed). The orbits
of the polynomials with ¢, /c, real lie in a 2d-dimensional sphere, and those for ¢, /c,
not real lie in a (4d + 1)-dimensional sphere. Furthermore for d = 4, the orbit for
¢, /c, real is actually an embedded S;/O*.

More generally, we can consider the orbit through c,;z2+ c,w?? + c;z%w"
It has constant curvature one if and only if [¢;|* + |c,|> = 1/(4d*(2d)!) and |c;* =
(2d — 1)/(4d*(d")(d + 1)!), and one shows that this gives rise to a two parameter
family of non-congruent orbits. For |c,| =]|c,|, we can assume that ¢, =c, and
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recover the previous solutions. For |c;| #|c,| one can show that the orbits are
embedded lens spaces in a (4d + 1)-dimensional sphere.

We can consider the polynomial g,, for d odd = 3. With the above values for ¢,
and c,, g, still gives rise to an isometric immersion, but the invariance group is no
longer D¥ (at least not for our chosen embedding of D¥ in Sp(1)). g,, is clearly
invariant under C,,. If d = 3, we will see in §3 that the invariance group is equal to
T* (but with respect to a different embedding of T* than the one chosen earlier)
since there is only one orbit of constant curvature one in R¢. On the other hand, if
d odd = 5, we can exclude a bigger invariance group than C,, as we did in the case
of g,4, for even d = 6. If we choose ¢, real and ¢, purely imaginary, g,, lies in R,,
and so we get a minimal isometric embedding of L(2d; 1), for odd d = 5, into
5% /3/(4d(d + 1))).

If d is odd, then the polynomial hy,, ,(z, w) =c,(z%"'w —w2*1z) +
¢,z 'w?*+ 1 is invariant under the dihedral group D¥, and one easily shows that
the pushforwards of Z, U and V are orthonormal if and only if

1 and |esf = (2d +1)d - 2)
84%(2d + 1)! 2T 4d+ DA+ DA +2)!

|01|2=

Hence the Sp(1) orbit of h,,, , will provide an isometric minimal immersion of the
prism manifold S3/D%, for d odd and 23. If d =5 and c,/c, is real, then the
polynomial A, is actually the same as the one for I* and if d = 3 there exists an
invariant polynomial for O* of the same degree as hg. But if 4 odd = 7, and if we
choose ¢, and c, real, then we obtain a minimal isometric embedding of S*/D¥* into
S%+2( /3/(4(d + 1)(d + 2))). For d =3 and d = § we can again choose ¢, real and
¢, imaginary to obtain a minimal isometric embedding of S3/D#* into a (4d + 1)-
dimensional sphere.

For §3 it will actually be of interest to look at the case d =3 in more detail.
We will show that D¥ is the full invariance group of hg. Indeed, we only need to
exclude the possibility that the invariance group of Az is O*. But the only
invariant polynomial for O* (with respect to the standard embedding) is equal to
g = c(z® + w? + 14z*w*) which for an appropriate choice of ¢ gives rise to a
constant curvature one orbit. If the invariance group for h; were gO*g ~! for
some g € SU(2), then ghgy would have invariance group O* and hence ghs =g¢.
But, by equating coefficients of z'w, zéw?, and z°w? in ghy = g, one can show that
there exists no such g. Hence we obtain three distinct curvature one orbits among
the degree 8 polynomials in Ry, an embedded S3/D¥, an embedded S*/O* and an
embedded S3/D¥. Hence they cannot be congruent to each other and we obtain
three distinct orbits in the moduli space.
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Finally, we can consider the polynomial A,,,, for d even. For d =2 this
polynomial is the same as the invariant polynomial for T*, but for even d > 4 one
can show, by choosing ¢, real and ¢, imaginary, that this gives rise to a minimal
isometric embedding of L(2d; 1) into $*¢ +2(\/ 3/(4(d + 1)(d + 2))).

CASE III: THE POLYHEDRAL GROUPS T*, O* and I*. Because the
three-dimensional polyhedral manifolds are isotropy irreducible (i.e., the adjoint
actions of T*, O* and I* are irreducible on .the Lie algebra sp(l), see
[WZ]), Takahashi’s result tells us that the orbit of any nonconstant homogeneous
harmonic polynomial invariant under a polyhedral group will yield a minimal
isometric immersion of the corresponding polyhedral manifold. However, for later
purposes we need the exact polynomial that induces a constant curvature 1 metric.
With a calculation similar to the lens spaces one easily verifies the following
assertions.

For the binary tetrahedral group T*, the SU(2) orbit through the polynomial
Q= (1/(16\/13))(zw5 — wz>) gives rise to a minimal isometric embedding of S3/T*
into S%3). This example realizes the smallest codimension of all our examples.

For the binary octahedral group O*, the orbit through the polynomial f =
(1/(384 \/55))(28+ 14z*w4 + w?®) gives rise to a minimal isometric embedding of
$3/0* into S¥(./3).

Finally, for the binary icosahedral group I*, the orbit through

V|

=~—————1—-——-(z“w + 11z%wS — zw!h)
7200./154

gives rise to a minimal isometric embedding of S3/I* into S ‘2(\/%).

To see that these immersions are actually embeddings, we observe that O* and
I* are maximal subgroups in SU(2). Furthermore, for T* we are using a degree 6
polynomial and, although T* is contained in O* and I*, they have no invariant
polynomial of degree 6.

To obtain the explicit form of the isometric embedding of S3/T* mentioned
in the introduction, we take the map which sends (aq,b) to P;(a + &) =
&(az — bw, bz + aw) for a = (1/( 16\/3))(zw5 —wz>) and express the result as a
linear combination of the orthonormal basis

{2+ w9 /12,10, i(z6 — w$)[12,/10, (z°w — zw%)/4/15, i(z°w + zw)[4,/15,
(z*w?+ zzwﬁ)/4\/€, i(z%w? — zzw“)/4\/8, iz3w3/6}.

The coefficients are then the components of the embedding.
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To summarize the results of this section, we present the following table. For
each homogeneous three-dimensional spherical space form, we list the polynomial
whose orbit provides the minimal isometric embedding of smallest codimension.
The constants ¢, and ¢, are real.

Space Polynomial Coefficients Target
L(d; 1) d=4s hyya=c, 9w+ wit1z) c2=—-———-——l— Sa+2 3
s 1) d+2 1 1 2d2(d+])! (d+2)d+9)
> . 2541 ,2s5+ 1
d=8 + icyz w o 852 — 65 — 2
27 A% (25 + D25 + DI(2s + 2)!
Ld; 1) d=4s+2 8s=1c,(z%+ w9 = ! s ——3—-
TP L ' 244 dd+?2)
>1 : 2s+ 1,25+ 1
d=10 +icyz w e 45+ 1
2T (25 + )25 + 2)!
da+1) 1
Ld‘l, k., = 3d 2d, .d 2 6d + 1
d; 1) d odd 3d = C 270 + 627w €1 4d?(3d + 2)(3d)! S d(3d +2)
2 3d-1
27 44*(3d + 2)d\(2d)!
L4 1) pom o zs YTz s”( i)
480,/21  240./6 80
1(6; 1) fo=— UL s"(l)
72\/5 72 4
S3/D* d even 8ra=¢;(z% + w?) 2= ! §4 2 D
> 244 ' 8d%(24)! 4d(d +1)
> d, d
d=6 + 2% . 2d-1
2T 4PE+ )
1 3
S3 * &5 2d+ 1,  ,2d+1 2= s2d+2
/DG, | dodd haar2 =@ W —wE ) U= 82(2d + 1) ( 4(d+1)(d+2))
> d+1,d+1
dz217 +cyz w . (2d + 1Xd - 2)
27 4d%(d + 1)(d + 1)(d + 2)!
S$3/D# Yy = c{14z%w* + 28(z%w? + z2w®) c=———]— Ss(\/-?—)
1536./35 80
—3(z% + wd)}
1 i/7 3
S3/D% hg=c, (27w —w'z) + c,z%w? ¢ = , = i1 Ss( —)
72,/70 288./5 80
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Table (continued)

Space Polynomial Coefficients Target
3 ~ 8 . 4.4 8 1 17 3
S°/D} Gg=c(z® + 14iz°w* + w®) c= S e
384./35 80
3 1 1 6.6 1 21 !
S°/D% hia=cz"'w—w"z +11iz°°) c= S —
7200,/154 36
3 ~ 1 s s of 1
S°/T* a= (zw”> —wz°) S°(-
16/15 3
53/0* B = c(z® + 14z*w* + w¥) = ! s8< \/z)
384./35 80
3 1 6,6 1 1 12 1
S°/1* A=cz"w+ 112w —zw'") c= S —
7200,/154 56

3. The equivariant moduli space for S°

The moduli space of equivariant minimal isometric immersions has some special
features in the case of the 3-sphere. The isometry group of S* can be described by
the action of Sp(1) x Sp(1) via left and right multiplication of unit quaternions.
Any minimal isometric immersion which is equivariant with respect to some
transitive group action is also equivariant with respect to either the left or right
action of Sp(1) on S3. The two actions are equivalent to each other under the
orientation reversing isometry given by quaternionic conjugation, and hence it is
sufficient to look at all minimal isometric immersions equivariant with respect to
the left-Sp(1) action. In this section we will examine this set in some detail. As
explained above, if p is some polynomial, then the immersion corresponding to p
(i.e., the orbit of p) is given by g € SU(2) > gp. The gauge group SO(4) acts on
these immersions in two ways. The left multiplication by a unit quaternion 4 gives
rise to the immersion g — hg — hgp which is clearly congruent to the original one.
The right multiplication by A gives rise to the immersion g +—» gh — ghp which is the
same as the immersion given by the polynomial hp.

As was mentioned in §1, the SU(2)-equivariant minimal isometric immersions of
S? and of degree d forms a convex sub-body of the set B, of all isometric minimal
immersions of degree d. Let us first examine what the possible codimensions of such
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equivariant minimal immersions are. To see this, we need to determine the
respresentations of SU(2) on the full eigenspaces E,,. The full isometry group,
SO(4), is locally isomorphic to SU(2) x SU(2) and the representation of SO(4) on
E,, is isomorphic to [W,® W,]z. Here W, is the irreducible representation of
SU(2) of (complex) dimension d + 1 and the tensor product, being a representation
of real type, is the complexification of a real representation (denoted by [ ]g) of real
dimension (d + 1)2. Hence the restriction from SO(4) to SU(2) is isomorphic to
d+ DWW, lg=(d+ 1R, if dis even and to (k + )W, if d =2k + 1 is bdd. Recall
that W, is a representation of real type if d is even and a representation of
quaternionic type if 4 is odd. If we consider a polynomial p € E;, whose orbit
SU(2) - p lies in a subspace E c E,, of smallest possible dimension, then E must
also be invariant under SU(2). Hence the possible ambient dimensions of full
minimal isometric SU(2)-equivariant immersions are s(d + 1), 1 <s <d+1if dis
even and equal to 2s(d + 1), 1 <s <k +1if d =2k + 1 is odd.

We first discuss, for each d, the smallest possible ambient dimensions. If d =2
or 3, then there exists a unique minimal isometric immersion, which is equivariant
with respect to the action of SO(4) (and hence SU(2)-equivariant), but only goes
into the full eigenspace (ambient dimensions 9 and 16, respectively). If d = 4, then
there exists no minimal immersion with ambient dimension 5, as follows from
Moore’s theorem, but we saw in §2 that there exists one (for p = g,) with ambient
dimension 10 (and image S*/D¥). If d even = 6, we saw in §2 that there exist
minimal immersions (with p = g,) with ambient dimension d + 1 (whose images are
S*/T*, S3/0*, S*/D},, or L(d; 1) depending on the value of d). If d is odd and
divisible by 3, we gave examples of minimal immersions with ambient dimension
2(d + 1) for certain values of 4 in §2 (embeddings of the lens spaces L(d/3; 1) via
k). To give examples for all odd d = 2k +1 =5, let ¢, = ¢,z * ' + c,z*w**+ 1. One
easily shows that the orbit through ¢, has constant curvature one if and only if

. 2k? + 5k +2 P 1
] kT DYk r @I T @m0

The image in this case turns out to be always an embedded sphere. Hence the
smallest ambient dimension N of a degree d minimal SU(2)-equivariant immersion
satisfies: N=9ifd=2, N=16ifd=3, N=10ifd=4, N=2k+1ifd=2k 26,
and N =4k + 4 if d =2k + 1 > 5. That these are the smallest ambient dimensions
for SU(2)-equivariant minimal isometric immersions was already observed in
[Ma2], but he did not discuss the nature of the image.

We will now prove some uniqueness theorems for equivariant minimal immer-
sions. For this purpose we first derive the general equations that such immersions
satisfy. Let p = Z¢_, c,z? *w* be a general polynomial in the representation W,.



448 DENNIS DETURCK AND WOLFGANG ZILLER

One easily shows, with the methods developed in §2, that the orbit through p has
constant curvature iff the following equations are satisfied

d
Y (2k —d)¥d —k)'k!|c, P =1,
k=0

3
dd+2)’

d
Y d—k)kle =
k=0 .

d—2
kZ (k +2)d —k)!cCi 2 =0,
=0

dil (d -2k — )k + DI(d — k)&, 1 = 0.

k=0

These are six real equations in the 2(d + 1) real unknowns Re (c;), Im (c;).
For d even, if we want the orbit SU(2) - p to lie in the real subspace R,; = W,,,
then we also need to assume that

= — e —_ d+ 15 — ;d
Crqg = (o, CZd_l——-Cl,...,C,H_l—(——l)+C‘d_,, cy =1
where ¢ is real. Hence the orbit through
p=coz?+ W+ cz¥ 'w —cizw 1 - - 4 i¥tzdw?

has constant curvature 1 if and only if

d—1

Y 22k —2d)*(2d — k)K!c P = 1,
k=0

d—1 3
— IV 2 12 =
k;) 2(2d — k) ke, [* + d'd't AT

d—3
Y 2k +212d — )y y o+ (= D)+ (d + DI + D2,
k=0

+(—i)%2dNd +2)'c,_,t =0,

d—2
Y (2d — 2k — 1)(k + 1)N(2d — k)lcy & o, + (—i)9d)(d + 1)1c,_,t =0.
k=0

These are six equations in the 2d — 1 unknowns ¢;,...,c,;_;, L.
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We first examine these equations for d =4 and show:

PROPOSITION 1. Up to congruences of the ambient space, among the SU(2)-
orbits of polynomials in R'® = W, there exists a unique one of constant curvature one,
which is isometric to S*/D¥.

Proof. The equations for p = cyz* + - - - + c,w* become:

1
16!00'2 + Icl|2 + IC3|2 + 16IC4|2 = ﬂ,

24co|* + 6|ci|* + 4lca [ + 6|cs|* + 24|cy|* =

H

0O | ==

4C052 + 301 53 + 4C2C—4 = 0,

66051 + C]EZ —_ (’2(_’3 —_ 60354 = O.

To simplify the equations we use the following observation from [Ma2]. If
0, = SU(2) - p, is one orbit in R'°, let N be the linear subspace of R'® normal to the
tangent space of O, at p,. Then any other orbit O, must pass through N. Indeed,
all orbits are constant distance apart, and hence there exists a minimal geodesic of
R'® from O, to O, perpendicular to O, at p,. Hence O,n N # . In our case let
p1 = z*. Then the tangent space to SU(2) - p, at p, is spanned by iz*, z3w, and iz>w,
and so the condition that p, € N in particular implies ¢, = 0. By multiplying p with
[g g] we can also change the variables c,, ¢, ¢,, €3, ¢4 to a%cy, @%c,, c;, a’cs, a‘c,
and we can also apply the ambient congruence which takes c¢; to e®c;. Both
operations preserve the condition ¢, =0 and hence we can assume, in addition to
¢, =0, that two of the remaining variables are real.

If ¢, =0 the last two equations become c,C, = —C,C4, C;C3 = —6¢;C4. If ¢, #0,
¢y # 0 we can assume that ¢, and ¢, are real and obtain ¢, = —¢,, ¢, = —6¢,. The
first two equations then become |c;|* + 32|cs|> =25 and 2|c;|* + 64c,|* = 33 which
clearly has no solutions.

If ¢; =0, we can assume that c, is real and c, is imaginary. Then ¢, = ¢, and one
obtains the solution g, = (1/(16\/3))(z4+ w*) + (i/8) z>w? the orbit of which, is,
according to §2, the dihedral manifold S*/D¥.

If ¢;=0 and ¢;#0 we need ¢,=0 and the first two equations become
16|co|* + |cs|* = 55 and 8|cof? + 2|c;|> =55 Since we can assume that ¢, and c; are
real, we obtain the solution g = 2 z* + (1/(6ﬁ))zw3. We claim that the SU(2)-or-
bit through ¢ is congruent to the SU(2)-orbit through g,. To see this consider
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b . . .
[:_Z. 5] - g. By looking at the coefficients of z*w and zw? one easily shows that

there exists a polynomial in the orbit of ¢ whose coefficients of z*w and zw? are 0
and is hence of the form cyz*+ ¢,w* + c,z?w?. But the argument in the case of
¢, = ¢3 = 0 now implies that, up to congruence, the orbit through this polynomial is
the same as the orbit through g,. O

PROPOSITION 2. Among the SU(2)-orbits of polynomials in R” = [W]g there
exists a unique one of curvature one, which is isometric to S*|T*.

Proof. The equations for p =coz®+ uw®+c;z°w — ¢,zw> + - -+ —itz>w? be-
come
1
135]cof? + 10} + fef = 57
60Jcol? + 10)c,[2 + dlcs | 42 17 = —
' 2" 384

10¢yC, + 2¢3 + Sic,t =0,

2SCOEI + 50152 + ic2t =0.

As in the proof of Proposition 1, we first simplify the equations. This time we
consider the orbit through z3w? The tangent space of this orbit is spanned
by z*w?+z*w* and i(z*w? —z?w?), and so the normal space coincides with
¢, =0. Since every orbit intersects the normal space, we can assume c,=0.
With this assumption, the last two of the above equations become ¢,¢, =0 and
¢, t=0. If ¢, =0, they are automatically satisfied. By modifying the polynom-
ial, we can assume that ¢, is real and hence we obtain the solution g =
(1/(72/10))(z8 + w®) — i(\/5/72)z*w>.
If ¢, # 0 we need ¢, =t =0 and we get the solution & = (1/(16\/—1—5))(25w —zw?)
whose orbit is the tetrahedral manifold S3/T*. We now claim that g lies in the
a b
—b a
can choose a and b so that the coefficients of z°w and z*w? in r are 0 and hence r
is of the form cyz% + ¢,w® — itz>w>. We can furthermore assume that ¢, is real, but
since the orbit must have constant curvature one, it must agree with q. [J

SU(2)-orbit of &. Indeed, considering r = - & one easily shows that one

Finally, we give some (partially) heuristic arguments as to the dimension of the
set of SU(2)-equivariant minimal isometric immersions. We start with degree 4. As
explained earlier, the first time we can expect solutions is if the ambient space is
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2R, = W,. One obtains 6 equations in 10 unknowns and hence a 4-dimensional
soution set. (In fact, at a specific solution one easily checks that the equations have
maximal rank). But one has a one-dimensional family of ambient congruences
coming from c; »e“c;, and so there is at most a three-dimensional family of
solutions in the moduli space B,, which agrees with the result in Proposition 1 that
there is only one orbit up to congruence. If we consider orbits in kR,, 3 <k < 5 of
constant curvature 1, we obtain 6 equations in 5k unknowns giving rise to a
(5k — 6)-dimensional solution set. However, we obtain a large group of ambient
congruences from the group of orthogonal transformations on kR, which commute
with the representation of SU(2) on kR,. This group is isomorphic to SO(k) since
R, is absolutely irreducible. Hence in 3R, we obtain a 6-dimensional solution set, in
4R, an 8-dimensional solution set, and in 5R, = E,, a 9-dimensional solution set of
equivariant solutions in B,. Recall that dim B, = 18.

For d =5, we consider orbits in kW, 1 <k < 3. In this case the group of
orthogonal transformations commuting with the action of SU(2) is isomorphic to
Sp(k) since W is a quaternionic representation. Hence a calculation as above shows
that among the orbits in W5 we obtain a 3-dimensional solution set, in 25 an
8-dimensional solution set, and in 3W;=E,  a 9-dimensional solution set. This
argument at least shows that the orbit of ¢ in Wy discussed at the beginning of this
section is isolated among all equivariant solutions.

Similar calculations can be carried out for larger values of d. The only other
cases where one obtains a 3-dimensional solution set and hence an isolated (if not
unique) orbit is for d = 6 and orbits in R, (corresponding to the unique solution in
Proposition 2) and for d =8 and orbits in Rg. In the latter case we have three
solutions from §2, the orbit S3/O* of B, the orbit S3/D¥ of kg, and the orbit S*/D¥
of Yz. One easily checks the maximal rank condition at these three solutions and
hence it follows that they are isolated among the equivariant immersions. They
cannot be congruent since their images are distinct. We doubt that there are any
other solutions for d = 8.

We suspect that in general the only congruences that one obtains between orbits
of the same representation are orthogonal transformations which commute with the
representation. It would then follow that the set of SU(2)-equivariant minimal
isometric immersions of degree d form a convex body of dimension 2k2 + 3k — § if
d=2k +1 or d=2k.

4. Higher-dimensional lens spaces

To realize the higher dimensional lens spaces as homogeneous spaces we write
S?"=1 as U(n)/U(n — 1) where U(n — 1) is the subgroup of n by n unitary matrices
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with a 1 in the upper left hand corner. The subgroup C, generated by

e 0 ... 0

0

: In——l

0
commutes with U(n — 1) and the homogeneous space U(n)/(C,; x U(n — 1)) is
the lens space L(d;1,...,1)=8%""1/C, where C, acts on R*=C" by multi-
plication on each coordinate. This homogeneous space is reductive, i.e. there
is an ad-u(n — 1)-invariant subspace of u(n), namely, the subspace m of skew-
hermitian matrices whose only nonzero entries are in the first row and column.
We can identify m with the tangent space to $*"~! at (1,0,...,0) and a
left-invariant metric on the lens space with an ad-u(n — 1)-invariant inner
product on m. One easily verifies that for the inner product on m which gives
rise to the constant curvature 1 metric on the lens space, the following is
an orthonormal basis (each of the vectors in the basis is a skew-hermitian
matrix A4, and only the nonzero entries of 4 are given, the rest being assumed to
vanish):

Z: a“=i,
Xe: ap=—a,=1, k=2,...,n,
Yo: ap=a, =1 k=2,...,n

The homogeneous harmonic polynomials in the 2n real variables we write again
as polynomials in the complex variables z,, z, (k =1,...,n). As before, for any
polynomial in the variables z;, the real and imaginary parts are automatically
harmonic, and the action of U(n) = SO(2n) on the space of harmonic polynomials
restricts to the action of U(n) on C[z,,...,z,] where A e U(n) acts on
p€Clz,...,z,) by replacing z; by A ~! acting on z,.

For any C, x U(n — 1)-invariant homogeneous polynomial p € C[z,, ..., z,,
Z,...,2,] we define the map

N

P, : UmM/N(CyxUm—1)-Clzy, ... 2, 21, ..., 2]
given by

®,(g(Cyx Un—1))) =gp

which we will try to make into an isometric embedding.
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One easily shows that for p,(z,,...,z,) =(1/(a \/Z))z‘,’ we have

—i
@,,4(2) =—=11

Z)
Jat

<Dpa*(Xk)=—_—z‘,‘"zk, k=2,...,n,

These polynomials are orthogonal, but their norms are not equal, in particular

|2, (D) [ =1,

1
¢ *X' 2= ¢P* Y/ 2=_.
|95, (X)) [ = | @,,4(Y)) | Ja

Note that @, ,(X;) and @, ,(Y,;) are shorter than &, (Z).

We need another C, x U(n — 1)-invariant polynomial. To be U(n — 1)-invari-
ant, the only way it can depend upon z,,...,z, is to be a function of
0 =|z,[*+ - +]z,[> We thus search for harmonic homogeneous polynomials
which are functions of ¢ and p =|z,>. A calculation shows that the unique such
polynomial (up to scaling) of degree 2c¢ is given by

F2c(219 s 9Zn) = Z (—1)kak0'c_kpk,
k=0

where a, = ()("* £~ 2). We then calculate that

s, 4(Z) =0,

c—1

Pr,, +(X;) = kZO (=Dfoc=*"1pMzez, + 212 )(an(c — k) + a1 (k + 1)),

c—1

Pr,. +(Y;) = IEO (—Dkoc*~'p¥i(z,.z, — 2, Z )(a (¢ — k) + a1 (k + 1)),

and hence

|25, 42| =0, [r, +(X)] = |@r, +(¥))] #0.
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Using this, we see that the three polynomials @,  (Z), &, «(Y,) and
@, +(X;) are orthogonal, and they are orthogonal to the images under @,, .
Since @, ,+(Z) = 0, we see that we can make up for the deficiency in the length of
?,,. +(X,) and &, .(Y,) by adding the appropriate multiple of F,, to p,,. The
correct choice of scale factors will then provide us with a minimal isometric
immersion of L(2d;1,...,1)=UMm)/(C,; x U(n — 1)) into the N,,— 1-dimen-
sional sphere of radius \/ (2n — 1)/(4d(d + n — 1)). One also easily shows that C,,
is the full isotropy group of this polynomial and hence this immersion is an
embedding.

We can improve our measure of the codimension of the embedding if we recall
that the representation of U(n) on the space H, of homogeneous harmonic
polynomials in z,,...,z,, Z,, ..., Z, is reducible. In fact, the irreducible pieces are
the spaces H, , (with k + [ = n) of harmonic polynomials which are bihomogeneous
of degree kin z,,...,z,and degree /in Z,, . .., Z, (see [G]). The real dimension of
Hy, is 2" 5~ DY = CrETD( L7 ). Since py, € Hyyp and Fpy € Hyy, the
orbit of their weighted sum is contained in H,,,® H,,.

For d odd one shows that the orbit through the harmonic homogeneous
polynomial

DG

CE9

d
az¥+ ¢z Y (—1* 21 P40z, + - - - + |z, D"
K=o

provides, for appropriate choice of ¢, and ¢,, a minimal isometric embedding of
L(d;1,...,1) into sphere of radius \/(2n —1)/(3d(3d +2n — 2)) in H3,,® H,y 4.

5. Space forms of dimension 4n — 1

Finally, we turn to the spherical space forms which are realized as homogeneous
spaces of the symplectic group Sp(n). Recall that the sphere S**~' can be realized
as the homogeneous space Sp(n)/Sp(n — 1), where Sp(n — 1) acts on the last n — 1
variables. Then, any finite subgroup I' of Sp(1) (these were listed in §2) can act on
the first component of the quaternionic Euclidean space H", yielding a homoge-
neous space Sp(n)/(I' x Sp(n — 1)). This manifold is also equal to $**~!/I" where I'
acts on H” in each variable by multiplication on the left.

The Lie algebra sp(n) has the ad-sp(n — 1)-invariant splitting sp(n) =
sp(n — 1) @ m, where an orthonormal basis of m is given by the following set of
4n — 1 quaternionic matrices (in each case, the matrix is given in the form 4 + Bj,
where 4 is a skew-hermitian and B is a symmetric complex matrix. Only the
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nonzero elements of 4 or B are listed, and all other elements of 4 and B are taken
to be zero):

Zk: A = Qg = i, k
Uk: blk=bkl=1’ k=1,...,n,
Vk: blk =bkl = i, k

We: ayp=—a,=1, k=2,...,n
Identifying C** with H" via
(Zl,'--;Znawl,---’wn)_)(zl"—wlja-"szn+wnj),

Sp(n) becomes a subgroup of U(2n) where A + Bj € Sp(n) becomes

A B
—-B A
We now need to find I' x Sp(n — 1)-invariant polynomials in the 2n complex

variables z, and w, (k =1, ..., n), where of course, an element 4 + Bj of Sp(n) acts
on p(z,, w,) by replacing z, and w, with

A" —B’
o
acting on (z,, ..., z,, W, ..., w,). Given such a polynomial p, we get a map
@, : Sp(n)/(I' x Sp(n — 1)) = Clz,, wi]

and we compute that, for p,,(z,, we) = z4w?,

(ppab*(zl) =i(b —a)z{w?,

D, . +(Z,) = —i(azew, — bwz,)zy~ 'wh=1,
@, «(U)=—azi"'wi+! +bz{*'wi™!,
?, . +(Up) = —(aw,w, — bz, z\)z7~ 'wil,
D, «(Vy)=—i(azi~ Wit bzt wiT ),
?,. +(Vi) = —i(awew, + bz,2,)z7~ 'wil,
@, «(Wy) = —(azyw, + bzyw )z~ 'wi— 1,
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where k always runs from 2 to n. It turns out, as for the lens spaces, that we will
need a polynomial that depends on p =|z,|>+ |w,|%, and o =|z,|* + [w,*+- - - +
|z, [> + [w.|*. A calculation shows that a harmonic polynomial of degree 2d that
depends on p and ¢ is

d
Fy= Z (—D*arp?~*o*,
k=0

where

_MDEEH

Qe _(2n+l£c«3) ’

As in the case of the lens spaces, one now easily checks that @5, «(Z;), Pr,,+(Us),
Dr,, +(Vi) and &, (W) are orthogonal to each other and to the images under any
®, .+ as long as a + b = 2d. Furthermore @ ,+(Z,) = Pr,,+(U;) = Pp, (V) =0
and

” ¢F24*(Zk) ”2 = '!¢de*(Uk) "2 = '|¢F2d*(Vk) "2 = ”¢F2d*( W) “2 # 0, k22

the latter simply following from the fact that F,, is invariant under the action of
Sp(n — 1) and Sp(n — 1) acts transitively on the subspace generated by Z,, Uy, V,,
W, k 22.

We now need to add to the polynomial F,; one of the polynomials g(z,, w;)
invariant under I', as described in §2. Since all such g are linear combinations
of p,, with a+ b =2d, it follows from the above that all the images under
®r,,» and &, are still orthogonal to each other and by the construction in §2,
we have |@,4(Z,)| = |®,+(U)| = |®,+(V:)| = 1. Hence we only need to check
that

ll¢q*(Zk)||2 = ||d>q,.,(Uk) ||2 = ||¢,,,.,(Vk) ”2 = ||<1>q*(Wk) "2 <l

(The equality of the length of these vectors is again clear from the fact that ¢q is
invariant under Sp(n — 1).) It will then follow that, for appropriate choice of c,
and c,, ¢, F,4 + c,q provides a minimal isometric immersion of S**~!/I" into the
N,, — 1-dimensional sphere of radius /(4n — 1)/(4d(d + 2n — 1)). The fact that
this immersion is an embedding then follows as in §2.
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We now check the deficiency in length of the images under @ ,. One easily
shows, using the explicit formulas for ¢ in §2, that the length squared L2 of these
images is as shown in the following table.

Space Polynomial L?
Ld;1), d=4s=>8 hy,, 3/(d +4)
Ld;1), d=4s+2210 g4 3/d+2)
Ld;1), dodd ks 3/(3d +2)
L(4; 1) Pe 3/10

L(6; 1) Je 3/8
S3/D%, evend 26 824 3/(2d +2)
S3D*, oddd=>7 oy > 3/(2d + 4)
S3/D? Vs 3/10
S3/D*% hg 3/10
S3/D¥ g 3/10
S3/D# hyy 3/14
S3/T* @ 3/8

53/0* B 3/10
S31* A 3/14

Thus in all cases, L? < 1, which also finishes this case and finishes the proof of
our Theorem.
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