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Invariants on three-manifolds with spin structure

CHRISTIAN BLANCHET

Introduction

New invariants on' three-manifolds associated to certain roots of unity were
recently obtained by Witten and constructed by Reshetikin and Turaev (W], [RT)).
These invariants are combinations of generalised Jones polynomials, calculated on
a framed link in S°, representing a surgery presentation of the manifold.

Following Lickorish, one can construct the invariants corresponding to SU(2)
using the one variable Kauffman bracket. See [L1-L2-L3] for the roots 4 = e™?
and [BHMYV] for a generalisation.

Kirby and Melvin have shown that the invariant corresponding to the root
A = e™® decomposes as a sum of spin invariants, over all spin structures on a
given manifold ([KM2]; see also [T2]). For A4 =e™6®k+9 they give an
analogous decomposition as a sum over all the modulo 2 cohomology classes on the
manifold.

In this article, we use the elementary methods of Lickorish’s, as refined in
[BHMV], and a spin version of the Kirby calculus, to construct an invariant on
three-manifold with spin structure for each root of unity 4 of order p, p #8
modulo 16, in a convenient ring. Up to normalisation this invariant appears as a
generalisation of the spin invariants of [KM2]-[T2]. We show that for a given p,
the invariant is essentially unique.

In a similar way, one can construct an invariant for three-manifolds M?
equipped with a cohomology class ¢ € H' (M?, Z/2), for each root of unity A4 of
order p, p # 0 modulo 16.

Different relations between these invariants are given: If p =0 modulo 16, we
prove that the sum of the spin invariants, for all spin structures on a given
manifold, is equal to the invariant of the manifold without structure, which will be
called the ‘unspun’ invariant. (This word was suggested by the referee). If p =8
modulo 16, the unspun invariant decomposes as a sum over all the cohomology
classes in an analogous way. In all other cases, the invariants defined for a given A4
can be expressed using only the invariant associated to the zero cohomology class,
which we will call the even invariant.
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We show that, for 4 of order 16, the spin invariant is equivalent to the Rochlin
invariant (compare with [KM2], theorem 7.1). It enables one to distinguish the two
spin structures on the lens space L(n, 1) n even and n # 0 modulo 16. The two spin
structures on L(16k, 1), kK > 0, are distinguished by the invariant corresponding to
a root of unity 4 of order 32k.

§I. Kirby calculus and spin structure

It is well known that every oriented three-manifold M> can be obtained by
surgery on a framed link L=(L,p;),<;<, in S3. M? is diffeomorphic to
M, =0W,, where W, is the manifold which is obtained by glueing a handle
A;=D?x D? along a tubular neighbourhood V; of each component L.
(S'x D%, 8" x 1) is identified with (V,,[;); here I, is the preferred longitude:
lk(L;, l,) = p;,. To each spin structure s on M, , is associated an obstruction:

wa(s) € HX (W, M, Z)2).
(See [M] or [Ki2] for generalities about spin structures.) Using Poincaré duality, the

class corresponding to w,(s) can be written in the basis of H,(W,, Z/2) correspond-
ing to the handles:

Y a[L]=[K@6)] (c; € Z/)2).
This gives the characteristic sublink K(s), which is known to satisfy:
Vx e H(W.,Z/2) x-x=[K(s)] x (in Z/2).
This condition is equivalent to the system:
B(c;) =(p;) (modulo 2).
Here B is the linking matrix:
B = (b;) with: b, =p, and b, =Ik(L;, L;) fori#j.
This gives a one to one correspondence between the spin structures and the
solutions of the condition above. We denote by M, x, the manifold M, equipped

with the spin structure corresponding to the characteristic sublink K: every closed
three-manifold with spin structure admits such a characteristic surgery presentation.
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The components of a framed link L =(L,, p;), with characteristic sublink K
are denoted by the triple (L;, p;, c;). Here c; € Z/2 is one whenever L, belongs
to K.

The following theorem is a refinement of the well known Kirby calculus.

THEOREM (1.1). The two spin manifolds M, x, and M ;. -, are spin diffeomor-
phic if and only if (L, K) and L’, K’) are equivalent under the relation generated by
the following moves:

KS1: Add to (L, K) an unknotted component (L,, ¢, 1), isolated from the others by
an embedded two-sphere, with ¢ = + 1.

KS?2: Modify a component (L,,p,,c;) adding (using a band) a push-off of
another one (L;, p;,c;). The new component indexed by i, is: (L;,p;,c;), with
Pi =p; + p; + 2Ik(L;, L;). The linking number is calculated with orientations of L, and

’

L;, coherent with an orientation of L;; c; =c;, and cj = ¢; + ¢; (mod 2).

The only changes needed to be made to the proof given in [Kil] concerns the
characteristic sublink:

The KS2 move (handle slide) does not modify W, ; the basis of H,(W ., Z/2) is
changed, and it is easy to calculate the new characteristic coefficients.

The KS1 move (stabilization) adds +CP? to W,. The new coefficient is
determined by the characteristic condition; the ¢; coefficients, which determine the
obstruction on the other handles, are not modified.

Remarks (1.2)

1. Following [FR], one can replace the two moves by:
KS: Add an unknotted component (L,, ¢, ¢;) with

One must then add to each p; the number e(/k(L;, L;))>

2. The framed link can be represented by a diagram in which the coefficient p,
is given by the longitude which is parallel to the component L, in the plane. The
positive KS move (KS +) is described by the Figure 1. An integer »n near a curve
means the presence of n parallels in the plane.

3. An analogous statement holds for three-manifolds M> equipped with a
cohomology class ¢ € H'(M?,Z/2). If L is a surgery presentation of M3, then ¢
corresponds to a sublink C such that the modulo 2 homology class [C] is the kernel
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Figure 1

of B (interpreted modulo 2). The move of Remark 1.2.1 above becomes:
KC: Add an unknotted component (L,, ¢, ¢;) with

Add to each p, the number e(lk(L;, L,))>.

§II. The spin invariants
(1) The bracket and the metabracket

We first recall a few results about the Jones—Kauffman module, of the solid
torus, which is a key ingredient in the construction. Links in the solid torus
S'x D?=S"xIx1I can be represented by diagrams in the annulus S'x L
K(S' x D?) is the Z[A, A~ ']-module freely generated by these link diagrams,
quotiented by the relations:

(a) (D vo)=(—4>—A47%)(D)=4D),
(b) (V) =4(=)+A47'00).

A product is defined in K(S' x D?) by the union of two annuli along a component
of their boundary. K(S' x D?) is the polynomial algebra Z[A4, A ~'][z], z represent-
ing a simple curve, essential in the annulus. The degree gives a Z/2-graduation.
K(S' x D?) = K%S' x D>) @ K'(S' x D?).

The Kauffman bracket is defined on link diagrams in the plane by:

(i) <> =1,
(i) (D vo)y=(—4>—A47)KD)=6{D),

(iii) \>=A{=>+47)0).
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This polynomial is an invariant of unoriented framed links in S*. We recall that on
a link diagram the framing of a component is given by the parallel in the plane.

Given a link diagram, one can replace each of the » components L; by k;
parallels in the plane, and then evaluate the Kauffman bracket of this cabled link,
which only depends on the framed link L, represented by the given diagram. This
yields a multilinear form:

(Covvnydr (K(S'x DY))®"—7Z[A4, 471,

which we call the meta-bracket (cf: [L3], [BHMV]).

We shall simply use { ) for the linear form associated with the unknot with zero
framing, and <, ), for the bilinear form associated with the Hopf link, with framing
coefficient k£ on each component.

As in [L3] and [BHMYV], we will use the Chebyshev polynomials: (e,), . z is the
family of polynomials in K(S' x D?) defined by

e_;=0,e,=1 and for every n:ze, =e,,,+e,_,.

e, is odd or even depending on the parity of n, and: e_, = —e_, . ,. It is easily
shown that for every integer n:

—1 nA2n+2_A—2n—2
=T o )

The operators ¢, ¢t and t are defined on K(S' x D?) by Figure 2.
Using relations (a) and (b) one can check the following lemma:

LEMMA (11.1). For every x:
(a) tzx = —A3tex,

(b) 1zx = A%ztx + (1 — A ¥cx,
(€) czx = A %zex + (1 — A%x.

e

z c? tz" 1Z
Figure 2

"\




Invariants on three-manifolds with spin structure 411
The proposition below follows by induction (see also [L3] and [BHMYV)).
PROPOSITION (I1.2). The basis (e,), » o diagonalizes the operators c and t:
ce, = A,e,,  With A, = —A"+t2 -4~ 2n—2
and

te, = w,e,,  with u, =(—1)"4"+2,

(2) How to construct invariants?

The following proposition gives a way to construct invariants on three-
manifolds with spin structure. The indeterminate A is evaluated in a ring A4, and we
set:

K, (S!'x D?) = K(S' x D*) ® A.
(4 must be invertible and will be a root of unity.)

PROPOSITION (I1.3). If w,€ K%(S! x D?) and w, € K4(S' x D?) satisfy the
following conditions:

(a) Vxo€ K%(S' x D?) {xy, 1), = {xo ){t°w, ), fore = t1;

(b) Vx, € K}(S' x D?) {xy, 0p), = {x; ){t°w,), fore = £ 1;

(¢) {t°w,) is invertible in A, for ¢ = +1;
then there exists an invariant 6, of three-manifolds with spin structure such that for
any characteristic surgery presentation (L, K) = (L;, p;, ¢;)1 < i < »» One has the follow-
ing expression.

<wc19 ce. 9wcn>L

0,(Mx) = Yo+t 1w, Yo

Here (b, ,b_) is the signature of the quadratic form associated with the linking
matrix B, which is the intersection form on H,(W,, Z).

Proof. The only thing to show is that the expression given above is not changed
by a KS-move. If we add a new unknotted component, either (L,,,,¢ 1) or
(L,+1,60), we make use of (a) or (b) respectively. In each case we get a
multiplicative factor {t°w,) for the meta-bracket, which is canceled because either
b, or b_ is modified.
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Remarks (11.4)

1. Multiplication by z is a symmetric operator for {, ),, ¢ = + 1. It follows that
if one requires that zw, = dw,, then conditions (a) and (b) are equivalent.

2. Suppose A is equipped with a conjugation which send 4 on 4 ~!, one has on
K,(S' x D?) a compatible involution defined by taking the mirror image of a
diagram. If w, and w, are fixed by this involution, then the conditions correspond-
ing to e =1 and ¢ = —1 are equivalent.

3. In a similar way, one can define an invariant on three-manifolds with
cohomology class by the formula:

<wcla £E -3 wc,, >L
tary Yo+t ~ g Yb-

OA(M(L,C)) =
if:

() Vxo€ KY(S' x D?) {xo, W), = {Xo){t°wy ), fore = £ 1;

(b) Vx, € K(S' x D?) {x, 0, ), = {x; Y{t°w, ), for e = +1;

(c¢) {t°w,) is invertible in A, for ¢ = +1.

4. An ‘unspun’ invariant is defined ((BHMYV]) by the formula:

{w,..., o),

GA(ML) = <tw>b+<t—lw>b_

if Vx {x, ), =<{x){t°w) and {t°w) is invertible, ¢ = + 1.

In §IV we will systematically study the conditions (a), (b) and (c) of the
proposition above, and the use of roots of unity will be justified there. However, in
order to construct invariants we only need to exhibit solutions to (a), (b) and (c).
We will now do so.

(3) Existence of the invariants

Let A be a root of unity in an integral domain A, for which the order r of
g = A* is not congruent to 2, modulo 4.
We will assume that

if r = 1, then 2 is invertible, and
if r > 1, then r is invertible.
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Let w = wy + w, be the decomposition corresponding to the Z/2-graduation of the
element w defined as follows:

(@) Ifr=1,thenw=1+6""z
(b) If r > 1 is odd, then w = Z:Z¢ <e; De,.
(¢) If r = 4k, then 0 =1 X223 e, De;.

We shall see in §IV that in the case r =4k, the same invariant is obtained,
with w, and w, replaced by the reduced elements @, and &,, defined by:
Do = ZEZg ey yey;, 2y = 0, .

Remark. When the order of A4 is even, the element w satisfy the condition of
Remark I1.4.4, and is (up to a coefficient 2 in cases (a) and (b)) the one which is
used in [BHMV].

THEOREM (11.5). There exists an invariant of three-manifolds with spin struc-
ture such that for any characteristic surgery presentation (L, K) = (L;, pis ;)1 <i<n»
one has the following expression:

<wc,, R wcn>L
Cte, )0+t~ ooy )0

0,4 (M(L,K)) =

This invariant is 1 for S>. It is multiplicative for connected sum. And if A has a
conjugation sending A on A", changing orientation corresponds to this conjugation.

Remark (11.6). Let:

1
A, =(Z[4, A7 1]e,) ~f if r > 1 is odd and p € {r, 2r, 4r},

1
A, = (24,47 Yg)| | ifr=4k=16p,

A=A,= Z[%] and A,=(Z[4, A “‘]/(p4)[{|.

Here ¢, is the p-th cyclotomic polynomial. The invariant above is defined in A4, it
is denoted by 6, and we shall make it clear in §IV in which sense 6, is universal.

The case r =1 will be studied at the end of §II. To prove existence of this
invariant for r > 1, we are going to show that w, and w, satisfy the conditions of
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Proposition II.1. In order to do that we need to define a quotient of the algebra
K, (S'x D?: V,=K,(S'x D?/(e,_,). Here (e, _,) denote the ideal generated by
e,_ . We observe that:

(er—l) =Span {er—-l—-k +er—~l+k’ k € N}'
LEMMA (11.7). (a) In the quotient algebra V ,:
€n 1o =6, for every n.

(b) The operators c and t, the linear form { ), and the scalar products { , >;, are
well defined on the quotient V ,.

The proof is straightforward. For (b), observe that:
(2%, 2% % =<(c*2"), and (x,p); = (t'x, t'y),.

Let G be defined on ¥, by:

r—1

G(x) = Z e 1t(xey; 4 ).

j=0
PROPOSITION (I1.8). For every x, in V%: G(x,) = G(1)x,.
Proof. 1t follows from: e,e, =e,_,+e, + e, ,, that for every x:
r—1 r—1 r—1

G(xe,) = Z e+ 1t(xey 1) + e 1t(xey ) + e+ 11(xey; , 3).
j=0 0 0

j=

J:
Using Lemma I1.7.(a):
r—1 r—1 r—1

G(xe,) = Z €+ 3t(xey ) + Z e 1t(xey 1) + Z e 11(xey; . 1),
i=o j=0 j=0

r—1
G(xe,) = Z ey, 11(xey; 1) = G(x)e,.
j=0
One can deduce that
(1) G(ey) = G(1)e,.
(2) for every i, G(e,e,;) = e,G(ey;).

Using this, the proposition can be shown, by induction, for all e,;, which generate V.
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Proof of Theorem 11.5
Let:

r—1

Q= Z <32j+ l>e2j+l'
j=0

In V,: Q, =2w,, if r is odd, and Q, = 4w, if r = 4k.
For x, in VY:

(xgy 101 = t(x0821) ) = (G(xp) ) = {x0 <12} ).

We can deduce that w, satisfies the condition (a) of II.3.

We can show that in V,: zw, = dw,, S0 w, satisfies condition I1.3.(b). We will
now prove that {tw,) is invertible.

r—1

(12, > = z Haj 4 1<6’2j+1>2,
j=0

r—1

(AZ__A—2)2<tQI>= . Z A4j2+4j+1+4j+2(A4j+4___A—4j~—4)2
ji=0
r—1
= —43 Z qj2+2j(q2j+2_2+q-—2j—2)
j=0

r—1
=—-43Y quUT D=2 _2qU+ P14 g2
=0

J
=(q *—q ")24%,
(12,X(A2— A7) =24 3.
Here g is the Gauss sum:
r—1 5
g=2 4"

J

g is well known for g =e?™" =(,:

g= % Jr (1 +)(1+e=™?) (cf [BE)).
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Now we consider the morphism: ¢Z[{,] = A, which sends {, to g. We claim:

4r if r is odd

— {2t 71 XA — A7) =4¢p(gR) = {Sr if r =4k

For r odd, {(tw,>{t'w,;)(4% —~ A~?)? = —r is invertible.

For r = 4k, {tw,; Y{t " 'w,;)(A% — A~?)? = —2k is also invertible.

Thus {tw, ) is invertible in every case.

(4) Some special cases

If A =C, we can write: {fw, ) = fy, with: >0 and |y|=1. The invariant can
then be expressed by:

GA(M(L,K)) = ﬁ—"+v'y—a<wc,, cees @, L

Here ¢ = b, — b_ is the index of W,, and v is the nullity of the linking matrice
(the first Betti number of M,).

We are going to study the cases: 4 ={,, and 4 = {;s({, = e*™"). We denote
by u € Z/16 the Rochlin invariant of (M3, s).

PROPOSITION (I1.9). For A ={(,,, 0,M3s)=i* and for A=/{s,
0,(M?3, 5) = (=) 7~

Proof. For A={;,,r=3,0p=1,0,=—2,{tw, )= —i. For A={, r=4,
Do=1,0,=—(1 /\/E)z, {t&,;> = —({;6)®. One can evaluate the invariant using
a link with empty characteristic sublink; in this case, W, is spin and its index
gives U.

Remark. For A = —{,5, 0,,(M?3, 5) = ({,6) ~** is exactly the invariant t,(M?3, 5)
of Kirby—Melvin (see [KM2], theorem 7.1).

Case r =1. For all j, 4,; =4, p,; =1 and p,;, , = —A4>; one can easily deduce
that (w,, w,) satisfies conditions II.3.
Using a presentation (L, J) as above, we show that the invariant is: (—A4)*.
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§III. Some symmetry formulas and their consequences

(1) The odd case

A good question is: What is the influence of the spin structure s when one
calculates the invariant 6 ,(M?, s) defined in I1.5? Here is the answer for odd r:

THEOREM (I11.1). For odd r, the following reduction holds for the spin invariant
defined in 11.5:

GA(M3, 5) = “#gA(M3)a
with o = — A" and

<(l)0, veey wO)L

TaM) = S Ty

We recall that u is the Rochlin invariant. We observe that o*=1; more
precisely, the order of a is 2, 1 or 4 according to the order of 4, which may be r,
2r or 4r.

If one constructs invariants for manifolds M3 equipped with a cohomology
class in H'(M?, Z/2) as indicated in the Remark 3 of §I1.4.(3), the invariant §,(M?)
is the one obtained for the zero cohomology class. The formula above can be
written:

0,(M3,5) =0,,2(M>, 5)8,(M>).

We can show that the same formula holds for the ‘unspun’ invariant constructed
with w when the order of A is 4r, r odd:

0,(M>) = 0, (MB)gA (M?).

When the order of 4 is 2r, r odd, the ‘unspun’ invariant 8,(M?) is exactly §,(M?).
The following lemma gives some needed symmetry formulas, and is easily
established.

LEMMA (I11.2). For every integer i:
(a) <e,_,_;>=A%e;),

(b) Ar—Z—i = Azr}»is

© t_2_;= — AP A EDY,



418 CHRISTIAN BLANCHET

Proof of theorem I11.1

Using Lemma III.2, we can show that: {tw,) = —A4 ~"(tw,). We claim that:
Vxo € K4(S! x D?) {tx,, twy» = {xyd{tw, ), so that §, is well defined.
Now we can evaluate the two invariants using a presentation (L, ¥)...

(2) The case r = 4k

Let us begin by giving an example which shows that no reduction analogous to
III.1 holds in this case.

The lens space L(n, 1) is obtained with an unknotted circle weighted by n. For
even n, this space has two spin structures, and the respective Rochlin invariants are:
sgn (n) and sgn (n) — n (here sgn (n) is the sign of n: 0 or +1). This can be seen
using 6, .

For n =0, the two spin structures are equivalent (the space is S' x $?). The
Rochlin invariant distinguishes the two spin structures if » is not in 16Z.

For n = 16k, k # 0, the invariants for 4 = {,,, are opposite and not zero, and
so the two spin structures are distinguished.

Proof. These two invariants are:

Iy = (1w, ) 7B O %0, ) = (ta, ) 7% Oy ),
and

I = (1w, Y 7 O %0, ) = (ta, ) 7T O(—w,).

We have: {wy) =<w,> =(—r/2){A?*—A72)"2,s0 I,=—1,#0.

We now give the decomposition theorem. A similar proposition was announced
by Turaev in [T2] and appears in [KM2]. The hypotheses are those of I1.3.

THEOREM (II1.3). For r =4k, the global invariant (see 11.4.3) decomposes as
following:

0,(M,) = Z 0,(M_, s).

s€ Spin (M)

We need some symmetry formulas again.
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LEMMA (111.4). If r = 4k, for all integers i, j:

(a) <e,_2_;>=Ke).
(b) 4, _,_,=—4.

©) U2 i=(=D"* 'y,
(d) <Z,e,_,_;>=(—1)Kz,¢;.

In V, we set

N+=Span{62k_1_,-+ezk_,+,-,05l'SZk——l}=N9F @N:,,

N__ =Span {eZk_l_i+eZk_|+i, 1 Sl£2k—1}=N0_ @Nl_
COROLLARY (I11.5). (a) For the scalar product {, »,:
Vy=(N_)' and Vi, =(N,)"*

(b) (N ) =N, (N ) =N',t(N°) =N, (N°)=NC".

Proof of Theorem 111.3

We can deduce from IIL.5 that for every k:
t‘w, is in N, t*w, is in N% and t**+'w, is in N° .

Now we claim that we can use a link L, with only unknotted components: any
surgery presentation can be reduced to such a link, using K-moves.
Let us write:

(o, ..., 00 =Y (W4, .., W Dp-
KcL

Here g, is one if and only if the component L, is in the sublink K. We are going to
show that, in this sum, the contribution of a term corresponding to a sublink which
is not characteristic is zero. Let K be a sublink of L, which contains a component
L;, such that:

[L;]-[K]# (L] [L;] (modulo 2).
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(a) If L, 1s not in K, then: Ik(L;, K) = p; + 1 (mod 2), p; being the coefficient of
the component L;. If p; is even, the term corresponding to K can be written:

{t*w,, X, Y9, Wwith x; odd, and is zero, according to IIL.5.
If p; is odd the term is written:

2k + 1 :
(t Wy, X0, With x; even. ..

(b) If L, is in K, then lk(L;, K — L;) =1 (mod 2).
The corresponding term is:

{t*w,, x,D9, with x, odd ...

A particular case is that, for ¢ = + 1, {(t°w) = {t°w, ).
The theorem is proven.

§IV. Uniqueness

We are going to study the conditions of Proposition I1.3. This will justify the
choice of roots of unity, and will be used to prove the following uniqueness
theorem.

THEOREM (1V.1). Suppose A is an integral domain containing a root of unity
A, of order p, and 8, is the invariant associated to a solution (wy, w,) of conditions
I1.3.
There exists a unit A in A, a homomorphism f: A, — A induced by Z[A, A" '] > A
such that:

GA (Ma S) = )‘Yf(ep(M’ S))
Here v is the first Betti number of M.

See I1.6 for the definition of A, and 6,,.

(1) Diagonalisation of the bilinear form

(30 KUAS'xDHQK'(S'x D*)—-Z[4, A7)
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Recall that the eigenvalues of the operator ¢ are
A’n — _A2n+2 — A —2n—2 (n > O)

We define the elements Q,, and Q,,., (k = 0) respectively in K°(S' x D?) and
K'(S! x D?) by:

and for k =2 1:
k—1

2% = I—[ (Zz_'{%i+l)a
i=0

k—1
Oni1=2 'Ho (22— A3).

PROPOSITION (1V.2)
(a) If 1 #k,{Qx%> Q2+170=0.

-1 2k +1

(b) d =<Q2%> Qok+100= IS I_Il (4% — 4—%).

Proof. (a) For I <k:

Qo> €+ 170 = Qx(C) " €417
= QA2+ 1)<€x 417 =0.

Thus Q,, is orthogonal to Span {z¥* !,/ < k}. In the same way, O, . , is orthogo-
nal to Span {z% I <k —1}.

(b) di =< Qs €2 4105

dp = Q@ (€) “ e+ 1) = Qar(Aak v 1) <€ 175

Aok +4_ 4 k-4
IT A3s1—=4540)

d =(—1 2k+1
e=(=1 A*— 472 I<k

One can deduce (b) from the identity:

—Ak+1)— k—1 — Ak — 1
'l%k+l"'l§l+l=(A4(k+1)+8—'A Ak +1) 8)(A4( ) 4 4« )).



422 CHRISTIAN BLANCHET
In order to discuss the conditions of II.3, we need the following lemma:

LEMMA (IV.3)

k
(70 >=q7 2 T] (1 +4¢¥)(1—q¥*).

=1

We first prove the following technical lemma:

LEMMA (IV.4)
(a) 1Qxu = A4kQ2k+ 1-

(b) TZQZk=A8k+2Q2k+2+A——6(2+Al6k+16+A16k+8)Q2k
+A8k—2(A8k+4_A—-8k—4)(A8k_A——8k)Q2k_2.

Proof of Lemma 1V.4

k—1

() 1Qu = A%Qp 1 + 12 1@ 41 (see Lemma IL.1).
=0

For I <k:
Q2 Q2 Do = {1dy = {10y Qok Do = 0.
(b) In a similar way:
TQu 1= A% Q2+ & Qo + Vi 1Qu—2 (v_1=0).
& and v, _ | satisfy &.dp = {tQax 415 Q41> and
Vie— 181 =10 41, Qi _ 1) =A% %d,.
One easily obtains:
Vi =AY 248K+ — 4 B (48 — 4 ),
To calculate &,, we shall use e, and e, _;:

e =0 +Nau_2Qu 2+ ",
1 =@ 1+ Mok 1@ 1+ .
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The dots indicate a polynomial which has degree smaller than the preceeding term.

Qo —15 € ) =M _ 2 Gy
= Qo —1(Az) {ex )
=A% — 43 _2) ' d..
One deduces:

ABk+4 _ 4 —8k—4

Mok -2 = 44 _4-°

In a similar way:

Ak _ 4 %
ﬂzk_1=ﬁr~

Now, we can calculate &, :

Q0+ 1= T 41— Noge - 1 TQ% _
4 ak+2 —4k—6 4k — 2
=4 ey 2+ A €y — My 14 O +

=A%+, A+ A% 00 + A TR T80 — My A¥ 0+
One deduces:
ék=2A_4k—6+A12k+10+A12k+2

and

2Q0 = A%1Q0 1
= A*(A%**2Qp 4 2 + & Qo + V-1 Q2 —2),
1205, = A% +20, .+ A2+ AWK+ 16 4 g16k+8)g
G ASK (A g Sk gk g%y

Proof of Lemma 1V.3

Let: P,, =t~ 'Q,. Using Lemma II.1, IV.4(b) can be written:
A—622P2k+2=A8k+2P2k+2+A—6(2+A16k+16+A16k+8)P2k
+A8k_2(A8k+4——A—Bk—4)(A8k-A“8k)P2k_2.
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Let U, = P2k(6).

uk_H=A—8k—8(52___2__A16k+16___A16k+8)uk

__A—4(A8k+4_A-—8k—4)(A8k__A—8k)uk_l.

Lemma IV.3 can now be proven by induction.

(2) Condition 11.3 studied

Suppose A4 is in a field A (for example, the quotient field of an integral domain).
We want to study the following equation:

Vxo € K%(S' x D) (x4, 0100 = {t x5 )<0; ). (E,)

We are looking for a solution v, € KL(S'x D?) such that: (v,) #0. Let:
w = <{v,) " 'v,. (E,) becomes:

Vxo € K%(S' x D?)  {xq, wo =<t ~'xp). (E>)

It is clear that w determines v,, up to a multiplicative coefficient.
Write: w =X w; Qo ;- (E;) becomes:

vk wkdk = Uy.

A polynomial solution can exist only if u, is zero for k big. Thus ¢ must be a root
of unity, the order of which is again denoted by r. The smallest integer k for which
d, is zero is the smallest for which:

qg*=1 or g¢q

4k+2 _ ]

The order of ¢2 is 2k or 2k + 1.

Case 1: r is odd, so r =2k + 1.
(E,) has a unique solution v of minimal degree: deg (v) =2k — 1. The other
solutions are: v + x with x € N, = Span {Q,,, ,! = k}.

Case 2: r is congruent to 2 modulo 4.
The order of g2 is: r/2 =2k + 1, but u, is not zero: ¢g***!= —1. (E,) has no
solution.
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Case 3: r is congruent to 0 modulo 4.
The order of g2 is: r/2 =2k, g** = —1, and for [ = k, u, = 0. The conclusion is
the same as in case 1.

Conclusion

The discussion above shows that an invariant can be defined, using Proposition
I1.3, only if 4 is a root of unity whose order is not congruent to 8, modulo 16.
Furthermore, the solution w,, given in theorem II.5, has minimal degree for odd r;
for r = 4k, a solution of minimal degree is @,.

(3) Proof of Theorem IV.1

Recall the hypothesis: 4 is a root of unity in an integral domain A, and (w,, w,)
is a solution of condition II.3. The discussion above shows that the order p of A4 is
not congruent to eight modulo 16, or equivalently, the order r of ¢ = 4* is not
congruent to 2 modulo 4. In the following we suppose r > 1; the case r =1 is left
to the reader.

Let us work with the quotient field Q(A). First of all, we reduce the problem,
using the quotient space

Vi=K(S'xD*)®Q0(A)/(e,_1).

LEMMA (1V.5). The meta-bracket is well defined on V ,.

Proof. Suppose x is in the ideal (e, _,), we want to show that:

<...,x,..‘>L=O-

Let L, be the component where x is satellized. Note that changing any crossing on
the diagram, adding around it an unknotted circle, weighted by +1, and satellized
with w,, does not change the nullity of the meta-bracket. Hence we can suppose
that L, is unknotted.

Then we can write: { ..., x,... Y, =<{t"(x), y)o=0.

(a) Case r =2k + 1. The diagonalization of §IV.1 shows that the bilinear form:
(L, VS ® VY - 0(A) is non-singular.
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Observe that (Q,)o<;<x—1 and (Qs; 4 1)o<,;<x_1 are bases of VY and V), respec-
tively, and that (e, _,) = (ex) = Span {Q,, ! = 2k} = (Q). Using the unique solu-
tion of (E,), one can see that in V',

{twyHw, =t Hw,.

We can write w, = Aw,, and also wy, = Aw,. 4 is the constant of w, (reduced in V%),
so is in A.
{tw,> = A{tw, ) is invertible, so A is invertible.

(b) Case r = 4k. Now the bilinear form: {, >g V% ® V' - 0(A), is singular.
Let: Wi =VY/N., and W9 =V9%/NS.

We can deduce from IIL.5 that the bilinear form {, ), is defined on W9 ® W ;
the diagonalisation of IV.1) shows that it is non singular. In W and V% /N° , we
have respectively: w, = Aw, = A®,, and w, = Aw, = A@,. 4 is the constant of w,, so
is in A.

{tw;) = A{td, ) is invertible, so 4 is invertible. One can check that {t®,) lives
in A, more precisely in the homomorphic image of Z[4, 4 ~].

The proof is achieved as in the odd case using the following lemma. This lemma
justifies the use of the reduced elements @, and @, .

LEMMA (1V.6). Suppose (L, K) =(L;, pi» ¢;)1 <i<n is a link with characteristic
sublink. Every expression {x,, ..., X, )., in which each x; has the parity of c;, is zero
if for some j, x; is in N°, or in N..

Proof. As already seen, we can suppose that L; is unknotted.

(a) Suppose L; is in K:lk(L;, K—L;) =0 (mod 2). The expression can be
written: {y, 1°x; ), with y even. t°x; is in N, so the scalar product is zero.

(b) Suppose L; is not in K :Ik(L;, K) =p; (mod 2). The expression can be
written {t%Xx;, y»,. The parity of y is given by p;; the scalar product is zero again.

Acknowledgements

The author thanks his advisor Pr P. Vogel, and also Pr N. Habegger and G.
Masbaum for many discussions.



Invariants on three-manifolds with spin structure 427

REFERENCES

[BE]
(B]
[BHMV]

[FR]
(K]

[Ka]
[Kil]
[Ki2]
[KM1]
[KM2]
[L1]
[L2]
[L3]
[M]
[RT]

[T1]
[T2]

[W]

C. BERNDT and J. EVANS, ‘The determination of Gauss sums’, Bull. of the AMS, Vol. 5, Sept
1981, 107-129.

C. BLANCHET, ‘Une famille d’invariants sur les variétés spin de dimension trois’, thése,
Université de NANTES, fev. 1991.

C. BLANCHET, N. HABEGGER, G. MASBAUM and P. VOGEL, ‘Invariants on three-manifolds
derived from the Kauffman bracket’, preprint.

R. A. FENN and C. P. ROURKE, ‘On Kirby’s calculus of links’, Topology 18 (1979), 1-15.
L. H. KAUFFMAN, ‘New invariants in the theory of knots’, Amer. Math. Monthly, Vol. 19
(1988), 195-242. i

S. J. KAPLAN, ‘Constructing framed 4-manifolds with given almost fra;ned boundaries’,
Transactions of the AMS 254 (1979), 237-263.

R. KIRBY, ‘4 calculus for framed links’, Invent. Math. 45 (1978), 35-55.

R. KIRBY, ‘The topology of 4-manifolds’, Lect. Notes in Math. Springer Verlag.

R. KIRBY and P. MELVIN, ‘Evaluation of the 3-manifolds invariants of Witten and Reshetikin—
Turaev for si(2, C)’, in: Geometry of Low-dim. Manifolds. Durham 1989. (LMS Lect. Note
Ser., Vol. 151), Cambridge Univ. Press 1990.

R. KirBY and P. MELVIN, ‘The 3-manifolds invariants of Witten and Reshetikin—Turaev for
sl(2, C)’, Inv. Math. 105 (1991), 473-545.

W. B. R. LICKORISH, ‘Three-manifolds invariants from the combinatorics of the Jones
polynomial’, Pac. J. Math. 149, No. 2 (1991), 337-347.

W. B. R. LICKORISH, ‘Three-manifolds and the Temperley —Lieb algebra’, Math. Ann. 290
(1991), 657-670.

W. B. R. LICKORISH, ‘Calculations with the Temperley — Lieb algebra’, preprint.

J. MILNOR, ‘Spin structures on manifolds’, 'Ens. Math. 9 (1963), 198-203.

N. Y. ReSHETIKIN and V. G. TURAEV, ‘Invariants of three-manifolds via links polynomials
and quantum groups’, preprint.

V. G. TURAEV, ‘The Conway and Kauffman modules of the solid torus’, LOMI (1989).

V. G. TURAEYV, ‘State sum models in low-dimensional topology’, Proc. ICM Kyoto 1990, Vol.
I, 689-698.

E. WITTEN, ‘Quantum field theory and Jones polynomial’, Comm. Math. Phys. 121 (1989),
351-399.

Département de Mathématiques
2 rue de la Houssiniére
44072 NANTES Cedex 03

FRANCE

Received July 10, 1991



	Invariants on three-manifolds with spin structure.

