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On stable K-theory and topological Hochschild homology

STANISLAW BETLEY

0. Introduction

Let R be a commutative ring with unit and 4 be an R-bimodule. It is proved in
[S-S—-W] that stable K-theory of a ring R with coefficients in 4 (denoted here
K*(R, A)) is equal to topological Hochschild homology of R with the same
coefficients (denoted here THH (R, 4)). Let R,y.q4 denote the category of finitely
generated free R-modules and let R,,.4 stand for the category of R-modules. In
[P—W] the authors define the notion of topological Hochschild homology groups
with coefficients in any functor T : Ryyoq = Rmoa (denoted here THH (R, T')) which
generalizes THH (R, A) (=THH (R, - ® A). On the other hand the similar general-
ization for stable K-theory is described in [Be3]. Hence there appears a question:
are THH (R, T') equal to K*(R, T') for any functor T'? The purpose of this note is
to prove that they are equal for functors of finite degree k, away from primes p such
p < k. The proof of the main result goes through by an appropriate reduction from
the general case to the case of linear functors (functors of degree 1). This can be
used for computations: for the large class of rings the case of linear functors is
computable by [B] and [P-W].

The paper is organized as follows: first section is devoted to recalling the basic
notion of monoids and their homology groups. We give there also some prelimi-
nary, simple lemmas. Section 2 contains results on vanishing of homology groups
of monoids with twisted coefficients and can be considered as a direct generalization
of [Bel] and [Be2]. By [P-W] and [J-P] we know that THH-theory can be
described in terms of the homology groups of monoids of matrices (not necessarily
invertible). Hence in section 3 we can use the methods from sections 1 and 2 to get
our main result.

1. Homology of monoids

This section is devoted to recalling the basic notion of homology groups of a
monoid with twisted coefficients and to proving some special properties of these.
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We think that everything that is done in this paragraph can be obtained in greater
generality for homology of small categories with coefficients in bifunctors but we
shall not need such general statements.

Let us first recall the notion of a monoid. This is a set X with an associative
multiplication. We shall always assume that our monoids contain identity. Every
monoid X can be viewed as a category consisting of one object * and
Mor (*, *) = X with composition given by multiplication in X. The map of monoids
is a map of underlying sets which preserves multiplication and sends identity to
identity or equivalently a functor between corresponding categories.

Let k be any commutative ring with unit and X be a monoid. Then we can form
a monoid ring k[X] by the formula:

kiX]= @ k

xeX
as an abelian group with the multiplication induced from the multiplication in X as
in the case of group rings. Let now M be a k[X]-bimodule. We define homology
groups of X with coefficients in M, which will be denoted by H,(X; M), as the
Hochschild homology groups of the k-algebra k[X] with coefficients in M (see
[C-E] or [Mc; X, 5)]).

1.1. REMARK [Mgc; X, 5.5]. Let X be a monoid which is a group. Then for any
k[X]-bimodule M the homology groups H , (X; M) =h,(X; M') where M’ is the
left kK[X]-module obtained from M by putting

xom=xmx "'
for any xeX and any me M and h () denotes the ordinary homology groups of a
group with twisted coefficients.

1.2. REMARK. Let X be a monoid, M a k[X]-bimodule and ¢ an invertible
element of X. Let f, and F, be maps induced by conjugation by ¢ on X and M
correspondingly. Then the pair (f,, F,) induces an identity isomorphism on homol-
ogy groups H _(X; M).

Proof. First see the proof for the case of groups, for example [Mc; IV, 5]. Then
do the same for monoids (see also [McC, example 2.4.2]).

Let now X, Y, Z be monoids and L, M, N be bimodules over k[X], k[Y] and
k[Z] respectively. Let f: X - Z and g : Y - Z be maps of monoids and F: L >N
and G:M —> N maps of bimodules. Moreover assume that f(X)ng(Y) =1,
z-z’=z"-z for any z e f(X) and z’ e g(Y), f(X) acts trivially on G(M) and
g(Y) acts trivially on F(L). The abelian group L@ M has a structure of
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k[X x Y]-bimodule given by (x, y) o (I, m) = (x/, ym) for any (x,y) e X x Y and
(, m) e L x M (and similarly for the right action). Now let diag: X x Y —» Z and
Diag : L ® M — N denote maps defined by

diag (x, y) =f(x)g(»)
and
Diag (I, m) = F(I) + G(m).

It is obvious that diag is a map of monoids and Diag is equivariant. We will need
the following lemma:

1.3. LEMMA. Let X,Y,Z,L, M, N be as above. Assume that H;(X;L) =
H,(Y; M) =0 for i <j. Then on the j-th homology group

(diag’ Dlag)* = (f9 F)* + (ga G)*

Proof. The Kiinneth spectral sequence (see [C-E] or [R]) gives us immediately
that

H,(X x Y; L® M) = H)(X; L) ® H(T; M).

Moreover it is clear that (diag, Diag), restricted to the first (second) summand is
just (f, F).((g, G),).

The universal coefficients spectral sequence (see [R]) gives us immediately the
following:

1.4. LEMMA. Let k =Z, X be a monoid and M a Z[X]-bimodule which is free
as an abelian group. Then the following two conditions are equivalent:
(1) H,(X; M) has no p-torsion (is torsion);
(ii) For any algebraically closed field K of characteristic p (K = Q) we have
H,(X;M ®,K)=0.

2. “Vanishing theorems’ revisited

This section can be viewed as a generalization from groups to monoids of the
results from [Bel] and [Be2]. The methods are not new and everything relies on
Remark 1.1. Throughout the section the ring of coefficients of monoid rings is
considered to be equal to Z. We shall give sometimes only sketches of proofs if they
are the same as the proofs of corresponding lemmas or theorems from [Bel] or [Be2].
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Let R be a commutative ring with unit and let for any n, M, be a monoid such
that GL,(R) s M, <M, , ,, where M, ., denotes the monoid of n x n-matrices with
entries in R. Moreover assume that the upper inclusion M, ., > M, . )@+
given by

A 0
A
-5 1)
gives us the embedding of monoids after restriction to M,. Let 4Ab denote the
category of abelian groups and T : R,y.q— Ab be a functor of finite degree (see
[E-M] or [Be2] for the definition and properties). Let 7% denote the k-th tensor

power functor (tensoring over Z) and let TR be the ring T*(R). This section is
devoted to proving the following two theorems:

2.1.a. THEOREM. Let T be as above. Then
lim H, (M,; T(R") =0,
where the action of M, on T(R") from one side is trivial.

2.1.b. THEOREM. Let T=H,(Z,; T* ® rxx A), where A is any R — T*R-
bimodule with X,-action, k>1 and X, acts diagonally on T*® A. Then
lim,_, , H,(M,; Hom (R"; T(R"))) is torsion and can contain p-torsion only for p < k.

2.2. REMARK. Theorem 2.1.b can be easily generalized to the case where
coefficients are in any functor S : Rymoa®® X Rymoea = Ab of the type Hy(Z; x Z;;
Hom (7% TV ) ® A), see [Be2] for the case M, = Gl,(R).

By the methods from [Be2, section 2] it is enough to prove Theorems 2.1 only
for the functors T as in 2.1.b. By similar methods as in [Be2, proof of 4.2 for (a)
and 3.1 for (b)] we can go even further and restrict ourselves to

T=T"Q® g A

By the standard spectral sequence arguments we can work only with the case
T = T*. Moreover it is clear that we have to deal only with the case R =Z and the
general case will easily follow from that as in [Bel, 4.2 and 5.2]. Hence the rest of
this section will be occupied by the proof of Theorems 2.1 in the case R = Z and
T=T*
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We shall write T* for T*(Z"), t* for Hom (Z", T*(Z")) and t* for the bifunctor
Hom (-, T%(*)). Let d be any natural number. We shall use the following

notation:

lim,_, ., M, =M,

e

limn-aoo Mdn = M9

lim, , ,, TX = T* and similarly for ¢%,

lim, , ., 7%, =T* and similarly for ¢%,,

i, denotes the upper inclusion M, - M, .

F, denotes the inclusion TX - T%_ , or tX¥ —>¢X. , induced by the standard
“upper” inclusion Z"—Z"*! and projection Z"*'— Z" on the first n coordinates.

2.3. LEMMA. The natural inclusions M>M, T* > T* and t* > t* induce an
isomorphism of monoids and modules over them.

In the rest of the paper we shall identify H,(M;T¥) =H, (M;T% and
H,(M;t9) = H_(M;t*) using the isomorphism from Lemma 2.3. We have well
defined map of monoids and modules over their monoid rings

(diag, Dlag) : (Mn9 Tﬁ) “’(Mdno T](;n)

induced by the diagonal embedding Z” — Z**. The pair (diag, Diag) can be decom-
posed into a composition (diag, diag’) - (diag, diag”) just like in [Bel, theorem S.1].
Instead of defining the maps diag’ and diag” we say only that they make the
following diagram commute (notice that all this is true also for %):

(M, T%)

(diag, diag”)
(M4, (T%))
(diag, diag")

where (S’ T) =(Cs ° i(n+1)d-—l et

_—

_—

—_—

(Mn+1aTl;+1) - "’(M,Tk)
| (diag, diag")
(Mo, )4 (T DY) — - (M, (TH9)
' (diag, diag")
(M(n+ 1)d; T{Cn+ l)d) _— T (IV[, Tk)
0 lgns Coo Flyypa—1°" o Fg) and C; denotes
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the conjugation by the matrix s which makes the following diagram commute:

i,
(M) — (M, )¢

1 diag 1 diag
C

s

Mdn M(n + 1)d

24. LEMMA. Let K be any algebraically closed field and d be a natural number
which is bigger than k + 1 and prime to the characteristic of K (prime to 0 is an
empty condition). Then:

(a) (Diag, diag), : H;(M,; T*®K) » H,(M,,; T%, ® K) is a trivial map;

(b) (Diag, diag), : H;(M,; ts ® K) > H,(M,; t%, ® K) is trivial provided char-

acteristic of K is 0 or is equal to p and p — 1 does not divide k — 1, k > 1.

First we shall show how we can obtain our Theorems 2.1 from the lemma
above. We shall proceed by induction with respect to the dimension of the
homology group. Assume that our theorem is true for any i such that i <j. Then
passing to the limit and using 1.2 and 1.3 we get that (Diag, diag) induces
multiplication by d on the j-th homology group of M with coefficients in T* or t
(see the proof of [Bel] lemma 5.2). On the other hand we know that the limit of
trivial maps is a trivial map. That fact, Lemma 1.4 and Lemma 2.4 give us
immediately Theorems 2.1.

Now we can sketch the proof of Lemma 2.4. Notice that the map (Diag, diag)
can be decomposed into a composition of two maps for any submonoid H
contained in GI,(Z) (we shall write everything only for T% but the same is true for
t5):

1. (i, diag) : (M,,, T ® K) - (M, x H, T}, ® K) where i is just inclusion on the

first factor;

2. (j,id) : (M, x H, T%, ® K) > (M,,; T%, ® K) where j is a map given by the

tensor product.

By the spectral sequence argument it is enough to find H such that
H, (H; T%, ® K) = 0. But correct choice of H is given in [Bel, lemma 3.7] for the
part (a) of the lemma and in [Be2, theorem 3.4] for the part (b). This finishes the
proof of Lemma 2.4 and hence also the proof of Theorem 2.1.

2.5. COROLLARY. Let T : Rypoq— Ab be a functor of finite degree k. Then up
to p-torsion for p <k

lim H,(M,;Hom (R", T(R™)) = lim H,(M,;Hom (R", A™)),

n-—» oo

where A is some R-bimodule.
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We shall finish this section by showing that for some rings we can strengthen
our results. Let us introduce the following definition:

2.6. DEFINITION. A ring R is called /arge if for any natural number k there
is an element r € R* such that r* — 1€ R*.

For example any algebraically closed field, any field of characteristic 0 or any
local ring which has one of those fields as a quotient is /arge. For such rings we
can prove:

2.7. THEOREM. Let R be a large ring. Let T be as in 2.1.b. Then

lim H,(M,, Hom (R", T(R™)) = 0.

Proof. We shall proceed as in the proof of Theorems 2.1, but we shall work
directly with R without the middle step over Z. As previously it is enough to
prove our theorem only for T = T*(:) with an arbitrary k. Further observe
that the only problem which can occur is to find the correct choice of a sub-
monoid H € GI;(R). But the choice is obvious: it is enough to take H ={x)
where x is an element of R* of order prime to kK —1 and {(x) denotes the
subgroup of GI;(R) generated by the diagonal element with x on the diagonal.
Obviously for such H we have H, (H; Hom (R", T*(R™))) =0 and the rest of the
proof is obvious.

2.8. REMARK. By the same method as in 2.7 we can show that

lim H,(M,; Hom (R", T(R"))) =0

n— o

when R is a finite field with p™ elements, T is as in 2.1.b and k is less than p™.

3. Comparison between THH and K5

The topological Hochschild homology groups of a ring R with coefficients in
an R-bimodule A4, denoted here THH (R, A), were defined in [B]. In [P-W] the
notion of topological Hochschild homology groups with coefficients in any functor
T : Rrmoda = Rmoq 18 introduced and it agrees with Bokstedt’s definition in the
sense that THH (R, 4) =THH (R, -® A). It is also proved in [P-W] that
THH, (R, T) is equal to H, (R moq; Hom (-, T(-))) where these latter groups
denote the Baues—Wirsching homology groups of the category R o4 With co-
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efficients in a natural system given by a bifunctor Hom (-, T(-)). We also have the
following stability result (which is stated in [P] and proved in [J-P] in cohomolog-
ical setting):

3.1. PROPOSITION. Let R;poam denote the full subcategory of Rypy.q consist-
ing of modules of rank bounded by m. Then for i small with respect to m the
inclusion map Ryyoam — Rrmoa induces an isomorphism

Hi(RfMod,m; Hom ( ) T())) = Hi(RfMod; Hom ('a T( )))

3.2. LEMMA. Let C denote the category consisting of one object * and
Mor (*, *) = Hom (R™, R™). Then the inclusion i:C - Repoq, taking * to R™
induces an isomorphism of Baues—Wirsching groups:

H,(C; i* Hom (-, T(*))) = H,(Rymoam; Hom (-, T(*))).
Moreover the Baues—Wirsching groups H,(C;i* Hom (-, T(-))) are equal to
H, (M, . »; Hom (R™, T(R™)));

Proof. The second statement is obvious. For the first one we shall modify
slightly the proof of [McC, proposition B.1.4]. For the convenience of the readers
we shall give some more details on this subject. Let D be a small category and
let F:D° x D— A4b be a functor with values in abelian groups. Then the Baues—
Wirsching homology groups of D with coefficients in F (see [B—W]) are defined as
homology groups of the complex (G,(D), d, =Z!_, (—1)'d,) where

G,(D) = S, F(D,, D,)

D04_Dl‘_...‘_D"

and the sum is taken over all composable n-touples of morphisms in D. Write an
element of G, as

1 *2 Gp

(f;D0< Dl{ e Dn)s

or in shorter version as

(f;al""’an)s
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where f € F(D,, D,). Then

di(f;au---,an)=(f;05|,--.,a,-00t,-+1,...,a,,) f0r0<i<n,
d()(f, Ay, .- "an)=((al)*(f);a29' . '9“n)9
dn(fa Ay, - "an) =((an)*(f)9 Uyy . -9an~—xl)9

where if « : M"—> M and f: N - N’ are morphisms in D and f e F(M, N) then

a*(f) =(F(a,id))(f) € F(M’, N)

and

B.(f) =(F(id, B))(f) € F(M, N").

Now we have to come back to our situation. We can obviously (canonically)
identify H_(C; i* Hom (-, T(-))) with H_(R™ Hom (-, T(-))) where R™ is a full
subcategory of R, yoq,» cOnsisting of one object R™. Let us abbreviate i for the
inclusion of R™ into R yoq,,- Let i, denote the map induced by i on chain
complexes for B—W homology. For any M in R/yoq,. let M’ denote some chosen
object of Rrmoq,» such that M @M’ =R™. Then we can define a chain map
Jn Gy(Rrntosm) = G (R™) by

. 7 n
Je i My—M, — - —M,)

a(Mg)° vy B(M)@ido,1)

=(M,),  B(Mo)*(f); Mo® My <

My _ 1)y BMp)®id(n 1,

M,® M),
where

a(M) =(idy,0)  M>MOM,
p(M)=proj: M®M - M

and id;; , ;) denotes the identity matrix of the size m = max (dim (M;), dim (M, ))
placed in the lower right corner of the matrix. Obviously j, o i, =id. The chain
homotopy h joining i, oj, with the identity is given by the formula (compare
[McC, Prop. B.1.4)):

h=3 (=),

i=0
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where

hi(f5 7055 70) = (B(Mo)*(f); a(My) oy, o B(M) ®id(o,1), e
a(M;_ ) oy; o B(M,) @id(i~— tiys O(M; ), Vi 1s o oo s Vn)e

3.3. COROLLARY. THH, (R, T) = lim,_, , H (M, ,; Hom (R", T(R")))
where the limit for monoids is taken with respect to the upper inclusions with 1 in the
right lower corner. On the level of coefficients the maps

Hom (R”, T(R")) —» Hom (R"*', T(R"*+"))
are induced by the standard linear inclusions R"— R"*' and projections R"*'— R".
Using the corollary above and the results of section 2 we get:

3.4. COROLLARY. Let k be any natural number bigger than 1. Then the groups
THH (R, T*) are torsion and can contain p-torsion only for p < k. Moreover if R is
large then these groups are trivial.

Now we must turn towards stable K-theory. The easiest definition of it
(but it does not explain the name ‘“stable K-theory”) is following: let ¥
denote the homotopy fiber of the natural map BGI(R) —» BGI(R)* then
Ky(R, T)=H (¥;lim,_, , Hom (R", T(R"))) where the action of II,(¥) on the
coefficients is induced from the conjugation action of GI/(R) on them. In the
remaining part of the paper we shall write H (G/(R); Hom (-, T(-))) for the groups
H (GI(R); lim, _, , Hom (R", T(R")). Looking at the Hochschild—Serre spectral
sequence of the fibration

¥ - BGI(R) — BGI(R) *
we can immediately get the following lemma:

3.5. LEMMA. Assume that for given T the groups H, (GI(R), Hom (-, T(-)))
are trivial. Then K (R, T) =0.

3.6. REMARK. The results of [Be2] imply that K% (R, T*) are torsion and can
contain p-torsion only for p < k. Moreover if R is large then these groups are
trivial.
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We define now the map @ : K*(R, T) > THH (R, T). The definition is very
natural and the reader can find it also in [P]. Namely observe that the natural
embedding of monoids G/,(R) - M, , , induces a map on homology

H ,(Gl,(R); Hom (R", T(R"))) = H ,(M,,  ,; Hom (R”", T(R"))).

The stabilization processes in both cases are the same and hence we have a map
H (GI(R); Hom (-, T(*))) » H,(M; Hom (-, T(-))) = THH (R, T').

When we compose this map with the natural map
H,(¥;Hom (-, T("))) = H,(GI(R); Hom (-, T(+)))

then we obtain our map 6.

3.7. THEOREM. Let T be a functor of degree k. Assume that © is an isomor-
phism for all linear functors. Then © is an isomorphism up to p-torsion for p < k.

Remark. Our assumption that 3.7 is true for linear functors is satisfied by the
main theorem of [S—-S—W]. We have put it here as a hypothesis because the paper
[S—S—W] does not exist yet even in a preprint version so we are not able to give any
written source of the proof of that result.

Proof of 3.7. We shall proceed by induction with respect to the degree of T.

Assume that our theorem is true for any functor of degree less than k and that T
is of degree k. By [Be2, section 2] we know that there is a natural map of functors

Vi Hy(Z; T* @A) T

with the property that the kernel and cokernel of y are of lower degree, where A
is some R-module. On the other hand observe that if

0-T,-»T,-T;-0
is a short exact sequence of functors then the sequence

0—Hom (-, T;(+)) » Hom (-, T5()) » Hom (-, T5(+)) =0
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is also exact. The short exact sequence of functors gives us in a natural way long
exact sequences of THH- and K*-groups. Thse observations plus naturality of @
give us immediately the fact that if F: T, - T, is a natural map of functors and our
theorem is true for T,, ker (F) and coker (F) then it is true also for 7,. But our
theorem is true for Hy(Z,; T* ® z A) by vanishing results and is true for ker () and
coker (¢) by the inductive hypothesis. Hence our theorem is true for any functor T
of degree k.

We want to finish this section with two corollaries which strengthen Theorem
3.7 for special kinds of rings.

3.8. COROLLARY. If R is a large ring then the map © is an isomorphism for
any functor T of finite degree.

3.9. COROLLARY. If R is a field with q = p™ elements then © is an isomor-
phism for functors of degree less than q.
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