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Amenable groups and Euler characteristic

BENO ECKMANN

0. Introduction

0.1. We consider an infinite amenable group G and a free cocompact G-space Y,
i.e., a connected cell-complex on which G acts freely with Y/G being a finite
cell-complex (G is necessarily finited generated). The purpose of this paper is to
show that the Euler characteristic y(Y/G) has some special properties due to the
amenability of G.

In particular, if H;Y =0 for 0 <i <m = dimension of Y then (—1)"x(Y/G) is
>0, and =0 if and only if H,,Y =0. For example, assume that G admits an
Eilenberg—MacLane complex K(G, 1) with finite m-skeleton X and take for Y the
universal cover X or X; then (—1)"y(X) =0, and =0 if and only if Y is
contractible (whence X a K(G, 1), and the cohomology dimension cd G is <m). As
a corollary one obtains the fact (cf. Cheeger—Gromov [3] by different methods)
that an amenable group admitting a finite K(G, 1) has Euler characteristic y(G) = 0.
Another corollary (case m =2) tells that a finitely presented infinite amenable
group G has defect <1, and =1 if and only if cd G < 2.

0.2. We first recall that a group G is amenable if it admits an invariant mean for
bounded real (or complex) functions. Finite and Abelian groups are amenable, and
the class of all amenable groups is closed with respect to subgroups and factor
groups, to group extensions, and to increasing unions. These operations applied to
finite and Abelian groups yield a big class of groups called “elementary amenable”;
all virtually solvable groups (i.e., containing a subgroup of finite index which is
solvable) are elementary amenable, but the converse is not true. Moreover there are
examples of finitely generated amenable groups which are not “elementary” (cf.
Grigorchuk [5]).

0.3. A free group on two generators is easily seen not to be amenable. Thus an
amenable group cannot contain a free subgroup of rank 2. As a consequence, an
infinite amenable group G has one or two ends, i.e. H'(G;ZG) =0 or Z. For
otherwise, by virtue of Stallings’ structure theorem, G would be either a non-trivial
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amalgamated free product or an HNN-extension which is not virtually infinite
cyclic, and thus contain a free subgroup of rank 2.

0.4. Our approach to the discussion of free cocompact G-spaces Y for infinite
amenable G is based on the Falner criterion for amenability of discrete groups; this
18 a combinatiorial characterization which can be translated into a “Folner se-
quence” in Y, i.e. a sequence of finite subcomplexes with properties described in
Section 1.1 below. Elementary arguments involving limits over that sequence yield
the statements ( — 1)”y(Y/G) = 0, and =0 if H,,Y =0, mentioned in 0.1. For the
partial converse stating that x(Y/G) =0 implies H,, Y =0 (Y contractible) a
stronger tool seems necessary, namely £,-cohomology, in the cellular sense, of Y
and a lemma of [3]; this lemma also uses the Fglner sequence in Y. The £,-coho-
mology method could also be used to yield the above results which we have
preferred to present through the more elementary approach.

0.5. In a further section we apply the same procedure as before to get informa-
tion on y(M) where M is a closed 4-manifold with infinite amenable (finitely
presented) fundamental group. Namely, y(M) is always =0; this can also be
expressed in terms of the group invariant ¢(G) considered by Hausmann—Wein-
berger [6].

0.6. Some of the results remain valid for groups G which need not be amenable
but are extensions of infinite amenable groups by groups with finite Betti numbers.
This is shown in Section 5, where also some applications are discussed.

0.7. In an appendix we mention briefly how most of the results of this paper can
be obtained, by an entirely different approach, in the case where G is elementary
amenable.

It is a pleasure to thank Ralph Strebel and Ross Geoghegan for many helpful
discussions.

1. The Feolner sequence

1.1. Let G be an infinite amenable group, and Y a free cocompact G-space; i.e.,
Y is a connected CW-complex on which G acts freely and cellularly such that
X = Y/G is a finite CW-complex (this implies, of course, that G is finitely generated
since it is a factor group of 7, X). We denote by D a closed cellular fundamental
domain for the operation of G on Y.
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Using the Folner criterion [4] for amenability of discrete groups one can
construct an increasing sequence Y;, j=1,2,3,..., of finite subcomplexes of Y
with the following properties: (1) Y; consists of N, translates xD of D, x € G.
(2 U Y=Y (3) Let NJ be the number of translates of D which meet the
topological boundary Y} of Y;; then

N,
lim —=.
j

1.2. We now consider the Euler characteristic y of the finite complexes X and
Y.

» 1.e. the alternating sum of the numbers of i-cells, i=0,1,...,m=dim X =
dim Y =dim D = dim Y;. Then

1Y;) = Ny (X) + A,

where 4, comes from the topological boundary Y, of Y,. Clearly |4;| < N, 4 where
A is the total number of cells of the boundary of D. Thus

1 4,
x(X) —ij(Y,-) +¥

J

with |4;|/N; < (N,;/N,)4 which goes to 0 with j — co.

PROPOSITION 1.1. With assumptions and notations above one has

Expressing the Euler characteristic by the alternating sum of the Betti numbers
B: = dimg H,( ; Q) we thus obtain

THEOREM 1.2. Let G be an infinite amenable group, Y a free cocompact
G-space and Y; a Folner sequence in Y. Then

dim Y Y
X¥/6) = lim 3. (- WLR2S

j—>© i= j
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2. Finiteness assumptions

2.1. With assumptions and notations as in Section 1 we further assume that,
for some i, the Betti number B,(Y) =dimg H;(Y; Q) is finite. Exactness and
excision yield the commutative diagram for homology with Q-coefficients

H,, \(Y\Y}, Y,)) — H/(Y;) — H/(Y\Y;)

-

H,\(Y,Y) — H(Y)—> H(Y)

(Y; = interior of Y;). Since y maps the kernel of ¢ onto the kernel of p we have
B:(Y,) < B.(Y;) + B;(Y). But B,(Y;) is at most equal to the number of i-cells of ¥,
which is Sdei where d; is the number of i-cells of D. Thus

1 N, 1
—B(Y,) <—-<d +— B,

J

and finally

.1
lim ﬁjﬂi(yf') =0.

J—=®

PROPOSITION 2.1. If B;(Y) is finite then lim,_, ,(1/N;)B;(¥;)=0.
2.2. If B;(Y) is finite for all i <m =dim Y it follows from Theorem 1.2 that

Pn(Y)) .
N,

J

2(Y/G) =(—1)" lim

THEOREM 2.2. Let G be an infinite amenable group and Y a free cocompact
G-space with B;(Y) finite for all i <m =dim Y. Then ( — 1)"y(Y/G) 2 0. If, more-
over, also B,,(Y) is finite then y(Y/G) =0.

COROLLARY 23. If G is an infinite amenable group which admits a finite
Eilenberg —MacLane space K(G, 1) = X then y(X) = x(G) =0.

For in that case we can take above ¥ = X, the universal cover of X.
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2.3. We obtain another corollary by assuming that G admits a K(G, 1) which is
finite in dimensions <m (i.e., G is of type FP,,, and finitely presented if m > 2). We
then take for Y the m-skeleton of the universal cover of K(G, 1). Then X = Y/G is
the m-skeleton of K(G, 1). Since Y fulfills the assumptions of Theorem 2.2 it follows
that (—1)"x(X) is 20:

COROLLARY 2.4. Let G be an infinite amenable group of type FP,, (and finitely
presented if m 2 2), and let X be the finite m-skeleton of a (suitable) K(G, 1). Then
(= Dm™y(X)is 20.

COROLLARY 2.5. Let G be a finitely presented infinite amenable group. Then
the defect of any finite presentation of G is < 1.

Indeed, if a, is the number of generators and a, of defining relations there is a
K(G, 1) with one 0O-cell, a, 1-cells and a, 2-cells. The case m =2 of Corollary 2.4
tells that 1 — &, + a, 2 0, i.e., a; —a, < 1. — We remark that this result also follows
from the known fact [1] that if a; — a, = 2 then G must contain a free subgroup of
rank 2 and thus cannot be amenable.

2.4. It seems convenient to express Corollary 2.4 in terms of group invariants
which we call ¢,,(G); they are the geometric counterpart of the “partial Euler
characteristics”” as considered by Swan and Gruenberg in the context of finite
groups (see, e.g., [9]). Namely, for G as in Corollary 2.4, consider all K(G, 1) with
finite m-skeleton X and let g,,(G) be the minimum value of ( — 1)™y(X) for all these
K(G, 1); the minimum exists since ( —D)™x(X) = X" %' (= 1D*"B,(G) + B,.(X),
and B,,(X) is bounded below by g,.(G) = B,.(K(G, 1)).

COROLLARY 2.4'. Let G be an infinite amenable group of type FP,, (and
finitely presented if m 22). Then q,(G) is 20, and of course q,(G) 20 for all
0<i<m.

We note that ¢,(G) = 1, ¢,(G) = n(G) — 1 where n(G) is the minimal number of
generators of G, and ¢,(G) = 1 — d(G) where d(G) is the defect of G (the maximum
of the defects of all finite presentations of G).

COROLLARY 2.5. The defect d(G) of a finitely presented infinite amenable
group is < 1.
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3. £,-cohomology

3.1. In this section we prove a certain converse of the second statement
(vanishing of x(Y/G)) in Theorem 2.2. The method of applying directly the Felner
sequence in Y does not seem to yield the result. However, (reduced) £,-cohomology
of Y in the cellular sense and a lemma of Cheeger—Gromov [3] provide the
necessary tools; we note that this lemma too is based on the Folner sequence.

We recall that (reduced) cellular #,-cohomology H'Y is defined by means of
£,-cochains f € C'Y with real coefficients (i.e., X, f(6)? < co where o ranges over all
i-cells of Y) and that H'Y = (ker §, : C'Y - C'*'Y)/closure of 6C'~'Y. If Yis a
G-space the von Neumann dimension dimg H'Y will be denoted by f;(Y rel. G). In
the case where Y is a free cocompact G-space one has dimg C'Y = a; = number of
i-cells of Y/G. The standard argument applied to the von Neumann dimensions
shows that the analogue of the classical “Euler-Poincaré formula” holds for the
(fake) Betti numbers §;:

dim Y dim Y

WY/G) =¥ (—=Dio= 3 (—1)B(YrelG).

i=0 i=0

3.2. If G is infinite amenable and Y a free cocompact G-space the Cheeger—
Gromov lemma [3] tells that the natural map H'Y —» H(Y; R) is injective. For
connected Y it is clear that H°Y =0 since Y is infinite. If we further assume
that H;Y =0 for 0<i<m =dim Y then HYY;R) =0 for these i and thus
HY =0,0<i<m. It follows that

W(Y/G) =(—1)"B,(Y rel. G).

If also H,,Y = 0 then H™Y =0, §,,(Y rel. G) = 0 and thus y(Y/G) = 0—as we have
already shown by a different, more elementary, method. But conversely y(Y/G) =0
implies B,,(Y rel. G) =0 and this in turn H™Y = 0. Now for any finite subcomplex
Y; of Y the exact /,-cohomology sequence

H"Y >H™Y,»H"*(Y,Y;)=0

shows that H™Y, = H™(Y;; R) =0, i.e., §,(Y;) =0 which implies H,,Y; =0 since
this group is Z-free. Therefore H,, Y = 0:

THEOREM 3.1. Let G be infinite amenable and Y a connected free cocompact
G-space with HY =0, 0<i<m=dimY. Then x(Y/G)=0 if and only if
H,Y=0.
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COROLLARY 3.2. Let G be infinite amenable of type FP,, (finitely presented if
m 2 2) and let X be the finite m-skeleton of a suitable K(G, 1). If y(X) =0 then X is
itself a K(G, 1) and the cohomology dimension cd G of G is <m.

Indeed y(X) =0 implies H;Y =0, 0 <i <m, where Y is the m-skeleton of the
universal cover of K(G, 1). This means that Y is contractible, i.e., that X is an
Eilenberg—MacLane complex for G.

COROLLARY 3.3. Let G be a finitely presented infinite amenable group. If
d(G) =1 then cd G < 2; i.e., either G is infinite cyclic or cd G = 2.

Note that, in Corollary 3.3, x(G)=1-8,G+$,6 =0, B,G=1+p,G = 1.
Thus (see Bieri—Strebel [2]) G is an HNN-extension G = H#*y, with K finitely
generated. But K must be equal to H since otherwise G would contain a free
subgroup of rank 2. So G = H*y,, H finitely generated, and the possibilities for H
can be further discussed. If G is not infinite cyclic then H'(G; ZG) = 0 by virtue of
Stallings’ structure theorem; thus G is a duality group of dimension 2.

4. Four-manifolds with amenable fundamental group

4.1. Given any finitely presented group G there exists a (smooth) closed
orientable 4-manifold M with n; M = G. For an infinite amenable group G the
methods of the previous sections give information on x(M).

The universal cover M =Y of M is a free cocompact G-space; clearly
H,Y =H,Y =0. Moreover H,Y = H;(M; ZG) = H'(M; ZG) by Poincaré duality,
= H'(G; ZG). But as noted in the Introduction (Section 0.3) G has one or two ends,
i.e., H(G;ZG) =0 or Z, whence H;Y =0 or Z. Thus the only Betti number of Y
which is possibly non-finite is B,(Y). The method of Section 2 yields, in terms of a
Folner sequence Y, in Y,

lim é"—(Y—j)=0 fori=0,1,3,4

j=w N;
and thus
4 e Bi(Y) . Ba(Y))
M) = —1)7 lim =L = lim =%~
(M) Z,O( ),-»oo N, BTN,

which is >0.
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THEOREM 4.1. If M is a closed 4-manifold with infinite amenable fundamental
group G then (M) is =0.

REMARKS. (1) If above B,(Y) is finite, e.g., if ¥ has the homotopy type of a
finite cell-complex, then y(M) =0.

(2) In the context discussed above f5(Y) = 1 if and only if G is virtually infinite
cyclic (i.e., G has 2 ends, H'(G;ZG) = H,Y = Z). If such groups are excluded
then H;Y =0; if moreover H,Y =0 then Y is contractible, M is a K(G, 1),
and G is a Poincaré duality group of dimension 4 (with y(G) =0). We note
that thus H'(G,ZG)=0 and H,Y=0 imply H*G;ZG) = H¥G; ZG) =0,
H%G; ZG) =Z.

(3) Since X(M)=2-28,(M) + B,(M), Theorem 4.1 tells that B,(M) =
2B8,(M) — 2. We note that, quite generally, 8,(M) = $,(G) and B,(M) = B,(G) since
a K(G, 1) can be obtained from M by adding cells of dimension = 3.

4.2. As a corollary of Theorem 4.1 we obtain information on the group
invariant ¢(G) for finitely presented groups G considered by Haussman and
Weinberger [6]: q(G) is the smallest value of y(M) for all closed orientable
4-manifolds M with n;(M) = G. Clearly, see Remark (3) above,

9(G) 2 2 —2B,(G) + B,(G).
On the other hand, as shown in [6],
q(G) < 2(1 —-d(G))

where d(G) is the defect of G.
From Theorem 4.1 we immediately obtain

COROLLARY 4.2. For a finitely presented infinite amenable group G the
invariant q(G) is always =0.

We recall (Corollary 2.5) that for groups G as above the defect d(G) is <1; the
upper bound above for g(G) is thus 20; and =0 if and only if d(G) =1 (whence
cd G <2).

EXAMPLES. (1) [cf. 6] ¢(Z™) 20 for all m = 1. Clearly ¢(Z) = 0.

(2) Virtually solvable groups G are amenable. Thus if they are infinite and
finitely presented then ¢(G) = 0. This applies in particular to virtually infinite cyclic
groups.
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4.3. Under suitable further assumptions Theorem 4.1 (or Corollary 4.2) admits
a converse, stating that if (M) =¢(G) =0 then M is a K(G,1) and G is a
PD*-group. We will return to this and similar aspects in a separate paper.

5. Group extensions

5.1. Corollary 2.4 concerning the finite m-skeleton of a K(G, 1) for a group G
of suitable type can easily be generalized to groups which need not be amenable but
are certain extensions of infinite amenable groups. This generalization has been
suggested by Ross Geoghegan.

We consider a group G of type FP,, (and finitely presented if m = 2) and assume
that G contains a normal subgroup N with Betti numbers f; () finite for 0 < i <m
and such that G/N = 4 is infinite amenable. Let X be the finite m-skeleton of a
K(G, 1), and Y the m-skeleton of the cover corresponding to the subgroup N of G;
this cover is a K(N, 1). Then Y is a free cocompact 4-space with Y/4 = X, and the
Betti numbers B;(Y) = B,(N) are finite for 0 < i <m. Thus by Theorem 2.2 one has
(—D™"x(X) =20.

THEOREM 5.1. Let G be a group of type FP,, (and finitely presented if m = 2),
and assume that G is an extension of an infinite amenable group A by a group N with
finite Betti numbers B;(N), 0 <i <m. If X is the finite m-skeleton of a K(G, 1) then
(—D"u(X)is 20.

Or, in terms of the group invariant g,,(G) introduced in 2.5:

THEOREM 5.1°. For a group extension G as in Theorem 5.1 the invariants
q:(G), 0<i<m,are all 20.

5.2. The case m =2 presents some special interest.

COROLLARY 5.2. If G is finitely presented and contains a normal subgroup N
with B, N finite and such G|N is infinite amenable then the defect d(G) is <1.

For example, assume that d(G) =2 and that G/[G, G] is infinite; then [G, G]
cannot be finitely generated. This particular case can also be proved directly by the
group-theoretic methods as used, e.g., in Bieri—Strebel [2].

REMARKS. (1) It should be emphasized that the group G in this section is, in
general, not amenable. (2) All the above can be viewed as generalizations of the
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elementary fact that for a free group of rank =2 the commutator group is not
finitely generated. B

5.3. There is a similar generalization of Theorem 4.1 in Section 4 concerning a
closed 4-manifold M with fundamental group G. We again assume that G/N = A4 is
infinite amenable; here the only assumption on N is that f,(N) be finite. We recall
that f,(N) =dimg H,(N; Q) = dimg (N,, ® Q) where N,, = N/[N, N].

The cover Y of M with fundamental group N is a free cocompact A-space,
Y/A = M. Clearly B,(Y) = B,(N) is finite and 8,(Y) = 0. As for f5(Y), we consider
H,(Y; Q) = Hy(M; QA) = H'(M; QA) = H'(G; QA) and the first terms of the
“Five-term exact sequence” for G/N = A:

0— H'(4; Q4) — H'(G; Q4) — Hom (N, Q4) —> - - -.

Now HY(A4;QA)=H'(A4;ZA)®Q is 0 or Q. Moreover Hom, (N,,, QA) =
Hom, (N, ® Q, QA4) = 0; indeed, for any f € Hom, (N, ® Q, QA) the image is a
QA -submodule of @A whose dimension over @ is finite, and A being infinite this
is possible for f =0 only. Thus H'(G; Q4) =0 or @, and B,(Y) =0 or 1. As in
Section 4.1 the Folner sequence argument for Y then yields y(M) = 0:

THEOREM 5.3. Let M be a closed 4-manifold whose fundamental group G is an
extension of an infinite amenable group by a group N with B,(N) finite. Then (M)
is 20.

Or, in terms of the group invariant g(G), see 4.2,

THEOREM 5.3’. For a finitely presented group G as in Theorem 5.3 the invariant
q(G) is 20.

6. Appendix: The “elementary amenable” case

6.1. For elementary amenable (cf. Section 0.2) groups G one can obtain, under
mild restrictions, the main results by an entirely different approach. It is based on
the classical ring of fractions R = (QG\0) ~'QG of the group algebra QG. In [8§]
Kropholler, Linnell and Moody have shown that if G is elementary amenable, does
not contain finite normal subgroups # 1, and has bounded torsion orders, then the
ring of fractions R exists and is a matrix ring M,(D) over a division ring D (in
particular, if G is torsion-free then R = D). Finitely generated R-modules have a
well-defined rank over R since they are D-vector spaces.
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6.2. If G is such a group and Y a free cocompact G-space one applies to the
cellular Q-chain complex C of Y, which is a free @QG-complex, the ‘“‘localization
method”; one passes from C to the free R-complex R ® o5 C. The rank of C; over
QG is «;, the number of i-cells of Y/G, and so is the rank of R ® g C; over R.
Moreover R ® oc @ = 0 so that the augmentation C - Q becomes 0 after localiz-
ing. This procedure yields the results of Sections 2, 3 and 4 concerning the Euler
characteristic of Y/G. The details, which I had carried through before dealing with
the general amenable case as described in the present paper, will not be given
here—not because they are uninteresting, in the contrary: I have learnt, in the
meanwhile, of a forthcoming paper of Hillman [7] which gives a very complete and
interesting treatment of elementary amenable groups and of the localization method
in all their aspects.
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