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Minimale Erzeugendenanzahl von Moduln

Klaus Langmann

Die minimale Erzeugendenanzahl \M\R eines /^-Modules M ist instabil bei
treuflachen Ringerweiterungen, sogar schon bei Grundkôrpererweiterungen, wie das

Beispiel

R Q[XX, X2\\(X\ - 2X\ - 1), M:= (Xx - 3, JT2 - 2)R

zeigt: Denn hier ist \M\R=2, wâhrend M®Q[yJl] von dem einen Elément
(Xx — 3) + y/2 (X2 — 2) erzeugt wird. Insofern mag Satz 1.3 interessieren, der fur
treuflache Ringerweiterungen zeigt, daB unter einer Dichtheitsvoraussetzung die
minimale Erzeugendenanzahl erhalten bleibt. Damit kann man z.B. funktionentheo
retische Ergebnisse von Forster [2] und Grauert [3] auf den algebraischen Fall
hinunterdrùcken (Folgerung 1.4) und erhâlt so z.B. Aussagen, daB fur bestimmte
Lokalisationen vom Polynomring C[XX,.. Xn] projektive Moduln frei sind (dies
ist durchaus nicht fur aile Lokalisationen richtig, vgl. das nach 1.4 Gesagte).

In §2 wird die minimale Erzeugendenanzahl fur Moduln ùber Lokalisationen des

Polynomrings K[X{,..., Xn] bei nichtarchimedisch diskret bewertetem Kôrper K
betrachtet. Satz 2.2 zeigt in diesem Fall, daB die globale Erzeugendenanzahl gleich
dem Maximum der lokalen Erzeugendenanzahlen ist (womit natûrlich auch fur dièse

Ringe projektive Moduln frei sind). Mit Hilfe von Satz 1.3 folgt aus diesem

nichtarchimedischen Résultat eine semiglobale Aussage fur kohârente Garben M auf
einer ûber Q defînierten Kurve X (wobei Q der algebraische AbschluB von Q

bedeutet): Bezeichnet nâmlich h das Maximum der lokalen Erzeugendenanzahlen

von M, so gibt es zu jedem festen Zahlkôrper K (d.h. [K: Q] &lt; oo) schon h viele

globale Schnitte, die M in allen AT-rationalen Punkten von JTerzeugen (Satz 2.3.c).

Ist Zeine beliebig dimensionale Varietât, so gilt dièse Aussage noch fur aile Z-ganzen
Punkte von X fur jede feste endlich erzeugte Z-Algebra Z (Satz 2.3.b). Beide

Aussagen haben zahlentheoretischen Charakter; sie werden z.B. falsch, wenn man &quot;Jf

Zahlkôrper&quot; durch &quot;K =&gt; Q algebraisch&quot; ersetzt.

In §3 schlieBlich wird die minimale Erzeugendenanzahl eines i?-Moduls M im

Zusammenhang mit der /-adischen Komplettierung R untersucht; mit Hilfe von Satz

1.3 beweisen wir in 3.2, daB zwischen \M\R und \MR\r eine enge Verbindung besteht.

An dieser Stelle môchte ich dem Referenten fur zahlreiche Hinweise danken.
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§1. Erzeugendenanzahl bei Ringerweiterung

Im folgenden seien R, Rl9R2 etc. ^tets kommutative Ringe mit 1. Dabei
definieren wir

DEFINITION 1.1. Eine Ringerweiterung Rl c R2 heiBt &quot;einheitendicht&quot;, wenn
zu jedem linearen Polynom P(T) 1 +&lt;xT g R2[T] und zu jedem r2 g R2 ein rx g Rx

existiert mit P(r2 - rx) g R%.

Die Motivation zu dieser Bezeichnung ergibt sich aus folgendem unmittelbar zu
beweisenden

BEISPIEL 1.2. Sei R2 ein topologischer Ring und Rx c= R2 ein Unterring.
Enthâlt die Einheitengruppe R$ eine (bezùglich dieser Topologie) offene Menge
und ist Rx dicht in R2, so ist R{ c R2 &quot;einheitendicht&quot;.

Fur dièse Klasse von Ringerweiterungen bleibt die minimale Erzeugendenanzahl
\M\R erhalten:

SATZ 1.3. Sei R2^&gt; Rx eine einheitendichte Ringerweiterung. Weiter sei M ein

endlich erzeugter Rx-Modul. Dann gibt es einen R{-Untermodul M c M mit
\M\Ri \M®R2\R2 und M®R2 M®R2.

Ist insbesondere R2 3 R{ eine treuflache und einheitendichte Ringerweiterung, so

\M\R \M®R2\R

Beweis. Sei M ®R2 (gu ,gh)R2 mit gveM®\ fur l£v£h. Weiter
sei (/i,.,A) ein minimales Erzeugendensysthem von M®R2, also mit

k-=\M®R2\Rl ^ h. Ziel ist es, ein solches minimales Erzeugendensystem

/*,...,/* mit /? g M ® 1 fur 1 ^ i &lt; k zu konstruieren. Dazu schreibe /, in der

Form

/ I ^&amp; fur 1 ^ i
»« i

mit rw g ^2. Entsprechend hat gv die Gestalt

: Yj auvfu fur 1 ^ v ^ h
14= 1
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mit auv g R2. Wir betrachten das Polynom in den hk vielen Variablen {Tw}i &lt;;,&lt;;*

&apos;i

&lt;i&lt;-

(wobei ôul das Kroneckersymbol bedeutet). Zeige jetzt allgemein durch Induk-
tion nach m, daB es zu jedem Polynom Q e R2[TU Tm] mit Q(0) 1,

welches bei festgehaltenem Tl9... ,T,_l9 Tt + x,..., Tm stets in Tt linear ist, und

zu jedem Tupel (rXi rm) g R2 ein Tupel (5,,..., sm) g R™ existiert mit
Q(rx — sl9. rm — sm) g jRf : Der Fall m 1 folgt aus Définition 1.1. Wenn die

Aussage fur m — 1 richtig ist, so gibt es (sX9... 9sm_x) e R™~x mit
a := (?(&gt;! — sx,..., rm _ x — sm _ x, 0) g R%. Wird jetzt noch einmal 1.1 auf das lin-
eare Polynom a ~lQ(rx —sx,...,rm_x—sm_x,T) angewendet, so folgt der Induk-
tionsschritt.

Fur unser obiges Polynom P((Tlv)) heiBt dies, daB zu den oben konstruierten
Elementen rw e R2 fur 1 ^ i ^ R2 fur \ &lt;&gt; i &lt;&gt; k, 1 &lt;&gt; v ^ h auch Elemente slv g i?!
existieren mit

Fur dièse jltJ setze bei 1 &lt;¦ i &lt;¦ k

/,*==! swgveM®\.
v= 1

Dann ist

h

f? ~fi Z (sw - rw)gv
V

_ V [ (c _r V a— Zj \ \*w rw) la &quot;ut

v= 1 \ «= 1

A: /A-y n y û (j -r- L M L a«vVw rx

u 1 V 1

Damit ist fur \ &lt; i &lt; k

k / h \
f*=Y flS -Y a (r -sJl L, Ju\uui la «uvViv *wJ &apos;

u= 1 \ v= 1 /
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Wegen (*) ist deshalb

M®R2 (fu... Jk)R2 (/?,... JÎ)R2

Damit ist die erste Aussage gezeigt. Da bei R2 =3 Rx treuflach aus M ®R2 M ®R2
schon M M folgt, ist auch die zweite Aussage bewiesen.

Mit Satz 1.3 kônnen wir insbesondere algebraische Aussagen auf den analytis-
chen Fall zurûckfûhren und bekommen damit bessere Schranken als die allge-
meinen algebraischen Abschâtzungen [1], Satz 1 (dabei bezeichnet &quot;algebraisch

holomorph auf X&quot; bzw. &quot;algebraisch auf X&quot; eine Einschrânkung eines Polynoms
bzw. einer rationalen Funktion auf X)

FOLGERUNG 1.4. Sei X a Cn eine quasiprojektive, im Cn abgeschlossene Un-
tervarietât. S a X sei eine kompakte Menge mit

S Sx&gt;={xe X; \f(x)\ &lt;: Max \f(z) | fur aile in X holomorphen/}.
z e S

(a) Bezeichnet R den Ring der auf X algebraischen und auf S holomorphen
Funktionen

-fr*R R(S) := &lt;-; fg auf X algebraisch holomorph, und g(z) ï 0 Vz e S &gt;

so gelten fur jeden endlich erzeugten R-Modul M die verschàrften Forsterschen

Abschâtzungen

\M\K* Max [\Mm\Rm + nm(M)-ï],
m e Max Spec R

wobei

/tm(M):=Max(l,dimm {m e Max Spec R; \M*\Rrh ^ \Mm\RJ).

(b) Besitzt S eine Umgebungsbasis von zusammenziehbaren Steinschen Mannig-
faltigkeiten, so ist jeder endlicljt erzeugte projektive R-Modul M schon frei.

Beweis. Ist / (/,,... /fk)R ein echtes Idéal in R mit oBdA in X holomorphen
algebraischen Funktionen /,,... ,fk und hâtten die /i,... ,fk keine gemeinsame
Nullstelle in S, so gâbe es nach [4], 7.2.1 wegen S §x schon in X holomorphe
Funktionen g\9..9gk mit EfL, xftg, 1. Da wir die g, auf S beliebig gut durch auf
X algebraische holomorphe Funktionen gt approximieren kônnen, wâre dann
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£f«i/,g, Einheit in R. Damit entspricht MaxSpeci* der Menge S. (Dies ist fur
beliebige Mengen S nicht richtig: Ist z.B. A C[Xl9X2] und S C2- {0}, so ist
R(S) ^4 und sommit entspricht Max Spec jR(S) nicht der Menge S.)

Bezeichnet R2 den Ring der in einer Umgebung von S holomorphen Funk-
tionen, so ist nach Beispiel 1.2 schon R2=&gt;R einheitendicht. Ferner ist auch R2z&gt; R
treuflach ([6], 3.4). Nach 1.3 ist damit \M\R \M®R2\Rl. Dièse letzte Zahl ist
aufgrund der verschârften analytischen Abschâtzungen von Forster ([2], 4.6)

&lt;Mslx[\MOxL +nx(M)-l]9
xe S x

wobei 0 die analytische Strukturgarbe bedeutet und

nx(M) Max (1, dimx {z e X; \M(9Z \ ^ \M(9X |})

ist. Ist dann m das dem Punkt z entsprechende Idéal, so ist Oz treuflach ûber R^,
woraus die Behauptung folgt.

(b) Wir benutzen das Résultat von Grauert [3], dafl bei zusammenziehbaren
Steinschen Mannigfaltigkeiten jeder projektive analytische Modul schon frei ist.
Damit ist also M®i£2 enl freier R2-Modu\. Das bedeutet \M®R2\Rl &apos;RsingM.

Wie oben folgt \M\R Rang M, womit M frei ist.

Merkwûrdigerweise ist zumindest im Reellen Fall ein 1.4(b) entsprechende
Aussage bei nicht kompakten Mengen S nicht richtig: Wie mir F. Ischebeck

mitteilte, ist fur den zusammenziehbaren Raum S&apos;=IR3--/f (wobei H c R3 eine

Halbgerade ist) nicht jeder projektive i*(S)-Modul frei. Da jeder A*= R[Xt, X2, X3]
-Modul frei ist, und R(S) eine Lokalisation von A ist, vererbt sich also insbesondere

nicht die Eigenschaft &quot;projektiv =&gt; frei&quot; auf Lokalisationen von A.

§2. Erzeugendenanzahl bei nichtarchimedisch bewerteten Grundkôrpern

Grundlegend fur das Weitere ist folgendes

LEMMA 2.1. Sei K^&gt;Q ein nichtarchimedisch diskret bewerteter Kôrper mit
endlichem Restklasenkôrper

£&quot;:= {x e K; \x\ &lt;: \}/{x e K; \x\ &lt; 1).

Ist dann U czKn ein Polyzylinder
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mit rt g R+ und a •= {ax,..., an) e Kn, so gibt es ein Polynom P g K[Xl,..., Xn] mit

0&lt;|P(z)|^l fur zeU
a&quot;1 &lt;&gt;\P(z)\ fùrzeKn-U,

wobei

a:=max {\x\;x e Kmit \x\ &lt; 1} &lt; 1

ist. Weiter gibt es ein Zahl s e N, so dafi fur x e K&quot; gilt:

t xs,=0 o x=0. (*)

Beweis. OBdA a (0,..., 0) und rt \bt \ fur b, e K. Ist q «= ord /F*, so ist fur
/ g AT mit |f | 1 schon \tq — l| ^ a. Da die Bewertung nichtarchimedisch ist, gibt es

eine Primzahl p mit [p | ^ a. Dann folgt aus \tq — 1| ^ a

\tqpr — 1| ^ ar+1. (I)

Sei jetzt me^ fest und r eN so groB, daB fur aile Zahlen k ^m stets
Ifcl &gt; 0Lqpr + &lt;xr+l gilt. Setze dann fur x (xx,..., xm) e Km und 5 «= ^pr

Ist x # 0, so ist nach Umnumerierung der Koordinaten fur eine Zahl 1 &lt; h ^ m

dann ist nach (I)

7 (JC —.
i= 1

Weiter ist fur i ^ k + 1

(II)

(III)
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Damit folgt aus (II) und (III)

+ a&apos;+1)- (IV)

Nach Konstruktion von r ist der rechte Ausdruck &lt;|xt|5|/:|, woraus

max |jc,|5 (V)

folgt. Wird hier speziell m n + 1 und x, z, /bt fur 1 £ i £ n sowie xn + x
1

gesetzt, so folgt, daB das Polynom

P(zl,..., zn) := 1 + £ {zllbl)s (VI)

die gewûnschten Bedingungen erfûllt. - Der Zusatz folgt aus (V).
Der Zusatz (*) hat natûrlich eine âhnliche Konsequenz wie im reellen Fall die

analoge Aussage fur s 2. - Der nachstehende Satz 2.2 wird spâter im Fall &quot;i£

komplett bewertet&quot; angewandt, da dann schon abgeschlossene und beschrânkte

Mengen S a X kompakt sind. Damit haben wir ein Analogon zu Satz 1.4 mit
allerdings besseren Abschâtzungen fur die minimale Erzeugendenanzahl:

SATZ 2.2. Sei K ein nichtarchimedisch diskret bewerteter Kôrper mit endlichem

Restklassenkôrper. X a Kn sei eine abgeschlossene, ùber K definierte quasiprojektive
Untervarietàt, S c X eine feste Menge. Bezeichne mit

R := R(S) •= &lt;- ;f,g sind Einschrânkungen auf X von Polynomen aus

}
K[XX, ...,Xn] mit g(x)*0fùr xeS\.

(a) Ist S cX eine kompakte Menge, so gilt fur jeden endlich erzeugten R-Modul
M die Beziehung

|ML= Max \Mm\R
tn e Max Spec R

*&quot;

(b) Ist dim X 1 und K komplett bewertet, so gilt dièse Aussage auch fur das

nichtkompakte S X.

Beweis. Aufgrund von Lemma 2.1 (*) hat jedes echte Idéal in R eine Null-
stelle in S; und somit haben die maximalen Idéale m c R die Form
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m =(xl— al9..., xn— an)R mit a (al9. an) e S. Im folgenden identifizieren
wir auf dièse Weise Max Spec R mit S.

Aussage (a). Da S kompakt ist und da \M^\R^ ^/i:=Max^ \M^ \Ra fur aile

m g Max Spec R ist, gibt es eine endliche Ûberdeckung {U, }t e 7 von S und Elemente

mlU ,mlh e M mit

m (m,!,..., mlh)Rm fur *n eUtnS, (I)

wobei die £/, Polyzylinder um gewisse Punkte a, g Kn sein sollen. Wegen der
nichtarchimedischen Bewertung ist dabei oBdA U, n Uj 0 fur / #/ Wieder wegen
2.1 (*) entsprechen die maximalen Idéale von R(UtnS) den Punkten aus U,nS.
Dann folgt aus (I) fur aile i e I

MR(Ut n S) (mfl,..., mlh)R(Ut n S). (II)

Da aile mJU g Af sind, haben wir damit eine Darstellung fur aile Paare (i,j) g / x /

(III)

mit gewissen Funktionen r™ g R(UtnS). Dabei kônnen wir fur i =j schon r^ 5MtJ

Kroneckersymbol) wâhlen. Da aile r™ auf der kompakten Menge U,nS holo-
morph sind, gibt es eine Konstante L mit

\r™(x) \^L fur xeUtnS, fur ij e/undw,^ h.

Wâhle dann nach Lemma 2.1 Polynôme P, g tf^,..., Xn] mit 0 &lt; |Pf (jc) | ^ 1 fur
jc g Ut und a&quot;1 ^ |P,(jc)| fur x e Kn - Ut. Wâhle weiter seNso groB, daB olsL &lt; 1

ist, und definiere Elemente aus M durch

wî&apos;=I&quot;fc II (^)5 fur 1 ^n^ A.

/g/ Are/-{y}

Wir zeigen jetzt, daB M (wf,..., wj)^ ist. Dazu beachten wir, daB bei festem

(i,j) g / x / fur die h x h -Matrix

nach (III) die Beziehung (mit t transponierter Vektor)

(mjX,..., /w,/,) MtJ(mtl,..., wlA)&apos;
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galt. Also folgt fur festes / e I

(mf,. ,mî) fi (PkY I «v(Py)-&apos;kh.
• .,»!*)&apos;. (IV)

\* e / y e / /
Bezeichnet fur eine Matrix M (auv) die Matrixnorm ||M|| das Maximum der
Normen |auv|, so gilt (da fur x e U, nS nach Konstruktion der Polynôme P, schon

Pj(x) | &gt; a -l wegen Ut a Kn - Uj ist)

||MvW(Py(jc))-*||^La&apos; fùrye/-{*}, furjceî/.nS. (V)

Fur 7 1 ist Miy(x)(/&gt;7(x))~J das (Py(x)) &quot;Mâche der Einheits-matrix, wobei nach
Konstruktion von P, schon (P, (jc)) ~s &gt; 1 fur jc e £/, n 5 ist. Da Lols &lt; 1 war, folgt
aus (F), daB die Matrix yLje/MlJ(x)(PJ(x))~s fur x e UtnS invertierbar ist. Dann
folgt aus (IV)

(m,,,..., mlh)R^ (mf,. mi)Rm

fur aile maximalen Idéale m, die den Punkten (7, n 5 entsprechen. Daraus ergibt
sich mit (I)

Mi^ =(&lt;,..., m,*)iL. (VI)

Da jedes maximale Idéal m cz R fur ein gewisses / e / einem Punkt aus U,nS
entspricht, folgt aus (VI) schon die Behauptung M (mf,..., m*)R.

Aussage (b). Sei h ^ \Mm \Rm fur aile maximalen Idéale m a R /?(Z). Wieder

wegen 2.1 (*) entsprechen die maximalen Idéal von R den Punkten aus X. Da X
eine Kurve ist und da deswegen ein lokales Erzeugendensystem bis auf endlich viele

Ausnahmen auch in den ùbrigen Punkten von X ein Erzeugendensystem bildet, gibt
es eine Konstante L e R+ und Elemente Wu Wh e M mit

MR^ (m7,..., rn^i^ fur aile m mit |#»| &gt; L (VII)

(wobei fur ein maximales Ide^l ^ mit |«f | der Betrag des zugehôrigen Punktes aus
Kn gemeint ist). Da K komplett diskret bewertet ist, ist {x e X; \x\ ^ L} kompakt;
somit gibt es nach Teil (a) Elemente m,,..., mh) e M mit

(rhx,..., mh)Rw fur aile m mit \m\&lt;&gt;L (VIII)



358 KLAUS LANGMANN

OBdA gebe esreÀ mit \r\ L. Dann definiere fur x (jc,, xn) e Kn

welches fur geeignetes s e N nach 2.1 (VI) die Bedingung

0&lt;|P(jc)|&lt;n fur AreZmit |jc|^£ und \P{x)\*&lt;x-1 fùrxeZ

mit |;c| &gt; L erfûllt. Ferner sind nach 2.1 (V) fur groBes |jc| die beiden Zahlen \P(x)\
und |jc|s von gleicher GrôBenordnung.

Ersetze jetzt im Beweis von Teil (a) die Indexmenge I durch die Menge I-= {/, 2}.
Dabei sei Ux •= {x e X; \x\ ^ £}, U2&apos;-= {x e X; \x\ &gt; L}9 mlv =mvfùrl£v^h, und

m2v TFTV fur \ &lt;&gt;v &lt;&gt; h. Die Funktionen r™ und die Matrizen MtJ definiere wie in
Teil (a); die Polynôme Pt definiere durch die in R liegenden Elemente PX-=P,
P2.= &lt;x~lPl. Dann gilt fur gewisse Konstanten N e N, L e R+

\rfx(x)\&lt;L|P,(x)\N fur x e U2 und u9 v &lt; h.

Damit gilt, wenn s » N ist, die (V) entsprechende Abschâtzung fur (ij) (2, 1).

i &lt; 1 fur x e U,. (IX)

Im Fall (/,/) (1, 2) wird dièse Abschâtzung genauso wie (V) hergeleitet (da wie in
Teil (a) fur i 1 ja Ut kompakt ist), und wie in Teil (a) schlieBen wir, daB das dort
definierte (mf,..., mj) ein gewûnschtes Erzeugendensystem bildet.

Aus Satz 2.2(b) folgt insbesondere, daB fur eine singularitâtenfreie Kurve X
schon JR(J!O faktoriell ist. Falls dim X &gt; 1 ist, kônnen wir âhnlich wenigstens noch

zeigen, daB jedes Elément der Divisorenklassengruppe von R(X) eine endliche

Ordnung hat. [Denn wird p c R(X) von (/i,...,/A) erzeugt und ist lokal
pR^ =ftRm fur ein von dem maximalen Idéal m abhângenden Index / ^ h, so zeigen

wir, daB Sf= x (ft)s das Primideal ps fur geeignetes s e N erzeugt.]
Satz 2.2 ist natûrlich im wesentlichen nur fur komplett bewertete Kôrper

intéressant. Aber mit Satz 1.3 kônnen wir dièse Aussage auf Moduln ûber Lokalisa-
tionen von Q[Xl,..., Xn] herunterdriicken:

SATZ 2.3. Sei X c Qn eine abgeschlossene quasiprojektive Untervarietât. Mit A
bezeichne den Ring aller aufX eingeschrànkten Polynôme aus Q[XX,..., Xn], Weiter
sei M ein jester, endlich erzeugter A-Modul mit

h-= Max \MjAm
*n e Max Spec A
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Bezeichne fur eine feste Teilmenge T a X den nach T lokalisierten Ring mit

A(T)&apos;-=l£;f,geA undg(x) /0 fur x e A.

Dann gilt fur jeden Zahlkôrper K:
(a) Ist S cz X eine bezùglich einer nichtarchimedischen Bewertung beschrànkte

Menge, so ist

(b) Speziell ist fur jede endlich erzeugte Z-Algebra Z c K

\MA(XnZ&quot;)\AiXr,zn)&lt;h.

(c) Ist dim X 1, so gilt sogar

\MA(XnK&quot;)\AiXr,Kn)&lt;h.

Beweis Aussage (a). Der Zahlkôrper K sei oBdA so groB, daB X ùber K definiert
und daB der ^-Modul M ûber K gegeben ist (d.h. wir haben eine Darstellung
M ~Aq/N, wobei N cz Aq durch Tupel von ûber K definierten Funktionen erzeugt
wird). Sei dann wl5..., mq ein Erzeugendensystem von M ûber A. Wir betrachten
zunâchst folgenden Ring:

R-=RK(S nKn)-=&lt;- ;/und g sind Einschrânkungen von Polynomen

aus K[XX,.. Xn] mit inf \g(x)\ &gt;

Natûrlich ist R c A(S n Kn). Sei weiter K die Kompletierung von K bezùglich der

gegebenen nichtarchimedischen Bewertung. Da X durch Gleichungen ûber K
gegeben ist, definieren dieselben Gleichungen eine Untervarietât X a Kn. Weiter ist
K lokalkompakt; also gibt es eine kompakte Menge S c= X, so daB S n Kn in S

bezùglich der nichtarchimedischen Topologie dicht ist. Dann ist nach Beispiel 1.2

der Ring RK(SnKn) in dem analog definierten Ring R&apos;=R^(S) einheitendicht. Ist
dann

h:=\(ml9...,mq)R\Â, (I)
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so gibt es nach Satz 1.3 schon mx,.. &gt;% 6 (m,,..., mq)R mit

(m,,. ma)R (m!,..., mq)R. (II)

Wir zeigen jetzt h £ h: Nach Satz 2.2 gibt es zunâchst ein maximales Idéal *n &lt;^R,

so dafi gilt

A«|(mlf...,nf,)^|^. (III)

Nach 2.1 (*) entspricht m einem Punkt â e S (d.h. m ist das Verschwindungsideal
aller Funktionen aus R in dem Punkt a). Sei dann £ der algebraische AbschluB von
K und 5C c ^w die Z c j?w entsprechende Varietât. Dann ist auf natûrliche Weise

XaX. Wir bezeichen mit $ die Garbe der auf X algebraischen holomorphen
Funktionen. Dann ist der lokale Ring @â treuflach uber R^ (da die entsprechenden

Komplettierungen durch Grundkôrpererweiterungen hervorgehen). Damit folgt aus

(III) die Gleichung

h \(mu...,mq)@â\dâ. (IV)

Nach Umnumerierung der mx,..., mq erhalten wir hieraus eine Darstellung

(w,,..., mq)Sâ

{(mls..., mt_,, ml+ 1?..., m^â ^ (m,,. m^ fur aile i ^ h. (V)

Bezeichne mit Jtci0 die auf )C cz Kn gegebene Idealgarbe

Aus (V) folgt, daB â e f :=P)f=1 Trâger &lt;/, ist. Da die Relationen zwischen den

Modulelementen m3 schon ûber Q gegeben sind, ist Y c X eine ûber Q definierte
Varietât. Da wir gerade Y ^ 0 gezeigt haben, gibt es somit nach dem Hilbertschen
Nullstellensatz auch ein âe YnQn. Fur diesen Punkt â ist nach Définition von f
also auch

K=\(mX9...9mq)êfa\sê. (VI)

Andererseits folgt aus der Définition von h wegen â e Y n Qn c X

..9mqyffs\âii. (VII)
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(Hierbei wurde benutzt, daB Gà treuflach ùber dem Ring Am ist, wenn m das

dem Punkt â e X entsprechende maximale Idéal ist.) Aus (VI) und (VII) folgt
die behauptete Ungleichung h &lt;&gt; h. Dann kônnen wir h durch h ersetzen. Da
Max Spec R S war, erhalten wir also aus (II)

(ift,,.. mh)0x (mx, mq)Sx (VIII)

fur aile xgSczX Wegen SnKnc§ gilt (VIII) erst recht fur aile xeSnK&quot;.

Wieder nach 2.1(*) entspricht Max Spec A(S n Kn) der Menge SnK&quot;, und da

wieder die entsprechenden lokalen Ringe (A(S nKn))^ a@x eine treuflache Er-

weiterung bilden, folgt aus (VIII) schon

(m,,.. mh)A(S nK&quot;)=(mu...9 mg)A(S n Kn).

Dies ist die Behauptung (a). - Aussage (b) folgt sofort aus Teil (a).

Beweis Aussage (c). Nach (VIII) gibt es zu gegebener Konstante L eU+
Elemente ml,. ,mhe M mit (m,,. mh)(9x (mx,. mq)ëx fur aile
xeXnK&quot; mit |x|^L. Da jetzt X eine Kurve ist, gibt es fur genûgend
groBes L Elemente Wu ,ïn~h e M mit (m{9.. rn^)ëx {mx,. mq)(9x fur
aile x e XnK&quot; mit |jc| ^ L (vgl. Beweis 2.2(b)). Entsprechend dem Beweis 2.2(b)
kann man daraus m\,. m? e MA(XnKn) konstruieren mit (mf,..., m?) x
A(XnKn)=(ml9... ,mq)A(Xr\Kn).

§3. Erzeugendenanzahl bei Komplettierung

Wir brauchen folgenden

SATZ 3.1. Sei R ein noetherscher Ring mit Krulldim R d. Es sei J c R ein

Idéal, zu dem es h viele Elemente gl9.. ,gh e J gibt mit

fur aile maximalen Idéal m- c R mit m^&gt;J. Dann ist

{h, falls h&gt;d ist
&quot;

[h + 1 sonst.

Beweis. s. [5] Satz 5.17.
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FOLGERUNG 3.2. Sei R ein noetherscher Ring, Ist J c R ein Idéal, so beze-

ichne R die J-adische Komplettierung. Dann gilt:
(a) \J\R

(b) Ist \jA\&amp;&gt; Krulldim R, so ist

(c) Ist J c: Jac R := f]m e Max Spec Rm, so gilt fur jeden R-Modul M

Beweis. Nach Beispiel 1.2 ist R einheitendicht m Ê. Dann folgen die Aussagen
(a) und (b) aus Satz 1.3 und 3.1; die Aussage (c) folgt direkt aus Satz 1.3, da jetzt
R sogar treuflach ûber R ist.
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