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Minimale Erzeugendenanzahl von Moduln

KLAUS LANGMANN

Die minimale Erzeugendenanzahl |M|, eines R-Modules M ist instabil bei
treuflachen Ringerweiterungen, sogar schon bei Grundkorpererweiterungen, wie das
Beispiel

R==@[X1,X2]/(Xf—2X%——l), M:=(X,~-3,X,-2)R

zeigt: Denn hier ist |M|g =2, wihrend M ® Q[,/2] von dem einen Element
X,-3)+ \/E(Xz-— 2) erzeugt wird. Insofern mag Satz 1.3 interessieren, der fiir
treuflache Ringerweiterungen zeigt, daB unter einer Dichtheitsvoraussetzung die
minimale Erzeugendenanzahl erhalten bleibt. Damit kann man z.B. funktionentheo-
retische Ergebnisse von Forster [2] und Grauert [3] auf den algebraischen Fall
hinunterdriicken (Folgerung 1.4) und erhélt so z.B. Aussagen, daB fiir bestimmte
Lokalisationen vom Polynomring C[X,, ..., X,] projektive Moduln frei sind (dies
ist durchaus nicht fiir alle Lokalisationen richtig, vgl. das nach 1.4 Gesagte).

In §2 wird die minimale Erzeugendenanzahl fiir Moduln iiber Lokalisationen des
Polynomrings K[X,, ..., X,] bei nichtarchimedisch diskret bewertetem Korper K
betrachtet. Satz 2.2 zeigt in diesem Fall, daB die globale Erzeugendenanzahl gleich
dem Maximum der lokalen Erzeugendenanzahlen ist (womit natiirlich auch fiir diese
Ringe projektive Moduln frei sind). Mit Hilfe von Satz 1.3 folgt aus diesem
nichtarchimedischen Resultat eine semiglobale Aussage fiir kohédrente Garben .# auf
einer iiber @ definierten Kurve X (wobei Q der algebraische AbschluB von Q
bedeutet): Bezeichnet nidmlich 4 das Maximum der lokalen Erzeugendenanzahlen
von ., so gibt es zu jedem festen Zahlkorper K (d.h. [K: @] < o0) schon A viele
globale Schnitte, die .# in allen K-rationalen Punkten von X erzeugen (Satz 2.3.c).
Ist X eine beliebig dimensionale Varietit, so gilt diese Aussage noch fiir alle Z-ganzen
Punkte von X fir jede feste endlich erzeugte Z-Algebra Z (Satz 2.3.b). Beide
Aussagen haben zahlentheoretischen Charakter; sie werden z.B. falsch, wenn man “K
Zahlkorper” durch “K > Q algebraisch” ersetzt.

In §3 schlieBlich wird die minimale Erzeugendenanzahl eines R-Moduls M im
Zusammenhang mit der J-adischen Komplettierung R untersucht; mit Hilfe von Satz
1.3 beweisen wir in 3.2, daB zwischen | M|, und | MR|¢ eine enge Verbindung besteht.

An dieser Stelle mochte ich dem Referenten fiir zahlreiche Hinweise danken.
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§1. Erzeugendenanzahl bei Ringerweiterung

Im folgenden seien R, R,, R, etc. Stets kommutative Ringe mit 1. Dabei
definieren wir

DEFINITION 1.1. Eine Ringerweiterung R, = R, heiBit “einheitendicht”, wenn
zu jedem linearen Polynom P(T) =1+ aT € R,[T] und zu jedem r, € R, ein r, € R,
existiert mit P(r, —r,) € R%.

Die Motivation zu dieser Bezeichnung ergibt sich aus folgendem unmittelbar zu
beweisenden

BEISPIEL 1.2. Sei R, ein topologischer Ring und R, < R, ein Unterring.
Enthédlt die Einheitengruppe R%¥ eine (beziiglich dieser Topologie) offene Menge
und ist R, dicht in R,, so ist R, = R, “einheitendicht”.

Fiir diese Klasse von Ringerweiterungen bleibt die minimale Erzeugendenanzahl
|M | erhalten:

SATZ 1.3. Sei R, o R, eine einheitendichte Ringerweiterung. Weiter sei M ein
endlich erzeugter R,-Modul. Dann gibt es einen R,-Untermodul M — M mit
|M|z, =|M @R,|z, und M@R,=MQR,.

Ist insbesondere R, > R, eine treuflache und einheitendichte Ringerweiterung, so
ist |M|g, = |M ® R;|,.

Beweis. Sei M®R,=(g,,...,g,)R, mit g,e M®1 fir 1 <v <h. Weiter
sei (fi,...,fx) ein minimales Erzeugendensysthem von M ® R,, also mit
k:=|M ® R,|g,<h. Ziel ist es, ein solches minimales Erzeugendensystem

¥ oo ¥ mit f*e M®]1 fiir 1 <i<k zu konstruieren. Dazu schreibe f; in der
Form

h
fi=Y rog, firl<i<k

v=1
mit r,, € R,. Entsprechend hat g, die Gestalt

k
g, =) a,f, firl<v<h

u=1
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mit a,, € R,. Wir betrachten das Polynom in den Ak vielen Variablen {T, }1 <<«
I1<v<sh

R(T,)) = det (a - a T)

(wobei ¢,; das Kroneckersymbol bedeutet). Zeige jetzt allgemein durch Induk-
tion nach m, dal es zu jedem Polynom Q € R,[T,,...,T,] mit Q(0) =1,
welches bei festgehaltenem 7',...,7;_,, T;,4,..., T, stets in T; linear ist, und
zu jedem Tupel (r,,...,r,) € RY ein Tupel (s,...,S5,) € R? existiert mit
Oy —5815...s"m —Snm) € R¥: Der Fall m =1 folgt aus Definition 1.1. Wenn die
Aussage fiir m —1 richtig ist, so gibt es (s;,...,8,_1) €ERT™' mit
a=0Q(r —S81,. . s"m_1—58u_1,0) € R¥. Wird jetzt noch einmal 1.1 auf das lin-
eare Polynom a='Q(r, — sy, ..., m_1—5Sm_1, I') angewendet, so folgt der Induk-
tionsschritt.

Fiir unser obiges Polynom P((T},)) heiBt dies, daB zu den oben konstruierten
Elementen r, e R, fir 1 <i<R, fiir 1 <i<k, 1 <v <h auch Elemente s, € R,
existieren mit

h
det (5ui - z auv(riv - Siv)) € R; (*)
v=1

Fir diese s;, setze bei 1 <i <k

h

fi = Z SivgveM®l'

v=1

Dann ist

h
f;k —f;——_— Z (Siv_riv)gv

vh= )
= Zl <(Siv - riv) Z:l auvﬁl)
k h
- EA(E ),

Damit ist fur 1 <i<k

fi = ifu((sui_ Z auv(riv'—siv)>'

u=1 v=1
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Wegen (*) ist deshalb

M®R2=(.f]9 s v s 9f;c)R2=(f’l.‘9 LR ,f;:)R2=M®R2

Damit ist die erste Aussage gezeigt. Da bei R, o R, treuflach aus M ® R, = M ® R,
schon M = M folgt, ist auch die zweite Aussage bewiesen.

Mit Satz 1.3 konnen wir insbesondere algebraische Aussagen auf den analytis-
chen Fall zuriickfithren und bekommen damit bessere Schranken als die allge-
meinen algebraischen Abschdtzungen [1], Satz 1 (dabei bezeichnet “algebraisch
holomorph auf X bzw. “algebraisch auf X’ eine Einschrinkung eines Polynoms
bzw. einer rationalen Funktion auf X)

FOLGERUNG 1.4. Sei X < C" eine quasiprojektive, im C" abgeschlossene Un-
tervarietdt. S < X sei eine kompakte Menge mit

S = Sy={x € X; |f(x)] < Max |f(2)] fiir alle in X holomorphen f}.
ze S

(a) Bezeichnet R den Ring der auf X algebraischen und auf S holomorphen
Funktionen

R = R(S):= {g, f, g auf X algebraisch holomorph, und g(z) #0Vz € S}

so gelten fiir jeden endlich erzeugten R-Modul M die verschdrften Forsterschen
Abschditzungen

M|z < Max [|M,|z, +n.(M)—1],

m e Max Spec R

wobei
n,,(M):=Max (1, dim,, {7 € Max Spec R; M|z = |M,,|z_}).

(b) Besitzt S eine Umgebungsbasis von zusammenziehbaren Steinschen Mannig-
faltigkeiten, so ist jeder endlich erzeugte projektive R-Modul M schon frei.

Beweis. Ist J =(f,,..., j/’k)R ein echtes Ideal in R mit oBdA in X holomorphen
algebraischen Funktionen f,...,f, und hdtten die f|, ..., f, keine gemeinsame
Nullstelle in S, so gibe es nach [4], 7.2.1 wegen S = Sy schon in X holomorphe
Funktionen g,, .., g, mit X¥_, f,g; = 1. Da wir die g; auf S beliebig gut durch auf
X algebraische holomorphe Funktionen g, approximieren kdnnen, wire dann



Minimale Erzeugendenanzahl von Moduln 353

Xi_ . fg; Einheit in R. Damit entspricht Max Spec R der Menge S. (Dies ist fiir
beliebige Mengen S nicht richtig: Ist zB. 4 =C[X,, X,] und S = C? — {0}, so ist
R(S) = A und sommit entspricht Max Spec R(S) nicht der Menge S.)

Bezeichnet R, den Ring der in einer Umgebung von S holomorphen Funk-
tionen, so ist nach Beispiel 1.2 schon R, o R einheitendicht. Ferner ist auch R, > R
treuflach ([6], 3.4). Nach 1.3 ist damit |M |, = |M ® R,|g,. Diese letzte Zahl ist
aufgrund der verschirften analytischen Abschitzungen von Forster ([2], 4.6)

<Max [|MO, |, +n. (M) —1],
xeS
wobei (@ die analytische Strukturgarbe bedeutet und
n. (M) =Max (1,dim, {z € X; |[M0O,| 2 |MO,|})

ist. Ist dann ». das dem Punkt z entsprechende Ideal, so ist @, treuflach iiber R,,,
woraus die Behauptung folgt.

(b) Wir benutzen das Resultat von Grauert [3], daB bei zusammenziehbaren
Steinschen Mannigfaltigkeiten jeder projektive analytische Modul schon frei ist.
Damit ist also M® R, ein freier R,-Modul. Das bedeutet |M ® R, |, = Rang M.
Wie oben folgt | M|z = Rang M, womit M frei ist.

Merkwiirdigerweise ist zumindest im Reellen Fall ein 1.4(b) entsprechende
Aussage bei nicht kompakten Mengen S nicht richtig: Wie mir F. Ischebeck
mitteilte, ist fiir den zusammenziehbaren Raum S:=R?®— H (wobei H = R? eine
Halbgerade ist) nicht jeder projektive R(S)-Modul frei. Da jeder A:=R[X,, X,, X;]
-Modul frei ist, und R(S) eine Lokalisation von A ist, vererbt sich also insbesondere
nicht die Eigenschaft “projektiv = frei”” auf Lokalisationen von A.

§2. Erzeugendenanzahl bei nichtarchimedisch bewerteten Grundkdrpern

Grundlegend fiir das Weitere ist folgendes

LEMMA 2.1. Sei K o Q ein nichtarchimedisch diskret bewerteter Korper mit
endlichem Restklasenkérper

k={xeK;|x|<1}/{x eK;|x|<]).
Ist dann U < K" ein Polyzylinder

U:={z e K" |Z,--a,-lsr,- fir 1<i<n}
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mitr,e R, und a:=(a,,...,a,) € K", so gibt es ein Polynom P € K[X,, ..., X,] mit
0<|P@2)|<1 furzeU
a~ ' <|P(2)| firze K"—U,

wobei
oa:=max {|x|; x e Kmit [x| <1} <1
ist. Weiter gibt es ein Zahl s € N, so dap fiir x € K" gilt:

x§=0<:>x=0, (*)

Beweis. OBdA a =(0,...,0) und r, =|b;| fiir b; € K. Ist g:=ord k*, so ist fir
t € K mit |¢t| =1 schon |t?— 1| < a. Da die Bewertung nichtarchimedisch ist, gibt es
eine Primzahl p mit |p| < «. Dann folgt aus [t9— 1| <«

1% 1| <ar . (I

Sei jetzt meN fest und reN so groB, daB fiir alle Zahlen k <m stets
k| > a®" + a"+! gilt. Setze dann fir x = (x,...,X,,) € K™ und s:=gp"

g =3 xi.

i=1
Ist x # 0, so ist nach Umnumerierung der Koordinaten fiir eine Zahl 1 <k <m
berl = el == x| > s 2 2 [xn],

dann ist nach (I)

k
3 (Gfx)* = 1)

i=1

< oy [+ (1)

k
3 (xt —x1)

i=1

= |x, [

Weiter ist fiiri 2k + 1

x| < afx, |- (11D
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Damit folgt aus (II) und (III)

(8.5)-»
i=1

Nach Konstruktion von r ist der rechte Ausdruck <|x,|'|k|, woraus

< |xl |s(as + ot l)' (IV)

m

2 x

i=

= |k| max |x/|° V)

1<i<m

folgt. Wird hier speziell m =n+1 und x;=z,/b; fir 1 <i<n sowie x,,,=1
gesetzt, so folgt, daB das Polynom

PGi,...oz)=1+ Y @b (VD

i=1
die gewiinschten Bedingungen erfiillt. — Der Zusatz folgt aus (V).

Der Zusatz (*) hat natiirlich eine dhnliche Konsequenz wie im reellen Fall die
analoge Aussage fiir s = 2. — Der nachstehende Satz 2.2 wird spdter im Fall “K
komplett bewertet” angewandt, da dann schon abgeschlossene und beschrinkte
Mengen S < X kompakt sind. Damit haben wir ein Analogon zu Satz 1.4 mit
allerdings besseren Abschédtzungen fiir die minimale Erzeugendenanzahl:

SATZ 2.2. Sei K ein nichtarchimedisch diskret bewerteter Korper mit endlichem
Restklassenkirper. X — K" sei eine abgeschlossene, iiber K definierte quasiprojektive
Untervarietdt, S < X eine feste Menge. Bezeichne mit

R:=R(S):= {j—r ; [, g sind Einschrinkungen auf X von Polynomen aus
g

K[Xx,,...,X,] mit g(x) #0 fiir xeS}.

(a) Ist S < X eine kompakte Menge, so gilt fiir jeden endlich erzeugten R-Modul
M die Beziehung

|M|R= MaX |Mm,Rm'

» € Max Spec R

(b) Ist dim X =1 und K komplett bewertet, so gilt diese Aussage auch fiir das
nichtkompakte S = X.

Beweis. Aufgrund von Lemma 2.1 (*) hat jedes echte Ideal in R eine Null-
stelle in S; und somit haben die maximalen Ideale #» <R die Form
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m=(x—a,...,x,—a,)R mit a=(a,,...,a, €8S. Im folgenden identifizieren
wir auf diese Weise Max Spec R mit S.

Aussage (a). Da S kompakt ist und da |M,, |z < h=Max, |M |5 fir alle
m € Max Spec R ist, gibt es eine endliche Uberdeckung {U,},,; von S und Elemente
my,...,my; €M mit

MR, =(my,...,my)R, fir meUnS, (I)

wobei die U; Polyzylinder um gewisse Punkte a; € K" sein sollen. Wegen der
nichtarchimedischen Bewertung ist dabei oBdA U, N U; = 0 fiir i # j. Wieder wegen
2.1 (*) entsprechen die maximalen Ideale von R(U;n S) den Punkten aus U;N S.
Dann folgt aus (I) fiir alle i € 1

MRU;AS) =(m,, ..., my)RU,NS). (1I)

Da alle m;, € M sind, haben wir damit eine Darstellung fiir alle Paare (i, /) e I x I

h
m, =Y r¥m, firu <h (II0)

v=1

mit gewissen Funktionen r}} € R(U; N S). Dabei kdnnen wir fiir i = j schon rj} =4,
(=Kroneckersymbol) wihlen. Da alle r}} auf der kompakten Menge U;n S holo-
morph sind, gibt es eine Konstante L mit

re(x)| <L firxeUnS, firijelund u,v <h.

Wihle dann nach Lemma 2.1 Polynome P; € K[X, ..., X,] mit 0 <|P;(x)| < 1 fiir
x € U;und a ! < |P;(x)| fiir x € K" — U,. Wahle weiter s € N so groB, daB a°*L < |
ist, und definiere Elemente aus M durch

mt=3m, [I (P) firl<u<h

jel kel—{j}

Wir zeigen jetzt, daB M = (m¥, ..., m})R ist. Dazu beachten wir, daB bei festem
(i,j) € I x I fiir die h x h-Matrix

nach (III) die Beziehung (mit ¢ = transponierter Vektor)

(my, ..., my) = M;(my, ...,my,)"
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galt. Also folgt fiir festes i € I

(mf,...,m}) =(]_I (Po)’ ). M,-,-(P,-)‘S)(mn, ceea )" (IV)

kel jel

Bezeichnet fir eine Matrix M =(a,,) die Matrixnorm |M| das Maximum der
Normen |a,,|, so gilt (da fiir x € U;~ S nach Konstruktion der Polynome P; schon
|P(x)| 2 a~" wegen U, = K" — U, ist)

IM,;()(P;(x)) || < La®  fiir jel—{i}, fir xeUnS. V)

Fir j =i ist M;(x)(P;(x)) ~* das (P;(x)) ~*-fache der Einheits-matrix, wobei nach
Konstruktion von P; schon (P;(x)) ~* 21 fir x e U;n S ist. Da La® < 1 war, folgt
aus (V), daB die Matrix X ,;_, M,;(x)(P;(x)) ~* fiir x € U;n S invertierbar ist. Dann
folgt aus (IV)

(my,...,my)R,_ =(m¥, ..., m)R,,

fur alle maximalen Ideale 4, die den Punkten U, S entsprechen. Daraus ergibt
sich mit (I)

(VD)

Da jedes maximale Ideal » — R fiir ein gewisses i € I einem Punkt aus U,NnS
entspricht, folgt aus (VI) schon die Behauptung M = (m¥, ..., m¥)R.

Aussage (b). Sei h > |M,,|,_ fiir alle maximalen Ideale » < R = R(X). Wieder
wegen 2.1 (*) entsprechen die maximalen Ideal von R den Punkten aus X. Da X
eine Kurve ist und da deswegen ein lokales Erzeugendensystem bis auf endlich viele
Ausnahmen auch in den iibrigen Punkten von X ein Erzeugendensystem bildet, gibt
es eine Konstante £ € R . und Elemente m,, ..., m, € M mit

MR, =(my,...,m;)R,  fir alle » mit |m|>L (VID)
/
(wobei fiir ein maximales Ideal » mit || der Betrag des zugehdrigen Punktes aus
K" gemeint ist). Da K komplett diskret bewertet ist, ist {x € X; |x| < L} kompakt;
somit gibt es nach Teil (a) Elemente r,, ..., n,) € M mit

MR, =(h,, ..., )R,  fir alle » mit || < L. (VIID)
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OBdA gebe es r € K mit |r| = L. Dann definiere fiir x = (x,, . .., x,) € K"

P =1+ 3 (/"

ji=1
welches fiir geeignetes s € N nach 2.1 (VI) die Bedingung
0<|P(x)|<1 firxeXmit|x|<L und |P(x)|2a"! firxeX

mit |x| > L erfiillt. Ferner sind nach 2.1 (V) fiir groBes |x| die beiden Zahlen |P(x)|
und |x| von gleicher GrdBenordnung.

Ersetze jetzt im Beweis von Teil (a) die Indexmenge I durch die Menge I := {i, 2}.
Dabei sei U:={x € X;|x|< L}, Uy:={x € X; |x| > L}, m;, =r, fiir 1 <v < h, und
my, =m, fir 1 <v < h. Die Funktionen r}} und die Matrizen M,; definiere wie in
Teil (a); die Polynome P; definiere durch die in R liegenden Elemente P,:=P,
Py:=a~'P~'. Dann gilt fiir gewisse Konstanten Ne N, Le R,

lrs(x)| < L|Py(x)|Y  fiir x e U, und u,v < h.
Damit gilt, wenn s >» N ist, die (V) entsprechende Abschitzung fiir (i,j) = (2, 1).
|M,(x)(P;(x) || <1 fir x € U,. (IX)

Im Fall (i, j) = (1, 2) wird diese Abschitzung genauso wie (V) hergeleitet (da wie in
Teil (a) fiir i =1 ja U, kompakt ist), und wie in Teil (a) schlieBen wir, daB3 das dort
definierte (m¥, ..., m¥) ein gewiinschtes Erzeugendensystem bildet.

Aus Satz 2.2(b) folgt insbesondere, daB fiir eine singularititenfreie Kurve X
schon R(X) faktoriell ist. Falls dim X > 1 ist, kénnen wir dhnlich wenigstens noch
zeigen, dall jedes Element der Divisorenklassengruppe von R(X) eine endliche
Ordnung hat. [Denn wird p < R(X) von (f;,...,f,) erzeugt und ist lokal
PR,, =f;R,, fiir ein von dem maximalen Ideal »2 abhidngenden Index i < A, so zeigen
wir, daB X%_, (f;)* das Primideal p* fiir geeignetes s € N erzeugt.]

Satz 2.2 ist natiirlich im wesentlichen nur fiir komplett bewertete Korper
interessant. Aber mit Satz 1.3 konnen wir diese Aussage auf Moduln iiber Lokalisa-
tionen von Q[X;, ..., X,] herunterdriicken:

SATZ 2.3. Sei X = Q" eine abgeschlossene quasiprojektive Untervarietiit. Mit A
bezeichne den Ring aller auf X eingeschrinkten Polynome aus Q[X,, ..., X,]. Weiter
sei M ein fester, endlich erzeugter A-Modul mit

h:= Max M|,

» € Max Spec 4
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Bezeichne fiir eine feste Teilmenge T < X den nach T lokalisierten Ring mit

A(T):={§;f,g € A und g(x) #0 fiir x € T}.

Dann gilt fiir jeden Zahlkorper K:
(a) Ist S c X eine beziiglich einer nichtarchimedischen Bewertung beschriinkte
Menge, so ist

|MA(S N K™)| s km S .

(b) Speziell ist fiir jede endlich erzeugte Z-Algebra Z < K
|MAX NZ") | yxnzm S h.

(c) Ist dim X =1, so gilt sogar
IMAX N K™) | qxnxm < h.

Beweis Aussage (a). Der Zahlkorper K sei oBdA so groB, daB X iiber X definiert
und daB der 4-Modul M iiber K gegeben ist (d.h. wir haben eine Darstellung
M ~ A%N, wobei N = A9 durch Tupel von iiber K definierten Funktionen erzeugt
wird). Sei dann m,, ..., m, ein Erzeugendensystem von M iiber 4. Wir betrachten
zunéchst folgenden Ring:

R:=R(SNK"):= g ; fund g sind Einschrankungen von Polynomen

aus K[X;,..., X, ] mit inf |g(x)|> 0}.
x€e SnK”n

Natiirlich ist R = A(S nK"). Sei weiter K die Kompletierung von K beziiglich der
gegebenen nichtarchimedischen Bewertung. Da X durch Gleichungen iiber K
gegeben ist, definieren dieselben Gleichungen eine Untervarietit X < K”. Weiter ist
K lokalkompakt; also gibt es eine kompakte Menge § < X, so daB SNK” in S
beziiglich der nichtarchimedischen Topologie dicht ist. Dann ist nach Beispiel 1.2
der Ring R, (S nK”) in dem analog definierten Ring R := Rg(S) einheitendicht. Ist
dann

i;3= '(m], c ey mq)ﬁ |R, (I)
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so gibt es nach Satz 1.3 schon m, ..., Mz € (m,,..., m,)R mit

(’hls'-"mﬁ)ﬁz(mla---,mq)ﬁ' (II)
Wir zeigen jetzt & < h: Nach Satz 2.2 gibt es zunichst ein maximales Ideal »: c R,

so daB gilt
h=|my,...,m)R;|z,. (I1ID)

Nach 2.1 () entspricht s einem Punkt 4 € § (d.h. » ist das Verschwindungsideal
aller Funktionen aus R in dem Punkt 4). Sei dann K der algebraische AbschluB von
K und X < K" die X = K" entsprechende Varietit. Dann ist auf natiirliche Weise
X c X. Wir bezeichen mit @ die Garbe der auf X algebraischen holomorphen
Funktionen. Dann ist der lokale Ring @, treuflach iiber R, (da die entsprechenden
Komplettierungen durch Grundkorpererweiterungen hervorgehen). Damit folgt aus
(III) die Gleichung

h=|my,...,m)0;|s, (IV)
Nach Umnumerierung der my, ..., m, erhalten wir hieraus eine Darstellung

(mla'"’ml?)@a‘=(ml9"-amq)@-ﬁ R
Mmyy...,m_y,m ..., mp)0,s(my,...,m)0, firallei<h. (V)

Bezeichne mit %, = 0 die auf X = K" gegebene Idealgarbe
Fio=(my, ..., mpO0: (my,...,my_\,m, ..., m)0O.

Aus (V) folgt, daB 4 € ¥:=(f_, Triger £, ist. Da die Relationen zwischen den
Modulelementen m; schon tber Q gegeben sind, ist ¥ < X eine iiber Q definierte
Varietit. Da wir gerade ¥ # @ gezeigt haben, gibt es somit nach dem Hilbertschen
Nullstellensatz auch ein @ € ¥ n@Q". Fiir diesen Punkt a ist nach Definition von ¥
also auch

h (VI)

Il
—_
3

3
T

S
&
ne'

Andererseits folgt aus der Definition von h wegen ae YnQ"c X

hz|my,...,m)0,|0,. (VID)
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(Hierbei wurde benutzt, daB @, treuflach iiber dem Ring A, ist, wenn »: das
dem Punkt a € X entsprechende maximale Ideal ist.) Aus (VI) und (VII) folgt
die behauptete Ungleichung / < h. Dann kénnen wir 4 durch A ersetzen. Da
Max Spec R = § war, erhalten wir also aus (II)

(..., o)0, =(my, ... ,m)0, (VIID)
fiir alle x e S X. Wegen SNnK"c S gilt (VIII) erst recht fiir alle x € S K".
Wieder nach 2.1(%) entspricht Max Spec A(S nK") der Menge SN K", und da
wieder die entsprechenden lokalen Ringe (A(S nK")), = O, eine treuflache Er-
weiterung bilden, folgt aus (VIII) schon

(s .. i )AS K™ = (m,, ..., m)A(S K™,

Dies ist die Behauptung (a). — Aussage (b) folgt sofort aus Teil (a).
Beweis Aussage (c). Nach (VIII) gibt es zu gegebener Konstante L e R,

Elemente i, ...,M,eM mit (hy,...,m)0,=(m,,...,m)0, fir alle
xe€XnK" mit |x|<L. Da jetzt X eine Kurve ist, gibt es fiir geniigend
groBes L Elemente my,...,m,e M mit (m,,...,m,)0,=(m,,...,m)0, fir

alle x e X nK” mit |x| = L (vgl. Beweis 2.2(b)). Entsprechend dem Beweis 2.2(b)
kann man daraus m¥,...,m}f e MA(XnK") konstruieren mit (m¥,...,m}) x
AXnK") =(m,, ..., m)AX nK").

§3. Erzeugendenanzahl bei Komplettierung

Wir brauchen folgenden

SATZ 3.1. Sei R ein noetherscher Ring mit Krulldim R =d. Es sei J < R ein
Ideal, zu dem es h viele Elemente g,, . . ., g, € J gibt mit

(gla LI ’gh)Rm =JRm

fiir alle maximalen Ideal » <= R mit » > J. Dann ist

IJI < h, falls h > d ist
R=)h+1 sonst.

Beweis. s. [5] Satz 5.17.
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FOLGERUNG 3.2. Sei R ein noetherscher Ring. Ist J = R ein Ideal, so beze-
ichne R die J-adische Komplettierung. Dann gilt:
(a) ||z <|JR|g+1.

(b) Ist |JR|g > Krulldim R, so ist
|J|R = IJR|ﬁ-

(c) Ist J =Jac R:= () c Max spec & 72, 50 gilt fiir jeden R-Modul M
|M|g = |MR|z.

Beweis. Nach Beispiel 1.2 ist R einheitendicht in R. Dann folgen die Aussagen
(a) und (b) aus Satz 1.3 und 3.1; die Aussage (c) folgt direkt aus Satz 1.3, da jetzt
R sogar treuflach iiber R ist.
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