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Extending immersed circles in the sphere to immersed disks in the ball

J. ScotT CARTER

Abstract. Consider a general position immersion of a circle into the 2-sphere. Suppose the immersion
has an even number of double points. Then there is a proper immersion of the 2-disk that has the
given curve as its boundary. Of all such extentions there is one with a minimum number of triple
points. This minimum is obtained algorithmically in terms of a number that is associated to the double
point set.

1. Introduction
1.1. History

The study of immersed curves dates as far back as Gauss [15]. In this work, he
defines a word on the crossing points of an immersed curve. This word together
with crossing information determines a knot in 3-space. Whitney [21] computes
the tangential winding number of a curve in terms of the crossing information.
More recent studies ([1], [14], and [18]) give information on extending immersed
curves to singular maps of surfaces into the plane.

This paper is motivated by several factors. First, the “kinky box” described in
[16] has the peculiarity that it must have a triple point (see also section 1.4).
Second, the problem of finding minimal genus immersions that represent mod 2
homology classes in 3-manifolds requires an understanding of how immersed
surfaces look when a 3-manifold is decomposed into a Heegaard splitting (See
[9)). Fourth, properly immersed disks can be glued together along their boundary
to provide projections of immersed spheres in 4-space. There is a relationship
between triple points and slice disks that is not completely clear [20]. Finally,
there is a nice interplay between the geometry of the curves and the algebra of the
Gauss words that I find extremely appealing.

Turning to the mundane, all maps and manifolds are smooth and in general
position. Immersed manifolds with boundary are proper in the sense that the
boundaries are immersed in the boundaries and tubular neighborhoods of the
boundaries inject as subbundles appropriately.
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1.2. The Problem

Let f:S!'—>S? denote a general position immersion. Suppose there is an
immersion F: (D2 S') - (B3 S?) such that 0F =f. Among all such extensions
there is one with a minimum number of triple points. The problem addressed
herein is to compute this minimum as a function of the immersion f. Hence, define
the non-negative integer, 7(f), to be the minimum number of triple points of all
the immersed disks that have (f, S!) as their boundary. The triple points sets of
any two extensions have the same parity by a theorem of Banchoff [2]. The
solution given in Theorem 3.5 is based on an invariant that is associated to
pairings of letters in the Gauss word of the immersed circle.

1.3. Organization

In Section 1.4 the kinky box of [16] is depicted. Section 2 briefly reviews Gauss
words. The Reidemeister moves and (k, r) surgeries change curves and the result-
ing Gauss words. These changes are illustrated in Section 2.2. Theorem 2.3 states
that any immersed circle with an even number of double points bounds an
immersed disk in the 3-ball; this disk may be obtained by a sequence of (1, 0)
surgeries, (2, 0) surgeries, type II, and type III moves.

In section 3, an immersed disk is assumed to exist. This disk defines a partition
of the double point set of the boundary into two element subsets. Such a partition
can be defined in the abstract; it is called a bifilaration. The dictionary definition
of bifilar is an object with two threads or filaments. The filaments here are arcs
that connect letters in the Gauss word; the points at which such arcs intersect
correspond roughly to triple points of disks. Hence, a crossing number is associ-
ated to a bifilaration. The minimum crossing number of all bifilarations of the
given curve is a lower bound for the number of triple points of a disk bounded by
the curve. A bifilaration that achieves this minimum is induced by an immersed
disk (Lemma 3.4.4). Thus the minimum crossing number is equal to the minimum
number of triple points of immersed disks. This, the main result, is stated and
proved in Theorem 3.5; the proof depends in a key way on planarity.

1.4. Two standard immersed disks
Figure 1 illustrates the standard disk that is bounded by the (ao)-immersion.

Figure 2 illustrates the “kinky disk™ that is bounded by the (ay)-immersion. The
illustrations clarify these names.
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2. Gauss words
2.1. Definitions

Let (f, S") denote an immersed curve. Assume that f is in general position.
Choose an orientation and a base point (other than a double point) for S'. Label
each double point of S' in S$? with a letter from some finite alphabet. The Gauss
word associated to f is defined as follows. At the base point the Gauss word is the
empty word. A particle that starts at the base point and travels in the direction of
the orientation of S' encounters double points. As each double point is encoun-
tered, the letter that corresponds to the double point is juxtaposed with an
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exponent ( +1) to the right end of the word determined thus far. The exponent is
chosen to be positive if and only if the other sheet of the immersed curve crosses
from left to right. Each encounter of the double point set is thus recorded for one
complete circuit of the curve.

No group theoretic meaning of the words is intended. In particular, the
syllable aa~' does not cancel. In general, a syllable is a segment of the Gauss
word. The letters of the Gauss word and their inverses can be safely confused with
the double point set of the immersed circle. This abuse of notation will be used
without further ado.

The Gauss word is defined only up to cyclic permutation, permutations of the
letters, and involution of the exponents. The papers [17, 12, 19, 10, 11] contain
further details. Gauss words classify immersed curves [10].

2.2. Reidemeister moves and surgery

There are two types of operations to be performed to immersed curves: the
“Reidemeister” moves and surgery on immersions. The parity of the double point
set is to be preserved; so a type I move inverts a curl as in Figure 3 rather than
eliminates it. Some of the surgery operations can be factored as surgery together
with a Reidemeister move, but these will still be codified in their unfactored form
as in [4]). A (k, r) surgery uses a k-disk embedded in the r-tuple set, with boundary
in the (r + 1)-tuple set, as the core of a hollow handle. The papers [4], [5], and [6]
contain further details.

The Figures 3 through 8 depict the operations. The captions show how the
Gauss words are affected by these moves. Syllables are depicted outside the
neighborhoods in which the changes occur. Of course, some of these syllables may
coincide. Figure 9 illustrates many of these moves.

The traces of the surgeries and of the type II and III moves are easy to
understand. The trace of a type I move is to insert the “kinky-box” of Haas and
Hughes [16]. This immersed disk is also depicted in Figure 2.

2.3. THEOREM A. Any immersed circle in the 2-sphere that has an even
number of double points is equivalent to an embedded circle by a sequence of
separating (1, 0) surgeries, (2, 0) surgeries, type II, and type III moves.

B. Such a sequence defines a properly immersed disk in the 3-ball that has the
given curve as its boundary and that has no local maxima.

C. Any properly immersed disk in the 3-ball can be factored as a sequence of
these moves together with (0,0) and connecting (1, 0) surgeries.
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Proof. Haas and Hughes [16], for example, illustrate that a “kinky-box” can
be factored as a sequence of type II and III moves. Thus type I moves are not
necessary. A (1, 1) surgery can be factored as a (1, 0) surgery and a type II move.

Regular homotopy in the plane is generated by type II and type III moves.
Thus the given curve can be regularly homotoped in the sphere to an immersed
curve that has Gauss word of the form aa~'bb~'.... A sequence of (1,0)-
surgeries will separate the curve into a collection of curves each of which is
essentially the curve illustrated in Figure 1. These (1, 0) separating surgeries form
critical levels for an immersed planar surface. Figure 1 can be rearranged so that
the double points vanish by means of a type II move. A local minimum in a
Morse decomposition corresponds to a type (2,0) surgery. This completes the
proof of A and B.

Let a properly immersed disk (F, D?) be given. The distance from the center of
the 3-ball to a point F(x) in the image of F can be approximated by a Morse
function on D2 The double point curves in D? are the image of an immersed
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1-manifold. The distance function may be further assumed to have non-degenerate
critical points on this 1-manifold. Surgery of type (1, 1) is avoided by making the
critical points of the 2-disk distinct from those of the double points. Isotope the
image of the disk so there is a family of concentric 2-spheres such that between
any two there is at most one critical point (of the disk or of the double point set)
or one triple point. The intersection of (F, D?) with any one these spheres is a
collection of immersed curves. The difference between any consecutive spheres is a
move of the prescribed type. This completes the proof.

3. The double point set of an immersed disk
3.1. Filaments and bifilarations

Let w(f) denote the Gauss word of an immersed curve f: S' — S? that has an
even number of double points. Let L = {ait', ..., aF'} denote the letter set of the
Gauss word. Thoughout this section if a is an element of the set L, then 5~ 'is a
letter with different base and opposite exponent.

A bifilaration of w( f) is a partition of the letter set of w(f) into two element
subsets, called filaments, that satisfy the following conditions:

1. No filament contains both a and a~/;

2. The two letters in a filament have opposite exponents;
3. If {a, b~ '} is a filament, then so is {b,a"'}.

Given a bifilaration in which {a, b~} is a filament, the pair {a,b~'}, {b,a "'}
is called a bifilar, and these filaments are called companions of each other. A
filament is depicted as an embedded arc joining the letters in the Gauss word that
define the filament. As such a filament is naturally oriented: it proceeds from the
point of negative exponent to the point of positive exponent. This orientation can
be specified by denoting the filament as an ordered pair: [a ', b].

3.2. Arcs of double points

Let F:(D? S') - (B>, S?) denote a properly immersed disk in general position.
Then the restriction of F to the boundary has an even number of double points. The
preimage under F of the double point set consists of immersed arcs with their end
points on the boundary of the disk and closed curves in the interior.
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The inverse image of double points of F come in pairs. For example, if the double
points @ and b~! are joined by an immersed arc, then the double points @' and
b are also joined by an arc and these two arcs have the same image under F. Moreover,
orientation considerations force an arc to end in points with opposite exponents.

An immersed disk (F, D?) that minimizes that number of triple points among all
disks with a given boundary may be assumed to have no closed double point curves
in its interior. This follows from Dehn’s Lemma and from an inner-most curve
argument.

Using the language of section 3.1, the following observation has been established.

3.3. OBSERVATION. 4 properly immersed disk in the 3-ball induces a bifilaration
on the double point set of the boundary.

3.4. The intersection form of a bifilaration

Two filaments are said to cross if the letters that describe the filaments alternate
in the Gauss word. For example, the filaments [b !, gl and [d !, c] cross in the word:
w = aXcYb~'Zd~'U. When filaments are depicted as arcs below the Gauss word they
may be assumed to intersect at most once.

3.4.1. LEMMA. Given a bifilaration, B(w( f)), of a Gauss word of a spherical curve
f, there is a skew-symmetric intersection form defined on the free Z-module that is
generated by the filaments.

Proof. If ¢ and y are oriented filaments, then (¢, Y ) is defined to be the signed
intersection number between ¢ and ¥, where the sign is positive if and only if Y crosses
¢ from left to right when viewed from ¢. This is the same sign convention given for
Gauss words. This completes the proof.

3.4.2. Definition of crossing numbers. Choose an ordering of the filaments of a
bifilaration such that companion filaments are adjacent in the ordering. Consider the
matrix of the form (x, *) with respect to this ordered basis. A crossing number, c(B),
is associated to the given bifilaration, B. It is defined by the following procedure:

0. Before the procedure begins the crossing number is defined to be the number
0. Let ¢, ¥, and 5 denote oriented filaments, and let ¢, ¥ and # denote their
respective companions.

1. For each pair of companion filaments that intersect the integer 1 is added to
the crossing number. The corresponding two non-zero entries of the intersec-
tion matrix are each replaced with 0.
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2. If ¢p,¥> =1, and (¢, > = —1, then the integer 1 is added to the crossing
number, and these four non-zero entries in the intersection matrix are
replaced with 0.

3. If <@, ¥ >=1,{d,n> = —1,and (P, #> = 1, then the integer 1 is added to be
crossing number, and these six non-zero entries are replaced by 0.

4. For each of the remaining non-zero entires in the upper triangular block of
the matrix in question, add 1 to the crossing number, and replace these
entries, and their counterparts below the diagonal, in turn with zeros.

The procedure terminates when the zero matrix is engendered. Thus the crossing
number, c(B), of a bifilaration is defined. The crossing number is a method for
computing the minimum number of triple points of an immersed disk with the given
curve as boundary (Theorem 3.5).

Define a crossing number of the curve, (f,S'), by c(f) = min ¢(B) where the
minimum is taken over all bifilarations B of f.

3.4.3. Lengths and complexities. The length of a filament, {a,b~'}, is the
shortest syllable in the cyclic Gauss word that is flanked by the letters @ and 5.
The length of a bifilar is the sum of the lengths of its companion filaments.

Given an immersed curve f, with Gauss word w( f) consider the pair of letters
of the Gauss word that yield the shortest possible bifilar. If there are two such pairs,
then consider a pair for which one of the companions is shorter. For example, the
bifilar defined by (a, b) in the word aa~'bb~! is better than (c, d) in the word
cc ~'d~'d. The length of the shortest possible bifilar is an intrinsic invariant of the
given curve. Therefore, define the complexity of the curve f to be the ordered pair
(number of double points, length of the shortest possible bifilar). Complexities are
given the lexicographical ordering.

3.44. LEMMA. Let an immersed curve (f,S') that has an even number of
double points be given. Then there is a properly immersed disk, (F, D?), in the 3-ball
with OF = f such that T(F) = c(f).

Proof. The proof is dependent on the planarity of the curve and will follow by
induction on the complexity of the curve (f; S'). Certainly, the result is true in case
the immersion f is an embedding. If / has two double points, then either f is the
aa-curve or the ay-curve; these are depicted in Figures 1 and 2, respectively. In
these figures, immersed disks with the correct number of triple points are also
depicted. In the case of the ay-curve, there is at least one triple point by
Banchoff’sTheorem [2]. Suppose the result is true for all curves of smaller complex-
ity than the given curve. Construct a bifilaration by successively choosing the
shortest possible bifilars. This bifilaration achieves the smallest crossing number.
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Consider the shortest possible bifilar. The following cases will be examined:
Either, (1) this bifilar crosses no other filaments, or (2) there is a sequence of
Reidemeister moves, in which exactly one type IIl1 move occurs, that shortens the
length of this bifilar and that reduces the crossing number by one. In the latter case,
the argument is roughly an inner-most curve argument: That is, by choosing the
shortest bifilar, not many double points will be seen in the disk bounded by the
bifilar, or else that bifilar is not short.

In the former case, there are two possibilities: the bifilar intersects itself, or the
bifilar is embedded. When the bifilar is embedded, there is a (1, 1)-surgery which
eliminates the pair of double points on the boundary that define the bifilar. A pair
of mutually disjoint immersed curves results: one of these is disjointly embedded;
the other has smaller complexity. When the bifilar intersects itself, the curve
contains an ay arc as a “‘subword”. This arc can be eliminated by introducing a
single triple point, and the number of double points has been reduced. In this case
the result follows by induction.

The drawings of Figure 10 depict schematically the possibilities that must be
analyzed in case possibility (1) does not occur. The question marks indicate that
there may be a variety of intersections. The thickened lines indicate that more than
one arc may intersect. For each point of intersection that contributes a term to the
crossing number, a sequence of Reidemeister moves will be performed that reduce
the crossing number by exactly one, and that adds exactly one triple point at the
stage of a type III move.

If either companion of the shortest bifilar contains an «-type kink, then a
sequence of a type II, type III, and then some type II moves moves the kink out of
the realm of the bifilars in question. See for example the top of Figure 9.

In case an embedded arc crosses both of the bifilars as in the top illustration of
10, then there is a triangle found in the picture over which a type III move can be
made. This reduces the crossing number of the bifilaration by exactly one, for the
relative order of the intersection points of this bad arc is interchanged elsewhere in
the Gauss word according to Figure 5.

In case an embedded arc crosses both of the filaments as in the bottom illustration
of 10, one of the loops may be slid past this arc as was the case two paragraphs above.

In case this arc that crosses the shortest bifilar is not embedded, then it contains
at most one a-kink (or else there is a shorter bifilar). And the companion points for
this kink are outside the realm of the figure, and induce further crossing. The kink
can be moved as in case considered in the paragraph above, thereby reducing the
crossing number.

Finally, in case several arcs cross the shortest bifilar, the intersection points
among them induce terms in the crossing number, and these can be slid awayby
means of appropriate type II moves. The case of a single embedded arc applies.
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In conclusion, by consistently choosing the shortest possible bifilars, a bifilara-
tion that achieves the minimal crossing number is found. This bifilaration is induced
by an immersed disk whose triple point number agrees with the crossing number.
This completes the proof.

\ S

7]

O

3.5. THEOREM. Let an immersed curve f:S'— S? with an even number of
double points be given. Then

T(f) = c(f).

Proof. Let F: (D% S') — (B3, S?) be an immersion of the 2-disk that achieves
the minimum number of triple points, T(f), among all extensions of ( f, S'). Then
by 3.3 there is a bifilaration of the Gauss word of f that is induced by F. The
number of triple points of F is greater than or equal to the crossing number of the
bifilaration by 3.4.4. Thus c(f) < T(f).

On the other hand there is an immersed disk that has c( f) triple points by 3.4.4.
Since T(f) is the minimum number of triple points among all extensions of f,
T(f) < c(f). This completes the proof.

Figure 10
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